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generated has to fit to the surface, without distorting the form; meanwhile the panels have to preserve their pla-
narity in order to prevent any brittle failure due to warping. This study proposes a unique approach to quadrilat-
eral discretization by incorporating the form, material capacities and fabrication challenges in order to obtain a
structure that can be realized and constructed.

In this paper, quadrilateral discretization of freeform surfaces is studied with the focus of material properties. The
possibility of utilizing quadrilateral meshes with limited non-planarity is explored. The capacity of materials
against warping is calculated, by structural experiments and simulations to obtain the limiting values that are in-
tegrated into design as tolerance of panels to non-planarity. Consequently, the amount of non-planarity becomes
a parameter that needs to be considered during the generation of the quadrilateral mesh in order to generate an
optimum surface discretization.
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1. Introduction

Freeform surface structures can be distinguished from other types of
structures by their unique, amorphous shapes, smooth continuous lines,
and complex geometries [1]. In contrast to traditional structural design
of horizontal beams and vertical columns, freeform surface structures
do not have a separate structural system; instead the surface is designed
to function as the main structural system. Therefore, the integration of
the structural system with the amorphous form causes complexities,
not only in the design process, but also in the realization and construc-
tion of the structure. These problems of design and fabrication of
freeform surfaces have always been an important issue from the early
examples of freeform surfaces in 1920s till today's more contemporary
examples.

Heinz Isler (1926-2009), a pioneering name on lightweight concrete
shells, used physical models to generate efficient forms; shells that car-
ried the required load with the minimum possible material [2]. As con-
crete could be poured into the desired form; Isler's shells could be
fabricated and constructed. However, the challenge was to obtain form-
works with the complex geometry. Moreover, his method was feasible
to construct in concrete but did not work with other materials.

Due to these limitations, discrete systems had been considered,
which provided the application of other materials than concrete. A
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common application has been the grid shell, where the surface is
made up of discrete structural members, mostly orthogonal to each
other, with panels fitting in between them. Grid shells have been
considered in the design of freeform surfaces in order to overcome the
fabrication problems [3]. These discrete surfaces have not only offered
advantages for fabrication and construction, but have also provided
spacious designs due to the use of transparent materials for the panels
[3-5]. The main structural framing is usually selected to be steel, where-
as glass has been preferred for the panels because of both its strength
and transparency. Because of the brittle property of glass, panels have
mostly been used as planar sheets. In some rare cases, glass was utilized
as bent or curved sheet; i.e. spherical dome of the swimming arena in
Neckarsulm (Fig. 1a), where the glass sheets were manufactured with
curvature [6] or in the case of the German Historical Museum roof,
where the glass plates were manufactured flat and then bent and
warped during the assembly to obtain the continuous smooth roof sys-
tem required [7] (Fig. 1b).

Grid shells have mostly been applied to surfaces with regular geom-
etries (translational, rotational, etc.). However, when the form is organ-
ic, not generated by simple geometric rules (not a derivative of a
translational, rotational surfaces), the panelization (discretization) pro-
cess becomes a challenge. The panels obtained by the discretization
have problems either with size, form or structural strength. Different
patterns (triangulations, quadrilaterals, or hexagons) of discretization
have been applied on freeform surfaces, resulting in meshes with differ-
ent advantages and limitations.
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Fig. 1. (a) Swimming Arena in Neckarsulm [7]. (b) German Historical Museum [7].

Triangulations have been the most common pattern in order to
discretize freeform surfaces not only because of their stable geometry,
but also aesthetically satisfying organization and the way they generate
planar surfaces [8]. However, automation of the construction process is
difficult due to the non-standardization of the nodes in triangulation.
Each node needs to be custom-designed as six members per node caus-
ing a complex joint assembly.

To prevent the problems encountered with triangulation, quadrilat-
eral panels are considered where 4 members join at one node in con-
trast to 6 members in triangulation. With less number of members
connecting at each node, design and construction of these joints become
less complicated. In addition, quadrilateral meshes generate a less dense
network of members that provides a more spacious feeling underneath.
However, the major problem for quadrilateral discretization is that not
every quadrilateral panel is planar. Therefore, unless all the panels are
fully planar, there is the problem of sudden fracture of brittle materials,
such as glass that is commonly used for discrete surface panelization.
That is why quadrilateral discretization focuses on the planarity of
panels while generating the mesh.

Various methods for the generation of planar quadrilateral meshes
have been studied. Some propose triangulation on a surface as the initial
step where they can be re-meshed to generate quadrilaterals with pla-
nar faces [9-11]. Other studies use methods and algorithms that gener-
ate quadrilaterals on the surface directly [9,12,13]. Alliez et al. [9] had a
geometric approach to this problem where they proposed an algorithm
based on lines of principal curvatures,! which intersect each other at
right angles and generate approximately planar panels by the intersec-
tion points of these curvature lines [8]. Their study projects a great po-
tential for the freeform surfaces to be mapped with these principal
curvatures and obtaining planar quadrilateral panels. However, when
the method is analysed considering its practical applications, it is ob-
served that panels generated by the principal curvature lines do not
have constant or similar mesh size, especially when they are applied
on freeform surfaces, which have dramatic changes of surface curvature,
resulting a non-homogeneous mesh distribution (Fig. 2a) [14]. These
uneven mesh sizes cause problems at the fabrication process. Panels
that are close to umbilic points? or high curvature points are so small
that they can neither be materialized nor physically constructed (Fig.
2b). At the points where principal curvatures do not solve the singular-
ities, non-quadrilateral panels need to be used in order to obtain the
continuity of the generated mesh.

! Principal Curvature Lines: At any specific point on a surface, infinite number of plains
that are normal to the surface at that point can be drawn, corresponding to a specific nor-
mal curve that is a part of a circle that defines the surface curvature at that point. Among
these infinite sections and curvature lines, there occur a unique set of minimum and max-
imum curvature lines at each point that are called as principal curvature lines. They are
represented by k; and k, respectively where k = 1/radius.

2 Umbilic Point (Umbilics): Points on a surface where there are no unique maximum or
minimum, but infinite principal curvature lines. The surface is either flat or spherical at
that point.

Another method to generate quadrilateral meshing on freeform sur-
faces has been an optimization algorithm, Evolute Pro [15], that has con-
straints, such as planarity, surface closeness, fairness of curvature, etc.
where many of these constraints can be applied simultaneously with
the appropriate weights assigned to them. Panels are generated either
as triangulated or quadrilateral. The advantage of this tool is its ability
to optimize a homogeneously distributed quadrilateral mesh on the sur-
faces considering both the planarity of the panels and their best fit to the
original surface. However, the size and/or number of the generated
panels are determined automatically. Therefore, the designer does not
have full control over the final mesh design. Moreover, with the increase
of complexity of the surface, the absolute planarity is not achieved
completely for all panels.

These aforementioned studies demonstrate that obtaining freeform
surface discretization with planar quadrilaterals has various challenges;
either problems to obtain absolute planarity of the panels, or to control
the distribution of panels (both size and number) through these sur-
faces. This study focuses on the planarity issue of these panels and ques-
tions the limits of planarity in order to help the meshing process. In
recent works, panels have been designed with the obligation of being
planar and some precision is accepted for the planarity measurements
with no consideration of the material properties [16-18]. However,
the tolerance of each material to non-planarity is different and this tol-
erance can be used in the design process to obtain an optimized design.

2. The methodology

This study demonstrates the utilization of non-planar quadrilateral
panels for the discretization of free form surfaces. The first step is to de-
termine the tolerance of materials for non-planarity by structural anal-
yses. These analyses are conducted through the steps of choosing a
designated material, building the appropriate set-up, and to conduct
the experiments. Then, a parametric relationship is derived between
the panel sizes and the deformation limits, in order to calculate the lim-
iting condition for any panel size. Finally, the generated quadrilateral
mesh is analysed, and the curvature occurring at the panels is compared
with the limits of the selected material. If the selected material is not ca-
pable of resisting to that curvature, then either the material can be
changed or the surface can be re-discretized.

This study particularly aims to demonstrate the complete methodol-
ogy more than to conduct a structural analysis study. The focus is, there-
fore, more on the process and the idea of utilizing non-planarity into
design than the detailed study of structural analyses. Results obtained
in this study are case-specific to demonstrate the application of the
methodology that can be used in further studies as a foundation. For
this study, analyses are conducted with one selected material and the
experiment set-up is built for this case in the lab.

2.1. The material

In this study, glass is selected as the designated material experiment
material; because glass has been a common material for freeform
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Fig. 2. (a) Principal curvature line distribution. (b) Umbilic points.

surface panelization. In addition to its strength, glass provides a good
spatial quality to continuous surfaces due to its transparency. However,
it should also not be forgotten that glass is a brittle material; therefore
warping is a critical issue for this material.

Glass is a strong material in compression, but weak in tension
[19]. Due to its brittle properties, glass fails suddenly with little
warning. In order to enhance glass for structural reasons, heat treat-
ment is applied. By heating the glass to high temperatures and
cooling it rapidly, the surface cools quicker than the inner part and
generates a surface stress different to the inner stress, which causes
pre-compression of the glass [19]. The pre-compression generated
can give extra tensile capacity to the material. In Fig. 3, the increase
in the capacity can be seen as double for heat strengthened and
four times higher for fully tempered glasses compared to annealed
glass. Because of these reasons, during the experiments, fully tem-
pered (structural) glass was used.

2.2. The experiment set-up
The experiments are conducted on 915 mm by 915 mm (36" by 36")

fully tempered glass panels with 3 mm thickness. The glass is framed
with 3 mm thick steel framing. Neoprene rubber gaskets, thickness of

3 mm, are used in between the steel frames and the glass sheet in
order to allow the glass to rotate mildly under the load, which is a com-
mon application for glass frames. To make the edges of this glass-steel
sandwich stiffer, aluminum hollow tubes are attached to the four
edges of the frame (Fig. 4). Strain gauges are used to measure the direc-
tional strain at specific points. The locations of strain gauges are deter-
mined with respect to where maximum and minimum strain (and
stress) is expected to occur based on the results of initial simulations.

The analyses are divided into two phases: simply supported bending
analysis and the non-planarity (warping) analysis.

The first phase is a simply supported bending test where quadrilat-
eral panel is supported by its two parallel edges and a uniform load is
applied on the mid span (Fig. 5). The aim of the simple bending test is
to observe the basic behaviour of the panel under three-point loading,
to calibrate the system, and to calculate the material properties of the
glass sheet used. 915 mm by 915 mm panel is supported by knife-
edge supports on opposite sides. Load is equally distributed across the
length of the panel in the mid span. One strain gauge is located at the
midpoint of the sheet to record the maximum strain. During the simple
bending experiment, the initial deformation due to the glass self-weight
is taken as negligible since it is quite small with respect to the deflection
under the load.

Stress (O) (MPa)

Tension capacity for annealed glass
o, = 23.3 MPa

Strain (€)

Tension capacity for heat-strengthened glass

Tension capacity for fully tempered glass

Tension
Ultimate Stress
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ol /]
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Pre-compression gained oo 24 ||V
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Fig. 3. The stress capacity of glass with different heat-treatments.
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Fig. 4. The experiment set-up. (a) The cross section. (b) The experiment table.

The second phase of the experiment is the non-planarity (warping)
analysis where a same sized sheet is supported by its two adjacent
edges with the other two edges left free and the load is hung from the
free corner of the panel (Fig. 6). The purpose of this phase is to deter-
mine the limiting deformation, therefore the limiting curvature of the
sheet. For the warping test, strain gauges are located diagonally at four
critical points; two on one side and other two on the other side of the
glass sheet (Fig. 6). During this phase, the initial deformation due to
the self-weight of the sheet (including the frames) cannot be neglected,
since they generate a significant amount of pre-deformation before the
load is applied.

In order to support the results obtained by the physical experiments,
the same conditions are modeled by computer simulations, with the
frame around the glass sheet simplified to a single stiffening edge in-
stead of the real case of an aluminum tube and neoprene bands [14].

2.2.1. Simply supported bending analysis

Before the non-planarity analysis, initial tests and calculations were
conducted to calibrate the experimental set-up, to observe the behav-
iour of the material under simple loading, and to compare the results
with the computer analysis.

Simply supported bending analysis of a panel sheet is calculated,
taking a simply supported beam as the base. The panel is assumed to be-
have as a beam with a point load in the middle as seen in Fig. 7. The
maximum deflection for the panel is calculated where A is the mid
(maximum) deflection of the panel, P is the applied concentrated load,
L is the span between the supports, E is the young's modulus of the ma-
terial used and I is the moment of inertia.

The concentrated point load is determined as 222.4 N (50 Ib) within
the limitation of the study. The clear span is measured as 845 mm (L)

and Young's Modulus for the material is taken as 70 GPa. For the calcu-
lation of the moment of inertia, the width of the panel (b), is taken as
915 mm, whereas the thickness of the sheet is used for the height of
the section (h), that is 3 mm. For the maximum stress calculation, c,
the maximum vertical distance from neutral axis, is taken as half of
the thickness of the sheet (1.5 mm).

1

(915)(3)° = 2058.75mm*

Moment of inertia : | = 11—2bt3 =

PL  (222.4)(0.845)

Maximum Moment : M = Vi 2 =46.98N-m
Mc (46.98) (1 .5x]0_3>
Maximum Stress : 0 = — = ———————-% = 34.24MPa
I 2058.75x10
PL® (222.4)(0.845)*

=19.4mm

Maximum Deformation : A = —— =
48EL - 48(70x107) (2058.75x107)

The theoretical calculations above show that the maximum defor-
mation under this loading is expected to be 19.4 mm with a maximum
stress of 34.24 MPa. The similar set-up is simulated with the computer
program and the same load is applied on the glass sheet. Maximum de-
flection resulted from the simulations is 20.6 mm and maximum stress
is 40 MPa as shown below in Fig. 8.

The results obtained from the simulation fit the analytic calculations
and demonstrate that the fully tempered glass can carry the load of
222.4 N throughout this experiment. Therefore, the same conditions

Edge Edge
supports supports
mid
gauge
Load (distributed)

Fig. 5. Simple bending test.
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Fig. 6. Warping test.
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Fig. 7. Simple bending - deformation schema for the panel under linear load.

are applied on the experimental set-up. The stress-strain graphic is
drawn by the values recorded by the logger as shown in Fig. 9.

Using the recorded values of strain gauges (A =0.578" = 14.68 mm
and £ = 4 x 10~%), the Young's Modulus for the material is calculated as:

pL? (222.4)(0.845)°

~48A1 48(14.68x10 ) (2058.75x10 ) 925 6k

Then, the maximum stress is calculated as shown below:

0 = Exe = (92.5) <4x10‘4) = 0.037GPa = 37 MPa

Having obtained all these results from three different methods of in-
spection (Theoretical, simulations and experiments), Table 1 is pre-
pared to compare and contrast the results.

4 \
/ Total \
i‘ Deformation: }
Y 20.6mm [

The differences between the stresses are partially due to the material
properties that vary between theory and practice. It is possible to use
the material properties obtained from the experiments back into the
simulations to obtain more precise results but for the purpose of this
study, the theoretical values are accepted to be enough.

The maximum deformation measured during the physical test is ob-
served to be less than the theoretical calculations. This difference indi-
cates that along with the inconsistencies of materials, membrane
stresses generated on the glass sheet reduce the amount of deformation.
This observation shows that non-linear analysis should be considered
during these investigations.

In conventional structural analyses, the calculations are done based
on linear behaviour. However, when the deformation exceeds half of
the thickness of the panel, the stress-strain relationship cannot be
taken linearly [19]. In this test, the amount of deformation is expected
to exceed half of the thickness of the panel; therefore non-linear

\
\

Max principal stress
40MPa
Min principal stress:
,-4.5MPa y

\, =
\ /
\,

1 L

Fig. 8. The simple bending analysis results for the glass sheet under the load.
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Fig. 9. The time history plot for the simple bending test.

(large deflection) analyses are preferred. During non-linear deforma-
tion, due to the edge restraints, axial stresses are generated that are
called membrane stresses. They can be either in tension or compression,
depending on the type of constraint on the edges. The total stress on a
section must be calculated as the sum of the bending stress and the
membrane stresses.

2.2.2. Warping analysis

As mentioned before, the initial deformation due to the self-weight
of the glass sheet is not neglected for this analysis. In order not to expe-
rience a sudden failure of the glass under its own weight, the glass is left
to carry its weight in discrete intervals. It is observed that the sheet is
deformed approximately 55 mm (2.20”) under self-weight (Fig. 10).
The experimentation is continued by loading the glass in the increments
of 4.45 N (1 Ib) loads in addition to its self-weight. The stress values on
the critical points (the principal stress locations) are calculated using
the recordings of strain values and the maximum deformation is record-
ed by the dial gauges.

It is observed from the strain gauge readings that on the bottom
surface of the sheet, tension stresses increase to a certain value dur-
ing the loading and then start to decrease due to the membrane
stresses. The strain values, therefore the stresses on the bottom sur-
face, become zero when the maximum deflection occurs. On the
other hand, on the top surface of the sheet, the strain gauge values
increase through the loading, causing to generate compressive
stresses (Fig. 10).

The surface stresses at the maximum deformation can be calculated
by the generalized form of Hooke's law:

Oo=¢xE

Table 1
Results of the three methods applied on the same quadrilateral panels.

Analysis Maximum principal Maximum
method stress deflection
(MPa) (mm)
Simple bending (50 Theoretical 34,24 19,40
Ibs = 222.4N)
Simulations 40 20,57
Experimental 37 14,68

where ¢ is the strain values read from Fig. 10 and E is the Young's Mod-
ulus of the material (70 x 10° GPa). By knowing the final strain values,
the bending stress and the membrane stresses can be calculated as in
Fig. 11.

It is observed that, the stresses on bottom surface become zero (no
tension or compression) whereas the top surface works in compression.
This demonstrates that, for this circumstance, the membrane stresses
work in compression and decrease the tensile stresses created on the
bottom surface and increase the compressive stresses on the top sur-
face. The membrane effect works as pre-compression.

The maximum deflection value at the corner of the panel is recorded
to be 95.25 mm (3.75”) (Fig. 10). This value is determined as the deflec-
tion value that a fully tempered glass panel with this size (915 mm by
915 mm) can resist. This deformation value is specific to the size of
this panel. In order to use this value for different sizes and for different
cases, the surface curvature and the minimum radius of the deformed
sheet are calculated using curvature analysis tools (Fig. 12). Gaussian
curvature analysis is used, because it is a built-in analysis method for
most of the 3D modelling programs and can be utilized during the de-
sign process to help automation.

The maximum Gaussian curvature is varying between
—0.0000080206 and — 0.0000083724. The values are always negative
as the sheet is in anticlastic curvature. The minimum radius values are
recorded between 349.35” (8874 mm) and 345.6” (8778 mm). These
can be taken as the limits for the deformation of a fully tempered glass
sheet with this size.

2.3. Parameterization

The maximum deformation and the limiting curvature occurring on
the specific panel are determined for a given size of panel with a certain
material. However, this does not provide much information in more
generalized cases such as the cases where the size of the panel changes.
With the following parameterization study, a wider database of curva-
ture values can be obtained.

Non-planarity can be quantified by examining the surface curva-
ture of the panel. Surface curvature, and thus non-planarity, depends
on the elastic properties of the material (deformation capacity, E),
the sizes of the panel (L and t), and the strength of the material
(Fig. 13).

For the parameterization, the material selection is not taken into
consideration as the properties of each material differ widely and
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Fig. 11. Surface stresses on the deformed glass sheet.

cannot be linearly formulated. Additionally, strength of the material is
an inherited property for the material and cannot be changed. There-
fore, strength is not included into the parameterization. Therefore, the
relationship to be formed for the surface curvature should be dependent
on the size of the panel (edge length and thickness) and the generated
deformation.

Using simple geometric rules, the relationship between deformation
and the surface curvature is determined to be linear for small bending
values as shown in Fig. 14.

For the derivation of the relationship between the sizes of the panel
and the deformation, Roark's formula for a typical rectangular panel

supported on 2 adjacent sides with the two other edges free and uni-
formly loaded is used as a base [20]:

A 7a><q><b4
max — E)(t3

where; Apax: Maximum deformation.

«: a constant value dependent on a/b (Table 11.4 in Youngs and
Budynes, [20])
b: longer edge a: shorter edge

Curvature B ol R, a . 4
= Syfe
3.75" (95.25 mm)
deformation O e Curvature range
W -0.0000080206 s
-~ -
Il -0.0000083724 e

Fig. 12. Gaussian curvature and minimum radius analyses for the deformed sheet.



A. Berk, H. Giles / Automation in Construction 76 (2017) 36-44 43

Curvature oc f{A) oc f(L,t,E)

A :Deformation
L:EdgeLength

t: Thickness

E: Young'sModulus

Fig. 13. Design parameters for a deformed panel.

q: load per unit area t: thickness of the sheet
E: Young's modulus
assuming;:

- The plate is flat with straight boundaries and constant thickness.

- Thickness is not more than one quarter of the least transverse di-
mension.

- The material is a homogenous isotropic material.

Then, the relationship for a 2 adjacent-edge fixed panel is obtained
as follows:

4 P bt
axqxb X p >
Amax Ext? = Amax Ext
2)
axPxb
_)Amaxc(Exaxt3

This relationship demonstrates that there is an inverse proportion
between the maximum deformation and the cube of thickness of the
panel. There is a direct proportion between the maximum deformation
and the cube of the longer edge size of the panel, whereas there is an in-
verse proportion between deformation and shorter edge. When the two
relationships (Eq. (1) and Eq. (2)) are integrated, one parametric equa-
tion that covers all the design parameters can be written as:

axPxb

Curvature « Apgx® —————
TXE a3

3)

By obtaining a parametric relationship of the variables as Eq. (3),
limiting curvature value for any size of panels can be calculated when
the limit of non-planarity is determined for a certain size panel for
that specific material.

center of curvature

o
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24. Application

Freeform surfaces have become more common with the help of ad-
vanced digital tools. The technology does not only help the design pro-
cess, but there have been numerous digital analyses conducted, such as
structural, economical, material availability, lighting, heating, etc. to
control the feasibility of the design.

The proposal for this study is that the “planarity analysis” should also
be part of the design of freeform surfaces, as the results affect the
construction feasibility dramatically. As proposed in this study, any
material's capacity for warping could be determined. (A future study
could be conducted for a wider database). Then, during the
discretization method, the panels can be analysed for their planarity
and the curvature values can be compared with the warping limits of
the selected material. If the values are within the limits, the existing
non-planarity is accepted, whereas if not, then either the material selec-
tion will be reconsidered or the surface discretization will be
remodelled. In any case, the capacity of the material is used as a design
parameter that would help the process at an early stage of design in ad-
dition to provide the constructability of the structure.

3. Results and conclusion

This study focuses on the feasibility of quadrilateral paneling on
freeform surface discretization. With the analyses conducted, both com-
puter simulations and physical experiments, the method of determining
the limiting values of surface curvature is demonstrated for a specific
quadrilateral glass panel. In order to utilize this value in various designs,
the parameterization of design variables is studied and a mathematical
relationship (Eq. (3)) is established to calculate the limiting values for
different sizes of panels. This process and the obtained results demon-
strate that:

- Heat-tempered glass panels can be bent with a pre-determined
amount, which then allows the use of partially non-planar panels
on freeform surface discretization. The use of non-planarity for
some of the quadrilateral panels reduces the discretization problem
of free-form surfaces. By knowing the limiting curvature value of the
selected material in the early stage of the design, non-planarity can
be checked and necessary modifications can be done at that level
in order to prevent some of the problems of construction.

- The warping of quadrilateral panels is observed to generate mem-
brane stresses that work in advantage for the use of warped panels
on the discretization of the free-form surfaces. However, not enough
study has been conducted to derive a more concrete result.
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Fig. 14. The relationship of surface curvature to deflection.
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Therefore this aspect of this study can be examined more deeply in
future studies to conclude with more certain results.

- Non-planarity of panels, i.e. surface curvature, is dependent on nu-
merous design variables, such as mesh sizing, the size of the panels
and the material properties.

This study is conducted with one material, and demonstrates how
material properties can affect the design process and the efficiency of
the final product. With more analyses conducted on different materials,
a database can be generated for the limits of non-planarity of numerous
materials that can be used during the design process, including prelimi-
nary and final design stages. Eventually, non-planarity may become one
of the analyses to be conducted during the design process of freeform sur-
faces. The focus of this study is not limited with the use of non-planarity
of quadrilateral panels, but it also underlines the importance and efficien-
cy of integrated design, by considering the material properties and the
material-form relationship at the early stage of design.
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