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ABSTRACT
In the present work the acoustic band structure of a two-dimensional
(2D) phononic crystal (PC) containing a semiconducting ferroelectric -
AVBVICVII (A D Sb, Bi; B D S, Se, Te; C D I, Br, and Cl) was investigated
theoretically and numerically by the plane-wave-expansion (PWE)
method. Two-dimensional PC with square lattices composed of
semiconducting ferroelectric cylindrical rods embedded in the
organic/inorganic matrix is studied to find the existence of stop bands
for the waves of certain energy. This phononic bandgap - forbidden
frequency range - allows sound to be controlled in many useful ways
in structures that can act as sonic filters, waveguides or resonant
cavities. Phononic band diagram v D v(k) for a 2D PC was plotted
versus the wavevector k along the ’-X-M-’ path in the square Brillouin
zone (BZ). The band diagram shows four stop bands in the wide
frequency range. The unusual properties of matrix and ferroelectric
properties of AVBVICVII give us ability to control the wave propagation
through the PC in over a wide frequency range. We study the 2D
composites by solving the basic acoustic wave equation and use Bloch
wave analysis to identify the band gaps.
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1. Introduction

Phononic crystals (PnCs) and acoustic metamaterials have generated rising scientific inter-
ests for very diverse technological applications ranging from sound abatement to ultrasonic
imaging to telecommunications to thermal management and thermoelectricity [1]. In recent
years great interest arises in the artificial periodic structures that can arise only in the human
imagination. Depending on the specification of a specific application that are periodic in 1D,
2D and 3D, rapid developments in technology have made possible the production of PnCs
operating at desired frequencies. Because PnCs can control the behavior of sound, the PnCs
are considered to be main elements for future technology, especially in wireless communica-
tion, transducer and sensor system [2–6].

PnCs and acoustic metamaterials are artificially structured composite materials that
enable manipulation of the dispersive properties of vibrational waves. PnCs perform several
important functions, containing anisotropic propagation and acoustic band gaps [7]. These
types of phenomenon are quite frequent for surface acoustic wave (SAW), bulk acoustic
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wave (BAW), and plate waves, also called Lamb waves in different PnC structures, respec-
tively. Applications of PnCs, such as damping acoustic vibrations, a phononic lens, a fre-
quency selective filter in the acoustic regime, reflective gratings for SAW waves, waveguides,
and resonant cavities were proposed, and they showed great potential and feasibility of
applying PnCs in acoustic electronic devices [8–13]. Among these components, one-way
phononic waveguides and SAW devices could potentially lead to the design of a novel class
of surface wave devices that are widely used in electronics, telecommunication, and acoustic
imaging [14].

PnCs are made of periodic distributions of inclusions (polymer in water, narrow band
semiconductor in air, etc.) embedded in a matrix. Also, it is well known that with such a
structure, band gaps of PnCs may appear and are independent of the direction of propaga-
tion of the incident elastic wave. PnCs are designed to control the dispersion of waves
through Bragg scattering, the scattering of waves by a periodic arrangement of scatterers
with dimensions and periods comparable to the wavelength. Acoustic metamaterials have
the added feature of local resonance, and although often designed as periodic structures,
their properties do not rely on periodicity. Finally, the study of PnCs and acoustic metamate-
rials has also extensively relied on a combination of theory and experiments that have shown
extraordinary complementarity [15].

Due to their interesting property, the phononic structures have extensive practical appli-
cations by supressing sound waves for a given frequency range. Therefore, the applicatıon of
phononic crystals can be mainly determined by manipulating the regulation performance
level of the band gap. The condition of controlling and tuning band gap in conventional
research is primarily met by changing the geometry of lattice, filling fraction and orientation
of scatterers in a phononic crystal [16,17]. Characteristics of phononic crystals can be altered
by changing the geometry of the inclusions or by varying the elastic characteristics of the
constitutive materials. The form and geometry of the inclusions embedded in a matrix are,
in principle, predefined regular shapes such as circle, square, ellipse, hexagon and so on.
However, material selection has a great effect to manipulate sound and hypersound frequen-
cies. Therefore, different materials are needed to fabricate phononic structures to obtain
reachable frequencies for the energy band gaps from about kilohertz to megahertz range and
even to ultra high frequencies (very high-frequency sound, with f <1 GHz) [18].

There has been a growing interest in ferroelectrics of the AVBVICVII type due to the
fact that they have some very interesting properties. In antimony sulfur iodide, SbSI, crystals,
the temperature of the ferroelectric phase transition is close to 295 K and they have been
attractive for its fundamental research interest and prospective applications in the fields of
ferroelectricity, microelectronics and optoelectronics, as microcapacitors, optical valves [19].
Besides, in virtue of these characteristics, SbSI has the highest piezoelectric constant and is
more sensitive to external pressure by an order of magnitude [20].

More importantly, all these combined properties favours SbSI for the efficient creation of
low pressure piezoelectric elements with high resonant frequency, and high sensitivity. Its
potential for use in acoustic sensors has been exploited for a long time.

SbSI proved to be far superior and won out over many familiar ferroelectrics in efficiency.
Such properties, therefore, make the crystals amenable for conducting experimental and the-
oretical investigations. Ferroelectric materials might have a possible future in phononic
crtystals as constitutive materials for creating tunable PnCs and smart temperature-tuned
devices such as the Lamb wave filters or sensors. [21].
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2. Theory

The wave propagation in a homogeneous medium can be strongly changed by inserting peri-
odically distributed inclusions (single acoustic functional scatter) in a matrix with different
mass densities and/or elastic constants, which can give rise to new acoustic dispersions and
band structures due to the periodic Bragg scattering from the inclusions. The periodic scat-
tering in this so-called PnCs induces a wave scattering and destructive interferences can
appear in some frequency ranges, leading to forbidden band-gaps. Total reflection is then
expected in these frequency ranges. PnCs can be generally classified into two main catego-
ries: acoustic phononic crystals (APCs) [22,23–25] with a fluid matrix, and elastic phononic
crystals (EPCs) with an elastic solid matrix [26]. In this study, we will mainly focus on acous-
tic phononic crystals since most of the scientific studies has been conducted in this area.

We consider a 2D system consisting of infinitely long cylinders aligned along the z direc-
tion and any material based parameters are independent of z direction. The phononic crystal
also extends infinitely in the xy plane. Therefore, the mechanical properties of the phononic
crystal vary periodically in the xy plane. Acoustic waves propagate within the solid-fluid
phononic crystals as Bloch waves.

It is possible to simplify the problem under certain assumptions by assuming that solid
inclusions develop no deformation, such that spontaneous contributions from piezoelectric-
ity can be neglected. After doing that the problem to be solved is very similar to the acoustic
wave equation
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where f is the filling fraction of the cylindrical rods with lattice constant a, F(G) is the struc-
ture factor, J(x) is the Bessel function of the first kind of order one. Ac is the area of a unit
cell, and r0 is the cylinder’s radius. The integral in F(G) is over the cross-sectional area of cyl-
inder of radius r. By applying some algebra, one can obtain
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Equation 8 is a NxN matrix equation and it is obtained using a finite number of Fourier
components in the expansion. The solution of the secular equation gives the v.

!
K / eigenval-

ues and p.
!
G/ eigenvectors. For software implementation and numerical calculation, the code

written by Elford [27] was used with some modification such that it was executed for G-X,
X-M and G-M directions to obtain eigenvalues and eigenvectors of the system.

3. Results and discussion

Figure 1 shows the 2D phononic crystal array structure. The cylindrical materials and their
environment around them can be set to different materials. Numerical calculation in this

Figure 1. (a) Two dimensional square photonic crystal of circular rods of radius r with lattice constant a;
(b) transverse cross section of two-dimensional square lattice; (c) the shaded area is the irreducible
Brillouin zones under study.
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study has the parameters with the column radius of 23 mm and the lattice size of a D b D
50 mm for an array of circular SbSI cylinders embedded in an air background material. This
results in a filling ratio of approximately 66%. The phononic material parameters used in the
calculations are rSbSI D 5200 kg/m3, rAir D 1.3 kg/m3, cSbSI D 3200 m/s, and cAir D 340 m/s.
The unit cell of the system is a square lattice in Brillouin zone and its first irreducible Bril-
louin zone corresponding of this periodic structure is shown in Fig 1.

The nx and ny values in the reciprocal lattice vector G are permitted to take the integer
values from ¡9 to C9 (361 plane waves). Within an acceptable range, a reasonably good
convergence was obtained. In order to show the feature apperaring in the band structures of
the proposed structure, we illustrate the dispersion curves for a typical circular hole with a
r/a D 0.46 in Fig 2 which corresponds to % 66 filling ratio. The plots are given in terms of
the frequency, which is the vertical axis and the horizontal axis is the reduced wave vector.
All the parameters are independent of z direction. That means 2D phononic crystal structure
is invariant along the z direction. The first eighteen bands for propagation in the (x, y) plane
were computed while the irreducible triangle G-X-M-G of the Brillouin zone along its pher-
iphery was scanned, For band structure calculations, moving along the high symmetry axes
of the first Brillouin zone was good enough. Figure 2 shows full band gaps along the G-X-M-
G direction. Following the path along the G-X-M-G direction, the first band gap appears
between [0.4977–0.2666] kHz, the second one is between [1.6952–1.6253] kHz, the third
one is between [1.9607–1.8499] kHz, and the fourth one occurs between [2.146–2.0759]
kHz, respectively. As it can be seen, the first band has the broadest energy gap in Fig 2.

The filling fraction in the structure is also changed by varying the hole radius to analyze
the sensitivity of the bandwidth to the change of radius r. We must note that there is a mini-
mum fill fraction of at least about 36% in order for a band to appear.

The density of states as a function of frequency or energy is also computed and the figure
on the right panel in Figure 2 shows the corresponding phononic density of states (DOS) as
a function of frequency. The phononic density of states were calculated by sampling k-points
in the two dimensional BZ. We found the density of states as a function of frequency v by
doing a sum of all bands over all frequencies. DOS calculations are particularly important

Figure 2. Acoustic band structures of infinite PnCs composed of SbSI rods in air. The lattice constant,
radius of SbSI rods and filling fraction are a D 50 mm, r D 23 mm, f D 66% respectively. The dashed
region represents the complete stop band. The phononic density of states in PnC crystal.
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since some physical properties, such as thermal conductivity and specific heat, can be modi-
fied by changing the phonon density of states in a phononic crystal. Briefly, they provide
insight into both microscopic and macroscopic properties.

4. Equi-frequency surface

Since the momentum conservation law is satisfied at the reflection and refraction of waves, it
is convenient to analyze the reflection and refraction of a certain wave in the space of wave
numbers by introducing the equi-frequency surface of the wave. This surface is directly
described by the dispersion relation of the anisotropic medium at the fixed frequency v.
Then, the group velocity of the wave in an anisotropic medium can be found as the fre-
quency gradient in the space of wave vectors [28].

It is known that for a wave propagating in an isotropic medium with a fixed frequency v,
the equi-frequency surface represents a sphere. In this case, the wave vector and group velocity
vector, which determines the ray direction, are always parallel. However, equi-frequency

Figure 3. (a) Dispersion curve and (b) equifrequency contours for the first mode of the square PnC, calcu-
lated for all k-vectors in the first Brillouin zone, respectively.
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surface is not spherical for anisotropic media and the vectors are not parallel. By analogy with
3D case, the propagation, reflection, and refraction of the wave in 2D structure can be
described in terms of the equi-frequency dependence which can be considered as the section
of the dispersion surface in the space of variables by the plane corresponding to constant fre-
quency. It is well known that the analysis of equi-frequency dependences is most efficient in
the studies of 2D geometries, especially in solving problems when only orientations of the vec-
tor of incident, reflected, and refracted waves are of interest, and are not the amplitudes of the
reflected and refracted rays. The equi-frequency dependence has a simple physical meaning

Figure 4. (a) Dispersion curve and (b) equifrequency contours for the second mode of the square PnC, cal-
culated for all k-vectors in the first Brillouin zone, respectively.
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for the analysis of 2D geometries: since this dependence describe all the possible waves with
the given frequency v and various wave vectors, the directions of the reflected and the
refracted rays can be determined by simply finding the points in equi-frequency dependences
of media that satisfy the momentum conservation law at a known orientation of the boundary
and a given angle of incidence of the wave. Now, we present some numerical examples for our
PC structures. In all of these examples, we exploit symmetry to calculate the equi-frequency
surfaces over the irreducible Brillouin zone of the entire Brillouin zone. First, we consider the
equi-frequency surface of a square lattice of SbSI layers in air medium. Here, the map was dis-
cretized using 441 points per edge of the unit cell for the first band in Figure 3 (a). The map
was discretized using 441 points per edge of the unit cell for the next band in Figure 4(a). The
curves shown correspond to equi-frequency surfaces of the lowest order band up to frequen-
cies just below the band gap starting at around 0.26 kHz. For the next band, the curves shown
correspond to equi-frequency surfaces of the second lowest order band up to frequencies just
below the band starting at around 0.50 kHz. Each point on the surface gives the possible eigen
solutions that consist of all allowed wave vectors in the first Brillouin zone. Therefore, the plots
retain detailed information but they are difficult to analyze. Figure 3 (b) and Figure 4(b) show
contours of dispersion surfaces with values on the contours given. The equi-frequency
contours are something that is more meaningful and easier to analyze. The plots basically
indicate the contours of the energy flow which may allow us to identify irregularities in refrac-
tion, and they are also very helpful in understanding propagation effects within the crystal. In
Figure 3(b) some contours are nearly circular and they imply that propagation of the energy is
radially symmetric (no dependence on direction). The first and other bands of the acoustic
waves are adopted to analyze the refractive angles and intensities of the wave transmission.
Deviation from the circular shape depends on the radial amplitude which is a function of the
incident frequencies. However, in Figure 4(b), first contour closest to center appears to be a
circle, and then after a few contours deviations from circular shapes are observed for points
away from the center. The circular shapes change into a square like contours, and a simple
symmetry takes place for values of kx equal to ky through the square shaped ones.

5. Conclusions

The band gap and transmittance properties of a square lattice phononic crystal consisting of
SbSI cylindrical rods in air were investigated using the plane wave expansin method by
imposing elastic rigidity. In light of the calculations, band gap structures give the required
physical conditions for possible uses as a possible acoustic/elastic filters, noise control or an
insulator.
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