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Highlights

• To establish a computational homogenization scheme accounting for interfaces at the microscale.
• To present a thermodynamically consistent formulation and governing equations of general imperfect interfaces.
• To provide a suitable finite element framework for numerical implementation of continua with generalized interfaces.
• To elucidate the theory via a series of numerical examples.
• To capture the smaller-stronger and smaller-weaker size effect on the overall material response.

Abstract

The objective of this contribution is to establish a micro-to-macro transition framework to study the behavior of heterogeneous
materials whereby the influence of interfaces at the microscale is taken into account. The term “interface” refers to a zero-thickness
model that represents the finite thickness “interphase” between the constituents of the micro-structure. For geometrically equivalent
samples, due to increasing area-to-volume ratio with decreasing size, interfaces demonstrate a more pronounced effect on the
material response at small scales. A remarkable outcome is that including interfaces introduces a length-scale and our interface-
enhanced computational homogenization captures a size effect in the material response even if linear prolongation conditions are
considered. Furthermore, the interface model in this contribution is general imperfect in the sense that it allows for both jumps
of the deformation as well as for the traction across the interface. Both cohesive zone model and interface elasticity theory can
be derived as two limit cases of this general model. We establish a consistent computational homogenization scheme accounting
for general imperfect interfaces. Suitable boundary conditions to guarantee meaningful averages are derived. Clearly, this general
framework reduces to classical computational homogenization if the effect of interfaces is ignored. Finally, the proposed theory is
elucidated via a series of numerical examples.
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1. Introduction

Effective macroscopic properties of a heterogeneous material can be estimated from the response of its underlying
micro-structure using homogenization procedures. These mature procedures need to be extended to account for the
role of interfaces between the constituents at the microscale and consequently to capture the size-effect missing in
classical computational homogenization schemes. The objective of this contribution is to present a novel micro-to-
macro transition (computational homogenization) framework that accounts for interfaces at the microscale. Thus, the
two main ingredients of the work presented here are (i) to formulate a general imperfect interface model and (ii) to
extend the homogenization theory as pioneered by Hill [1,2]. A brief review of these topics is now given in Sections 1.1
and 1.2.

1.1. State of the art review of interface models

The term interface essentially corresponds to a zero-thickness model representing the finite thickness interphase
between different bulk phases. From this viewpoint, an interface is a two-dimensional manifold in the three-
dimensional embedding space and therefore, the interface energy over the bulk energy reads

interface energy
bulk energy

=
interface energy density × area
bulk energy density × volume

=
interface energy density

bulk energy density
×

area
volume

.

The ratio of the interface energy over the bulk energy is a decisive measure to indicate whether or not interface effects
are negligible. While the ratio of the energy densities depends solely on the material, the area-to-volume ratio is
proportional to the inverse of the problem dimension. Therefore, for geometrically equivalent samples, the interface
effects become more important at smaller scales and this fact has been the main motivation to develop different
interface models in the past. Interface models can be subdivided into different classes based on continuity of certain
variables associated with the problem. Within the context of mechanical problems, the displacement and the traction
play the main role to categorize interface models. Fig. 1 summarizes schematically various possible interface models
in the context of mechanical problems briefly reviewed in what follows.

• Perfect interface model
The first family of interfaces are trivial interfaces categorized as perfect interface model, also referred to as free
singular surfaces [3]. This interface model does not have any sophisticated characteristic and is merely defined to
better understand other interface models. Both the displacement and the traction are continuous across a perfect
interface.

• Cohesive interface model
If either the displacement or the traction assumes a jump across the interface, the interface model is imperfect.
Cohesive interface model is one subset of imperfect interfaces and allows for displacement jumps across the
interface but continuity of the traction is central to such interface models. The cohesive interface model is based
on the classical cohesive zone model and dates back to the seminal works of Barenblatt [4,5] and Dugdale [6] and
has been extensively studied (see [7–10], among others) with applications to debonding, decohesion and fracture
from both theoretical and computational aspects. For recent advances on cohesive zone models as well as improved
traction-separation laws to describe the interface behavior, see [11–18] and references therein.

• Elastic interface model
In contrast to the cohesive interface model, the displacement is continuous across an elastic interface but the traction
is discontinuous, in general. The jump of the traction in the elastic interface model is associated with the tension
along the interface as well as the curvature of the interface. The interface elasticity theory [19–22] roots in the
surface elasticity theory of Gurtin and Murdoch [23] and has been further extended in [24–26] to account for the
curvature-dependence of the surface free-energy density. Such interfaces fall into the category of thermodynamic
singular surfaces [3] whose balance equation reduces to the generalized Young–Laplace equation [27]. For further
details on interface elasticity see [28,29] and references therein.

• General interface model
Based on the classification above, it is clear that both cohesive and elastic interface models are only two extremes
of all possible responses allowing both jumps in the displacement and the traction termed altogether as general
interface model. While both isotropic cohesive and elastic interface models are well-established to date, the
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Fig. 1. Classification of interface models. The perfect interface model does not allow for the displacement jump nor the traction jump across the
interface. If either of the displacement jump or the traction jump across the interface is non-vanishing, the interface model is referred to as imperfect.
The imperfect interface models are cohesive interface model, elastic interface or the combination of the both termed general imperfect interface
model or simply, general interface model.

general interface model is poorly understood and barely studied with the exception of some analytical works e.g.
[30–34] mainly limited to small strains and derived from asymptotic expansions with certain simplifying
assumptions necessary for the analytical approach.1 Only very recently, Ottosen et al. [35] extended the work of
Steinmann and Häsner [36] from the small strain to the finite deformation setting and mathematically formulated
non-coherent interfaces possessing an elastic resistance along the interface. Our description of the general interface
model is valid in the finite deformation setting and furthermore both theoretical and numerical aspects are
thoroughly investigated. In the context of thermal problems this concept of general interfaces exists [37,38] and
dates back to Hashin [39] or perhaps to Sanchez-Palencia [40] whereby the heat conduction along the interface
resembles the interface elasticity in the mechanical problem. In fact, this work may be viewed as the mechanical
counterpart of our recent contribution [38] where only the thermal problem was considered.

1.2. State of the art review of computational homogenization

The overall behavior of composite materials depends on their underlying micro-structure such as volume fraction,
shape, distribution and orientation of their constituents at the microscale. Therefore, it is challenging to predict
the macroscopic material response based on the information at the microscale and this task requires sophisticated
techniques such as homogenization. The foundations of homogenization were laid down by Hill [1,2] and Ogden [41]
which are closely related to the works of Eshelby [42] and Hashin [43,44]. For further details on analytical
homogenization, see [45–51] and references therein. Homogenization is a powerful methodology to link microscopic
and macroscopic scales and provides the basis for computational micro-to-macro transition [52]. Computational
homogenization is a mature field and has been broadly studied in the past two decades [53–68] and thoroughly
reviewed in [69–73].

A major controversy with the classical (first-order) computational homogenization is that it cannot account for
the size dependent behavior of materials frequently referred to as the size effect. Kouznetsova et al. [74] have
circumvented this issue by incorporating higher gradients into the material response and hence, proposed second-
order computational homogenization.2 Here, we capture a size effect via accounting for interfaces at the microscale.
This approach is intuitive due to the increasing area-to-volume fraction at the microscale. Numerous analytical works
e.g. [88–90] as well as numerical contributions e.g. [91–93] have studied the size effect as a result of the surface elastic
response motivated by the surface elasticity theory. Comparisons with atomistic simulations have shown that such
surface-driven size effects are physically meaningful [94–97]. For the importance of surface effects versus second-
gradient effects in size-dependent behavior of nano-objects, see [98]. In analogy to elastic interfaces, Leuschner and
Fritzen [99] recently have incorporated the cohesive interface model in the microscale, see also [100].

1 In that “analytical community” of formulating the interface as the asymptotic limit of a thin interphase, the cohesive interface model and
elastic interface model are often referred to as spring interface model and stress interface model, respectively, as the two limit cases of soft or stiff
interphase, respectively [see for instance [33]among others].

2 For higher-gradient elasticity theories, see for instance [75–87] among others.
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Although both extreme limits of general interfaces namely, elastic interfaces as well as cohesive interfaces at the
micro-structure have been investigated in the past, a unified framework to account for the general imperfect interface
model is missing until now and this subject shapes the structure of this manuscript. We extend the computational
homogenization framework in this contribution to account for general imperfect interfaces. It is shown that in contrast
to a purely cohesive or purely elastic interface model that results in a uniform size dependent response, the general
imperfect interfaces lead to a non-monotonic and complex size effect. In passing we mention that the general imperfect
interface model here simplifies to the surface elasticity in the limit where the inclusion becomes extremely compliant
to the matrix. Thus, free surfaces can be understood as the limit case of solid–solid interfaces presented here.

1.3. Organization of this manuscript

This manuscript is organized as follows. Notation and definitions are shortly introduced. Section 2 deals with
theoretical aspects of computational homogenization at finite strains accounting for general imperfect interfaces. First,
the theory of general imperfect interfaces and governing equations are derived in Section 2.1. Next, in Section 2.2
a consistent framework for the micro-to-macro transition is introduced that can account for interfaces. The balance
equations at the macroscale and the microscale are briefly introduced and meaningful averaging theorems are proposed
to link the two scales. Clearly, the modified averaging theorems reduce to the classical ones in the absence of interfaces.
The classical Hill–Mandel condition is extended to establish an incremental energy equivalence between the scales.
Suitable boundary conditions are derived such that the Hill–Mandel condition is a priori satisfied. Section 4 elucidates
the developed theory by a series of numerical examples using the finite element method. Sections 5 and 6 concludes
this work and discusses possible extensions and outlooks.

Notation and definitions

At the microscale, quantities defined on the interface are distinguished from those in the bulk material by a bar
placed above the quantity. That is, {•} refers to an interface variable with its bulk counterpart being {•}. Following
this convention throughout the manuscript, surface, interface and curve quantities are denoted as {•}, {•} and {•},
respectively and therefore distinguished from the bulk quantity {•} by an accent on top of the quantity. Moreover,
macroscopic quantities are differentiated from microscale quantities by the left super-script “M” placed next to the
quantity. That is, M

{•} refers to a macroscopic variable with its microscopic counterpart being {•}. The terms “macro”
and “micro” are frequently used instead of macroscopic and microscopic, respectively.

Within the classical homogenization context, the term “size” usually refers to the size of the window zoomed at the
material micro-structure and when this window is large enough such that apparent macroscopic properties converge,
then this window serves as a representative volume element abbreviated as RVE, see for instance [101] for further
details on the definition of the RVE. Classical first-order computational homogenization is missing a length-scale or
physical size of the RVE and therefore, the size defined as such does not introduce any confusion in that context. This
is not the case here. In particular, we consider perfectly periodic micro-structures such that the unit cell is by definition
representative and hence a RVE. In the discussions of the numerical results varying the RVE-size indicates varying the
physical size or the dimension of the RVE.

Direct notation is adopted throughout. Occasional use is made of the index notation, the summation convention
for repeated indices being implied. The three-dimensional Euclidean space is denoted E3. The second-order identity
tensor is denoted i or I in the spatial and material configurations, respectively, and are identical. The dyadic product
of two vectors a and b is a second-order tensor D = a ⊗ b with [D]i j = [a]i [b] j . The scalar product of two
vectors a and b is denoted a · b = [a]

i
[b]i = [a ⊗ b] : i in which the scalar product of two second-order

tensors A and B is denoted A : B = [A]
i j

[B]i j . The composition of two second-order tensors A and B, denoted
A · B, is a second-order tensor with components [A · B]i j = [A]

m
i [B]mj . The vector product of two vectors a

and b is denoted a × b with [a × b]k = ε : [a ⊗ b] = [ε]ijk[a]
i
[b]

j where ε denotes the permutation (Levi-

Civita) tensor. The action of a second-order tensor A on a vector a is given by [A · a]i = [A]
j

i [a] j . The non-
standard dot product of a fourth-order tensor C on a vector a is given by [a · C]ijk = [C]isjk[a]

s . Two non-standard
dyadic products of two second-order tensors A and B are the fourth-order tensors [A ⊗ B]ijkl = [A]ik[B] jl and
[A ⊗ B]ijkl = [A]il [B] jk . The non-standard dyadic product between a vector a and a second-order tensors B is a
third-order tensor [a ⊗ B]ijk = [B ⊗ a]ijk = [a] j [B]ik = a · [i ⊗ B]. The average and jump of a quantity {•} over
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Fig. 2. The material and spatial configuration of a cutout volume of a continuum body and its associated motion and deformation gradient. The
two sides of the body in the material configuration, V −

0 and V +

0 , are bonded via the interface I 0. The interface initially has no thickness and is only
a sharp surface connecting the two sides of the bulk, i.e. [[X]] = 0. Through the motion ϕ the interface opens resulting in the displacement jump
[[x]] ≠ 0 across the interface.

the interface are defined by {{{•}}} =
1
2 [{•}

+
+ {•}

−
] and [[{•}]] = {•}

+
− {•}

−, respectively. The average and jump
operators show the property [[{•} · {◦}]] = [[{•}]] · {{{◦}}} + {{{•}}} · [[{◦}]].

2. Theory

The objective of this section is to establish the governing equations of a heterogeneous material within the
framework of continuum mechanics at finite deformation. In particular, we focus on the influence of the interface
between the constituents and its implications. In doing so, the problem is decomposed into two different length scales
namely, the macroscopic length scale Mℓ and the microscopic lengths scale ℓ ≪

Mℓ. This separation of length scales
has two outcomes. First, the unknown material behavior at the macroscale can be computed via homogenizing the
response of the underlying micro-structure for which the constitutive laws are assumed to be known. Second, the
influence of interfaces on the overall response at the microscale can no longer be neglected due to the large area-to-
volume ratio. The two main ingredients of this section are therefore: formulation of general imperfect interface models
presented in Section 2.1 and to properly incorporate such interfaces into a computational homogenization framework
detailed in Section 2.2. In this contribution, all relations and derivations correspond to the Lagrangian description,
keeping in mind that it is straightforward to re-formulate the problem in the Eulerian framework. Recall that the
primary objective of this work is to account for interfaces within a computational homogenization scheme. Therefore,
we limit the discussion to major relations and definitions that are essential for the paper to be self-contained. Further
details on computational homogenization and its underlying assumptions as well as the interface models available in
the literature can be found in the extensive references listed in the introduction.

2.1. General imperfect interfaces

The purpose of this section is to summarize certain key concepts in continuum mechanics and to introduce the
theory of general imperfect interfaces in the context of a mechanical problem. Detailed expositions on nonlinear
continuum mechanics can be found in [102–104] among others. Basic concepts and terminologies corresponding to
the fundamentals of differential geometry on surfaces are briefly reviewed in Appendix A.

2.1.1. Problem definition
Consider a continuum body that takes the material configuration V 0 at time t = 0 and the spatial configuration

V t at any time t as shown in the Fig. 2. The configurations V 0 and V t , consistent with Section 2.2, correspond to an
arbitrary cutout volume of a body. Note, we restrict the analysis only to quasi-static conditions and thus, time plays
the role of a history parameter to order the sequence of events.

The reference placement of material particles in the bulk and on the interface are labeled X and X, respectively. The
motion from the material to the spatial configuration in the bulk and on the interface is denoted as ϕ and ϕ, respectively.
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The current placement of material particles in the bulk and on the interface are labeled x and x, respectively. The linear
deformation maps associated with ϕ and ϕ are denoted F and F, respectively and relate the infinitesimal line elements
from the material to the spatial configuration as

x = ϕ(X) ⇒ dx = F · dX, x = ϕ(X) ⇒ dx = F · dX, (1)

in which F = Gradϕ and F = Gradϕ = F · I with I being the interface identity tensor in the material configuration
defined by I = I − N ⊗ N with N being the interface unit normal. Analogously, the interface identity tensor in the
spatial configuration is defined by i = i − n ⊗ n with n being the interface unit normal in the spatial configuration.
Let dV and dv denote the volume elements of the bulk in the material and spatial configurations, respectively and
similarly, dA and da denote the area elements of the interface in the material and spatial configurations, respectively.
The ratios of volume elements and area elements in the spatial over the material configuration are denoted J and J ,
respectively, as

J = dv/dV with J := Det F and J = da/dA with J := Det F. (2)

The configuration V 0 consists of two disjoint subdomains denoted as open sets V −

0 and V +

0 with the interface I 0 in
between and therefore, V 0 = V +

0 ∪ I 0 ∪ V −

0 . The intersection of the interface I 0 with the boundary of each subdomain
defines the two sides of the interface as I −

0 = ∂V −

0 ∩ I 0 and I +

0 = ∂V +

0 ∩ I 0. In the material configuration, the
interface coincides geometrically with its sides I 0 = I −

0 = I +

0 . Let X− and X+ denote the particles on I −

0 and I +

0 ,
respectively. Similarly, x− and x+ denote the particles on I −

t and I +
t , respectively, in the spatial configuration. The

interface motion ϕ defines the interface in the spatial configuration I t with its particles labeled x. However, the two
sides of the interface map via the bulk motion ϕ resulting in a geometrical jump in the spatial configuration as

x = ϕ(X), x ∈ I t , x−
= ϕ(X−), x−

∈ I −
t , x+

= ϕ(X+), x+
∈ I +

t . (3)

It is of particular importance to note that so far, we did not impose any dependence of the interface motion ϕ on the
bulk motion ϕ. Also, since the two sides of the interface coincide in the material configuration, the spatial geometrical
jump at the interface [[x]] is purely related to the bulk motion jump [[ϕ]].

In the material configuration, the outward unit normal vector to the boundary of the body ∂V 0 is denoted by N.
Recall, the quantities with a hat are surface quantities and the unit normal N is essentially a surface normal. The
normal to the interface I 0 is denoted N and points from the minus side I −

0 to the plus side I +

0 of the interface. The
normals to the minus and plus sides of the interface are denoted N− and N+, respectively. The normal to the boundary
of the interface ∂I 0 but, tangential to the interface I 0 is denoted N. Note, the interface boundary ∂I 0 is a curve whose
normal or bi-normal, in the sense of the Frénet–Serret formula, do not necessarily coincide with N. Also, N is not
necessarily normal to the surface as shown in Fig. 2. In the spatial configuration, the surface, interface and curve
normals are denotedn, n andn, respectively.

2.1.2. Governing equations
The governing equations of the problem can be categorized as balance equations and constitutive laws. Balance

equations refer to mechanical balance equations, i.e. the balance of linear and angular momentum. Constitutive laws
are the results of thermodynamics considerations and consistencies. Here, we first derive the balance equations
and then, following thermodynamics arguments, we propose thermodynamically consistent constitutive laws and
evolutions for the interface. To derive the governing equations, we adopt a standard procedure [104] carefully revised
to account for the general interfaces.

Balance equations. The balance equations are derived by viewing the configuration V 0 as an arbitrary (canonical)
subdomain or an arbitrary cutout volume of a continuum body. This view is only assumed to reduce the notations and
it does not alter the derivations nor the final equations. The procedure consists of three main steps. First, we write the
global mechanical power or the external working3 W 0 on the arbitrary cutout volume V 0 in an integral form. Second,
we impose the invariance of working W 0 with respect to superposed rigid body motion. The invariance of W 0 with

3 Following Gurtin [105], the term working is used consistently throughout the manuscript alternative to the more intuitive expression external
mechanical power and is the rate of the work due to external forces.
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respect to translation results in the balance of linear momentum and the invariance of W 0 with respect to rotation
renders the balance of angular momentum. The obtained balances of linear and angular momentum are in global
(integral) form. Third and finally, we derive the local balance equations by localizing the global balances. In doing so,
we utilize the arbitrariness of the cutout volume and set the integral domain to a vanishing volume in the limit.

The global working or the (external) mechanical power in the material configuration denoted as W 0 reads

W 0 = W 0(ϕ̇, ϕ̇) =


V −

0

ϕ̇ · b0 dV +


V +

0

ϕ̇ · b0 dV +


∂V −

0

ϕ̇ ·b0 dA

+


∂V +

0

ϕ̇ ·b0 dA +


I 0

ϕ̇ · b0 dA +


∂I 0

ϕ̇ ·b0 dL , (4)

in which ϕ̇ and ϕ̇ denote the material time derivatives of the bulk and interface motion ϕ and ϕ, respectively. Note, the
boundaries ∂V −

0 and ∂V +

0 assume the same motion as the bulk itself in the sense of kinematic slavery. In other words,
the surface always remains on the boundary and neither detaches from the bulk nor penetrates the bulk and therefore,
the surface is material. The same analogy holds for the boundary of the interface namely, the curve ∂I 0 which assumes
the same motion ϕ and the same velocity ϕ̇ as the interface. The force density of the bulk per unit reference volume
in the material configuration is denoted b0. Similarly, the force density of the surface per unit reference area in the
material configuration is denotedb0, often referred to as (surface) traction. In a near identical fashion, the force density
of the curve per unit reference length in the material configuration is denotedb0. For the sake of completeness, we
allow a force density on the interface per unit reference area in the material configuration and denote it as b0.

Following Cauchy theorem type arguments, the surface tractionb0 can be related to the stresses in the material P
through the surface normal N according tob0 = P ·N. Interface elasticity theory [19] and its sibling surface elasticity
theory [23] are based on Cauchy theorem type arguments for a two-dimensional manifold. In this view, the interface
is endowed with its own stress P and the tractionb0 on the boundary of the interface ∂I 0 is related to the interface
stress via b0 = P · N. The interface stress P is superficial in the sense that it possesses the property P · N = 0.
The superficiality of the interface stress is a crucial assumption in this context. Javili et al. [106] have shown that
the superficiality property is the consequence of a first-order continuum theory. Rewriting Eq. (4) in terms of stresses
instead of tractions yields

W 0 = W 0(ϕ̇, ϕ̇) =


V −

0

ϕ̇ · b0 dV +


V +

0

ϕ̇ · b0 dV +


∂V −

0

ϕ̇ · P · N dA

+


∂V +

0

ϕ̇ · P · N dA +


I 0

ϕ̇ · b0 dA +


∂I 0

ϕ̇ · P · N dL . (5)

Next, we impose invariance with respect to superposed rigid body motion to the working W 0 as

W 0 = W 0(ϕ̇, ϕ̇)
!
= W 0(ϕ̇ + v + ω × x , ϕ̇ + v + ω × x) ∀v,ω, (6)

in which v and ω are constant (linear) velocity and constant angular velocity, respectively. Inserting Eq. (6) into Eq. (5)
renders the global equation

V −

0

[v + ω × x] · b0 dV +


V +

0

[v + ω × x] · b0 dV +


∂V −

0

[v + ω × x] · P · N dA

+


∂V +

0

[v + ω × x] · P · N dA +


I 0

[v + ω × x] · b0 dA +


∂I 0

[v + ω × x] · P · N dL = 0 ∀v,ω. (7)

Since Eq. (7) must hold for all arbitrary v and ω, we firstly set ω = 0 and derive the global balance of linear momentum
as 

V −

0

v · b0 dV +


V +

0

v · b0 dV +


∂V −

0

v · P · N dA

+


∂V +

0

v · P · N dA +


I 0

v · b0 dA +


∂I 0

v · P · N dL = 0 ∀v. (8)
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Secondly, we derive the global balance of angular momentum by setting v = 0 as
V −

0

[ω × x] · b0 dV +


V +

0

[ω × x] · b0 dV +


∂V −

0

[ω × x] · P · N dA

+


∂V +

0

[ω × x] · P · N dA +


I 0

[ω × x] · b0 dA +


∂I 0

[ω × x] · P · N dL = 0 ∀ω.
(9)

Finally, through localization of Eqs. (8) and (9) to an infinitesimal subdomain in the bulk the classical balance of
linear and angular momentum in the bulk are obtained as

DivP + b0 = 0 and ε : [F · Pt
] = 0 ⇔ P · Ft

= F · Pt, (10)

with ε being the permutation tensor. Detailed derivation of the localization procedure in the bulk is straightforward and
is omitted here. In a similar fashion to the bulk, through localization of Eqs. (8) and (9) to an infinitesimal subdomain
on the interface, the balance of linear and angular momentum on the interface are obtained as

Div P + b0 + [[t]] = 0 and ε : [[[ϕ]] ⊗ {{t}} + F · Pt
] = 0 with t = P · N. (11)

Detailed derivation of the localization procedure on the interface is given in Appendix B.1. It is of crucial importance
to note that the local form of the balance of angular momentum on the interface is originally

ε : [[[ϕ]] ⊗ {{t}} + F · Pt
+ {{ϕ}} ⊗ [[t]] − ϕ ⊗ [[t]]] = 0,

and by constraining the interface motion to the mid-plane as ϕ = {{ϕ}} the last two terms cancel out together. Hence,
Eq. (11) is valid based on this assumption and consequently, the interface motion is no longer arbitrary. For further
details on the importance of the balance of angular momentum on the interface, see [107,108].
Constitutive laws. So far, we employed the invariance of working under a superposed rigid body motion to derive
the local balance equations. Next, we start from working again and this time we view the working (4) as the external
power that enters the thermodynamic framework. The main goal of this part is to derive thermodynamically consistent
constitutive laws for the bulk and the interface via a Coleman–Noll-like procedure. The working density in the bulk
and on the interface, respectively, reads

W 0 = P : Ḟ and W 0 = P :
˙F + {{t}} · [[ϕ̇]] with t = P · N. (12)

Detailed derivation and localization procedure to re-formulate the (global) working W 0 of Eq. (4) in terms of the
working densities W 0 and W 0 in Eq. (12) is given in Appendix B.2. Note, the full form of the working density on the
interface is

W 0 = P :
˙F + {{t}} · [[ϕ̇]] + [[t]] · [{{ϕ̇}} − ϕ̇],

and due to constraining the interface motion to the mid-plane as ϕ = {{ϕ}} the last two terms cancel out. The interface
working density W 0 in Eq. (12) is therefore valid based on the assumption that the interface is no longer arbitrary.
Henceforth, we set this assumption on the interface motion and do not repeat the discussion again.

Next, we introduce the free energy as a Legendre transformation of the internal energy. Both bulk and the interface
are endowed with their own free energy densities ψ0 and ψ0, respectively. The bulk free energy density ψ0 is defined
per unit reference volume and similarly, the interface free energy densityψ0 is defined per unit reference area and both
in the material configuration. From the definitions of the free energies, the Clausius–Duhem dissipation inequalities
for the bulk and on the interface in the material configuration are

D0 = W 0 − ψ̇0 ≥ 0 and D0 = W 0 −
˙ψ0 ≥ 0. (13)

To further exploit the dissipation inequalities (13), we limit ourselves to (reversible) hyperelastic models in the bulk
and on the interface. Inspired by the working densities (12), the bulk free energy density is assumed to be a function
of the deformation gradient F. Similarly, we allow the interface free energy to depend on the interface deformation
gradient F, and the displacement jump across the interface [[ϕ]]. The free energy densities in the bulk and on the
interface thus read

ψ0 = ψ0(F) and ψ0 = ψ0(F, [[ϕ]]). (14)
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Inserting working densities (12) and free energy densities (14) into the dissipation inequalities (13) yields

D0 = P : Ḟ −
∂ψ0

∂F
: Ḟ ≥ 0,

D0 = P :
˙F + {{t}} · [[ϕ̇]] −

∂ψ0

∂F
:

˙F −
∂ψ0

∂[[ϕ]]
· [[ϕ̇]] ≥ 0.

(15)

Reordering the terms to better see the structure of the dissipation inequalities furnishes

D0 =


P −

∂ψ0

∂F


: Ḟ ≥ 0,

D0 =


P −

∂ψ0

∂F


:

˙F +


{{t}} −

∂ψ0

∂[[ϕ]]


· [[ϕ̇]] ≥ 0.

(16)

In order to extract the thermodynamically consistent constitutive laws within the context of equilibrium
thermodynamics, it is customary to sufficiently satisfy the dissipation inequalities (16) by

P =
∂ψ0

∂F
and P =

∂ψ0

∂F
, {{t}} =

∂ψ0

∂[[ϕ]]
, (17)

which are indeed the constitutive laws for P, P and {{t}}, respectively.4

Remark. It is possible to introduce a hyperelastic model with damage for the bulk similar to [113–115] by choosing
ψ0 = ψ0(F, D) with D being the damage parameter associated with the degradation of the bulk material. Introducing
other internal variables to capture more complex material behavior introduces more notations and complexity without
providing considerable insight into this contribution. For instance, we can allow the interface free energy to be a
function of the interface deformation gradient F, the displacement jump across the interface [[ϕ]] as well as the
interface damage parameter D. Similar to the bulk, the interface damage parameter is essentially an evolving internal
variable and can be interpreted as a general damage parameter on the interface and it may solely correspond to the
degradation along the interface or across the interface or both. The free energy density of the interface accounting for
the interface damage reads

ψ0 = ψ0(F, [[ϕ]], D),

and enters the interface dissipation inequality (14) as

D0 =


P −

∂ψ0

∂F


:

˙F +


{{t}} −

∂ψ0

∂[[ϕ]]


· [[ϕ̇]] −

∂ψ0

∂D
˙D ≥ 0,

which results in the thermodynamically consistent constitutive and evolutions laws on the interface as

P =
∂ψ0

∂F
, {{t}} =

∂ψ0

∂[[ϕ]]
,

∂ψ0

∂D
˙D ≤ 0. �

4 Clearly, the interface normal n depends on the interface deformation gradient F. However, if we allow the interface free energy to depend
explicitly on n, using the relation ∂n/∂F = −n ⊗ F−t proven in Appendix B.3, we expand the interface stress

P =
∂ψ0

∂F


n

+
∂ψ0
∂n

·
∂n

∂F
=
∂ψ0

∂F


n

−
∂ψ0
∂n

·


n ⊗ F−t 
=
∂ψ0

∂F


n

− n ⊗


∂ψ0
∂n

· F−t


=
∂ψ0

∂F


n

− n ⊗ S

with S =
∂ψ0
∂n

· F−t
=
∂ψ t

∂n
· Cof F,

in which S is a vector tangent to the interface on the material configuration and ψ t is the interface free energy density in the spatial configuration.
The particular and unfamiliar format of the term n ⊗ S has attracted special attention in the literature [109–111,105,112] and ties to the surface
shear concept.
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Table 1
Summary of governing equations and constitutive laws together with some definitions and notations in the bulk and on the interface. Note, the
governing equations rely on the assumption that the interface motion is exactly in the middle of the finite thickness interphase or ϕ = {{ϕ}}.
Furthermore, t denotes the interface traction defined as t = P · N. The interface unit normal N points from the minus to the plus side of the interface
and can be computed as N = ± G1 ×G2/|G1 ×G2| whereby the ± sign indicates that this formulation cannot determine the direction of the normal
and that shall be constrained with the surrounding bulk. All relations are associated with the material configuration.

In bulk V 0 On interface I 0

bal. lin. mom. DivP + b0 = 0 subject tob = P · N on ∂V 0 Div P + b0 + [[t]] = 0 subject tob = P · N on ∂I 0

bal. ang. mom. ε : [F · Pt
] = 0 ε : [F · Pt

+ [[ϕ]] ⊗ {{t}}] = 0

const. evol. law P = ∂ψ0/∂F P = ∂ψ0/∂F , {{t}} = ∂ψ0/∂[[ϕ]]

non-lin. map ϕ or ϕ = ϕ(X) ϕ or ϕ = ϕ(X)

lin. tan. map F or dϕ = F · dX F or dϕ = F · dX

lin. nor. map CofF or da = CofF · dA Cof F or dl = Cof F · dL

co-var. bas. G1, G2, G3 G1, G2

contra-var. bas. G1, G2, G3 G1
, G2

Identity I = G1 ⊗ G1
+ G2 ⊗ G2

+ G3 ⊗ G3 I = G1 ⊗ G1
+ G2 ⊗ G2

= I − N ⊗ N

Gradient Grad{•} = ∂{•}/Θ i
⊗ Gi , 1 ≤ i ≤ 3 Grad{•} = ∂{•}/Θα

⊗ Gα, 1 ≤ α ≤ 2

Divergence Div{•} = ∂{•}/Θ i
· Gi , 1 ≤ i ≤ 3 Div{•} = ∂{•}/Θα

· Gα, 1 ≤ α ≤ 2

Determinant Det{•} =
{•}·G1·[{•}·G2×{•}·G3]

G1·[G2×G3]
Det{•} =

|{•}·G1×{•}·G2|

|G1×G2|

Cofactor Cof{•} = Det{•} {•}
−t Cof {•} = Det {•} {•}

−t

So far, the fundamental concepts of general imperfect interfaces have been elaborated. Note, the general imperfect
interface model at hand reduces to the cohesive zone model if ψ0 = ψ0([[ϕ]]). Also, it recovers the interface elasticity
model if ψ0 = ψ0(F). Equipped with the governing equations and constitutive laws at hand, we proceed in Sec-
tion 2.2 with the computational homogenization of micro-structures including general imperfect interfaces. Table 1
gathers the governing equations and constitutive laws together with some definitions and notations in the bulk and on
the interface.

2.2. Computational homogenization

The purpose of this section is to study a heterogeneous material composed of an inclusion within the matrix.
The interface between the constituents is endowed with its own energetic structure. We allow the matrix to include
only one inclusion for simplicity but considering several inclusions does not change the framework. Throughout this
work, similar to the classical first-order computational homogenization, we assume that the common assumption of
length-scale separation associated with homogenization holds. Therefore, the macroscopic problem is large enough
compared to the length scale associated with the microscale problem. However, in contrast to the classical first-
order computational homogenization, the microscale possesses a physical length-scale. In analogy to the derivation of
equations governing the interface in Section 2.1, the micro-to-macro transition is formulated only in the Lagrangian
setting. However, describing the problem in the Eulerian setting does not affect the primary objective of this
manuscript, namely, to account for interfaces within the computational homogenization framework. For further
details on computational homogenization and its underlying assumptions refer to the extensive references listed in
the introduction.

2.2.1. Macroscale
Consider a continuum body that takes the material configuration MB0 at time t = 0 and the spatial configuration

MBt at any time t as shown in Fig. 3. At the macro level the outward surface unit normal in the material and spatial
configurations is denoted MN and Mn, respectively. A material point in the macroscale is characterized by the position
vector MX and is mapped to its spatial counterpart Mx via the non-linear deformation map Mϕ as Mx =

Mϕ(MX). The
corresponding macro deformation gradient MF maps (linearly) the line element dMX in the material configuration to
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Fig. 3. A graphical summary of micro-to-macro transition of continua that accounts for interfaces at the microscale. The non-linear deformation
map Mϕ maps the macroscopic material configuration MB0 to the spatial configuration MBt . The material configuration at the microscale B0
represents a RVE and is mapped to its spatial counterpart via the motion ϕ. Constitutive laws at the microscale are assumed to be known and the
goal is to compute the macroscopic response through homogenizing the response of the underlying micro-structure. In particular, at the microscale
the interface between different constituents is considered and plays a crucial role on the overall behavior of the material.

the spatial line element dMx according to

dMx = dMF · dMX and MF =
MGradMϕ with MGrad{•} = ∂{•}/∂MX. (18)

The governing equations at the macroscale are the balances of linear momentum and angular momentum. In the
absence of inertial effects, the balance of linear momentum reads

MDivMP +
Mbp

0 = 0 in MB0 subject to MP ·
MN −

Mbp
0 = 0 on ∂MBN

0 , (19)

with Mbp
0 being the macroscopic body force density in the material configuration and MP the macro Piola stress. The

prescribed traction per unit reference area in the material configuration is denoted Mbp
0 and is applied on the Neumann

boundary ∂MBN
0 . The local form of balance of angular momentum in the material configuration is

MP ·
MFt

=
MF ·

MPt. (20)

2.2.2. Microscale
The material configuration at the microscale is denoted B0 and is assumed to be statistically representative of the

material. The configuration B0 defines the representative volume element (RVE) in the material configuration and its
external boundary is denoted ∂B0 with outward unit normal N, see Fig. 3. The spatial configuration at the microscale
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is defined analogously. The interface I 0 in the material configuration is the boundary of the inclusion or equivalently
the internal boundary of the matrix. The domains B−

0 and B+

0 represent the matrix and inclusion, respectively with
their boundaries as

∂B−

0 = ∂B0 ∪ I 0, ∂B+

0 = I 0, I −

0 = ∂B−

0 ∩ I 0, I +

0 = ∂B+

0 ∩ I 0.

The plus and minus sides of the interface coincide geometrically in the material configuration, nevertheless, we need
to distinguish between them since they no longer coincide in the spatial configuration. For simplicity the interface is
assumed to be smooth and does not possess a sharp kink or cusp. The unit normal to I 0 pointing from the minus to the
plus side of the interface is denoted N. The arbitrary cutout volume around the interface in the material configuration
is denoted V 0 and is essentially identical to the V 0 of Section 2.1. In this manuscript, we assume that the inclusion, and
consequently the interface, is entirely enclosed within the RVE and the external boundary of the RVE is chosen such
that it has no intersection with the interface I 0 and therefore ∂I 0 = ∅. This assumption only simplifies the derivations
and does not influence the fundamental concepts.

Classical continuum mechanics assigns the free energy only to the bulk material. The same holds for available
homogenization schemes. Interface elasticity theory, though, requires additionally an independent interface energy
assigned to the interfaces I 0. At the micro level, we employ the interface enhanced continuum theory elaborated in
Section 2.1 while having the classical continuum theory at the macro level. This is motivated by the fact that due to
the small dimensions and, consequently, large area to volume ratio of the micro problem, the interface effects are not
negligible at the microscale. In general, independent free energy densities shall be assigned to the interface and the
bulk at the microscale.

In a near-identical fashion to the macroscopic problem, the kinematics of the micro problem are presented now. Let
X be the position vector of a point in B0 that is mapped via the non-linear deformation map to its counterpart ϕ in the
spatial configuration Bt . The points on the material interface X := X|I 0 are mapped to x via ϕ and ϕ = {{ϕ}}|I 0 . The
material line elements dX ∈ B0 are mapped to dx ∈ Bt via the linear deformation map F = Gradϕ. On the interface
I 0 the material line elements dX are mapped to the spatial (interface) line elements dx via the interface deformation
gradient F as dx = F ·dX with tensor F = Gradϕ = F · I where I = I −N ⊗N denotes the interface identity tensor or
rather the interface projection. For the microscale problem of interest, the governing equations are those in Section 2.1
and are summarized in Table 1.

In passing, we mention that the body force density in the bulk b0 is neglected at the microscale. This assumption is
customary within the context of the micro-to-macro transition and is based on the argument that b0 is a force density
per volume. Therefore, due to the scale separation associated with homogenization, the force densities per volume
are negligible compared to the force densities per area such as tractionb0 and the interface force density b0. One can
argue though, that the interface force density b0 shall vanish in a mechanical problem as there is no clear mechanism
to prescribe it. Henceforth, we skip the interface force density b0 for the sake of simplicity.5

2.2.3. Micro-to-macro transition
Macroscopic quantities are related to their micro counterparts through volume averaging over the RVE and

fundamental reasoning detailed in this section. It proves convenient to define the following averaging operator in
the material configuration ⟨{•}⟩{◦} as the integral of {•} over the domain {◦} divided by the volume V 0 as

⟨{•}⟩{◦} =
1

V 0


{◦}

{•} d{◦}, (21)

such as

⟨{•}⟩B−

0
=

1
V 0


B−

0

{•} dV, ⟨{•}⟩B+

0
=

1
V 0


B+

0

{•} dV, ⟨{•}⟩I 0 =
1

V 0


I 0

{•} dA, (22)

5 Although we neglect the interface force density b0 for a purely mechanical case, it is crucial to account for it in multi-physics problems. For
instance, imagine coated particles in a matrix where the coating is sensitive to external, e.g. magnetic or electric, fields that induce an interface
force density b0 under the influence of an externally applied field. Within the context of homogenization, it is rather straightforward to introduce
b0 in the framework and formally follow the same steps.
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and in particular, for a smoothly defined field {•} in B±

0 , the (classical) average operator ⟨{•}⟩ relates to our notation
as

⟨{•}⟩B0 =
1

V 0


B−

0

{•} dV +
1

V 0


B+

0

{•} dV ⇒ ⟨{•}⟩ = ⟨{•}⟩B0 . (23)

The volume V 0 is the total volume surrounded by the (external) boundary ∂B0 and can be understood as the total
volume of the inclusion together with the matrix. The identity

∂B0

N ⊗ X dA = V 0 I ⇒ ⟨N ⊗ X⟩∂B0 = I, (24)

is frequently used and follows directly from the gradient theorem as
∂B0

N ⊗ X dA =


B0

[GradX]
t dV =


B0

I dV = V 0 I. �

Average deformation gradient theorem. In order to relate the micro deformation gradient to the macro deformation
gradient, motivated by classical homogenization, we develop an average deformation gradient theorem.6 The classical
average deformation gradient theorem is extended to account for interface contributions. Our derivations yield that
the extended deformation gradient theorem includes extra terms only due to the deformation jump across the interface
but not the deformation gradient along the interface. Therefore, the “extended” format of the average deformation
gradient theorem formally reduces to that of the classical homogenization with deformation jumps presented earlier
in [60].

Theorem. Let Fc be a given constant deformation gradient tensor and ∂B0 be the external boundary of the domain
B0 with outward unit normal N as illustrated in Fig. 3. If ϕp

= Fc · X is prescribed on the entire ∂B0, then we have
⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 = Fc or alternatively, ⟨F⟩B0 + ⟨[[F]] · I⟩I 0 = Fc.

Proof. In order to prove the extended average deformation gradient theorem, we use the lemma

⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 = ⟨ϕ ⊗ N⟩∂B0 , (25)

proven in Appendix C.1. Replacing the motion ϕ with its prescribed value ϕp
= Fc · X in the lemma (25) and using

the identity (24), yields

⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 = ⟨ϕp
⊗ N⟩∂B0 = ⟨Fc · X ⊗ N⟩∂B0 = Fc · ⟨X ⊗ N⟩∂B0 = Fc · I = Fc. �

The average deformation gradient theorem states that when a body is subject to the linear displacement boundary
conditions defined above, with Fc being a constant tensor, the integral of the bulk deformation gradient plus the
integral of the jump of the deformation gradient projected onto the interface averaged over the entire body is the
same as Fc regardless of the complexity of the deformation within the RVE domain. In view of the micro-to-macro
transition, the average deformation gradient theorem motivates the definition of the macro deformation gradient as

MF := ⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 , (26)

or alternatively
MF := ⟨ϕ ⊗ N⟩∂B0 . (27)

Clearly, in the absence of the deformation jump across the interface, i.e. coherent interfaces, the relation (26) reduces
to the classical average deformation gradient theorem. More interestingly, even in the presence of deformation jumps,
the alternative definition of the macro deformation gradient as the boundary integral (27) is identical to its format in
the classical homogenization.

Average stress theorem. In order to relate the micro stresses to the macroscopic ones, motivated by classical
homogenization, we develop an average stress theorem. However, the classical average stress theorem needs to be

6 The average deformation gradient theorem is often referred to as average strain theorem due to its origin in linear elasticity. Nevertheless,
within the finite deformation setting of this contribution we consistently refer to it as the average deformation gradient theorem.
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extended in order to account for interface stresses. In contrast to the extended average deformation gradient theorem,
our derivations yield that the extended average stress theorem includes extra terms only due to the interface stresses
along the interface but not traction jumps across the interface.

Theorem. Let Pc be a given constant stress tensor and ∂B0 the external boundary of the domain B0 with outward
unit normal N as shown in Fig. 3. If P · N =bp

0 = Pc · N is prescribed on the entire ∂B0, then ⟨P⟩B0 + ⟨P⟩I 0 = Pc.

Proof. In order to prove the extended average stress theorem, we use the lemma

⟨P⟩B0 + ⟨P⟩I 0 = ⟨b0 ⊗ X⟩∂B0 , (28)

proven in Appendix C.2. Replacing the tractionb0 with its prescribed valuebp
0 = Pc · N in the lemma (28) and using

the identity (24), yields

⟨P⟩B0 + ⟨P⟩I 0 = ⟨bp
0 ⊗ X⟩∂B0 = ⟨Pc · N ⊗ X⟩∂B0 = Pc · ⟨N ⊗ X⟩∂B0 = Pc · I = Pc. �

The average stress theorem essentially states that when a body is subject to traction boundary conditions as defined
above, the integral of the bulk stresses plus the integral of the interface stresses with respect to their corresponding
domains averaged over the entire body is the same as Pc regardless of the complexity of the stress field within the RVE

domain. In view of the micro-to-macro transition, the average stress theorem motivates the macro stress to be defined
by the sum of the average bulk and interface stresses as

MP := ⟨P⟩B0 + ⟨P⟩I 0 , (29)

or alternatively

MP := ⟨b0 ⊗ X⟩∂B0 . (30)

Note, the format of the macro stress (29) is novel and the average term over the interface is independent of the jump
across the interface and solely depending on the elastic response along the interface. This shall be compared with the
definition of the macro deformation gradient (26) where the average term over the interface is only dependent of the
jump across the interface. Clearly, in the absence of the interface contributions, i.e. P = 0, the relation (29) reduces to
the classical average stress theorem. More interestingly, even in the presence of interfaces, the definition of the macro
stress as the boundary integral (30) is identical to its format in the classical homogenization.

Hill–Mandel condition. Motivated by the extended average theorems, the macro deformation gradient MF and
the macro stress MP are defined by relations (26) and (29), respectively. Next, we impose an incremental energy
equivalence between the macro and micro scales in an extended fashion to account for the interfaces. The incremental
energy equivalence between the scales is known as Hill–Mandel condition. We propose the extended Hill–Mandel
condition

MP : δMF − ⟨b0 · δϕ⟩∂B0

!
= 0, (31a)

or alternatively expressed as

MP : δMF − ⟨P : δF⟩B0 − ⟨P : δF⟩I 0 − ⟨{{t}} · [[δϕ]]⟩I 0

!
= 0, (31b)

whereby the alternative form is achieved using the following lemma proven in Appendix C.3.

⟨b0 · δϕ⟩∂B0 = ⟨P : δF⟩B0 + ⟨P : δF⟩I 0 + ⟨{{t}} · [[δϕ]]⟩I 0 . (32)

Note, the incremental working terms on the right-hand side of Eq. (32) are dealing with the stress power within the
bulk, the stress power along the interface and the traction power across the interface, respectively. The working terms
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Table 2
Summary of micro-to-macro transition accounting for general interfaces. The macroscopic quantities are expressed as integrals at the microscale.
The integrals at the microscale can be written solely within the RVE (left) or over the boundary of the RVE (right). In the absence of the jump
across the interface and the elastic response along the interface, the integrals reduce to their familiar formats in the classical homogenization in
the absence of interfaces. Furthermore, even in the presence of general interfaces, the boundary forms of the integrals (right) remain identical to
their format in the classical homogenization as long as the inclusion is entirely surrounded within the RVE and consequently, the interface does not
intersect with the boundary of the RVE.

Macro deformation gradient MF 1
V 0


B0

F dV +
1

V 0


I 0

[[ϕ]] ⊗ N dA 1
V 0


∂B0

ϕ ⊗ N dA

Macro Piola stress MP 1
V 0


B0

P dV +
1

V 0


I 0

P dA 1
V 0


∂B0

b0 ⊗ X dA

Macro incremental working MP : δMF 1
V 0


B0

P : δF dV +
1

V 0


I 0

P : δF dA +
1

V 0


I 0

{{t}} · [[δϕ]] dA 1
V 0


∂B0

b0 · δϕ dA

associated with the interface are due to both responses along the interface and across the interface. Recall, the macro
deformation gradient does not include any term along the interface and also the macro stress is independent of the
jump across the interface. Clearly, in the absence of interface contributions the extended Hill–Mandel condition (31)
reduces to its classical format. Furthermore, the representation of the Hill–Mandel condition as the surface integral

MP : δMF !
= ⟨b0 · δϕ⟩∂B0 ,

is identical to its classical format regardless of interfaces. This is particularly advantageous in view of the
computational implementation since one can use the well-established frameworks and subroutines developed for the
classical homogenization. The same argument holds for computing the macro stress MP according to (30) and the
macro deformation gradient MF according to (27). Table 2 summarizes the micro-to-macro transition accounting for
general interfaces.

The next task is to seek suitable boundary conditions on the RVE which satisfy the extended Hill–Mandel
condition (31). In order to do so, we introduce the extended Hill’s identity, proven in Appendix C.4, which states
that

⟨b0 · δϕ⟩∂B0 −
MP : δMF = ⟨[δϕ − δMF · X] · [b0 −

MP · N]⟩∂B0 , (33a)

or using lemma (32) alternatively expressed as,

⟨P : δF⟩B0 + ⟨P : δF⟩I 0 + ⟨{{t}} · [[δϕ]]⟩I 0 −
MP : δMF = ⟨[δϕ − δMF · X] · [b0 −

MP · N]⟩∂B0 . (33b)

The extended Hill’s identity (33)a,b essentially expresses the left-hand side of the Hill–Mandel condition (31)a,b
in terms of a surface integral over the external boundary of the RVE domain. This has the advantage that the
extended Hill–Mandel condition, which is essentially a volume integral, can be transformed to a boundary integral and
eventually identifies the appropriate boundary conditions that guarantee the incremental energy equivalence between
the scales. In order to satisfy the extended Hill–Mandel condition, the right-hand side of (33)a,b should vanish.
Here, we list several conditions, deduced from the right-hand side of (33)a,b that sufficiently satisfy the extended
Hill–Mandel condition (31)a,b and that agrees with the admissible boundary conditions in classical homogenization.

Voigt  ϕ =
MF · X in B0,

linear displacement (Taylor) assumption ⇒ Voigt bound,

DBC  ϕ =
MF · X on ∂B0,

linear displacement boundary condition (DBC),

PBC  [ϕ −
MF · X] : periodic, [b0 −

MP · N] : anti-periodic on ∂B0,

periodic displacement and anti-periodic traction boundary condition,

TBC  b0 =
MP · N on ∂B0,

constant traction boundary condition (TBC),

Reuss b0 =
MP · N in B0,

constant traction (Sachs) assumption ⇒ Reuss bound.
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Note that for periodic geometries, an anti-periodic tractionb0 satisfies the anti-periodicity of [b0 −
MP ·N] since MP ·N

is anti-periodic itself due to anti-periodicity of the boundary normals. For classical homogenization, it is well-known
that the Reuss condition results in the “most compliant” and the Voigt condition results in the “most stiff” response.
In the remainder of this manuscript we limit ourselves to the PBC in the numerical examples. In passing, we mention
that the list of admissible boundary conditions here is not exhaustive and to have a more thorough list, one shall add
e.g. weakly periodic boundary conditions [58] to the list. Nonetheless, the main objective of this contribution is to
establish a micro-to-macro transition scheme accounting for general imperfect interfaces and further discussion on
the influence of boundary conditions is postponed to future contributions.

Remark. It can be shown that using the definitions of the macro deformation gradient (26) and the macro stress (29),
all the aforementioned boundary conditions satisfy the balance of angular momentum on the macroscale [63,72]. �

3. Finite element implementation

The goal of this section is to briefly address the computational aspects of general imperfect interfaces within a
finite element framework. The focus of the discussion here is on the formulation of the interfaces and in particular, in
comparison to the standard framework for the bulk. In this context, it proves convenient to use a curvilinear-coordinate-
based finite element methodology [116] as it mimics the underlying mathematical and geometrical concepts of the
theory. For detailed exposition of the finite element formulation see for instance [117,118].

The first step towards the finite element implementation of the theory is to derive the weak form of the governing
equations. In doing so, the strong form of the balance of linear momentum in the bulk (10)1 and on the interface
(11)1 is tested (from the left) with the vector-valued test function δϕ ∈ H1

0(B0) and δϕ ∈ H1
0(I 0), respectively.

The result is then integrated over the corresponding domains in the material configuration. By using the bulk and
interface divergence theorems and the superficiality property of the interface Piola stress P (which causes the integrals
containing the curvature to vanish), together with the assumption of ϕ = {{ϕ}}, the weak form of the balance of linear
momentum reads

B0

P : Gradδϕ dV +


I 0

P : Gradδϕ dA +


I 0

{{t}} · [[δϕ]] dA −


B0

δϕ · b0 dV

−


I 0

δϕ · b0 dA −


∂BN

0

δϕ ·b0 dA = 0, ∀δϕ ∈ H1
0(B0) , ∀δϕ = {{ϕ}} ∈ H1

0(I 0), (34)

in which ∂BN
0 is the portion of the boundary subject to Neumann-type boundary condition and H1

0 denotes the Sobolev
space of order 1 where the test functions are specified to be zero on the Dirichlet portion of the boundary. For the sake
of brevity, we limit the discussion here to the finite element implementation at the microscale and therefore, the body
forces b0 vanish. Furthermore, we neglect the interface forces b0. Finally, we omit the last integral on the boundary
of the domain since this part is not influenced by the interface at the microscale and is standard in all computational
homogenization schemes dependent on the boundary condition imposed on the RVE. Hence, the reduced weak form
reads 

B0

P : Gradδϕ dV +


I 0

P : Gradδϕ dA +


I 0

{{t}} · [[δϕ]] dA = 0,

∀δϕ ∈ H1
0(B0), ∀δϕ = {{ϕ}} ∈ H1

0(I 0). (35)

Next, the weak form (35) is discretized in space. The discretization is carried out by means of the finite element
method and more specifically using the Bubnov–Galerkin scheme. To have a straightforward and efficient finite
element scheme, the interface elements are chosen to be consistent with the bulk elements. That is, if the bulk is
discretized using tri-quadratic elements, then bi-quadratic elements are used for the interface. This choice has the
advantage that the facets of two adjacent bulk elements can be regarded as the two sides of an interface element and
therefore we do not require further interpolations or hanging nodes to properly connect the interface to its surrounding
bulk. The bulk and interface domains in the material configuration B0 and I 0, respectively, are discretized into a set
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of bulk and interface elements as

B0 ≈ Bh
0 =

nBE

A
e=1

Be
0, I 0 ≈ I h

0 =

nIE

A
e=1

I e
0,

(36)

with nBE and nIE being the total number of bulk and interface elements, respectively. The geometry and the motion of
the bulk and the interface are approximated as a function of the natural coordinates ξ ∈ [−1,+1]

3 and ξ ∈ [−1,+1]
2

assigned to the bulk and the interface, respectively, using standard interpolations according to the isoparametric
concept as

X|Bi
0

≈ Xh(ξ) =

nNBE
i=1

N i (ξ)Xi , X|I i
0

≈ X
h
(ξ) =

nNIE
i=1

N
i
(ξ)X

i
,

ϕ|Bi
0

≈ ϕh(ξ) =

nNBE
i=1

N i (ξ)ϕi , ϕ|I i
0

≈ ϕh(ξ) =

nNIE
i=1

N
i
(ξ)ϕi ,

(37)

where nNBE and nNIE denote the number of nodes per bulk element and interface element, respectively. Note, the
number of nodes per interface element nNIE is exactly the same as the number of nodes per each facet of the bulk
element and not twice that. The shape functions of the bulk and interface elements at their local node i are denoted

N i and N
i
, respectively. Since the average δϕ = {{δϕ}} and the jump [[δϕ]] of the motion on the interface appear in

the weak form (35), the following interpolations are particularly useful on the interface

[[ϕh
]] =

nNIE
i=1

N
i
[[ϕi

]] =

nNIE
i=1

N
i
[ϕ+

]
i
−

nNIE
i=1

N
i
[ϕ−

]
i ,

{{ϕh
}} =

nNIE
i=1

N
i
{{ϕi

}} =
1
2

nNIE
i=1

N
i
[ϕ+

]
i
+

1
2

nNIE
i=1

N
i
[ϕ−

]
i ,

(38)

where ϕ+
= ϕ|I +

0
and ϕ−

= ϕ|I −

0
. Applying the approximations (36)–(38) to the weak form (35) renders the fully

discrete form
nBE

A
e=1


Be

0

P :


nNBE
i=1

δϕi
⊗ GradN i


dV

+

nIE

A
e=1


I e

0

P :


1
2

nNIE
i=1

[δϕ+
]
i
⊗ Grad N

i
+

1
2

nNIE
i=1

[ϕ−
]
i
⊗ Grad N

i


dA

+

nIE

A
e=1


I e

0

{{t}} ·


nNIE
i=1

[δϕ+
]
i
⊗ Grad N

i
−

nNIE
i=1

[ϕ−
]
i
⊗ Grad N

i


dA = 0. (39)

Finally, we decompose the interface integrals into the contributions from the plus and the minus sides of the interface
as

nBE

A
e=1


Be

0

P :


nNBE
i=1

δϕi
⊗ GradN i


dV

+

nIE

A
e=1


I +e

0

P :


1
2

nNIE
i=1

δϕi
⊗ Grad N

i


dA +

nIE

A
e=1


I −e

0

P :


1
2

nNIE
i=1

δϕi
⊗ Grad N

i


dA

+

nIE

A
e=1


I +e

0

{{t}} ·


nNIE
i=1

δϕi
⊗ Grad N

i


dA −

nIE

A
e=1


I −e

0

{{t}} ·


nNIE
i=1

δϕi
⊗ Grad N

i


dA = 0. (40)

Let I denote any global node whether in the bulk or on the interface. Due to arbitrariness of the test function δϕ,
we assume that δϕ vanishes identically at all nodes except for the global node I . Note, the assembly operator gathers
contributions from all elements at their local node i associated with the global node I . This procedure furnishes the
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global nodal residual vector RI at the global node I as

RI (ϕ) =

nBE

A
e=1


Be

0

P · GradN i dV +

nIE

A
e=1


I +e

0

1
2

P · Grad N
i

dA +

nIE

A
e=1


I −e

0

1
2

P · Grad N
i

dA

+

nIE

A
e=1


I +e

0

{{t}} · Grad N
i

dA −

nIE

A
e=1


I −e

0

{{t}} · Grad N
i

dA
!
= 0. (41)

If we assemble all the global nodal residual vectors RI into the global residual vector [R] and all the unknown motions
into the global motion vector [ϕ], the fully discrete nonlinear system of governing equations can be concisely stated as

[R]
!
= 0 whose solution can be obtained via a Newton–Raphson scheme. The consistent linearization of the resulting

system reads

[R]k+1
!
= 0 ⇒ [R]k+1 = [R]k + [K]k ∆[ϕ]k

!
= 0 and

[ϕ]k+1 = [ϕ]k + ∆[ϕ]k with [K] :=
∂[R]

∂[ϕ]
,

(42)

in which [K] denotes the corresponding algorithmic tangent (stiffness) and k is the iteration step. The residual vector
at the iteration k is solely dependent on the motion vector [ϕ]k and is briefly denoted as [R]k := [R]([ϕ]k). Note,
the brackets [•] around the residual vector, motion vector and tangent matrix are especially important to indicate that
these quantities are vector and matrices after the assembly in the finite element procedure and correspond to the entire
system. Let nN denote the number of nodes of the whole finite element mesh. The residual vector [R], the motion
vector [ϕ] and the stiffness matrix [K] can be schematically represented as


R


=



R1

R2

...

RI

...

RnN


,


ϕ


=



ϕ1

ϕ2

...

ϕ J

...

ϕnN


,


K


=



K11 K12 . . . K1J . . . K1nN

K21 K22 . . . K2J . . . K2nN

...
...

...
...

...
...

K I 1 K I 2 . . . K I J . . . K I nN

...
...

...
...

...
...

KnN1 KnN2 . . . KnN J . . . KnNnN


. (43)

Our next task is to establish the link between the nodal residual RI or the nodal stiffness K I J and the computational
syntax. For the computational implementation, it is extremely helpful to decompose the residual and the stiffness into
their contributions from the interface or from the bulk. To do so, we reorder the global nodal residual vector (41) as

RI
= RI

+ R
I
+ + R

I
−

!
= 0

with



RI
=


B0

P · GradN I dV (bulk),

R
I
− =


I 0

1
2

P · Grad N
I
− {{t}} · Grad N

I
dA (minus side-interface),

R
I
+ =


I 0

1
2

P · Grad N
I
+ {{t}} · Grad N

I
dA (plus side-interface),

(44)

whereby we have omitted the assembly operator by replacing the local node i at the element level with the global
node I and therefore, the integrals are not only over the individual elements but over the entire domain. From the
structure of the residual (44), it is clear that the elements in the bulk possess the residual RI and the residual of the

interface elements consists of R
I
− and R

I
+. Based on this view, we construct the tangent stiffnesses in the bulk and

on the interface as the last step of the computational implementation. The tangent stiffness in the bulk assumes its
standard form and reads

KI J
=
∂RI

∂ϕ J =


B0

GradN I
· A · GradN J dV with A :=

∂P
∂F
. (45)
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For the interface element, the residual and the tangent stiffness are slightly more involved as they both are a
combination of the responses from the minus and plus sides of the interface as

R
I

=


R

I
−

R
I
+


⇒ K

I J
=

K
I J
−− K

I J
−+

K
I J
+− K

I J
++

 =


∂R

I
−

∂ϕ J
−

∂R
I
−

∂ϕ J
+

∂R
I
+

∂ϕ J
−

∂R
I
+

∂ϕ J
+

 or K
I J
±± =

∂R
I
±

∂ϕ J
±

, (46)

in which

K
I J
±± =

∂R
I
±

∂ϕ J
±

=
∂

∂ϕ J
±


I 0

1
2

P · Grad N
I

± {{t}} · Grad N
I

dA, (47)

can be expanded as

K
I J
−− =


I 0

1
2

Grad N
I
·


1
2
∂P

∂F
−
∂{{t}}

∂F


· Grad N

J
− Grad N

I
·


1
2
∂P
∂[[ϕ]]

−
∂{{t}}
∂[[ϕ]]


N

J
dA,

K
I J
−+ =


I 0

1
2

Grad N
I
·


1
2
∂P

∂F
−
∂{{t}}

∂F


· Grad N

J
+ Grad N

I
·


1
2
∂P
∂[[ϕ]]

−
∂{{t}}
∂[[ϕ]]


N

J
dA,

K
I J
+− =


I 0

1
2

Grad N
I
·


1
2
∂P

∂F
+
∂{{t}}

∂F


· Grad N

J
− Grad N

I
·


1
2
∂P
∂[[ϕ]]

+
∂{{t}}
∂[[ϕ]]


N

J
dA,

K
I J
++ =


I 0

1
2

Grad N
I
·


1
2
∂P

∂F
+
∂{{t}}

∂F


· Grad N

J
+ Grad N

I
·


1
2
∂P
∂[[ϕ]]

+
∂{{t}}
∂[[ϕ]]


N

J
dA.

(48)

Detailed derivations of the tangents on the interface (48) are given in Appendix D.
In this manuscript, it is of particular interest to have the interface stiffness (48) for a family of interfaces with

additive decomposition of the interface free energy into the elastic response along the interface and the cohesive
response across the interface as

ψ0(F, [[ϕ]]) = ψ
∥

0(F)+ ψ⊥

0([[ϕ]]). (49)

For the particular interface free energy density (49), the constitutive response of the interface (17) satisfies

P =
∂ψ

∥

0

∂F
⇒

∂P
∂[[ϕ]]

= 0 and {{t}} =
∂ψ⊥

0

∂[[ϕ]]
⇒

∂{{t}}

∂F
= 0, (50)

and therefore, the relations for the interface stiffness (48) simplify to

K
I J
−− =


I 0

1
4

Grad N
I
· A∥ · Grad N

J
+ Grad N

I
· A⊥ N

J
dA,

K
I J
−+ =


I 0

1
4

Grad N
I
· A∥ · Grad N

J
− Grad N

I
· A⊥ N

J
dA,

K
I J
+− =


I 0

1
4

Grad N
I
· A∥ · Grad N

J
− Grad N

I
· A⊥ N

J
dA,

K
I J
++ =


I 0

1
4

Grad N
I
· A∥ · Grad N

J
+ Grad N

I
· A⊥ N

J
dA,

(51)

with the fourth-order constitutive tensors A∥, A⊥ along and across the interface, respectively, defined as

A∥ :=
∂P

∂F
=

∂

∂F


∂ψ

∥

0

∂F


, A⊥ :=

∂{{t}}
∂[[ϕ]]

=
∂

∂[[ϕ]]


∂ψ⊥

0

∂[[ϕ]]


. (52)
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Table 3
Key steps to evaluate the constitutive relation at the level of quadrature points of the bulk element (left) and the interface element (right).

Compute the approximate geometry and motion via natural coordinates and shape functions using the isoparametric concept

Xh
=

nNBE
s=1

N s Xs Xh
=

nNIE
s=1

N
s Xs

ϕh
=

nNBE
s=1

N s ϕs ϕh
=

nNIE
s=1

N
s
{{ϕ}}

s , [[ϕ ]]
h

=

nNIE
s=1

N
s
[[ϕ ]]

s

Compute covariant bases in the material and spatial configurations

Gi =

nNBE
s=1

∂N s

∂ξ i Xs , gi =

nNBE
s=1

∂N i

∂ξ i ϕi Gα =

nNIE
s=1

∂N s

∂ξ
α Xs , gα =

nNIE
s=1

∂N s

∂ξ
α ϕs

Compute covariant metrics in the material and spatial configurations

Gi j = Gi · Gi , [Gi j ] =

G11 G12 G13
G21 G22 G23
G31 G32 G33

 Gαβ = Gα · Gβ , [Gαβ ] =


G11 G12
G21 G22



gi j = gi · gi , [gi j ] =

g11 g12 g13
g21 g22 g23
g31 g32 g33

 gαβ = gα · gβ , [gαβ ] =


g11 g12
g21 g22



Compute contravariant metrics in the material and spatial configurations
Gi j


=


Gi j


−1,


gi j


=


gi j


−1


G
αβ


=


Gαβ


−1,


gαβ


=


gαβ


−1

Compute contravariant bases in the material and spatial configurations

Gi
= Gi j

· G j , gi
= gi j

· g j Gα = G
αβ

· Gβ , gα = gαβ · gβ

Compute quantities required to evaluate the constitutive response of the material
F = gi ⊗ Gi , F−1

= Gi ⊗ gi F = gα ⊗ Gα , F−1
= Gα ⊗ gα

Equipped with the tangents and residuals as well as their assembly procedure presented so far, the last remaining
step towards a finite element code is to evaluate the constitutive response at the element level and more specifically at
the quadrature points within the elements. To pave the way for the finite element implementation, we summarize the
key steps to evaluate the element response at the level of a quadrature point in the bulk and on the interface element
in Table 3.

Depending on the material model of interest, further quantities may be required and can be calculated in a similar
manner employing the relations and methodology presented here. For instance, if the interface normal is required, it
can be easily computed via the covariant bases as

N =
G1 × G2

|G1 × G2|
or n =

g1 × g2

|g1 × g2|
. (53)

Also, some quantities such as interface identities can be computed in several different ways and performing a
consistency check such as

I = Gα ⊗ G
α ?

= I − N ⊗ N, i = gα ⊗ gα ?
= i − n ⊗ n, (54)

can be reassuring.

4. Numerical examples

The goal of this section is to elucidate the proposed theory via a series of numerical examples. The numerical
examples are chosen such that the effect of interfaces on the overall behavior is clearly observed without introducing
too much complexity. Computations are carried out using our in-house finite element code which is fully functional in
the three-dimensional setting. Nevertheless, we limit the numerical examples to two dimensions to better appreciate
the details in the material response. The solution procedure is robust and shows the asymptotically quadratic rate of
convergence associated with the Newton–Raphson scheme.

In order to proceed, we need to specify free energies for both the bulk and the interface and consequently, derive the
constitutive laws. For the material response of the bulk, we assume a hyperelastic neo-Hookean free energy density in
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the material configuration

ψ0(F) =
1
2 µ [J−2/PDF : F − PD] + κ [

1
4 J 2

−
1
2 ln J −

1
4 ] with J = DetF, (55)

with µ being the (first) Lamé constant and κ the bulk modulus. This choice for energy is suitable for rubber-
like materials and benefits from the original ideas of Ogden [119] to capture the macroscopic behavior of nearly
incompressible soft polymers. Alternatively, it is possible to develop physically interpretable and micro-mechanically
motivated material models as discussed in [120–122] among others. The free energy density (55) is general and valid
for the problem dimension, PD, of two and three. In a two-dimensional setting of interest here, the free energy density
and its associated constitutive response read

ψ0 =
1
2 µ [J−1F : F − 2] + κ [

1
4 J 2

−
1
2 ln J −

1
4 ] and P =

∂ψ0

∂F
, A =

∂P
∂F
, (56)

with

P = µ [F −
1
2 F : F F−t

] J−1
+

1
2 κ [J 2

− 1],

A = µ [I −
1
2 F : F D − F−t

⊗ F − F ⊗ F−t
−

1
2 F : F F−t

⊗ F−t
] J−1

+
1
2 κ [[J 2

− 1]D + 2J 2F−t
⊗ F−t

],

(57)

in which the fourth-order tensors I and D are defined as

I :=
∂F
∂F

= i ⊗ I and D :=
∂F−t

∂F
= −F−t

⊗ F−1.

For the material response of the interface, we additively decompose the material behavior into a tangential part
along the interface and an orthogonal part across the interface. We assume a hyperelastic neo-Hookean response
along the interface to capture the interface elasticity. For the orthogonal behavior of the interface, we assume the most
simple and intuitive cohesive response with quadratic energy in terms of the displacement jump across the interface.
See Appendix E for further details on the choice of the interface free energy. The free energy density of the interface
in the material configuration is chosen as

ψ0(F, [[ϕ]]) =
1
2 µ [F : F − PD − 2 ln J ] +

1
2 λ [

1
2 [J

2
− 1] − ln J ] +

1
2 k [[ϕ ]]

2 with J = Det F, (58)

in whichµ, λ and k are the interface material parameters and PD stands for the interface problem dimension. In a three-
dimensional setting, the interface is a two-dimensional manifold and in a two-dimensional setting a one-dimensional
manifold and therefore, PD = PD − 1. For the two-dimensional setting of interest here, it is redundant to introduce
two material parameters for the elastic response along the interface and hence, we set λ = 0. The free energy density
and its associated constitutive response on the interface read

ψ0(F, [[ϕ]]) = ψ
∥

0(F)+ ψ⊥

0([[ϕ]]) and P =
∂ψ

∥

0

∂F
, A∥ =

∂P

∂F
, {{t}} =

∂ψ
∥

0

∂[[ϕ]]
, A⊥ =

∂{{t}}
∂[[ϕ]]

, (59)

with

ψ
∥

0 =
1
2 µ [F : F − 1 − 2 ln J ], ψ⊥

0 =
1
2 k [[ϕ ]]

2,

P = µ [F − F−t
], {{t}} = k [[ϕ]],

A∥ = µ [I − D], A⊥ = k i,

(60)

in which the fourth-order tensors I and D are defined as

I :=
∂F

∂F
= i ⊗ I and D :=

∂F−t

∂F
= −F−t

⊗ F−1
+ [n ⊗ n] ⊗ [F−1

· F−t
].

For the following numerical studies, the material parameters for t he matrix are constant throughout all the examples
and are chosen as µmatr. = 8 N/mm2 and λmatr. = 18 N/mm2. The material properties of the inclusion are varied
such that the influence of the stiffness ratio between the inclusion and the matrix is evident. In particular, we study
three different stiffness ratios incl./matr. of 0.1, 1 and 10. The stiffness ratio incl./matr. = 0.1 corresponds to an
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Fig. 4. Illustration of the unit-cell under volumetric expansion with the prescribed macroscopic deformation gradient MF. The micro-structure
is assumed to be periodic and hence, the unit-cell being the representative volume element. The discretization of the domain using quadrilateral
elements is illustrated on the right.

inclusion that is 10 times more compliant compared to the matrix. In the limit of incl./matr. → 0, the micro-
structure resembles a porous medium. For a uniform micro-structure, the stiffness ratio equals one. In view of the
classical homogenization, leaving convexity issues aside, this case is trivial as the inclusions are identical to the
matrix. Nevertheless, that is not the case here as the interface results in a non-uniform and complex material behavior.
Finally, the stiffness ratio incl./matr. = 10 indicates that the inclusion is 10 times stiffer than the matrix. In the limit
of incl./matr. → ∞, the inclusions mimic rigid particles. We can summarize the material parameters in the following
examples as

µmatr. = 8 N/mm2

λmatr. = 18 N/mm2 and


incl./matr. = 0.1 ⇒ µincl. = 0.8 N/mm2, λincl. = 1.8 N/mm2,

incl./matr. = 1 ⇒ µincl. = 8 N/mm2, λincl. = 18 N/mm2,

incl./matr. = 10 ⇒ µincl. = 80 N/mm2, λincl. = 180 N/mm2.

For the material behavior of the interface, the parameters are chosen as µ = 10 N/mm and k = 10 N/mm3. Note,
the ratio µ/µ has the dimension length but, the ratio k/µ has the dimension length-inverse. Through the numerical
examples of this section, we detail on how these parameters lead to a size effect in the material response. Clearly,
the cohesive as well as the elastic interface response is the key features in the numerical results. The material
parameters for the examples are chosen such that we see exaggerated interface effects. While using realistic interface
parameters changes the outcomes quantitatively, the overall trends and discussions in the following examples remain
valid qualitatively.

Consider a heterogeneous material, shown in Fig. 4, that consists of a periodic micro-structure such that the unit-
cell is the representative volume element. We prescribe a volumetric expansion of 20% on the RVE via the macroscopic
deformation gradient MF together with periodic boundary conditions on the micro-problem. The domain is discretized
using 2000 bi-quadratic (Lagrange) bulk elements and 80 quadratic interface elements.

In order to study the interface effect on the material response and to appreciate the differences between the four
interface models, we devise four sets of examples. The examples follow the classification summarized in Fig. 1 with
the same order. Figs. 5–8 correspond to the perfect, cohesive, elastic and general interface models, respectively.

In the first set of examples, we focus on the micro-structure of Fig. 4 whereby the interface between the inclusion
and the matrix behaves according to the perfect interface model. In this model both the traction jump and the
displacement jump vanish and this interface model coincides with the trivial interfaces similar to the edges of the
finite elements.7 This set of examples lays out the trivial interface behavior and is only given to set the stage to
better understand more complex interface models proposed in this manuscript. Again, we emphasize that the perfect
interface model is equivalent to no-interface model with the assumption of perfect bonding between the inclusion and
the matrix. Each column in Fig. 5 corresponds to a different RVE-size. The right and left columns are 100 times larger
and smaller, respectively, compared to the column in the center. Each row in Fig. 5 pertains to a different stiffness
ratio between the inclusion and the matrix. The inclusion and the matrix in the middle row have the same material
properties. The top and bottom rows are 10 times more compliant and stiffer, respectively, compared to the row in the

7 For C0-continuous finite elements, only the displacement is continuous at the edges of the elements and a stress jump between two adjacent
elements is generally present. This stress jump is a purely numerical artifact and is irrelevant to what we denote as traction jump across the interface
in this contribution. For C1-continuous finite elements, the stress jump at the common edge of two neighboring elements vanishes identically if the
common edge mimics a perfect interface model.
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Fig. 5. Illustration of the numerical results for the RVE undergoing 20% volumetric expansion. The results correspond to three different sizes and
stiffness ratios whereby the matrix properties are fixed among all the simulations. The color-map shows the distribution of the xx-component of the
Piola stress normalized with its macroscopic counterpart given for each case. The interface model between the inclusion and the matrix is perfect
and does not introduce any size effect. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

middle. The results show the distribution of the xx-component of the Piola stress normalized with its macroscopic
counterpart given for each case. In the middle row, we observe a uniform material response and no gradient in the
stress field. This is expected as the inclusion and the matrix are identical. In the first row, the inclusion undergoes more
deformation but less stress compared to the matrix. This behavior is clearly the result of having an inclusion that is
more compliant than the matrix. In the last row, in contrast to the first row, the inclusion experiences less deformation
but more stress compared to the matrix. We can also explain this behavior as the inclusion is stiffer than the matrix. If
we study Fig. 5 column-wise, we do not see any difference in the material response and hence, no size-effect. This is
not surprising since the classical first-order computational homogenization lacks a physical length-scale. As we will
see in the remainder of the examples, the novel interface-enhanced computational homogenization proposed in this
manuscript rectifies this issue and introduces a size effect in the material behavior.

Fig. 6 deals with the same micro-structure as Fig. 5, however, the interface between the inclusion and the matrix
acts as a cohesive interface model. That is, the traction jump across the interface vanishes but the displacement jump
does not. According to the cohesive constitutive law (58), the average traction across the interface is proportional to
the displacement jump. On the right column of Fig. 6, for a large RVE, the influence of the interface is very minor
due to the small area-to-volume ratio and therefore, the overall results as well as the distribution of the stresses are
very similar to the perfect interface model of Fig. 5. Decreasing the size of the RVE, that is to move column-wise
towards the left, results in a more pronounced interface effect on the micro-structure response due to the increasing
area-to-volume ratio. Furthermore, we observe a larger-stiffer behavior since for smaller dimensions the cohesive zone
becomes more active. This can be better explained from the left column of Fig. 6 where the micro-structure resembles
a porous medium and the inclusion energetically does not contribute to the material response. On the left column,
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Fig. 6. Illustration of the numerical results for the RVE undergoing 20% volumetric expansion. The results correspond to three different sizes and
stiffness ratios whereby the matrix properties are fixed among all the simulations. The color-map shows the distribution of the xx-component of the
Piola stress normalized with its macroscopic counterpart given for each case. The interface model between the inclusion and the matrix is cohesive
and introduces a size effect such that larger is stiffer. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

the stress in the inclusions as well as the deformation vanishes and this behavior is so strong that we observe exactly
the same response independent of the stiffness ratio. Clearly, in the middle column we witness a moderate interface
response between the right and the left column. The interface response in the middle column is present such that it
is no longer negligible as in the right column but is also not too pronounced as in the left column and the inclusion
influences the overall material response. If we study Fig. 6 row-wise, it is easily noticeable that the stiffness ratio
plays no role on the left column, plays a significant role on the right column and does something in between in the
middle column. This behavior is expected since on the left column the inclusion itself, and consequently its stiffness,
is negligible. On the right column though, the interface plays a minor role and the overall response is dominated by
the inclusion and the matrix and hence, their stiffness ratio.

For the third set of examples gathered in Fig. 7, the interface between the inclusion and the matrix is elastic and
coherent. That is, the displacement is continuous across the interface but the traction jump does not necessarily vanish.
Based on the chosen elastic constitutive law (58), the interface demonstrates a neo-Hookean resistance. In the context
of two-dimensional examples here, this means the interface resists against the change of its length. Similar to the
cohesive interface model, we observe a more pronounced interface effect on the left column due to the large area-to-
volume ratio and a rather minor interface effect on the right column due to the small area-to-volume ratio. On the right
column, the overall results as well as the distribution of the stresses are very similar to the perfect interface model of
Fig. 5. In contrast to the cohesive interface model though, we see a smaller-stiffer behavior as for smaller dimensions
the interface elasticity plays a more eminent role. This can be better explained from the left column of Fig. 7 where
the micro-structure resembles the matrix with rigid inclusions. At this scale, the interface elastic resistance is so strong
that it fully prevails over the inclusion and the inclusion does not contribute significantly to the material response. On
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Fig. 7. Illustration of the numerical results for the RVE undergoing 20% volumetric expansion. The results correspond to three different sizes and
stiffness ratios whereby the matrix properties are fixed among all the simulations. The color-map shows the distribution of the xx-component of the
Piola stress normalized with its macroscopic counterpart given for each case. The interface model between the inclusion and the matrix is elastic
and introduces a size effect such that smaller is stiffer. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the left column, the stress in the inclusions as well as the deformation almost vanishes and this behavior is so strong
that we observe exactly the same response independent of the stiffness ratio. Clearly, in the middle column we witness
a moderate interface response between the right and the left column. The interface response in the middle column is
present such that it is no longer negligible as in the right column and also, is not too dominant as in the left column and
the inclusion affects the overall material response. If we study Fig. 7 row-wise, it is easily noticeable that the stiffness
ratio plays no role on the left column, plays a significant role on the right column and does something in between in the
middle column. This behavior is expected since on the left column the inclusion itself, and consequently its stiffness,
is negligible. On the right column though, the interface plays a minor role and the overall response is dominated by
the inclusion and the matrix and consequently, the stiffness ratio between them.

Finally, in the last set of examples in Fig. 8, the interface between the inclusion and the matrix is general imperfect
in the sense that it is elastic along the interface and also cohesive across the interface. That is, neither the displacement
nor the traction across the interface is continuous. According to the chosen constitutive law for the interface (58), the
interface demonstrates a neo-Hookean resistance along the interface and a linear relation between the average traction
and the displacement jump across the interface. This general interface model is essentially a superposition of both
the elastic and the cohesive interface behavior discussed previously. Therefore, similar to the cohesive and elastic
interface models, we observe a more pronounced interface effect on the left column due to the large area-to-volume
ratio and a rather minor interface effect on the right column due to the small area-to-volume ratio. The overall results
as well as the distribution of the stresses on the right column are very similar to the perfect interface model of Fig. 5.
On one hand, we have the smaller-stiffer behavior because of the elastic response of the interface. On the other hand,
due to the cohesive interface behavior, we expect a larger-stiffer behavior. Thus, the general interface behavior is more
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Fig. 8. Illustration of the numerical results for the RVE undergoing 20% volumetric expansion. The results correspond to three different sizes and
stiffness ratios whereby the matrix properties are fixed among all the simulations. The color-map shows the distribution of the xx-component of the
Piola stress normalized with its macroscopic counterpart given for each case. The interface model between the inclusion and the matrix is general
and introduces a size effect. The size effect is a combination of both size effects due to cohesive and elastic interface models. While the cohesive
contribution of the interface introduces a larger-stiffer behavior, the elastic interface response leads to a smaller-stiffer effect. Therefore, the overall
response of the general interface model is complex and non-monotonic. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

complex compared to both cohesive and elastic interface models. This can be better explained by moving column-wise
towards the left on Fig. 8. In contrast to both cohesive and elastic interface models, for a given row, moving between
columns from right to left does not feature a uniform trend. In the first row, we see an increase and then decrease of
the overall response. In the last row, we see the opposite behavior compared to the first row.

In order to fully comprehend the influence of the interface on the overall response of the micro-structure, we
summarize the key features of all the previous examples in the next study. In doing so, we provide a more precise
definition for the RVE-size ℓ. Let d denote a physical dimension at the micro-structure. We can use d to normalize the
size of the RVE, i.e. the length of the unit-cell, as ℓ/d illustrated in Fig. 9. Clearly, larger values for the dimensionless
number ℓ/d correspond to a larger RVE and vice versa.

Fig. 10 gathers the macroscopic Piola stress [
MP]xx versus the size of the RVE. Clearly, for a volumetric expansion

study here the apparent property of interest may be understood as pressure. Nevertheless, for the given micro-structure
the stress [

MP]xx delivers the same information as the macroscopic pressure itself. We include all the four different
interface types and carry out the computations for three different stiffness ratios of 0.1, 1 and 10. The x-axis on the
graphs shows ℓ/d with ℓ being the length of the unit-cell. For a very large RVE, the interface effect is negligible and
all classes of interfaces furnish the same response and coincide with that of the perfect interface model or equivalently
the bulk-only model. The response of the perfect interface model is constant and independent of the size of the RVE, as
expected. This constant is larger for the stiffness ratio of 10 (right) compared to the uniform response (center) and is
expectedly smaller than the uniform response for the stiffness ratio of 0.1 (left). The cohesive interface model results in
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Fig. 9. Illustration of the RVE-size ℓ. A physical dimension at the microscale is denoted d .

Fig. 10. Summary of the overall response of the RVE versus size for various stiffness ratios and different classes of interfaces. The graphs show
the xx-component of the macro Piola stress versus the RVE-size normalized by a physical dimension at the micro-structure denoted d . The results
correspond to the RVE undergoing 20% volumetric expansion. The perfect interface model does not introduce any size effect. The size effect due
to the general interface model is a combination of both size effects from cohesive and elastic interface models. While the cohesive contribution of
the interface introduces a larger-stiffer behavior, the elastic interface response leads to a smaller-stiffer effect. Therefore, the overall response of the
general interface model is complex and non-monotonic.

a more compliant overall material behavior compared to that pertaining to the perfect interface model. The size effect
due to the cohesive interface is larger-stiffer and decreasing the RVE-size leads to a more compliant response. For a
very small RVE, the cohesive interface model converges to the same value for the [

MP]xx independent of the stiffness
ratio and this value is identical to that of a porous media. In contrast to the cohesive interface model, the elastic
interface model results in a stiffer overall material behavior compared to that of the perfect interface model. The size
effect caused by the elastic interface is smaller-stiffer and decreasing the RVE-size leads to a stiffer response. For a
very small RVE, the elastic interface model converges to the same value for the [

MP]xx independent of the stiffness
ratio and this value is identical to that of the matrix with rigid inclusion. For the general interface model, we observe
a complex and non-monotonic behavior as a result of a superposition of the cohesive and elastic interface effects. For
a very small RVE, the general interface model converges to a constant value but this constant depends on the stiffness
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Fig. 11. Summary of the overall response of the RVE versus size for various stiffness ratios and different classes of interfaces. The number on each
line indicates the stiffness ratio. The lower lines correspond to inclusions more compliant than the matrix and upper lines indicate stiffer inclusions.
The graphs show the xx-component of the macro Piola stress versus the RVE-size normalized by a physical dimension at the micro-structure
denoted d . The results correspond to the RVE undergoing 20% volumetric expansion. The perfect interface model does not introduce any size
effect. The size effect due to the general interface model is a combination of both size effects from cohesive and elastic interface models. While the
cohesive contribution of the interface introduces a larger-stiffer behavior, the elastic interface response leads to a smaller-stiffer effect. Therefore,
the overall response of the general interface model is complex and non-monotonic.

ratio in contrast to the cohesive and elastic interface models. Also, the general interface model could result in both
stiffer as well as more compliant overall behavior compared to the perfect interface model and eventually exhibits an
extremum at a critical RVE-size where the trend of the overall response changes. Fig. 10 reveals that the size at which
the extremum value is observed is identical for all the different stiffness ratios, however, the trends are not self-similar
and the extremum response may correspond to a minimum or a maximum. We observe that, somewhat interestingly,
not only the critical RVE-size but also the extremum value itself is identical for various stiffness ratios. To better
see this rather complex material behavior, we illustrate the results of Fig. 10 in a different order and include several
results associated with a broader range of stiffness ratios next. Fig. 11 shows the xx-component of the macro Piola
stress versus ℓ/d, however, each graph corresponds to a different interface model and contains 16 different stiffness
ratios. The number on each line indicates the stiffness ratio and 100 (upper most) corresponds to a relatively rigid
inclusion while 0.01 (lower most) corresponds to an extremely compliant inclusion resembling a pore-like response.
As expected, the perfect interface model does not capture any size effect and it only shows the classical solution.
Obviously, a stiffer inclusion results in a stiffer overall response. For all interface models, very large RVEs show the
same response as the classical solution since the interface effect is rather negligible due to negligible area-to-volume
ratio. In the limit of extremely small RVEs, the micro-structure with the cohesive interface model converges to a porous
medium while the micro-structure with the elastic interface model converges to a matrix with rigid inclusions. The
general imperfect interface model coincides with the perfect interface model in both extremes since the cohesive and
elastic responses cancel each other.
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Summary of key observations through numerical examples
The aim of the computational study here is to cover various interface models and their influences on the overall

response of materials and in particular, the size effect. This broad scope has led us to an unusually exhaustive numerical
analysis, presented. In order to better see the connection between individual cases, we briefly summarize the key
features of all the examples in what follows.

Perfect interface model does not capture any size effect. Both the displacement as well as the traction are continuous
across the interface, [[ϕ]] = 0 and [[t]] = 0. The interface behavior can be understood as an infinitely stiff spring (rigid)
normal to the interface and an infinitely compliant spring (no spring) along the interface. Reducing the size of the RVE

does not influence the overall material response.

Cohesive interface model predicts a larger-stiffer size effect. The displacement suffers a jump across the interface,
[[ϕ]] ≠ 0, but the traction remains continuous, [[t]] = 0. The interface behavior can be understood as a spring (elastic)
normal to the interface and an infinitely compliant spring (no spring) along the interface. Compared to the perfect
interface model, it leads thus to a more compliant response and hence, to a smaller-weaker relation. Regardless of the
stiffness ratio, the overall behavior converges asymptotically to a porous material response via reducing the RVE size.

Elastic interface model predicts a smaller-stiffer size effect. The displacement is continuous across the interface,
[[ϕ]] = 0, but the traction can suffer a jump, [[t]] ≠ 0. The interface behavior can be understood as an infinitely
stiff spring (rigid) normal to the interface and a spring (elastic) along the interface. Compared to the perfect interface
model, it leads thus to a stiffer response due to an additional spring in parallel and hence, to a smaller-stronger
relation. Regardless of the stiffness ratio, the overall behavior converges asymptotically to a matrix with rigid inclusion
response via reducing the RVE size.

General interface model predicts a complex size effect. Both the displacement and the traction are discontinuous
across the interface, [[ϕ]] ≠ 0 and [[t]] ≠ 0. The interface behavior can be understood as a spring (elastic) normal
to the interface and a spring (elastic) along the interface. Reducing the size of the RVE in the limit can lead to both
porous material as well as rigid inclusion depending on the stiffness ratio. For a specific RVE-size depending on the
interface parameters, the overall material response becomes invariant with respect to the stiffness ratio.

5. Key features and outlook

The main objective of this contribution is to establish a micro-to-macro transition scheme accounting for general
imperfect interfaces. The key features of this manuscript are:

• to formulate a thermodynamically consistent model for general imperfect interfaces,
• to incorporate such an interface model into a computational homogenization framework,
• to develop the finite element implementation of the proposed theory,
• to illustrate the influence of the proposed interface model on the overall material response via a series of numerical

examples.

It is important to note that general imperfect interfaces are integrated within a computational homogenization
framework for the first time here. Thus, the numerical examples are chosen such that the influence of interfaces is
most pronounced and somewhat intuitive. Various extensions, out of the scope of this manuscript, remain to be added
in subsequent contributions and in the near future, as follows.

From numerical studies to applications The examples here deliver only parametric studies and are purely
computational. To link such numerical observations to the physics of materials, one certainly needs more information
about the micro-structure itself and the nature of interface constitutive response.

Identifying interface parameters The interface material parameters can be identified using atomistic simulations or
phase-field approach (see [123] for instance).

Influence of various boundary conditions Computational homogenization relies essentially on the Hill–Mandel
condition which is satisfied via imposing suitable boundary conditions. Among various admissible boundary
conditions, we have limited the study here to periodic boundary conditions. The influence of other boundary conditions
remain to be studied.

Extension to 3D While the whole theory and the associated numerical implementation is formulated for a general
three-dimensional setting, the numerical example section is limited to two-dimensional studies. This simplification has
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been made to better visualize the influence of interfaces and in order to eliminate additional complexities associated
with the three-dimensional nature of the problem.

Various load cases For the numerical examples, we have limited our study to the volumetric expansion of the RVE.
This choice has been made to study the interface response for a broad range of parameters such as the stiffness ratio
and the size of the RVE. It is rather straightforward to prescribe extension or shear or any mixed deformation on the
RVE. Nonetheless, such load cases would lead to numerical issues for certain ranges of parameters. Obviously for
more realistic interface parameters, one can apply different load cases.

Comparison to analytical solutions For the generic problem of interest here, there exists no analytical solution to
date. However, if certain simplifications are made, one can compare the numerical results with the corresponding
analytical estimates. The numerical results here are compared against some existing analytical estimates in limit
cases although the comparisons are omitted. Our next immediate plan is to establish a suitable analytical estimate for
effective behavior of heterogeneous materials accounting for general imperfect interfaces and to carry out a thorough
study.

Including intersections of interfaces with the RVE-boundaries The assumption that the interface does not intersect
with the boundaries of the RVE has been made only for simplicity of the numerical examples. The same holds for
Table 2 and its caption. However, the detailed derivations in the Appendix do include the general case in which the
interface intersects with the boundary of the RVE. In order to account for such intersections, one needs to include
curve integrals, too where the curves are essentially the intersections of interfaces with the boundaries of the RVE.

A fully variational micro-to-macro transition Here, we have formulated general imperfect interfaces in a
thermodynamically consistent manner, but not from a variational viewpoint. The same holds for the micro-to-macro
transition. More precisely, the Hill–Mandel condition is given in a heuristic and ad-hoc manner. A fully variational
framework for micro-to-macro transition accounting for general imperfect interfaces remains to be established.
Such a framework can give more insight to the averaging theorems presented here. For variational formulation of
computational homogenization, see for instance [63,124].

6. Concluding remarks

In the past decades, computational homogenization has proven to be a powerful strategy to compute the overall
response of continua. With emerging applications of nano-objects in the last ten years, the size dependent behavior of
materials has become extremely important. Nevertheless, the classical computational homogenization fails to predict
the size effect and therefore, it becomes immediately inappropriate to understand the behavior of nano-materials. Here,
we have presented our first attempt to capture the size effect via computational homogenization by consideration of
interfaces in the micro-structure.

The commonly accepted methodology to model interfaces is to assume either the displacement or the traction to
be continuous across the interface. We formulate the interface far beyond these two extreme cases and establish
a thermodynamically consistent general interface model that allows for both jumps of the displacement as well
as the traction. Both the cohesive zone model and interface elasticity theory are two limit cases of this general
model. Next, we extend the computational homogenization to account for general interfaces. In doing so, not only
suitable boundary conditions to guarantee the Hill–Mandel condition are derived but also the averaging theorems are
extended to furnish meaningful averages for the micro-to-macro transition. Clearly, the proposed interface-enhanced
homogenization reduces to the classical homogenization in the absence of interfaces. We have purposefully devised the
entire framework such that its simplifications to the classical homogenization and more simplified interface models
are evident. Finally, the proposed theory is elucidated via a series of numerical examples. Our numerical analysis
clearly captures a size effect in the material response. In particular, we observe smaller-stronger and smaller-weaker
for elastic and cohesive interfaces, respectively. The size effect of the general interface model is more complex and
can be both smaller-stronger as well as smaller-weaker depending on other parameters.

In summary, this manuscript presents our first attempt to shed light on micro-to-macro transition accounting for
general interfaces. This allows us to predict a size effect in the material response via computational homogenization.
We believe that this generic framework is broadly applicable to enhance our understanding of the size dependent
behavior of continua with a large variety of applications in nano-materials.
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Appendix A. Geometry of interfaces

It is enlightening to briefly review some basic terminologies and results on interfaces in the sense of two-
dimensional manifolds in three-dimensional space. For further details the reader is referred to [125–128] among
others. A two-dimensional (smooth) surface I in the three dimensional, embedding Euclidean space with coordinates
x is parameterized by two coordinates ηα with α = 1, 2 as x = x(ηα). The corresponding tangent vectors gα ∈ T I
to the interface coordinate lines ηα , i.e. the covariant (natural) interface basis vectors, are given by gα = ∂ηαx. The
associated contravariant (dual) interface basis vectors gα are defined by the Kronecker property δαβ = gα ·gβ and are
explicitly related to the covariant interface basis vectors gα by the co- and contra-variant interface metric coefficients
gαβ (first fundamental form of the interface) and gαβ , respectively, as

gα = gαβg
β with gαβ = gα · gβ = [gαβ ]−1, gα = gαβgβ with gαβ = gα · gβ = [gαβ ]

−1.

(A.1)

The contra- and covariant base vectors g3 and g3, normal to T I , are defined by g3
:= g1 × g2 and g3 := [g33

]
−1g3

so that g3
·g3 = 1. Thereby, the corresponding contra- and covariant metric coefficients, respectively, [g33

] and [g33]

follow as

[g33
] = |g1 × g2|

2
= det[gαβ ] = [det[gαβ ]]−1

= [g33]
−1. (A.2)

Accordingly, the interface area element ds and the interface normal n are computed as

ds = |g1 × g2|dη
1 dη2

= [g33
]
1/2dη1 dη2 and n = [g33]

1/2g3
= [g33

]
1/2g3. (A.3)

Moreover, with i denoting the ordinary mixed-variant unit tensor of the three-dimensional embedding Euclidean space,
the mixed-variant interface unit tensor i is defined as

i := δαβgα ⊗ gβ = gα ⊗ gα = i− g3 ⊗ g3
= i− n⊗ n. (A.4)

Clearly the mixed-variant interface unit tensor acts as an interface (idempotent) projection tensor. The interface
gradient and interface divergence of a vector field {•} are defined by

grad{•} := ∂ηα {•} ⊗ gα and div := ∂ηα {•} · gα. (A.5)

As a consequence, observe that grad{•} · n = 0 holds by definition. For fields that are smooth in a neighborhood of
the interface, the interface gradient and interface divergence operators are alternatively defined as

grad{•} := grad{•} · i and div := grad{•} : i = grad{•} : i. (A.6)

Finally, the derivatives of the co- and contra-variant interface basis vectors read

∂ηβgα = Γ γ
αβgγ + kαβn and ∂ηβg

α
= −Γ α

βγg
γ

+ k
α

βn, (A.7)

where Γ γ
αβ = ∂ηβgα · gγ denote the interface Christoffel symbols and kαβ are the coefficients of the curvature tensor.

The curvature tensor k = kαβgα ⊗ gβ and twice the mean curvature k = k
α

α of the interface I are defined as the
negative interface gradient and interface divergence of the interface normal n, respectively,

k := −gradn = −∂ηβn⊗ gβ and k := −divn = −∂ηβn · gβ . (A.8)

The covariant coefficients of the curvature tensor (second fundamental form of the interface) are computed by
kαβ = gα · k · gβ = −gα · ∂ηβn.

Appendix B. Proof of key relations regarding interfaces

B.1. Localization procedure on the interface

In order to derive the balance of linear momentum on the interface, the global balance of linear momentum (8) is
localized to an infinitesimal subdomain on the interface. This is carried out by setting the bulk domain of the cutout



A. Javili et al. / Comput. Methods Appl. Mech. Engrg. 317 (2017) 274–317 305

volume to vanish in the limit as
∂V −

0

v · P · N dA +


∂V +

0

v · P · N dA +


I 0

v · b0 dA +


∂I 0

v · P · N dL = 0. (B.1)

The boundary of the cutout volume coincides geometrically with the interface itself and therefore, ∂V 0
−

= ∂V +

0 = I 0,
however, the arguments within the integrals are not identical on both sides of the interface and Eq. (B.1) reduces to

I 0

v · P−
· [−N] dA +


I 0

v · P+
· N dA +


I 0

v · b0 dA +


∂I 0

v · P · N dL = 0. (B.2)

Note, the outward normal N to ∂V −

0 at the limit of ∂V −

0 = I 0 is [−N] and also, the outward normal N to ∂V +

0 at the
limit of ∂V +

0 = I 0 is N. The first three terms of Eq. (B.2) are integrals over the interface and in order to transform the
last term into an interface integral, we proceed with the interface divergence theorem stated below

∂I 0

{•} · N dL =


I 0

Div{•} dA +


I 0

K {•} · N dA with K = −Div N. (B.3)

Therefore, the last term can be written as
∂I 0

v · P · N dL =


I 0

Div(v · P) dA +


I 0

K v · P · N dA, (B.4)

which is then further simplified using (i) the fact that the interface stress is superficial and P · N = 0 hence the second
integral vanishes and (ii) employing the identity Div(v ·P) = Gradv : P+v ·Div P where Gradv = 0 since the velocity
v is a uniformly prescribed constant. Finally we arrive at

∂I 0

v · P · N dL =


I 0

v · Div P dA, (B.5)

that we insert into Eq. (B.2) and obtain
I 0

v · P−
· [−N] dA +


I 0

v · P+
· [N] dA +


I 0

v · b0 dA +


I 0

v · Div P dA = 0, (B.6)

or 
I 0

v ·


[[P]] · N + b0 + Div P


dA = 0, (B.7)

that must be valid ∀v. This arbitrariness property renders the local balance of linear momentum on the interface as

Div P + b0 + [[P]] · N = 0. (B.8)

Next, we proceed with localizing the global balance of angular momentum (9) on the interface. Similar to the
localization of balance of linear momentum, we set the bulk domain of the cutout volume to vanish in the limit as

∂V −

0

[ω × x] · P · N dA +


∂V +

0

[ω × x] · P · N dA +


I 0

[ω × x] · b0 dA +


∂I 0

[ω × x] · P · N dL = 0. (B.9)

The boundary of the cutout volume coincides geometrically with the interface and ∂V 0
−

= ∂V +

0 = I 0, however, the
arguments within the integrals are not identical on both sides of the interface and Eq. (B.9) reduces to

I 0

[ω × x−
] · P−

· [−N] dA +


I 0

[ω × x+
] · P+

· N dA +


I 0

[ω × x] · b0 dA

+


∂I 0

[ω × x] · P · N dL = 0. (B.10)
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Using the interface divergence theorem (B.3), we rewrite the last term as
∂I 0

[ω × x] · P · N dL =


I 0

Div([ω × x] · P) dA +


I 0

K [ω × x] · P · N dA, (B.11)

that can be simplified due to superficiality of P as
∂I 0

[ω × x] · P · N dL =


I 0

Div([ω × x] · P) dA =


I 0

Grad(ω × x) : P + [ω × x] · Div P dA. (B.12)

Both terms on the right-hand side can be further simplified using the identities

Grad(ω × x) : P = ω ·

ε : [Gradx · Pt

]


= ω ·

ε : [F · Pt

]

, [ω × x] · Div P = ω · [x × Div P],

and therefore,
∂I 0

[ω × x] · P · N dL =


I 0

ω ·

ε : [F · Pt

]

+ ω · [x × Div P] dA. (B.13)

Replacing the last term of Eq. (B.10) by the results from Eq. (B.13), furnishes
I 0

[ω × x−
] · P−

· [−N] dA +


I 0

[ω × x+
] · P+

· N dA +


I 0

[ω × x] · b0 dA

+


I 0

ω ·

ε : [F · Pt

]

+ ω · [x × Div P] dA = 0. (B.14)

The first three terms of Eq. (B.14) can be simplified using the identity [ω × x] · {•} = ω · [x × {•}] and thus
I 0

−ω · [x−
× [P−

· N]] + ω · [x+
× [P+

· N]] dA + ω · [x × b0] dA

+


I 0

ω ·

ε : [F · Pt

]

+ ω · [x × Div P] dA = 0, (B.15)

or alternatively
I 0

ω ·


−[x−

× [P−
· N]] + [x+

× [P+
· N]] + [x × b0] + ε : [F · Pt

] + [x × Div P]


dA = 0, (B.16)

which must hold for all ω and therefore, Eq. (B.16) results in the local balance of angular momentum on the interface

−x−
× [P−

· N] + x+
× [P+

· N] + x × b0 + ε : [F · Pt
] + x × Div P = 0. (B.17)

The local balance of angular momentum (B.17) can be further simplified using the local form of the balance of linear
momentum on the interface (B.8) by replacing Div P + b0 with minus [[P]] · N and on that account

−x−
× [P−

· N] + x+
× [P+

· N] + ε : [F · Pt
] − x × [[[P]] · N] = 0, (B.18)

or

[[x × [P · N]]] + ε : [F · Pt
] − x × [[[P]] · N] = 0. (B.19)

Using the identity [[{•} × {◦}]] = [[{•}]] × {{{◦}}} + {{{•}}} × [[{◦}]], the balance of angular momentum (B.19) reduces
to

[[x]] × {{P · N}} + {{x}} × [[P · N]] + ε : [F · Pt
] − x × [[[P]] · N] = 0, (B.20)

or alternatively

[[x]] × [{{P}} · N] + {{x}} × [[[P]] · N] + ε : [F · Pt
] − x × [[[P]] · N] = 0. (B.21)
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Recall, we assumed that the interface motion is independent of the motion of the bulk. Based on this assumption,
the balance of angular momentum on the interface cannot be further simplified. However, the format of Eq. (B.21)
suggests that if the interface motion is the average of the motion across the interface, i.e. if ϕ = {{ϕ}}, then the second
and the last term vanish together and we remain with a more simplified and intuitive format for balance of angular
momentum as

[[x]] × [{{P}} · N] + ε : [F · Pt
] = 0. (B.22)

B.2. Reformulation of working

In order to re-formulate working to its local form in the bulk, we start from the global form of working (5), omit
the interface contributions and employ the classical (bulk) divergence theorem as

W 0 =


V −

0

ϕ̇ · b0 dV +


V +

0

ϕ̇ · b0 dV +


∂V −

0

ϕ̇ · P · N dA +


∂V +

0

ϕ̇ · P · N dA

=


V −

0

ϕ̇ · b0 dV +


V +

0

ϕ̇ · b0 dV +


V −

0

Div(ϕ̇ · P) dV +


V +

0

Div(ϕ̇ · P) dV,

using the identity Div(ϕ̇ · P) = Gradϕ̇ : P + ϕ̇ · Div P,

W 0 =


V −

0

ϕ̇ · b0 dV +


V +

0

ϕ̇ · b0 dV +


V −

0

Gradϕ̇ : P + ϕ̇ · Div P dV +


V +

0

Gradϕ̇ : P + ϕ̇ · Div P dV,

replacing Ḟ = Gradϕ̇ and reordering the terms

W 0 =


V −

0

ϕ̇ · [b0 + Div P]  
=0

dV +


V +

0

ϕ̇ · [b0 + Div P]  
=0

dV +


V −

0

Ḟ : P dV +


V +

0

Ḟ : P dV,

in which the first two integrals vanish due to the balance of linear momentum. Clearly, the working density in the bulk
reads

W 0 = P : Ḟ.

Next, we re-formulate working (5) to its local form on the interface by omitting the bulk terms, localize the
boundary terms on the interface and using the interface divergence theorem (B.3) as

W 0 =


∂V −

0

ϕ̇ · P · N dA +


∂V +

0

ϕ̇ · P · N dA +


I 0

ϕ̇ · b0 dA +


∂I 0

ϕ̇ · P · N dL

=


I −

0

ϕ̇−
· P−

· [−N] dA +


I +

0

ϕ̇+
· P+

· N dA +


I 0

ϕ̇ · b0 dA +


∂I 0

Div(ϕ̇ · P)+ K ϕ̇ · P · N dA,

using the identity Div(ϕ̇ · P) = Gradϕ̇ : P + ϕ̇ · Div P together with P · N = 0 due to the superficiality of the interface
yield

W 0 =


I −

0

ϕ̇−
· P−

· [−N] dA +


I +

0

ϕ̇+
· P+

· N dA +


I 0

ϕ̇ · b0 dA +


I 0

Gradϕ̇ : P + ϕ̇ · Div P dA,

replacing ˙F = Gradϕ̇ and reordering the terms

W 0 =


I 0

[[ϕ̇ · P]] · N dA +


I 0

ϕ̇ · [b0 + Div P]  
−[[P]]·N

+
˙F : P dA,

=


I 0

[[ϕ̇]] · {{P}} · N + {{ϕ̇}} · [[P]] · N − ϕ̇ · [[P]] · N +
˙F : P dA,

=


I 0

˙F : P + [[ϕ̇]] · {{P}} · N + [{{ϕ̇}} − ϕ̇] · [[P]] · N dA.
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Clearly, the working density on the interface reads

W 0 =
˙F : P + [[ϕ̇]] · {{P}} · N + [{{ϕ̇}} − ϕ̇] · [[P]] · N.

Similar to the discussion on the balance of angular momentum, if we constrain the interface motion to be the
average motion across the interface as {{ϕ}} = ϕ, the working density on the interface W 0 simplifies to

W 0 =
˙F : P + [[ϕ̇]] · {{P}} · N + [{{ϕ̇}} − ϕ̇] · [[P]] · N

{{ϕ}}=ϕ
=====⇒ W 0 =

˙F : P + [[ϕ̇]] · {{P}} · N.
(B.23)

B.3. Non-standard derivations on the interface

For the numerical implementation of interfaces within the finite element framework, certain relations and identities
are required. Clearly, we do not intend to cover all the relations needed for the computational implementation.
Nevertheless, we list some of the interface relations compared to their bulk counterparts as

∂ J

∂F
= J F−t,

∂ J

∂F
= J F−t,

∂i

∂F
= [n ⊗ n] ⊗ F−t

+ F−t
⊗ [n ⊗ n],

∂i
∂F

= 0,

∂F−1

∂F
= −F−1

⊗ F−t
+ [F−1

· F−t
] ⊗ [n ⊗ n],

∂F−1

∂F
= −F−1

⊗ F−t,

∂F−t

∂F
= −F−t

⊗ F−1
+ [n ⊗ n] ⊗ [F−1

· F−t
],
∂F−t

∂F
= −F−t

⊗ F−1.

(B.24)

The aforementioned relations are extremely helpful and the linearization procedure associated with the
Newton–Raphson scheme often involves them either explicitly or implicitly. The relations for the bulk (right) are
standard and we do not prove them. The relations on the interface (left) are non-standard and clearly not intuitively
related to their bulk counterparts. The procedure to derive the interface relations is formally similar to that for the bulk
with one distinct feature that the interface identity i is not invariant with respect to the deformation. That is

∂i
∂F

= 0 but
∂i

∂F
≠ 0 since

∂i

∂F
=
∂(i − n ⊗ n)

∂F
= −

∂(n ⊗ n)

∂F
. (B.25)

Furthermore, the inverse of the interface deformation gradient F−1 is related to the inverse of the bulk deformation
gradient F−1 via the projection F−1

= i·F−1. Therefore, the derivation procedures of various relations on the interface
repeatedly boil down to carry out the derivation of ∂n/∂F which is elaborated in what follows.

In order to derive ∂n/∂F, first we note that the normal n can be obtained through the vector product of the interface
basis g1 and g2 in the spatial configuration as

n =
g1 × g2

|g1 × g2|
with g1 = F · G1, g2 = F · G2, (B.26)

and since gα = F · Gα = F · I · Gα = F · Gα , the derivative ∂n/∂F ≡ ∂n/∂F. Considering an infinitesimal volume
element and the definition of Jacobian, we have

dv = JdV ⇒ da · dx = J dA · dX, (B.27)

in which da and dA denote the interface area elements and dx = F · dX and therefore

da · F · dX − J dA · dX = 0 ⇒ [da · F − J dA] · dX = 0

⇒ da · F = J dA ⇒ da = J dA · F−1, (B.28)

being the celebrated Nanson formula da = J F−t
· dA or da = CofF · dA on the interface. The Nanson formula can

be interpreted as a linear normal map, as opposed to the linear tangent map F, noting that dA = dA N and da = da n
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are the material and spatial area elements on the interface, respectively. Finally, we have

da n = J F−t
· [dA N] ⇒ n = J F−t

· N
dA

da
=

J

J
F−t

· N or n =
F−t

· N

|F−t · N|
, (B.29)

recalling that J = da/dA denotes the interface Jacobian.8 We proceed using Eq. (B.29)3 and the identities

∂

∂F


u
|u|


=

1
|u|


i −

u
|u|

⊗
u
|u|


·
∂u
∂F
,

∂|u|

∂F
=

u
|u|

·
∂u
∂F

∀u : arbitrary vector, (B.30)

and therefore

∂n
∂F

=
∂

∂F


F−t

· N

|F−t · N|


=

1

|F−t · N|


i −

F−t
· N

|F−t · N|  
n

⊗
F−t

· N

|F−t · N|  
n


·
∂F−t

· N
∂F

=
1

|F−t · N|
[i − n ⊗ n] ·

∂F−t
· N

∂F
,

using the definition of the interface identity in the spatial configuration i = i − n ⊗ n together with the identities
∂F−t/∂F = −F−t

⊗ F−1 or ∂F−1/∂F = −F−1
⊗ F−t,

= −
1

|F−t · N|
i ·

F−t

⊗ [F−t
· N]


= −i ·


F−t

⊗
F−t

· N

|F−t · N|  
n


= −i · [F−t

⊗ n] = − [i · F−t
]  

F−t

⊗ n = −F−t
⊗ n = −n ⊗ F−t,

in which the relation F−t
= i · F−t follows as the transpose of F−1

= F−1
· i in analogy to F = F · I. Therefore

∂n

∂F
≡
∂n
∂F

= −n ⊗ F−t. (B.31)

It is enlightening to further analyze the δn = ∂n/∂F : δF. To do so, we note the structure of the interface
deformation gradient and other relevant quantities

F = gα ⊗ G
α
, F−1

= Gα ⊗ gα, F−t
= gα ⊗ Gα, δF = δgα ⊗ G

α
, (B.32)

and therefore

δn =
∂n

∂F
: δF = −n ⊗ F−t

: δF = −n · δF · F−1
= −n · δgα ⊗ G

α
· Gβ ⊗ gβ = −[n · δgα] gα, (B.33)

in which the coefficient n · δgα is non-zero since the variation of the basis vector δgα is not necessarily tangential to
the interface. Furthermore, the vector δn is parallel to a linear combination of the contravariant basis in the spatial
configuration gα . That is, δn is indeed tangential to the interface in the spatial configuration and orthogonal to the
interface normal itself or equivalently δn · n = n · δn = 0. This result is not surprising as we expect it due to the
property n · n = 1, nevertheless, to observe it through the derivation is reassuring.

8 Using the relation n · n = 1, the interface Jacobian J can be expressed purely in terms of bulk quantities via the relation

J = J


[F−1 · F−t] : [N ⊗ N] = J


B : [N ⊗ N]

with B = F−1
· F−t being the Piola deformation tensor or the inverse of the right Cauchy–Green deformation tensor B = C−1.
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Appendix C. Proof of key identities regarding homogenization

C.1. Proof of the lemma (25)

In order to prove the lemma

⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 =
1

V 0


∂B0

ϕ ⊗ N dA,

we start from the right-hand side and add/subtract the second integral as

1
V 0


∂B0

ϕ ⊗ N dA =
1

V 0


∂B0

ϕ ⊗ N dA +
1

V 0


I −

0

ϕ ⊗ N dA −
1

V 0


I −

0

ϕ ⊗ N dA,

employing N = N on I −

0 and ϕ−
= ϕ+

− [[ϕ]] on the last integral

1
V 0


∂B0

ϕ ⊗ N dA =
1

V 0


∂B0

ϕ ⊗ N dA +
1

V 0


I −

0

ϕ ⊗ N dA

−
1

V 0


I −

0

[ϕ+
− [[ϕ]]] ⊗ N dA,

writing the first two integrals as the union of their domains via ∂B−

0 = ∂B0 ∪ I −

0 , splitting the last integral usingN|I +

0
= −N and that I 0 = I +

0 = I −

0 geometrically,

1
V 0


∂B0

ϕ ⊗ N dA =
1

V 0


∂B−

0

ϕ ⊗ N dA +
1

V 0


I 0

[[ϕ]] ⊗ N dA +
1

V 0


I +

0

ϕ ⊗ N dA,

replacing I +

0 with ∂B+

0 ,

1
V 0


∂B0

ϕ ⊗ N dA =
1

V 0


∂B−

0

ϕ ⊗ N dA +
1

V 0


I 0

[[ϕ]] ⊗ N dA +
1

V 0


∂B+

0

ϕ ⊗ N dA,

employing the gradient theorem on the first and the last term

1
V 0


∂B0

ϕ ⊗ N dA =
1

V 0


B−

0

Gradϕ dV +
1

V 0


I 0

[[ϕ]] ⊗ N dA +
1

V 0


B+

0

Gradϕ dV

=
1

V 0


B−

0

F dV +
1

V 0


I 0

[[ϕ]] ⊗ N dA +
1

V 0


B+

0

F dV

= ⟨F⟩B−

0
+

1
V 0


I 0

[[ϕ]] ⊗ N dA + ⟨F⟩B+

0

= ⟨F⟩B0 + ⟨[[ϕ]] ⊗ N⟩I 0 .

C.2. Proof of the lemma (28)

In order to prove the lemma

⟨P⟩B0 + ⟨P⟩I 0 =
1

V 0


∂B0

b0 ⊗ X dA,

we start from the right-hand side by replacing the tractionb0 with its representation in terms of Piola stress asb0 = P·N
and add/subtract the second integral as

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


∂B0

[P · N] ⊗ X dA +
1

V 0


I −

0

[P · N] ⊗ X dA −
1

V 0


I −

0

[P · N] ⊗ X dA,
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employing the balance of linear momentum on the interface (11) with N = N on I −

0 , we obtain

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


∂B0

[P · N] ⊗ X dA +
1

V 0


I −

0

[P · N] ⊗ X dA

−
1

V 0


I 0−

[Div P + P+
· N] ⊗ X dA,

writing the first two integrals as the union of their domains via ∂B−

0 = ∂B0 ∪ I −

0 , utilizing the non-standard product ⊗

between a vector and a second-order tensor as [P·N]⊗X = [X ⊗ P]·N, splitting the last integral applyingN|I +

0
= −N

and that I 0 = I +

0 = I −

0 holds geometrically,

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


∂B−

0

[X ⊗ P] · N dA −
1

V 0


I 0

Div P ⊗ X dA +
1

V 0


I 0+

[P+
· N] ⊗ X dA,

using the identity Div P ⊗ X = Div(X ⊗ P) − P · Grad X = Div(X ⊗ P) − P on the second term and replacing I +

0
with ∂B+

0 with [P · N] ⊗ X = [X ⊗ P] · N,

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


∂B−

0

[X ⊗ P] · N dA −
1

V 0


I 0

Div(X ⊗ P)− P dA +
1

V 0


∂B+

0

[X ⊗ P] · N dA,

applying the divergence theorem on the first and the last terms and splitting the second term,

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


B−

0

Div(X ⊗ P) dV −
1

V 0


I 0

Div(X ⊗ P) dA +
1

V 0


I 0

P dA

+
1

V 0


B+

0

Div(X ⊗ P) dV,

with the identity Div(X ⊗ P) = Div P ⊗ X + P · Grad X = P due to the balance of linear momentum in the bulk, on
the first and the last terms and using the interface divergence theorem (B.3) on the second term,

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


B−

0

P dV −
1

V 0


∂I 0

[X ⊗ P] · N dL

+
1

V 0


I 0

K [X ⊗ P] · N dA +
1

V 0


I 0

P dA +
1

V 0


B+

0

P dV,

thereby the second integral vanishes due to ∂I 0 = ∅ and the third integral vanishes due to the superficiality of the
interface Piola stress P · N = 0 and finally we arrive at

1
V 0


∂B0

b0 ⊗ X dA =
1

V 0


B−

0

P dV +
1

V 0


I 0

P dA +
1

V 0


B+

0

P dV

= ⟨P⟩B−

0
+ ⟨P⟩I 0 + ⟨P⟩B+

0

= ⟨P⟩B0 + ⟨P⟩I 0 .

C.3. Proof of the lemma (32)

In order to prove the lemma

1
V 0


∂B0

b0 · δϕ dA = ⟨P : δF⟩B0 + ⟨P : δF⟩I 0 + ⟨{{t}} · [[δϕ]]⟩I 0 ,
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we start from the left-hand side as
1

V 0


∂B0

b0 · δϕ dA =
1

V 0


∂B0

[δϕ · P] · N dA +
1

V 0


I −

0

[δϕ · P] · N dA −
1

V 0


I −

0

[δϕ · P] · N dA

=
1

V 0


∂B−

0

[δϕ · P] · N dA −
1

V 0


I −

0

[δϕ · P] · N dA ±
1

V 0


I +

0

[δϕ · P] · N dA

=
1

V 0


∂B−

0

[δϕ · P] · N dA +
1

V 0


I 0

[[δϕ · P]] · N dA −
1

V 0


I +

0

[δϕ · P] · N dA

=
1

V 0


∂B−

0

[δϕ · P] · N dA +
1

V 0


I 0

[[δϕ · P]] · N dA +
1

V 0


∂B+

0

[δϕ · P] · N dA

=
1

V 0


B−

0

Div(δϕ · P) dV +
1

V 0


I 0

[[[δϕ]] · {{P}} + [[δϕ]] · {{P}}] · N dA

+
1

V 0


B+

0

Div(δϕ · P) dV

=
1

V 0


B−

0

P : δF dV +
1

V 0


I 0

{{t}} · [[δϕ]] dA +
1

V 0


I 0

{{δϕ}} · [[t]] dA

+
1

V 0


B+

0

P : δF dV

using the balance of linear momentum on the interface and the assumption ϕ = {{ϕ}},

1
V 0


∂B0

b0 · δϕ dA = ⟨P : δF⟩B−

0
+ ⟨{{t}} · [[δϕ]]⟩I 0 −

1
V 0


I 0

δϕ · Div P dA + ⟨P : δF⟩B+

0

= ⟨P : δF⟩B0 + ⟨{{t}} · [[δϕ]]⟩I 0 −
1

V 0


I 0

Div(δϕ · P)− P : δF dA

= ⟨P : δF⟩B0 + ⟨{{t}} · [[δϕ]]⟩I 0 + ⟨P : δF⟩I 0 −
1

V 0


∂I 0

[δϕ · P] · N dL

+
1

V 0


I 0

K δϕ · P · N dA,

thereby the last two integrals vanish due to ∂I 0 = ∅ and the superficiality of the interface Piola stress P · N = 0 and
finally we arrive at

1
V 0


∂B0

b0 · δϕ dA = ⟨P : δF⟩B0 + ⟨{{t}} · [[δϕ]]⟩I 0 + ⟨P : δF⟩I 0 .

C.4. Proof of the extended Hill identity (33)

In order to prove the Hill identity

1
V 0


∂B0

b0 · δϕ dA −
MP : δMF =

1
V 0


∂B0

[δϕ − δMF · X] · [b0 −
MP · N] dA,

by expanding the right-hand side and manipulating it until we remain with the left-hand side as

1
V 0


∂B0

[δϕ − δMF · X] · [b0 −
MP · N] dA

=
1

V 0


∂B0

δϕ ·b0 − δϕ ·
MP · N − δMF · X ·b0 + [δMF · X] · [

MP · N] dA

=
1

V 0


∂B0

δϕ ·b0 −
1

V 0


∂B0

δϕ ·
MP · NdA −

1
V 0


∂B0

[δMF · X] ·b0dA
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+
1

V 0


∂B0

[δMF · X] · [
MP · N] dA

=
1

V 0


∂B0

b0 · δϕ −
1

V 0

MP :


∂B0

δϕ ⊗ NdA −
1

V 0
δMF :


∂B0

b0 ⊗ XdA

+
1

V 0
δMF ·

MP :


∂B0

X ⊗ N dA,

using the definition of the macro deformation gradient (27) on the second term, the definition of the macro Piola
stress (30) on the third term and the identity (24) on the last term,

1
V 0


∂B0

[δϕ − δMF · X] · [b0 −
MP · N] dA =

1
V 0


∂B0

b0 · δϕ −
MP : δMF − δMF :

MP + [δMF ·
MP] : I,

since [δMF ·
MP] : I =

MP : δMF, the last two terms vanish together and finally

1
V 0


∂B0

[δϕ − δMF · X] · [b0 −
MP · N] dA =

1
V 0


∂B0

b0 · δϕ −
MP : δMF.

Alternatively, one could start by employing the divergence theorem and recast everything in terms of bulk and
interface integrals instead of the boundary integral above. This alternative procedure renders directly the alternative
format of the Hill lemma (33b) and is far more cumbersome. The aforementioned proof is not only more elegant but
also more general since it is independent of the complexity of the micro-structure. The two formats of the Hill lemma
(33a) and (33b) are readily connected via the lemma (32) proven in Appendix C.3.

Appendix D. Detailed derivation of tangents

In this section, detailed derivations to compute the tangents of the interface elements (48) from their corresponding
residuals are given. The derivations of the tangent for the bulk (45) are standard and are omitted. The tangent stiffness
of the interface is essentially composed of four similar parts. We limit the discussion to only one of them and via the
relations below, it is straightforward to derive the remaining ones in a similar manner.

∂ϕ

∂ϕ+
=
∂{{ϕ}}

∂ϕ+
=

1
2

I,
∂ϕ

∂ϕ−
=
∂{{ϕ}}

∂ϕ−
=

1
2

I,
∂[[ϕ]]

∂ϕ+
= I,

∂[[ϕ]]

∂ϕ−
= −I, (D.1)

which follow from the definition of the jump and average operator on the interface. Thus the interface tangent expands
as

K
I J
++ =

∂R
I
+

∂ϕ J
+

=
∂

∂ϕ J
+


I 0

1
2

P · Grad N
I
+ {{t}} · Grad N

I
dA

=


I 0

∂

∂ϕ J
+


1
2

P · Grad N
I
+ {{t}} · Grad N

I


dA

=


I 0

Grad N
I
·
∂

∂ϕ J
+


1
2

P + {{t}}


dA

=


I 0

Grad N
I
·


∂

∂F


1
2

P + {{t}}


:
∂F

∂ϕ J
+


+ Grad N

I
·


∂

∂[[ϕ]]


1
2

P + {{t}}


:
∂[[ϕ]]

∂ϕ J
+


dA

=


I 0

Grad N
I
·


1
2
∂P

∂F
+
∂{{t}}

∂F


· Grad N

J
+ Grad N

I
·


1
2
∂P
∂[[ϕ]]

+
∂{{t}}
∂[[ϕ]]


N

J
dA,

in which we have used the relation

∂F

∂ϕ J
+

=
∂F

∂ϕ J ·
∂ϕ J

∂ϕ J
+

=
1
2
∂F

∂ϕ J · I =
1
2
∂

∂ϕ J (ϕ
s
⊗ Grad N

s
) = δs J I ⊗ Grad N

s
= I ⊗ Grad N

J
.
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Appendix E. Further discussions on the choice of the material model

Here, we elaborate on the choice of the specific free energy (58) for the interface. A basic model to capture the
behavior of the interface is the isotropic interface model for the in-plane response and a cohesive type model for
the orthogonal response. In order to propose a physically sound interface model, one needs to guarantee that (i) the
interface free energy is invariant with respect to rigid body motions and (ii) the interface free energy satisfies certain
(poly)convexity conditions. Following the representation theorem for isotropic functions, we choose the interface
free energy to be a function of invariants of the interface right Cauchy–Green tensor C and also the norm of the
motion jump across the interface ∥[[ϕ]]∥. Clearly, the interface right Cauchy–Green tensor C captures the in-plane
response of the interface while [[ϕ]] recovers the orthogonal response. Thus, the interface behavior shall be expressed
as ψ0(I 1, I 2, I 3) with I 1 = C : I, I 2 = Det C and I 3 = ∥[[ϕ]]∥ being the invariants of C and [[ϕ]], respectively.
An interesting consequence of isotropic interface response is that the interface stress and traction, without loss of
generality, simplify to

P :=
∂ψ0

∂F
= 2

∂ψ0

∂ I 1
F + 2

∂ψ0

∂ I 2
I 2 F−t and {{t}} :=

∂ψ0

∂[[ϕ]]
=
∂ψ0

∂ I 3
·

[[ϕ]]

∥[[ϕ]]∥
. (E.1)

Furthermore, we assume that the interface behavior can be decomposed into its tangential and normal behavior as

ψ0(F, [[ϕ]]) = ψ
∥

0(F)+ ψ⊥

0([[ϕ]]), (E.2)

which, in turn, can be recast into a function of invariants as

ψ0(I 1, I 2, I 3) = ψ
∥

0(I 1, I 2)+ ψ⊥

0(I 3). (E.3)

In order to a priori satisfy the relevant (poly)convexity conditions for the interface and to fulfill the corresponding
growth conditions on the interface, we choose the specific free energy

ψ0(I 1, I 2, I 3) =
1
2 µ


I 1 − PD − 2 ln


I 2


+

1
2 λ


1
2 [I 2 − 1] − ln


I 2


+

1
2 k I 3

2, (E.4)

in whichµ, λ and k are the interface material parameters and PD stands for the interface problem dimension. In a three-
dimensional setting, the interface is a two-dimensional manifold and in a two-dimensional setting a one-dimensional
manifold and therefore, PD = PD − 1. The free energy (E.4) is precisely the same as the interface free energy (58).
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[62] C. Miehe, J. Schotte, J. Schröder, Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains,

Comput. Mater. Sci. 16 (1999) 372–382.
[63] C. Miehe, Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on

the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Engrg. 192 (2003) 559–591.
[64] J. Yvonnet, Q.C. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains,

J. Comput. Phys. 223 (2007) 341–368.
[65] I. Temizer, P. Wriggers, Homogenization in finite thermoelasticity, J. Mech. Phys. Solids 59 (2011) 344–372.
[66] A. Javili, G. Chatzigeorgiou, P. Steinmann, Computational homogenization in magneto-mechanics, Int. J. Solids Struct. 50 (2013)

4197–4216.
[67] D.M. Kochmann, G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity, Smart Mater.

Struct. 22 (2013) 084004.
[68] A. Javili, S. Saeb, P. Steinmann, Aspects of implementing constant traction boundary conditions in computational homogenization via

semi-Dirichlet boundary conditions, Comput. Mech. http://dx.doi.org/10.1007/s00466-016-1333-8.
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