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Abstract Given a 2.5D terrain and a query point p on or
above it, we want to find the triangles of terrain that are
visible from p. We present an approximation algorithm to
solve this problem. We implement the algorithm and test
it on real data sets. The experimental results show that our
approximate solution is very close to the exact solution and
compared to the other similar works, the computational cost
of our algorithm is lower. We analyze the computational
complexity of the algorithm. We consider the visibility test-
ing problem where the goal is to test whether a given
triangle of the terrain is visible or not with respect to p.
We present an algorithm for this problem and show that the
average running time of this algorithm is the same as the
running time of the case where we want to test the visibility

� Sharareh Alipour
shalipour@ce.sharif.edu

Mohammad Ghodsi
ghodsi@sharif.edu
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between two query points p and q. We also propose a ran-
domized algorithm for providing an estimate of the portion
of the visible region of a terrain for a query point.

Keywords Visibility computation · Visibility counting
problem · Visibility testing problem · Approximation
algorithm · Randomized algorithm

Introduction

Problem statement Suppose that T is a set of n disjoint
triangles representing a 2.5D terrain. Two points p, q ∈ R3

above or on T are visible to each other with respect to T

if the line segment pq does not intersect any triangle of T .
A triangle � ∈ T is also considered to be visible from a
point p above or on T , if there exists a point q ∈ � such
that p and q are visible to each other. Here, the visibility
counting problem (VCP) is to find the number of triangles
of T that are visible from any query point p. The visibility
testing problem (VTP) is also defined as follows: given a
query point p and a triangle � ∈ T , we want to test whether
� is visible from p.

Definition 1 The set of all points on T that are visible from
a query point p is the visibility region of p and is denoted
by VR(p).

Related work Computing the visible region of a point
is a well-known problem appearing in numerous appli-
cations (see, e.g., Cohen-Or and Shaked 1995; Cole and
Sharir 1989; Floriani and Magillo 1994; Floriani and
Magillo 1996; Franklin et al. 1994; Goodchild and Lee
1989; Stewart 1998). For example, the coverage area of an
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antenna for which the line of sight may be approximated
by clipping the region that is visible from the tip of the
antenna with an appropriate disk centered at the antenna. As
a similar problem, natural resource extractors may wish to
site visual nuisances, such as clearcut forests and open-pit
mines, where they cannot be seen from public roads. Zon-
ing laws in some regions, such as the Adirondack Park of
New York State, may obstruct new buildings that can be
seen from a public lake (Franklin et al. 1994). Alsadik et al.
(2014) proposed different methods for analyzing the vis-
ibility of point clouds from a photogrammetric viewpoint
and developed surface-based and voxel-based visibility and
hidden point removal (HPR) algorithms.

The complexity of computing the visibility region of a
point, VR(p), might be �(n2) (Cole and Sharir 1989; Devai
1986), where n is the number of triangles in T . There-
fore, approximation algorithms that compute an approx-
imation of VR(p) can highly reduce the running time.
Moreover, a good approximation of the visible region is
often sufficient, especially when the triangulation itself
is only a rough approximation of the underlying terrain
(Ben-Moshe et al. 2008). Note that the terrain representa-
tion is fixed and cannot be modified during the running time
of the algorithm.

Ben-Moshe et al. (2008) propose a generic radar-like
algorithm for computing an approximation of VR(p). The
algorithm extrapolates the visible region between two con-
secutive rays (emanating from p) whenever the rays are
close enough; that is, whenever the difference between the
sets of visible segments along the cross sections in the direc-
tions specified by the rays is below some threshold. Thus,
the density of the sampling by rays is sensitive to the shape
of the visible region. Ben-Moshe et al. (2008) suggest a spe-
cific way to measure the resemblance (difference) and to
extrapolate the visible region between two consecutive rays.
They also present an alternative algorithm, called Expand-
ing Circular-Horizon (ECH), that uses circles of increasing
radii centered at p instead of rays emanating from p. Both
algorithms compute a representation of the (approximated)
visible region that is especially suitable for computing the
visibility from a point. Overall, they proposed four algo-
rithms, fixed ECH, ECH, fixed radar-like, and radar-like to
approximate VR(p). It is shown that the radar-like algorithm
is the fastest among these four algorithms.

Our result We propose an algorithm to approximate the
number of visible triangles of a terrain from a query point
p, which is denoted by mp. Moreover, the algorithm can be
used to approximate VR(p). We also consider the visibility
testing problem and present our experimental results on real
data sets. We represent the surface of the terrain as a trian-
gulation mesh. The main idea of the algorithm is to compute
the visible edges and vertices of the triangles. A preliminary
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Fig. 1 The proposed algorithm for VTP. The dashed lines are the por-
tion of the segments not visible from p. Also, note that the triangles
shown are part of a terrain and for simplicity other triangles are not
shown in this figure. a1 is not visible from p and �2 covers a1a2. In
the next step, �3 covers a2a3. If we continue, either we reach the end
of s1 which means that s1 is not visible from p or we find a visible
point on s1 which means that s1 is visible from p

version of the proposed algorithms and the experimental
results are presented in Alipour et al. (2014).

The structure of the paper is as follows: in “Visibility
testing problem” section, we present the algorithm for
visibility testing between a point and a triangle and the
results of testing the algorithm on real data sets. We also
provide the average running times and error rates of the
proposed algorithm. In “The visibility counting problem”
section, we present two approximation algorithms for the
visibility counting problem and also an exact algorithm,
which is used to compare the approximated solution to the
exact solution. In “Experimental results for visibility coun-
ting” section, we provide the experimental results of the

Table 1 The average number of triangles that cover a triangle accord-
ing to a random query point for each data set

Number of vertices Average number of covering triangles

2400 1.70

2400 1.18

2400 1.06

5400 1.58

5400 1.09

5,400 1.03

9,600 1.53

9,600 1.10

9,600 1.04

29,400 1.48

29,400 1.02

29,400 1.08

60,000 1.51

60,000 1.37

60,000 1.08
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proposed algorithm and compare our results to the results
of Ben-Moshe et al. (2008). We conclude in “Conclusion”
section and give some future research directions.

Visibility testing problem

Suppose that we are given a set S of n triangles in R3 and a
query point p. We classify the visible triangles of S from p

into two groups:

– A triangle is an edge-visible triangle if there is a point
on its edges that is visible from p.

– If the triangle is visible from p but there is not any vis-
ible point on its edges, then it is called a mid-visible
triangle.

Lemma 1 If the triangles of S form a terrain T , then all the
visible triangles from a query point p are edge-visible.

Using Lemma 1, to compute the number of visible triangles
of a terrain T from a given query point p, it is enough to
consider the edges of triangles.

The proposed algorithm for visibility testing

According to Lemma 1, if a triangle �1 ∈ T is visible from
a query point p, then �1 is edge-visible. Therefore, for each
edge of �1, starting from one of its vertices, a1, we check
the vertices. If a1 is visible from p, then �1 is visible to p

and we terminate the algorithm, otherwise, we choose the
first triangle �2 hit by the ray emanating from p to a1. �2

covers some part of that edge. So, it is enough to check
whether the remaining part of the edge is visible from p.

For the remaining part, we consider the first point a2 on that
edge that is not covered by �2. We shoot a ray from a2 to p.
If a2 is visible from p, then �1 is visible from p, otherwise,
we consider the first triangle hit by the ray emanating from
a2 to p. We run the algorithm on �2 in the same way as �1.
If we reach the end of the edge, then that edge is not visible
from p. If all three edges of �1 are invisible from p, then
�1 is also invisible from p (cf. Algorithm 1 and Fig. 1).

(a) Approximated visible region (b) Actual visible region (c) Subtraction of the approximated

visible region (a) from the exact visi-

ble region (b)

Fig. 2 The approximate a the exact b visible region of the query point
p(3.3, 242.5, 2089.5). The query point is shown in red. The blue areas
are not visible to the query point and all the other areas are visible. As

the height of a visible area increases the color of that area is shown
darker. Therefore, the dark parts are associated to the mountains and
the white parts are associated to the valleys
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Experimental results of visibility testing

The computational complexity of Algorithm 1 for each
query point p and triangle �1 depends on the number
of rays shot, which is equal to the number of triangles
covering the edges of �1. We denote this number by
tp(�1). Therefore, the computational complexity of this
algorithm is O(tp(�)f (n)) in which f (n) is the time for
each ray shooting. In our data sets, the terrain is repre-
sented as a height field where a height value is specified
for each point (i, j) on the regular 2D grid. The regu-
lar grid is triangulated to represent the terrain. We use
a regular triangulation such that for every four points
x1 = (i, j, k1), x2 = (i + 1, j, k2), x3 = (i, j +
1, k3), x4 = (i + 1, j + 1, k4), two triangles are con-
structed: �1 = (x1, x2, x4) and �2 = (x1, x3, x4). In
our experiments, we do not preprocess the triangles of ter-
rain, so f (n) = O(

√
(n)). For each tested data set, we

choose random points and run Algorithm 1 for each point
p and each of the triangles of the terrain. For each trian-
gle �1 ∈ T , we calculate tp(�1). The experimental results
indicate:

E(tp(�1)) =
n∑

�i∈T

tp(�i)

n
= O(1),

which means that the average number of triangles covering
a triangle for a random query point is O(1). So, the average
running time of visibility testing between a triangle and a
random query point is O(f (n)). Table 1 shows the average
tp for each data set, which is always smaller than two. It is
shown that the average number of tp(�) is independent of
the size of data set.

The visibility counting problem

Our visibility counting algorithm is based on counting the
number of triangles whose vertices are visible from the
query point. The visibility region of a query point p con-
sists of triangles whose vertices are visible from p and these
triangles are stored in a queue structure.

Approximation algorithm for visibility counting

For each query point p, if at least one of the vertices of
a triangle is visible from p, then we consider it as a visi-
ble triangle. To compute the number of triangles which at
least one of their vertices are visible from p, we propose the
following algorithm:

First, we emanate a random ray from p to the surface
of T and select the first triangle �1 that is intersects this
ray. Obviously, �1 is visible from p. In the next step, we

consider the three neighbors of �1 ; we check whether the
vertices of these triangles are visible from p. If at least one
of the vertices of these triangles is visible from p, then the
triangle is visible from p. We run the algorithm recursively
on the neighbors of the triangles. Otherwise, we decide that
the triangle is an invisible triangle. For each non-visible tri-
angle, we shoot a ray emanating from p to the vertices of
visible triangles; the first triangle hit by that ray is con-
sidered as a visible triangle and we recursively run the
algorithm on its neighbors. Algorithm 2 shows pseudo code
of this algorithm.

Computational complexity

In Algorithm 2, each triangle is stored in the queue just
once. For each triangle, we shoot three rays to the vertices of
that triangle. In each step of ray shooting, we check whether
there is a triangle between p and a vertex. For each ray, we
want to find the first triangle hit by a ray emanating from
p to a specific direction. In both of these ray shootings,
we have to check at most O(

√
n) triangles. So, the com-

putational complexity of the algorithm is O(
√

nmp) where
mp is the number of visible triangles. It should be noted
that if we preprocess the triangles, each ray shooting would
take O(log n) time and this could reduce the computational
complexity.
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(a) Approximated visible region (b) Actual visible region (c) Subtraction of the approximated

visible region (a) from the exact visi-

ble region (b)

Fig. 3 The approximate a and the exact b visible region of the query
point p(468.8, 232.5, 3228.6). The query point is shown in red. The
blue areas are not visible to the query point and all the other areas are

visible. As the height of a visible area increases the color of that area
is shown darker, so the dark parts are associated to the mountains and
the white parts are associated to the valleys

Randomized algorithm for visibility counting problem

We present a randomized algorithm to approximate the
answer of visibility counting problem. Our randomized
algorithm is based on random sampling and is similar to one
introduced in (Alipour and Zarei 2011). To find the num-
ber of visible triangles, we first run the algorithm proposed
in the previous section at most for O(

√
n) time. Obviously,

if mp <
√

n, the algorithm will terminate and we give an

Table 2 The average running time for each data set. For each data set,
the height of some random points are chosen as specific values

Number of vertices Running time (ms) Error (%)

2400 17 1.39

2400 14 0.45

2400 13 0.41

5400 44 2.03

5400 36 0.89

5400 28 0.45

9600 90 2.28

9600 80 1.17

9600 66 0.90

29,400 355 3.92

29,400 396 1.78

29,400 365 2.47

60,000 840 5.28

60,000 870 3.17

60,000 954 3.70

approximation value of mp. If mp >
√

n, we use the fol-
lowing algorithm. Suppose that the number of triangles is n.
We choose each triangle with the probability of 1√

n
and use

the visibility testing algorithm for each triangle. We com-
pute the number of triangles that are visible from p, multiply
this number by

√
n, and report it as the approximated value

of mp. We can run this algorithm for t times and report the
mean value of these t values. In (Alipour and Zarei 2011), it
is shown that by Chebishev Lemma, our approximated value
will be a 1 + δ approximation of the real solution.

The computational complexity of this algorithm is

O(
1

δ2

√
n f (n) log n) because we run the visibility testing

algorithm for the selected triangles. Here, δ is the approxi-
mation factor. For more details on the approximation factor,
please refer to (Alipour and Zarei 2011).

Using Algorithm 1, we test whether each triangle of T

is visible from p. So, we can compute the exact number of
visible triangles. We use this data in our experimental results
to show that the approximate number of visible triangles is
close to the exact number of visible triangles.

Experimental results for visibility counting

We ran the approximation algorithm on three real terrain data
sets. The terrain is represented as a height field that for each
point (i, j) on the regular 2D grid, a height value is speci-
fied. The regular grid is triangulated to represent the terrain
as described previously. We run the proposed algorithm on
height-field representation of the terrain.
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Figures 2 and 3 show the actual and approximate visible
regions of two query points. We calculate the approximate
visible region of a query point using Algorithm 2 and use
the exact algorithm to calculate the exact number of visi-
ble region of a query point. It is seen that the approximated
visibility region of a query point is close to the actual
visibility region of that point.

We define the error measure as follows. Let m′
p be the

number of approximated visible triangles. Then the error
associated with m′

p is (mp − m′
p) divided by mp. For each

data set, we choose 1000 random query points and calculate
the error using mp and m′

p for each query point p. Each ran-
dom point is chosen in different heights above the terrain. It
is obvious that the increase in the height of a point results in
the increase of the number of visible triangles and the run-
ning time as well. Table 2 shows the average computation
time and average error for each data set.

We compare our results to the results of the approach
proposed by Ben-Moshe et al. (2008). They proposed four

Table 3 The results of Ben-Moshe et al. (2008). They define an error
function for approximating the visible region of a query point. The
running times of the algorithms (ms) are given for each error value.
The best running time is obtained by the Radar-like algorithm

Error 1.00 0.75 0.5

Fixed ECH 597 1.0045 1.648

ECH 579 1.012 1.591

Fixed radar-like 112 192 301

Radar-like 101 168 274

algorithms and measured the performances of these algo-
rithms. We use data sets similar to the ones used in the
experiments presented in Ben-Moshe et al. (2008). In their
experiments, they tested ten input terrains representing
different geographic regions. Each input terrain covers a
rectangular area of approximately 5000–10,000 triangle ver-
tices. For each terrain, they picked several view points (x, y
coordinates) randomly. For each query point p, they applied
each of the four approximation algorithms (as well as the
exact algorithm) 20 times: once for each combination of
height (either 1, 10, 20, or 50 m above the surface of the
terrain) and range of sight (either 500, 1000, 1500, 2500, or
3500 m). For each (approximated) region that was obtained,
they computed the associated error according to the error
measure they used.

Their error measure is defined as follows: Let Rp be
an approximation of Rp obtained by some approximation
algorithm where Rp is the region visible from p. The error
associated with Rp is the area of the XOR of Rp and R′

p,
divided by the area of the sight that is in use. In the case
that Rp is small compared to the the sight and the difference
between R′

p and Rp is high compared to Rp, the error will
be very small. However, the difference between R′

p and Rp

is generally high. Thus, our error measure is more accurate
than theirs. The data sets they tested contain 5000–10,000
triangle vertices. We also tested some data sets with the
number of triangles around 10,000.

As it is shown in Table 3, the best average running time
of their algorithm is 274 ms with the error of 0.5 (using their
error measure), whereas the average running time of our
proposed algorithm is 70 ms with the error of 0.55 (using
our error measure). If we use their error measure, then our
error would be 0.35.

The test environment for our experiment and the one used
in Ben-Moshe et al. (2008) are described in Table 4.

Figure 4 presents the average running times and the
error rates of the proposed approximate and randomized
algorithms. It should be noted that the proposed approxi-
mate algorithm (Algorithm 2) calculates the visibility region
whereas the randomized algorithm (Algorithm 3) gives only
an approximate measure of the visible region in terms of the
number of triangles. The running times and the error rates
of the proposed approximate algorithm are better than those
of the Radar-like algorithm proposed by (Ben-Moshe et al.
2008). As it is expected, the running time of the randomized
algorithm is significantly lower than that of the approxi-
mate algorithm. However, the randomized algorithm is only

Table 4 The test environments of Ben-Moshe et al. (2008) and ours

Ben-Moshe Pentium 4 2.4 GHz Linux 8.1 Java 1.4

Our platform Core i5 2.4 GHz Win10 Java 1.8
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Fig. 4 The average running time and average error of the approximate and random algorithms

applicable for the cases where we do not need the visible
region but we need a measure of the portion of the terrain
that is visible from a query point.

Conclusion

We propose algorithms for the visibility counting and test-
ing problems on a terrain. We implement our algorithm for
VTP and the experimental results shows that the average
running time of visibility testing between a query point and
a triangle is almost equal to the running time of visibility
testing between two points.

We also propose an approximation algorithm for VCP and
tested it on real data sets. We compare our algorithm with
the algorithms proposed by Ben-Moshe et al. (2008), which
are the state-of-the-art algorithms for the same problem. We
show that in almost similar conditions (considering the plat-
forms, the number of triangles of terrains), the running time
of our algorithm is better than that of their radar-like algo-
rithm. Also, we would like to propose exact algorithms for
VCP. Another possible extension is to adapt the proposed
algorithms to the case where triangles are in 3D.
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of the Microsoft Geography Product Unit.
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