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Abstract: As scarce environmental resources necessarily put a constraint on population growth, we use
more realistic population growth dynamics which contemplates a feedback mechanism between population
growth rate and resource availability. We examine the local stability properties in overlapping generations
resource economies which takes this feedback mechanism into account. The results indicate that Hopf bifur-
cation may arise without requiring logistic regeneration or unconventional constraints on parameter values,
In particular, Hopf bifurcation is encountered under convex-concave dependence of catrying capacity on the
resource avatlability.
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1 Introduction

In response to a feedback mechanism between population growth and carrying capacity of the environment,
scarce environmental resources have been advocated to put a constraint on population growth (Smith 1974).
Indeed, Smith (1974) postulates that population growth should possess the following properties for a mote
realistic growth model: “1) when population is small in proportion to environmental carrying capacity, then it
grows at a positive constant rate, 2) when population is large in proportion to environmental carrying capac-
ity, the resources become relatively more scarce and as result this must affect the population growth rate
negatively” (see Accinelli and Brida 2005; Brianzoni, Mammana, and Michetti 2007, 2).

Motivated by Smith’s idea, we analyze the dynamics of an overlapping generations economy that
contemplates a feedback mechanism between population growth rate and resource availability. We adopt
a Beverton Holt population growth function (see Beverton and Holt 1957) which is a discrete time version
of the logistic population growth function (for the logistic population growth function see among others,
Schtickzelle and Verhulst 1981; Faria 2004; Accinelli and Brida 2005; for a discrete time Romer model, see
Brianzoni, Mammana, and Michettt 2007). However, we modify Beverton Holt population growth function in
which the carrying capacity is a convex-concave function of the available resource stock, As carrying capacity
of nature are nor fixed neither static (Arrow et al. 1995), we consider that the carrying capacity increases with
the avallable resource stock at an increasing rate at first and at a decreasing rate afterwards. This is simply
more realistic because population growth rate responds to the changes in the available resource stock and
population is bounded from above, Through this feedback mechanism between population and resource
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availability, we show that the introduction of endogenous population growth rate implies that Hopf bifurca-
tion may emerge in an overlapping generations resource economy.

Nonlinear dynamics (such as multiplicity of the steady states or Hopf bifurcation) have been obtained
in ovetlapping generations models with resources (see among others Koskela, Ollikainen, and Puhakka
2008; Antoci and Sodini 2009). The dynamics in these studies mainly rest on the assumptions of logistic
regeneration function or some assumptions on the intertemporal elasticity of substitution,? Under logistic
regeneration function of resources, it has been shown that further assumptions on the parameters of utility
and production function bring dynamics such as local indeterminacy or bifurcations. In particular, Koskela,
Ollikainen, and Puhakka (2008) examine whether renewable resource based overlapping generations econo-
mies may have different types of dynamics other than saddles, They demonstrate that flip bifurcation may
arise under inefficient equilibrium. They numerically assign the value one to the intertemporal elasticity
of substitution in consumption to obtain a subcritical flip bifurcation. Our setting allows us to obtain Hopf
bifurcation under the convex-concave dependence of carrying capacity on the resource availability without
referring to logistic regeneration, shocks or constraints on parameter values, Thus, the novel feature of our
study is to reveal Hopf bifurcation by incorporating endogenous population growth rate & la Smith (1974).
In this regard, our study complements Koskela, Ollikainen, and Puhakka (2008), Seegmuller and Verchére
(2007) (overlapping generations economy with environment and endogenous Iabor supply) and Antoci and
Sodini (2009) (an overlapping generations econoiny with negative environmental externalities) that provide
additional channels for interesting dynamics in overlapping generations framework,

The paper is structured as follows. The model is introduced in the following section. The equilibrium
dynamics and the local stability analysis are provided in Section 3. Section 4 concludes.

2 The model

We consider a two period overlapping generations model with infinite horizon, We differ from the standard
framework in two respects.? Firstly, we assume that the renewable resources are essential to production,
Second, under the presence of limited resources, we allow for the growth rate of the population to depend on
the per capita resource availability,

At each period t, a generation of agents appears and lives for two periods, young and old. The population
in period ¢, consists of N, young and N, , old individuals. We assume that the rate of population growth n,, is
related with the total available resource stock E,, and the population growth rate n:

Nm ={1+nl )Nr ?
where
E

— [
n,,=gle, n)n, and e'“N .
!

We consider a Beverton-Holt population growth rate function (see Beverton and Holt 1957) in which the
carrying capacity of the environment depends on the available per capita resource, e,, stock in the following
mannetr:

1 Hopf bifurcation is economically important as it provides a powerful and easy tool to detect limit cycles and justify the emer-
gence of cycles endogenously (for further details, see Benthabib and Farmer 1999; Kind 1999).

2 Under linear regeneration of renewable resources, the overwhelming majority of standard resource models in OLG framework
(where population is constant or growing at a consant rate, see Kemp and Van Long 1979; Farmer 2000; Valente 2008) reveal that
the dynamics converge to a single steady state or to a balanced growth path with saddle path stability (see Mourmouras 1991).

3 For the standard framework, see de ka Croix and Michel (2002).
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gle,n ):w_rh(er)
e h(e )+(r-1)n, !

where h(e): R*—R* represents carrying capacity of the environment and r>1 denotes inherent growth rate (this
rate being determined by life cycle and demographic properties such as birth rates, etc., see among others,
Brianzoni, Mammana, and Michetti 2007), We conjecture that for low values of the resource stock the carry-
ing capacity of the environment increases with an increasing rate while for high levels of the resource stock
at an increasing rate at first and at a decreasing rate afterwards with the following convex-concave function
(Capasso, Engbers, and Torre 2012):

hie)= 1))

F:}
e
re?’

1471,

with 7,>0, being population scale factor, 7,, p>0 being papulation curvature parameters.®

The resource can act as both stares of value and inputs to the production process. The economny is initially
endowed with a positive amount of the natural resource E, which belongs to the first generation of old agents.
We assume that at the beginning of each period ¢, the old agents (generation ¢-1) own the stack of the natural
resource, E,. Incurring no extraction costs (see Dasgupta and Heal 1979), old agents decide on how much of
this resource will be extracted for production X and how much would be sold to the young {generation {) as
assets A (=E~X). From period ¢ to £+1, the assets bought by the young generation regenerate at a rate [1=15
Therefore, the Iaw of motion of the resource stock writes as follows:

Em =HA{’
a,=e—X;
(1+n,)e,,=Tl(e,~x,),
where quantities of resource assets and extracted resources per young individual are denoted by,
e, =—fT‘, a, =iq£ and x;—j\%‘-, respectively.

Eéch ageﬁt is endowéd with one unit of labor when she is young and supplies it to firms inelastically.
Young households receive wage w,, which is allocated between consumption of the good produced by the rep-
resentative firm and the purchase of the ownership rights for the natural resource, When old, they consume
their entire income generated by selling their stock of natural resources X, to the firms and their assets A |
to the young at prices P, and Q, , respectively. We assume that the life-time well-being of the representa-
tive individual is measured by the logarithmic function over young and old periods consumption, i.e. U(c,
dJ=ulc)+pu(d,,), where fe (0, 1) is the subjective discount factor. Accordingly, the representative agent born
in period ¢, maximizes his utility with respect to the young and old periods’ consumption, taking wages and
the price of the natural resource as given.

f :1_1) determines the inflection. point at which carrying capacity k(e) function switches from convexity to
r,lp

concavity, or vice versa (this point is simply the one through which the second derivative changes sign), Also note that for the

4 Note that e’=

parameter combination (z,, ), els on the convex portion of the function if it satisfies r, <( gl and e is on the concave portion
p

+1)e”’

p-t

of the function if it satisfies r,>( Do The second derivative of h(e) with respect to e is
prlle

d*hie) _rpe” lp—1-re”{p+i)]
e (47,07

5 Note that if IT=1, the resource tums out te be non-renewable.
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max Inc+gnd,,

oyt
subject to
¢, +Qa=w, (2}
d,, =P, (+n)x, +Q_ (+n)a,, (3)
(1+nJe, =1la,, (4
a,=e,—x,
€20, d, 20, )

t+1

e, 20, E >0, given.

+1-

The first order conditions for an interior solution of this problem is as follows:

Aoy 1p Qe
E;l:H-éw’—, (6)
RH = Qm * (7)

Firms are owned by the old households and produce an homogenous consumption good under petfect
competition, At each period, a single final good Y, is produced in the economy by means of labor L, and the
natural resource X, according to the following technology:

Y=X"L™, O<a<l,
Under the perfectly competitive environment, the representative firm producing at period ¢ maximizes

its profit by choosing the amount of iabor L, and the resource input X, that will be utilized in the production
process. At an interior solution of the firm’s optimization problem, where all variables are expressed in per

capita terms (y;%}, profit maximization implies:
[
(-aly,=w,, 8
ay,=Px,. ©)

Intertemporal equilibrium requires the clearing of the resource market, the clearing of the labor market
and the clearing of the goods market for all ¢:

(1+n,)e,, =T(e,~x ), (10)
L=N, (-
y,=¢,+d,(+n, )" (12)

3 Equilibrium dynamics

The intertemporal equilibrium dynamics can be reduced to a three—dimensional linear system in terms of the
law of motions of e, x, and n,,
From equations (2)~(8) and (12), we obtain that

w, =(1—a)yl (13)

Cl=

(t+f) Q+p)°
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d =(1+n,)(a+ﬁ)

—ty i4
1 {1+ﬁ) yrﬂ ( )
Plugging equations (7), (9), (13) and (14) into (6), we obtain the law of motion of the resource stock:
_ IA(l—e)
™ (1+n)e+f) e (15)
In addition, we have the dynamics of the natural rescurce stock and the population:

IIx Ile

o t t
G (+n) (+n)’ 16)
n..=&(e, n . a7)

Thus, the dynamics of the model economy is driven by (15), (16} and (17).
Lemma 1 (Steady State Equations) The steady states are characterized by the following equations:
1B(1-a) ,
L _11=0, 18
) x((1+n)(a+ﬁ) 8
so that, x=0 or M—ﬂ,
(1+n)(a+8)
11 II
i o= x, 1

((1+n) Je RIS (19
n{g(e, n)-1)=0, (20)

s0 that, n= 0 or gle, n) =1.

The Jacobian that governs this system of equations at the corresponding steady states is as follows:

TB(1-e) _I(-a)  x
{1+r)(a+8) (a+f) (+n)’
by I H(e—x)
(1+n)  (1+n) (1+n)?

0 gn g.n+g

{x.e.)

Lemma 2 (Locally Unique Steady States) Among the steady states characterized by equations (18), (19) and
(20), the following are the ones that satisfy local uniqueness:

1. Zero Steady State with Zero Population Growth with x=e=n=0;

2. Zero Steady State with Non-zero Population Growth with x=e=0, g(0, n)=1 and g(0, 0)+1;

II
3, Non-zero Steady State with Zero Extraction with x=0, 7——=1, and g(e, n)=1;

(1+n)
Tp(l-a) I o
Qe f) " [(l+n) )e”mn)x’ and

4. Non-zero Steady State with Non-zero Extraction with
gle, m=1.
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Zero Steady State with Zero Population Growth (i.e. first steady state) and Zero Steady State with Nonzero
Population Growth (i.e. second steady state) exhibit monotone dynamics since the associated eigenvalues are
all positive and real. Non-zero steady states constitute a more Interesting case than that of the zero steady
states. However, those steady states exhibit nonlinear dynamics under plausible parameters. In what follows
we will concentrate on the emerging of Hopf cycles around these steady states.

The analysis of Hopf bifurcation provides a powerful and easy tool to detect limit cycles that discard
tedious catculations. Hopf cycles appear when a fixed point loses or gains stability due to a change in a
parameter and meanwhile a cycle either emerges from or collapses into the fixed point, The dynamic system
can elther have a stable fixed point surrounded by an unstable cycle; or a stable cycle loses its stability and a
stable cycle appears as the parameter(s) approach(es) to a critical value (see Asea and Zak 1999; Yiiksel 2011).
Both cases can be economically significant (for further details see Kind 1999).

3.1 Hopf bifurcation at the non-zero steady state with zero extraction

Non-zero Steady State with zero Extraction exhibits Hopf bifurcation for specific patameter combinations and
to prove the result, we need the following lemma.

Lemma 3 (Hopf Conditions for 2x2 discrete dynamic system) Let J be a 2x2 Jacobian matrix associated with
the 2x2 discrete dynamic system and T and D be the trace and the determinant, respectively. Then, Hopf bifurca-
tion occurs when

D=1,
—2<T<2

Proof. See Antoci and Sodini (2009, 1443). n

ri{e,)

— with r>1
h(e)+(r-1n, Wi >

Proposition 1 Consider the following modified Beverton-Holt specification, gle,, n)=

r.e” . .
and a convex-concave carrying capacity "(E}T'LT with p, 7,, 7,>0. If there exists a parameter combination
{IL 1, p, 7, 7,) such that e

h{e)e=1+n,
TE>1,

then the Non-zero Steady State with Zero Extraction,

x=0, n=I1-1, and n=hle),

undergoes a Hopf bifurcation,

Proof. The Jacobian associated with this steady state is

Bli-a)
{c+5) 0 0
11 e

e ] = .
(1+n) (1+n)
0 gn gntl

The associated characteristic equation,
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pll-a) e ]

Lo} | (A-1)(A—-g i~ D+ ——=ng, |=0,

) R

reveals that one of the eigenvalues is Alm‘?él;;). Note that 4,<1. Then, if the remaining second order

polynomial has complex roots with unit magnitude, we can conclude that the steady state exhibits Hopf
bifurcation (see Wen et al. 2002). Consider, the 2x2 matrix associated the quadratic polynomial,

e

T |. (21)
ng, gmntl

Denote
T=2+gn,
D=1+g n+—mmng,,

e
{1+n)

as the trace and the determinant of matrix (21), respectively, Rewriting the Hopf conditions (see Lemma 3),
we have

e

0O< ng =-g n<d, 22
(1+n) 8= 5 22
From the steady state condition {20}, we know that g(e, n)=1. Since w——f&ﬂ and r>1, we have
hie)+(r-Dn
h(e)=n. (23)

From (1), (23) and the fact that i'{e)=1+n, the steady state can be recast as,
x=0,
n=I1-1>0,
8"

=11
l+7,e®

Now, we want to show-that this steady state satisfies the Hopf conditions provided in (22). Note that,

g = i {e)(r-1n

< [h(e)+(r--Dn}’
_ —rhie)(r-1)

B e+

Furthermore, note that,

mng o= n—wrw
and we need,
0<r;1<1<4.
r
Note that since r>1, 0<r_;1<4 is already satisfied and casts no restriction on the parameters and especially

on ritself.
Thus, the Non-zero Steady State with Zero Extraction exhibits Hopf bifurcation. |
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We further provide an exemplary set of parameters that yields Hopf bifurcation.

Example 1 Consider the following benchmark parametrization,
p=3,7,=1,1,=0.05, a=0.33, $=0.98,
and further assume that

11,,=1.5203.
Then, the steady state

x=0, n=I1-1=0.5203, and e=h"(n)=0.8114,

undergoes Hopf bifurcation for every r>1.

The above example clearly shows that there exists Hopf bifurcation for ptausible parameters. However, to
fully comprehend the relationship of the parameters which causes Hopf bifurcation, we further our analysis
by constructing a Hopf boundary.

For any r>1, trace of the Jacobian satisfies,

_2<1<T=2-T"Lea,
r

Thus, by Lemma 3, Hopf condition reduces to D=1, Given the steady state equations, the determinant of the
Jacobian in terms of p and I1 is

R

Given that r>1, (p, IT) couples that maintain the condition that D(p, 11)=1 imply that

—_ tln
Prest = (I1-1)(z,~(T1-Dz,)"

(24)

Equation (24) gives the Hopf boundary. Figure 1 depicts the complex eigenvalues boundary (dashed curve)
and Hopf boundary (solid curve), In detail, for the (1, p) couples that lie in the upper contour set of the
dashed curve, the resulting eigenvalues are complex. For the (I1, p) couples that lie in the upper [lower}
contour set of the solid curve, the resulting (complex) eigenvalues are outside {inside] the unit circle [L.e. their
magnitide is higher (smaller) than 1], In other words, when (T1, p) falls into the upper contour set of the Hopf
houndary, one has two unstable (complex) and one stable (real) eigenvalue (saddle path solution). When (TT,
p) falls between the Hopf boundary and complex eigenvalues boundary, one has two stable (complex} and
one stable (real) eigenvalue (indeterminacy). For the (IT, p} couples on the Hopf boundary, an infinitesimal
change in the parameters forces complex eigenvalues cross the unit circle (loss or gain of stability) Thus, as
the parameters {p, IT) vary, we observe Hopf bifurcation.

In Figure 2, we present the trace-determinant space for a second order characteristic equation.” Note that
trace only depends on r, thus as parameters (p, IT) vary, trace stays constant. This can be clearly seen in the

6 Note that FI>1 by definition and M<1+5 to ensure a positive vatue forp.

T
7 The trace-determinant space isa standa}d graphical procedure to evaluate the roots of a second order characteristic equation
(For further details see among others, Grandmoent and Laroque 1990, 83; Azariadis 1993, 62-67, 93; Grandmont, Pintus, and de
Vilder 1998). The idea is tractable and simple: Evaluated at the steady state, if the trace-determinant of the Jacobian falls above
the parabola, the resulting eigenvalues are complex; and inside the triangle, they are fully stable. To identify bifurcations, it is
sufficient to trace the trace-determinant couple and check whether the couple crosses certain borders, Hopf bifurcation boundary
is identified as the portion of the horizontal det /=1 line that stays above the parabola.




DE GRUYTER M.X. Yiiksel et al.: Hopf bifurcation In an overlapping generations reseurce ecanomy == 9

A 20 B 4p
I
i8 3.5_:
16 I
3t
14} |
I
12} 251
!
a 10 Q 2.||
!
8 5}
ok \
|
L I
4 \
~
at 05¢ S
0 o 1.5 2

Figure 1: (A) TI-p couples at which the complex eigenvalues (dashed) and Hopf bifurcation (solid) occur (z,=1, r,=0.05) {(B)A
closer look [rectangle In part(a)]. IT=1.5203, fixed. Solid line traces the p values starting from 0.2. At p=0.375 (at ¥}, complex
eigenvalues emerge, Atp=3 (at +), complex eigenvalues cross the Hopf boundary.
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Figure 2: (A} Trace-determinant space for a second order characteristic equation. Inside the triangle, fully stable, above the
parabola complex elgenvalues. Trace is solely determined by rand is between 1 and 2 (dashed lines). [1=1.5203, fixed. Vertical
solid Une traces the tr-det values with respect to pe (0.2, 15}, (8) A closer look [rectangle in part{a)]. At p=0.375 (at x), complex
eigenvalues emerge. At p=3 (at <}, complex eigenvalues cross the Hopf boundary.

line in Figure 2 which is obtained when r=2, without loss of generality. In Figure 2, [1=1.5203 is kept constant
and as p varies, one can keep track of the determinant. For the small values of p, the trace-determinant
couple stays in the stable region (triangle) where the eigenvalues are real. As p increases and exceeds,

1{r-1 1-1]'-[
11 ~0.375,
pcample.t 4[ ¥ )(H_l)(tl-«(nml)rz)
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trace-determinant couple crosses the complex eigenvalue boundary. Note that this complex eigenvalue
boundary is also given by the dashed-curve in Figure 1. As p further increases, trace-determinant couple
crosses the Hopf boundary, i.e.

rH 3.
Proat =(1-1)(r,~(T1-1)z,)

The similar behaviour can be traced on the line in Figure 1. Note also that, these values are compatible
with the numerical example,

The key mechanism under which Hopf bifurcation arises in our setup is the endogenous nonlinear
interaction between population growth and resource availability. Intuitively, the more abundant the
resource is, larger the population growth rate will be, which will, in turn, reduce the amount of resources
available in the economy further reducing the population growth rate. In other words, limit cycle behav-
jour is observed because the economy fails to smooth out the counter cyclical effects of population change
and resource regeneration. Note that under the henchmark parametrization, the steady state around
which we encounter Hopf bifurcation is on the convex portion of the carrying capacity function, h(e; 7, p).
However, it is also possible to obtain Hopf bifurcation around a steady state which lies on the concave
portion of h{e; , p) yet that would require implausibly high parameter values, especially for the regenera-
tion rate of resources, IT.

3.2 Hopf bifurcation at the non-zero steady state with non-zero extraction

Non-zero Steady State with Non-zero Extraction also exhibits Hopf Bifurcation. For this steady state, the Jaco-
bian reduces into

1 X
(1+n)

I 2 11{e—x)
I+  (+n) (1477

0 i_—1h’(e) !
r r

(25)

The form of the Jacobian allows us to deduce the eigenvalues without resorting to the complicated root cal-
culations of third order polynomials, i.e, the characteristic equation in its raw form. Proposition 2 lays out
the results.

Proposition 2 One eigenvalue of (25) is

T
i‘"‘(l-l_—n)'>1,

and the other eigenvalues are the solutions to the éuadratic equation

(- ;_)(l_ 1)4_"__19}‘_@:0_ (26)
r r I4n
1
Progof. Faor notational simplicity, assume y=——, —, A= ﬁmh e), and B—— Note that the stead
f. plicity, vl (1+n) (e) y
state equation between e and x can also be recast as 5= . When allis substituted into the Jacobian matrix

(25), we have
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1 0 — X
-y —yple-x}|. (27)
0 A B

The associated characteristic polynomial is

A=A (p~A)B-1)+gpAle—x}+pAx=

e —
(1——l)(W—l)(B—i)ﬁapA(e—x}[(e_x)..,l:|m

(p=-M0-1)(B- D+ xpAle~x)|=0.

Thus, one eigenvalue of {25) is

and the other eigenvalues are the solutions to the quadratic equation,
0=(1-A)(B-1)+:1pAle~x)

=(1—z)(1—1)+’—‘1——“3"'(e).
Y r 1l+n

Define the discriminant of the second order polynomial (26) as

A=(1+1)2_4[1+L-_1M).
r r

r 1+n

Proposition 3 Suppose 4, , are the solutions to the quadratic equation (26). Then,

(l, I)CER, if A»0
r
r+1

C,\R with Rel="-, if 4<0

A

23€

»0. The quadratic equation (26) is only a vertical shift of the pol-

Proof. Note that r;l eliffe) r-1n _p

+n  r linltr,e”

ynomial (1_;{)(1“_,1) in the positive direction. Thus, whenever there are real roots, the roots should satisfy
r

A, e[l, 1) which are the x-intercepts of (1_,1)(,1“,1]‘ And whenever the roots are complex, the real part should
Ny r

coincide with the abscissa of the peak point of (1—-).)[%»%] which only depends on the coefficients of the linear

and quadratic terms of the quadratic polynamial. Obviously, roots being pure real or complex is determined by
the discriminant condition for the quadratic equation (26). ]

Intuitively, the second and the third eigenvalues are always on the positive complex-half plane and when
they are real, their magnitudes are less than 1. In this case, the dynamic system is governed by one unstable
and two stable real eigenvalues. When the eigenvalues are complex, they can cross the unit circle depending
on the parameter values, yet their real parts only depend on the value of .

We will quickly give an example to demonstrate the movement of the eigenvalues with respect to a change
in one parameter, say r,
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Example 2 Consider the benchmark parametrization (see Example 1),
p=3,7,=1, 1,=0.05, ¢=0.33, and B=0.98.
We consider two different values for I1, namely 11, =2 and 11, ,=2.5. Since the steady states can be determined
by these parameters without fixing r, we have
H!ow H-’u’gh
n, 0.00244275 0.25305344
e, 0.13468232 0.63520527

x,, 0.06717666 0.31682681

In Figure 3, for each value of re (1, 5}, the distribution of eigenvalues is plotted for TI=IT, . Note that one
elgenvalue Is constant with respect to r, namely

I 2.5

A= = =1.99512640877247,
U (1+n) 1+0.25305344

The other eigenvalues come in complex conjugate pairs with Re ,1.=%+2i. Asrisclose to1, there exists a complex
2r

conjugate pair close fo the unif circle and as r diverges from 1, the real part decreases (see Figure 3). For this
high level of regeneration rate I1,,,, all the eigenvalues are outside the unit circle which results in a completely
unstable system.

In Figure 4, for each value of re(1, 5), eigenvalues are plotted for TI=IT, . The constant eigenvalue® is left
aut for a better view, Now, the remaining eigenvalues totally stay inside the unit circle as r changes between 1,01
and 5. In this case, as v is close to 1, theré exists a complex conjugate pair close to the unit circle boundary and
as r increases, first the complex conjugate pair dissolve into two real roots and then the two real eigenvalues
diverge from each other, However, for every level of v, these two (stable) eigenvalues along with the third (unsta-
ble) one lead to a saddle path solution.

In the following example, we now take IT as the hifurcation parameter and numerically identify the Hopf
bifurcation.

0.4

0.2

1.2 1.4 1.8 1.8 2 2.2
Red

Figure 3; Eigenvalues distribution when [1=I1, asre(1, 5). The black curve is the boundary of the unit circle.

8 Also note that the value of this constant eigenvalue only depends on parameters « and g. Therefore the value when IT=IT__ is

equal to that of the case when [1=11, ..
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Figure & Eigenvalues distribution when [J=IT, as re(1, 5). (The th-Ird constant eigenvalie omitted). The black curve is the
bourdary of the unit circle,

Example 3 Recall the benchmark parametrization, i.e.
p=3,7,=1,7,=0.05, «=0.33, and §=0.98.

Further set r=2. Tl is a free parameter, Note that now the steady state value varies depending on the values of T1.
In Figure 5, for each value of Te (2, 4), eigenvalues are plotted” for r=2. The constant eigenvalue has the same
value (see footnote 8). For the first two iterations, real stable eigenvalues are observed. As T1 further increases,
eigenvalues become complex conjugates and then, crosses the unit circle. Note that, since r is constant, the real
part of the complex eigenvalues is fixed, The figure clearly implicates that there exists a bifurcation value 1T, ,
such that a complex conjugate pair of eigenvalues with unit magnitude exists, Such a value designates the Hopf
bifurcation. Numericaily simulated, when

0.8 E

0.4

c.2r

Imi
o

02 04 08 08 1 1.2 14 186 18 2

Figure 5: Eigenvalues distribution for ITe{(2, 4). The black curve Is the boundary of the unit clrcle.

a+f

sll—a)

9 Tix ~1.99513 so that the steady state value of nis nonnegative,
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I, =2.15102282012,

the eigenvalues are close to the unit circle with an error of 9.929834x107 in absolufe value®

Koskela, Ollikainen, and Puhakka (2002, 2008) also examine the dynamic properties of an overlapping
generation resource economy and ask whether the fundamentals can be a source of various types of observed
cycles and complex dynamics. They demonstrate the existence of a flip bifurcation for the case of an ineffi-
cient equilibrium.” However, they assume a logistic resource growth function and require an implausibly low
values of the share of the resource in total output. Our setting allows us to obtain Hopf bifurcation without
referring to logistic regeneration, shocks or constraints on parameter values and advocates the endogenous
nonlinear interaction between population growth and resource availability.

4 Conclusion

In this paper, we have considered a nonlinear feedback mechanism between resource availability and popu-
lation growth rate Through such a feedback mechanism we have shown that an overlapping generations
resource economy can exhibit Hopf bifurcations, It is worthwhile to point out that the linear regeneration
specification in our model provokes the guestion of how the stability of the system would change under a
non-linear regeneration function. Allowing the renewable resource to regenerate non-linearly (e.g. logistic)
could bring even more complex dynamics, ’ '
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