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Abstract. We study damped geodesic motion of a particle of mass m on
a Riemannian manifold, in the presence of an external force and noise.
Lifting the resulting stochastic differential equation to the orthogonal
frame bundle, we prove that, as m → 0, its solutions converge to solutions
of a limiting equation which includes a noise-induced drift term. A very
special case of the main result presents Brownian motion on the manifold
as a limit of inertial systems.

1. Introduction

Brownian motion (BM) plays a central role in many phenomena of scientific
and technological significance. It lies at the foundation of stochastic calculus
[1], which is applied to model a variety of phenomena, ranging from non-
equilibrium statistical mechanics to stock market fluctuations to population
dynamics. In particular, Brownian motion occurs naturally in systems where
microscopic and nanoscopic particles are present, as a consequence of ther-
mal agitation [2]. Brownian motion of micro- and nanoparticles occurring in
complex environments can often be represented as motion on two-dimensional
or one-dimensional manifolds embedded within a three-dimensional space. For
example, the motion of proteins on cellular membranes occurs effectively on
two-dimensional manifolds and is currently at the center of an intense experi-
mental activity [3]. The single file diffusion of particles in porous nanomaterials
occurs in an effectively one-dimensional environment and plays a crucial role in
many phenomena such as drug delivery, chemical catalysis and oil recovery [4].
Several interesting phenomena can emerge in these conditions, such as anom-
alous diffusion [5] and inhomogeneous diffusion [6]. Similar phenomena also
occur when considering active matter systems, such as living matter, which
are characterized by being in a far-from-equilibrium state [7]; such systems
often interact with complex environments that can be effectively modeled by
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low-dimensional manifolds embedded in a three-dimensional space. To gain a
deeper understanding of these phenomena it is necessary to explore the prop-
erties of Brownian motion on manifolds.

The original motivation for this paper is to present Brownian motion on
a manifold as the zero-mass limit of an inertial system. Our main result is sig-
nificantly more general and contains a rigorous version of the above statement
as a special case. In this section, we will first outline this motivating problem
and then discuss some earlier work on similar questions. For the sake of clarity,
we do not spell out all technical assumptions and the arguments presented in
the introduction are heuristic.

Brownian motion on an n-dimensional Riemannian manifold (M, g) can
be introduced as a mathematical object—a Markov process xt on M with
the generator expressed in terms of the Riemannian metric g, which uniquely
determines its law. In this form, it has been a subject of an immense amount
of study, both for its own sake and beauty, and for applications to analysis
and geometry. The reader is referred to [8,9] and references therein. In local
coordinates, the components of BM satisfy the stochastic differential equation
(SDE):

dxi
t = −1

2
gjkΓi

jk dt +
n∑

α=1

σi
α dWα

t , (1.1)

where σ is the positive-definite square root of the inverse metric tensor g−1,
in the sense that

∑n
α=1 σi

ασk
α = gik, see p. 87 of [8]. From the applied point

of view, BM on a manifold is an idealized probabilistic description of diffusive
motion performed by a particle constrained to M . This can be justified at
various levels, depending on what one is willing to assume. Let us mention
in particular the work of van Kampen [10] which studies the conditions on
the constraints, restricting motion of a diffusing particle to a manifold, under
which its effective motion becomes Brownian.

Here, as our point of departure, we take equations describing inertial
motion of a particle of mass m, in the presence of two forces: damping and
noise. The equations of motion in local coordinates are

dxi
t = vi

t dt, (1.2)

m dvi
t = −mΓi

jkvj
t v

k
t dt − γi

jv
j
t dt +

n∑

α=1

σi
α dWα

t , (1.3)

where Γi
jk are the Christoffel’s symbols of the metric g, γ denotes the damping

tensor and the vector fields σα, α = 1, . . . n, couple the particle to n standard
Wiener processes, acting as noise sources. The summation convention is used
here and throughout the paper. The reason the sum over α here is written
explicitly is that it does not play the role of a covariant index.

For the purposes of this motivating discussion, we assume that the damp-
ing and noise satisfy a fluctuation–dissipation relation known from non-equili-
brium statistical mechanics [11]; this assumption will not be needed in the
more general theorem that will be presented later. Note that the covariance of



Vol. 18 (2017) Small Mass Limit of a Langevin Equation on a Manifold 709

the noise is equal to
∑

α σi
ασk

α and is thus a tensor of type
(
2
0

)
(a contravariant

tensor of rank two). We want to relate it to a quantity of the same type. Since
the damping tensor γi

j has type
(
1
1

)
, we raise its lower index using the metric

and state the fluctuation–dissipation relation as:
∑

α

σi
ασj

α = 2β−1gjkγi
k, (1.4)

where β−1 = kBT, kB is the Boltzmann constant and T denotes the tempera-
ture. In particular, if damping is isotropic, γi

k = γδi
k, we get

∑

α

σi
ασj

α = 2β−1γgij (1.5)

and Eq. (1.3) becomes

m dvi
t = −mΓi

jkvj
t v

k
t dt − γvi

t dt +
∑

α

σi
α dWα

t , (1.6)

with σi
α satisfying the relation Eq. (1.5). The problem motivating this work

can now be stated as follows. Consider the solutions of Eqs. (1.2) and (1.6)
with the initial conditions x(m)(0) = x0, v

(m)(0) = v0. We want to show that,
as m → 0, x(m) converges to the solution of the SDE

dxi
t = − 1

βγ2
gjkΓi

jk dt +
1
γ

∑

α

σi
α dWα

t (1.7)

with the same initial condition. Since this equation describes (a rescaled) BM
on the manifold M in local coordinates, this will realize our original goal.
Related results in the physics content are reported in [12].

We now present a sketch of the argument. The remarks that follow it
explain its relation to the actual proof in later sections. Our guiding principle
is that the kinetic energy of the particle is of order 1, so that the components
of the velocity (in a fixed coordinate chart) behave as 1√

m
in the limit m → 0.

Solving for vi
t dt in Eq. (1.6), we obtain

dxi
t = vi

t dt = −m

γ
dvi

t − m

γ
Γi

jkvj
t v

k
t dt +

1
γ

∑

α

σi
α dWα

t . (1.8)

In the limit m → 0, we expect no contribution from the first term, since
γ is constant and thus m

γ dvi
t is the differential of the expression 1

γ mvi
t which

vanishes in the limit. We do expect a nonzero limit from the quadratic term.
This is again based on the analogy with [13], where such a term appears as
a result of integration by parts. In the case discussed here, it is present in
the equation from the start, reflecting the manifold geometry. In the limit, we
expect the fast velocity variable to average, giving rise to an x-dependent drift
term. To calculate this term, we use the method of [13], together with the
heuristics that vi should be of order m− 1

2 . Consider the differential (vanishing
in the m → 0 limit):
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d(mvj
t mvk

t ) = d(mvj
t )mvk

t + mvj
t d(mvk

t ) + d(mvj
t ) d(mvk

t )

=

(
−mΓj

liv
l
tv

i
t dt − γvj

t dt +
∑

α

σj
α dWα

t

)
mvk

t

+ mvj
t

(
−mΓk

liv
l
tv

i
t dt − γvk

t dt +
∑

α

σk
α dWα

t

)
+

∑

α

σj
ασk

α dt.

(1.9)

Based on our assumption about the order of magnitude of vi, in the limit
we get

− 2mγvj
t v

k
t dt +

∑

α

σj
ασk

α dt = 0. (1.10)

Substituting this into Eq. (1.8) and leaving out the terms which vanish
in the limit, we obtain

dxi
t = − 1

βγ2
gjkΓi

jk dt +
1
γ

∑

α

σi
α dWα

t , (1.11)

which describes a rescaled BM on the manifold.
The limiting process xt satisfies an equation driven by the same Wiener

processes, Wα, that drove the equations for the original processes x(m), and is
thus defined on the same probability space. The processes x(m) will be proven
to converge to x in the sense that the Lp-norm (in the ω variable) of the
uniform distance on [0, T ] between the realizations of x and x(m) goes to zero
for every T . This is much stronger than convergence in law on compact time
intervals.

Zero-mass limits of diffusive systems have been studied in numerous
works, starting from [14]. See [2] for a masterly review of the early history.
The analysis of such models have been extended in many directions. For ex-
ample [15] studies the limit of a particle system driven by a fluid model that is
coupled to noise. The extension of diffusion processes to the relativistic setting
has been studied in, for example [16,17]. Other related works study random
perturbations of the geodesic flow on a Riemannian manifold. In [18], con-
vergence of the transition semigroups of a family of transport processes on a
manifold to that of Brownian motion was shown. See also the paper [19] where
homogenization of the velocity variable for equations on manifolds is studied.
Families of Ornstein–Uhlenbeck processes on manifolds were studied in [20,21].
Two interesting recent papers are [22] and [23]. They prove convergence in law
to Brownian motion in appropriate limits. We remark that in the special case
of constant damping (as considered in this introduction), the generator of the
process defined by Eqs. (1.2)–(1.3) is the hypoelliptic Laplacian, introduced
in [24]—an important analytical object, encoding geometric properties of the
manifold. In this case [24] proves a convergence-in-law result. This has been
extended to cover the convergence of kernels and their derivatives [25].

More recently, several authors address the case when a general position-
dependent forcing is included and the damping and/or noise coefficients depend
on the state of the system. In particular, they study the associated phenomenon
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of the noise-induced drift that arises in the limit. See references in the recent
paper [13], where a formula for the noise-induced drift has been established
for a large class of systems in Euclidean space of an arbitrary dimension. See
also [26], where some of the assumptions made in [13] are relaxed.

The analysis applied here is most similar to that of [13], with two im-
portant differences. First, we prove the fundamental momentum (or kinetic
energy) bound in a different way, which would also lead to an alternative
proof of the main result of [13]. Second, in this paper we pose the problem on
a compact Riemannian manifold. This leads to complications of a geometric
nature that are absent in Euclidean space: to control the quadratic terms in
the geodesic equation more efficiently, we lift the equations to the orthogo-
nal frame bundle. Another, equally important, consequence of lifting to the
orthogonal frame bundle is that the equations of motion, including the noise
term, can be formulated geometrically, without reference to local coordinate
charts. While this increases the number of variables and makes the equations
more complicated, it simplifies the analytical aspects of the problem. Frame
bundle techniques similar to this have been used by many other authors, see
for example [8,17,20–22].

As our main result, we derive the equation satisfied by an inertial system
in the limit m → 0. In the case of constant damping and noise (and thus satisfy-
ing the fluctuation–dissipation relation) with zero forcing, we obtain Brownian
motion, as suggested by the informal derivation leading to Eq. (1.11). Vari-
ous formulations that cover this classical case have been studied by previous
authors [21,24]. Forcing terms were also considered in [21]. The theorem pre-
sented here is general enough to include the classical case, as well as cover
position-dependent forcing, damping and noise, including a derivation of the
formula for the noise-induced drift. In addition, the damping and the noise co-
efficients are not required to satisfy a fluctuation–dissipation relation (unlike
in the motivating discussion above), which leads to a fully general formula for
the resulting noise-induced drift in the small mass limit. Physically, this result
is particularly relevant when considering active matter and systems far from
thermodynamic equilibrium [27].

1.1. Summary of the Main Result

In this section, we summarize the main result of this paper, including the
required assumptions. Motivation for the equations under consideration, fur-
ther detail on the notation, and a proof of the result will follow in subsequent
sections.

Let (M, g) be a compact, connected n-dimensional Riemannian manifold
without boundary, FO(M) be its frame bundle with canonical projection π
(see Sect. 3), and N ≡ FO(M)×R

n. For each m > 0 (representing the particle
mass), we will consider the following SDE on N for fixed, non-random initial
condition (u0, v0) ∈ N :

um
t = u0 +

∫ t

t0

Hvm
s

(um
s )ds, (1.12)
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vm
t = v0 +

1
m

∫ t

t0

[F (um
s ) − γ(um

s )vm
s ]ds +

1
m

∫ t

t0

σ(um
s )dWs. (1.13)

Here, Hα(u) are the canonical horizontal vector fields on FO(M) (see
Lemma 3.2), F (x) is a smooth vector field on M (the forcing), γ(x) is a smooth(
1
1

)
tensor field on M (the damping), the noise coefficients are given by a R

n×k-
valued function, σ(u), on FO(M),Wt is a R

k-valued Wiener process, and we
define F (u) = u−1F (π(u)) and γ(u) = u−1γ(π(u))u.

Let (um
t , vm

t ) be a family of solutions to Eqs. (1.12)–(1.13), corresponding
to mass values m > 0. To study the m → 0 limit of um

t , we assume that
the symmetric part of γ, γs = 1

2 (γ + γT ), has eigenvalues bounded below by
a positive constant. This coercivity assumption is crucial to our results, as
it provides the damping necessary to ensure that the momentum degrees of
freedom, pm

t = mvm
t , become negligible in the limit (see Sect. 5).

Under the assumptions stated above, the main result (Theorem 7.1) gives
the limiting behavior of um

t as m → 0. More specifically, we prove the following:
Fix T > 0 and a Riemannian metric tensor field on FO(M). Let d be the

associated metric on the connected component of FO(M) that contains u0.
Then for any q > 0 and any 0 < κ < q/2, we have

E

[
sup

t∈[0,T ]

d(um
t , ut)q

]
= O(mκ) as m → 0, (1.14)

where ut solve the following SDE on FO(M) with initial condition u0:

dut = H(γ−1F )(ut)(ut)dt + S(ut)dt + H(γ−1σ)(ut)(ut) ◦ dWt. (1.15)

The additional drift vector field, S(u), on FO(M) that arises in the limit, given
by Eqs. (6.32)–(6.33), will be called the noise-induced drift.

2. Forced Geodesic Motion on the Tangent Bundle

We now begin the task of making the results outlined in the introduction and
summary precise. Let (M, g) be an n-dimensional smooth connected Riemann-
ian manifold with tangent bundle (TM, π), where π is the natural projection.
Let V : TM → TM be smooth and π ◦ V = π, i.e., V maps each fiber into
itself. The deterministic dynamical system that we eventually want to couple
to noise is defined by the equation

∇ẋẋ = V (ẋ), (2.1)

where ∇ is the Levi–Civita connection. In this section and the next, we focus on
the non-random system. The coupling to noise will be discussed in Sect. 4. We
refer to the system Eq. (2.1) as the geodesic equation with (velocity-dependent)
forcing V . Note that ẋ is an element of TM , and so it contains both position
and velocity information. In particular, Eq. (2.1) contains the special case
where V is independent of the velocity degrees of freedom, i.e., V is a vector
field on M .
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Equation (2.1) is more general than the system outlined in the introduc-
tion. In particular, it contains a deterministic forcing, other than the drag. The
process that we will eventually find in the small mass limit will, therefore, be
more general than Brownian motion on M , but will include Brownian motion
as a special case.

We now interpret Eq. (2.1) as an ordinary differential equation (ODE)
on the tangent bundle TM . With V ≡ 0 it is the standard geodesic equation.
Below we give some facts, starting from this case in points 1–4 and then, in
points 5 and 6, we add forcing. These facts will not be used in our subsequent
analysis, but they give one an idea of how forced geodesic motion on manifold,
Eq. (2.1), can be reformulated as a flow on a larger space. We will build on
this idea in the next section.
1. For v ∈ TM , let xv be the geodesic with velocity v at t = 0. Define the

geodesic vector field G : TM → T (TM) by G(v) = d
dt (ẋv)t=0, i.e., the

tangent vector to the curve ẋv : I → TM at t = 0. G is a smooth vector
field on TM and x : I → M is a geodesic iff ẋ (interpreted as a curve in
TM) is an integral curve of G.

2. If η is an integral curve of G then x ≡ π ◦η is a geodesic on M and ẋ = η.
3. The flow of G is (t, v) → ẋv(t).
4. In a chart xi for M and induced coordinates (xi, vi) on TM,G takes the

form
G(x, v) = vi∂xi

|(x,v) − Γi
jk(x)vjvk∂vi |(x,v), (2.2)

where Γi
jk are the Christoffel symbols of the Levi–Civita connection in

the coordinate system xi.
5. Using V we can define a vector field V : TM → T (TM) given in an

induced chart on TM by V = V i∂vi (we will let context dictate whether
we consider V as mapping into TM or T (TM)). This produces a well-
defined smooth vector field on TM that is independent of the choice of
charts.

6. We let
Y = G + V. (2.3)

If τ is an integral curve of Y , then x = π ◦ τ satisfies Eq. (2.1) and τ = ẋ.
Conversely, if x satisfies Eq. (2.1) then ẋ is an integral curve of Y .

This last point implies that the equation of interest, Eq. (2.1), defines a smooth
dynamical system on the tangent bundle of M and the vector field of this
dynamical system is Y .

3. Forced Geodesic Motion on the Frame Bundle

The metric tensor g on M defines a reduction of the structure group of TM to
the orthogonal group, O(Rn) [28], with local trivializations induced by local
orthonormal (o.n.) frames on M (i.e., collections of local vector fields that form
an o.n. basis at each point of their domain). In turn, this lets one construct the
orthogonal frame bundle, (FO(M), π) (we will let context distinguish between
the various projections π). By reformulating Eq. (2.1) as a dynamical system
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using the orthogonal frame bundle of M , in a similar manner to the procedure
outlined in the previous section, we will arrive at equations that are more
amenable to being coupled to noise.

Our expanded system will be defined via a vector field on the manifold
N ≡ FO(M) × R

n.

3.1. Coordinate-Independent Definition

Fix (u, v) ∈ N . We will define a vector X(u,v) ∈ T(u,v)N as follows. Let x(t)
be the solution to

∇ẋẋ = V (ẋ), x(0) = π(u), ẋ(0) = u(v), (3.1)

i.e., the integral curve of Y , defined in Eq. (2.3), starting at u(v) ∈ Tπ(u)M .
Let Uα(t) be the parallel translates of u(eα) along x(t) (eα is the standard

basis for R
n), i.e.,

∇ẋUα = 0, Uα(0) = u(eα). (3.2)
Parallel transport via the Levi–Civita connection preserves inner products, so
τ(t) defined by τ(t)eα = Uα(t) is a smooth section of FO(M) along x(t). Define
the smooth curve in R

n, v(t) = τ(t)−1ẋ(t).
With these definitions, η(t) = (τ(t), v(t)) is a smooth curve in N starting

at (u, v). Define the vector field X by

X(u,v) = η̇(0). (3.3)

3.2. Coordinate Expression

We now derive a formula for X in a coordinate system defined below and
thereby prove it is a smooth vector field on N .

Let (U, φ) be a coordinate chart on M and Eα be an o.n. frame on U . We
will let Roman indices denote quantities in the coordinate frame and Greek
indices denote quantities in the local o.n. frame. The connection coefficients in
the o.n. frame, Aα

βη, are defined by ∇Eβ
Eη = Aα

βηEα. The coordinate frame,
∂i, and the o.n. frame, Eα, are related by an invertible matrix-valued smooth
function Λα

i on U ,
∂i = Λα

i Eα. (3.4)
Let ψ be the local section of FO(M) induced by Eα, i.e., ψ(x)v =

vαEα(x). We have the diffeomorphism Φ : π−1(U) → φ(U) × O(Rn), u →
(φ(π(u)), h), where h is uniquely defined by u = ψ(π(u))h. In turn, this gives
a diffeomorphism Φ × id on π−1(U) × R

n ⊂ N .

Lemma 3.1. The pushforward of the vector field X to φ(U) × O(Rn) × R
n by

the diffeomorphism Φ × id is given by

((Φ × id)∗X)|(x,h,v) = (Λ−1)j
α(π(u))hα

βvβ∂j − hη
αAβ

δη(π(u))hδ
ξv

ξ∂eβ
α

+(h−1)α
βV β(u(v))∂vα (3.5)

where u = Φ−1(φ−1(x), h), V β are the components of V in the o.n. frame Eβ

(not the coordinate frame ∂i), vα are the standard coordinates on R
n, and eβ

α

are the standard coordinates on R
n×n. In particular, X is a smooth vector

field.
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Proof. Using

τ(t) = ψ(x(t))h(t) = u(t), v(t) = τ−1(t)ẋ(t) (3.6)

we obtain

v(t) = h−1(t)ψ−1(x(t))ẋi(t)∂i = ẋi(t)Λα
i (x(t))h−1(t)ψ−1(x(t))Eα(x(t))

= ẋi(t)Λα
i (x(t))h−1(t)eα = ẋi(t)Λα

i (x(t))(h−1)β
α(t)eβ . (3.7)

Solving for ẋ(t) we find

ẋj(t) = (Λ−1)j
α(x(t))hα

β (t)vβ(t). (3.8)

This proves that the first term of Eq. (3.5) is correct.
∇ẋUα = 0 implies

0 = ∇ẋψ(x(t))h(t)eα = ∇ẋhβ
α(t)Eβ(x(t))

= ḣβ
α(t)Eβ(x(t)) + hβ

α(t)ẋk(t)∇∂k
Eβ

= ḣβ
α(t)Eβ(x(t)) + hβ

α(t)ẋk(t)Λη
k(x(t))∇Eη

Eβ

=
(
ḣβ

α(t) + hη
α(t)ẋk(t)Λδ

k(x(t))Aβ
δη(x(t))

)
Eβ(x(t)). (3.9)

Therefore,

ḣβ
α(t) = −hη

α(t)Aβ
δη(x(t))Λδ

k(x(t))ẋk(t). (3.10)

Using Eq. (3.8), we get

ḣβ
α(t) = −hη

α(t)Aβ
δη(x(t))Λδ

k(x(t))((Λ−1)k
κ(x(t))hκ

ξ (t)vξ(t))

= −hη
α(t)Aβ

δη(x(t))hδ
ξ(t)v

ξ(t). (3.11)

This proves that the second term in Eq. (3.5) is correct.
Differentiating Eq. (3.7) (and dropping the time dependence in our no-

tation) we find

v̇α = −(h−1)α
β ḣβ

η (h−1)η
ξΛξ

i ẋ
i + (h−1)α

β∂lΛ
β
i ẋlẋi + (h−1)α

βΛβ
i ẍi. (3.12)

From ∇ẋẋ = V , we obtain ẍi + Γi
jkẋj ẋk = V i where V i are the com-

ponents of V in the coordinate frame ∂i (not to be confused with V α, the
components in the o.n. frame Eα). We need to convert from Γi

jk to Aα
βη,

Γi
jk∂i = ∇∂j

∂k = ∇∂j
Λα

k Eα = ∂jΛα
k Eα + Λα

k ∇∂j
Eα

= ∂jΛα
k Eα + Λα

k Λβ
j ∇Eβ

Eα

= (∂jΛα
k + Λη

kΛβ
j Aα

βη)Eα = (∂jΛα
k + Λη

kΛβ
j Aα

βη)(Λ−1)i
α∂i. (3.13)

Using this we obtain

v̇α = −(h−1)α
β ḣβ

η (h−1)η
δΛδ

i ẋ
i + (h−1)α

β∂lΛ
β
i ẋlẋi + (h−1)α

βΛβ
i (V i − Γi

jmẋj ẋm)

= −(h−1)α
β ḣβ

η (h−1)η
δΛδ

i ẋ
i + (h−1)α

β∂lΛ
β
i ẋlẋi

+ (h−1)α
βΛβ

i (V i − (∂jΛη
m + Λδ

mΛξ
jA

η
ξδ)(Λ

−1)i
ηẋj ẋm)

= (h−1)α
βΛβ

i V i − (h−1)α
β ḣβ

η (h−1)η
δΛδ

i ẋ
i + (h−1)α

β∂lΛ
β
i ẋlẋi
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− (h−1)α
β(∂jΛβ

m + Λδ
mΛξ

jA
β
ξδ)ẋ

j ẋm

= (h−1)α
βΛβ

i V i − (h−1)α
β ḣβ

η (h−1)η
ξΛξ

i ẋ
i + (h−1)α

β∂lΛ
β
i ẋlẋi

− (h−1)α
β∂jΛβ

mẋj ẋm − (h−1)α
βΛη

mΛξ
jA

β
ξηẋj ẋm. (3.14)

The third and fourth terms cancel. Using Eq. (3.10), the second can be
written

−(h−1)α
β ḣβ

η (h−1)η
ξΛξ

j ẋ
j = (h−1)α

β (hη
ξAβ

δηΛδ
i ẋ

i)(h−1)ξ
εΛ

ε
j ẋ

j

= (h−1)α
βAβ

ξηΛξ
i Λ

η
j ẋiẋj . (3.15)

Therefore,

v̇α(t) = (h−1)α
βΛβ

i V i + (h−1)α
βAβ

ξηΛη
i Λξ

j ẋ
iẋj − (h−1)α

βAβ
ξηΛη

j Λξ
mẋj ẋm

= (h−1)α
βΛβ

i V i = (h−1)α
βV β . (3.16)

Note that we have converted from the components in the coordinate basis,
V i, to the coordinates in the o.n. basis, V β , in the last line. This proves that
the final term of Eq. (3.5) is correct.

Note that the equation for v(t) can also be written as

v̇(t) = τ−1(t)V (τ(t)v(t)). (3.17)

�

The cancelation of the Christoffel terms in the equation for v̇ is not
unexpected. In the absence of forcing V, x(t) is a geodesic and hence its tangent
vector is parallel transported along itself. Therefore , vi, the components of
the tangent vector in the parallel-transported frame, Uα, must be constants
when V vanishes. This is in contrast to the geodesic equation in an arbitrary
coordinate system, in which the equation for ẍi is non-trivial even in the
absence of forcing. This fact simplifies the analysis when we study the small
mass limit of the noisy system and is one of the advantages of the orthogonal
frame bundle formulation.

Using the above lemma, we can write the equation for the integral curves
of X, Eq. (3.3), in coordinates.

Corollary 3.1. In a coordinate system defined as in Lemma 3.1, an integral
curve of X, (xi(t), hβ

δ (t), vα(t)), satisfies

ẋj(t) = (Λ−1)j
α(x(t))hα

β (t)vβ(t), (3.18)

ḣα
β(t) = −hη

β(t)Aα
ξη(x(t))hξ

δ(t)v
δ(t), (3.19)

v̇α(t) = (h−1)α
β (t)V β(ẋ(t)), (3.20)

where from Eq. (3.6), we see that ẋ(t) = vξ(t)hη
ξ (t)Eη(x(t)). Recall that V β

are the components of V in the o.n. basis Eβ.

In the process of proving Lemma 3.1, we have also characterized the
relation between integral curves of X, Eq. (3.3), and integral curves of Y ,
Eq. (2.3), as expressed by the following corollaries.
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Corollary 3.2. Let x(t) be the solution to

∇ẋẋ = V (ẋ), x(0) = π(u), ẋ(0) = u(v), (3.21)

i.e., the integral curve of Y , defined in Eq. (2.3), starting at u(v) ∈ Tπ(u)M .
Let Uα(t) be the parallel translates of u(eα) along x(t) (eα is the standard

basis for R
n), i.e.,

∇ẋUα = 0, Uα(0) = u(eα). (3.22)

Parallel transport preserves inner products, so τ(t) defined by τ(t)eα = Uα(t)
is a smooth section of FO(M) along x(t). Define the smooth curve in R

n, v(t) =
τ(t)−1ẋ(t).

Define the smooth curve in N, η(t) = (τ(t), v(t)). This is an integral curve
of X starting at (u, v).

Conversely, uniqueness of integral curves gives us the following.

Corollary 3.3. Let (τ(t), v(t)) be an integral curve of X starting at (u, v).
Define x(t) = π(τ(t)) and Uα(t) = τ(t)eα. Then x(t) is a solution to

∇ẋẋ = V (ẋ), x(0) = π(u), ẋ(0) = u(v), (3.23)

the Uα are parallel along x(t), and v(t) = τ−1(t)ẋ(t).

3.3. A Second Coordinate-Independent Formulation

In this section, we introduce a natural set of horizontal vector fields on the
orthogonal frame bundle and, using the coordinate expression for X, Eq. (3.5),
we show that these vector fields can be used to characterize the dynamical sys-
tem Eq. (2.1), yielding another coordinate-independent formulation. This will
also show the relationship between the Eqs. (3.18)–(3.20) and the equations in
[22]. The formulation we give in this section will be utilized for the remainder
of the paper, as it has several advantages over our previous characterizations
of the system Eq. (2.1). These advantages will be made clear as we progress.

Lemma 3.2. On an n-dimensional Riemannian manifold, there exists a canon-
ical linear map from R

n to horizontal vector fields on FO(M) defined as follows
(see [8,22]).

For each v ∈ R
n and u ∈ FO(M), define Hv(u) ∈ TuFO(M) by Hv(u) =

(u(v))h, i.e., the horizontal lift of u(v) ∈ Tπ(u)M to TuFO(M).
This is a smooth horizontal vector field on FO(M). Pushing forward to

U×O(Rn) via a local trivialization (U,Φ) of FO(M) about u with corresponding
o.n. frame Eα, as in Sect. 3.1, they have the form

Hv(u) = vαhβ
αEβ(π(u)) − vαhβ

αhη
ξAδ

βη(π(u))∂eδ
ξ
, (3.24)

where Φ(u) = (π(u), h),∇Eα
Eβ = Aη

αβEη, vα are the components of v in the
standard basis for R

n, and eβ
α are the standard coordinates on R

n×n. Note
that the second term defines a vector field on R

n×n, but it is in fact tangent
to O(Rn). Our expression Eq. (3.24) differs slightly from the one found in [8],
as we have written it in an o.n. frame rather than a coordinate frame.
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If eα is the standard basis for R
n we will let Hα ≡ Heα

. Therefore,
Hv = vαHα for any v ∈ R

n, where we employ the summation convention.
Under right multiplication by g ∈ O(Rn), these vector fields satisfy

(Rg)∗(Hv(u)) = Hg−1v(ug). (3.25)

Remark 1. The implied summations in vαhβ
α, vαHα, etc., are summations over

components in the standard basis for R
n. The α’s here are not tensor indices

on M,TM , or FO(M) and do not transform under change of coordinates or
frame. This is in contrast with the index β in hβ

α, which does transform under
a change of the o.n. frame Eβ . We will occasionally revisit this point going
forward for emphasis.

The horizontal vector fields Eq. (3.24) can be used to relate geodesic
motion and parallel transport on M to a flow on the frame bundle.

Lemma 3.3. Let u ∈ FO(M) and v ∈ R
n. Let τ be the integral curve of Hv

starting at u. Then x ≡ π◦τ is the geodesic starting at π(u) with initial velocity
u(v) and for any w ∈ R

n, τ(t)w is parallel transported along x(t).

Proof. τ is a horizontal curve in FO(M) iff τ(w) is horizontal in TM for any
w ∈ R

n. In a vector bundle, horizontal and parallel transported are synony-
mous. Hence, τ(t)w is parallel transported along x = π ◦τ . Therefore, to prove
x(t) is the claimed geodesic it suffices to show ẋ = τ(v).

In a local trivialization Φ,Φ(τ(t)) = (x(t), h(t)). Hence, using Eq. (3.24),
we have

ẋ(t) = vαhβ
α(t)Eβ(π(τ(t))) = τ(t)v. (3.26)

�
Uniqueness of geodesics, parallel transport, and integral curves then gives

the following.

Lemma 3.4. Let x ∈ M,u be a frame at x, and v ∈ R
n. Let x(t) be the geodesic

starting at x with initial velocity u(v). Let eα be the standard basis for R
n and

Uα be the parallel translates of u(eα) along x(t). Let τ(t) be the corresponding
section of FO(M), i.e., τ(t)eα = Uα(t). Then τ is the integral curve of Hv

starting at u.

We can also use the H’s to lift vector fields from M to the frame bundle.

Lemma 3.5. Let b be a smooth vector field on M and bh be the horizontal lift
of b to FO(M). Recall that this is a smooth vector field on FO(M). We have

bh(u) = Hu−1b(π(u))(u). (3.27)

If Rg denotes right multiplication by g ∈ O(Rn) then (Rg)∗bh = bh.

Proof. To prove the first assertion, by the definition of H,

Hu−1b(π(u))(u) = (u(u−1b(π(u))))h = (b(π(u)))h = bh(u). (3.28)

As for the second,

π∗(((Rg)∗bh)(u)) = (π ◦ Rg)∗bh(ug−1) = b(π(ug−1)) = b(π(u)). (3.29)
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(Rg)∗ preserves the horizontal subspaces, hence (Rg)∗bh is the horizontal lift
of b. �

Lemma 3.6. Let b be a smooth vector field on M . If τ is an integral curve of
bh starting at u then x ≡ π ◦ τ is an integral curve of b starting at π(u) and
for any v ∈ R

n, τ(t)v is the parallel translate of u(v) along x(t).
Conversely, if x(t) is an integral curve of b starting at π(u) and Uα(t) are

the parallel translates of u(eα) along x(t) then τ(t) defined by τ(t)eα = Uα(t)
is the integral curve of bh starting at u.

Proof. Suppose τ is an integral curve of bh starting at u. Then

ẋ = π∗τ̇ = π∗bh(τ) = b(x). (3.30)

So x(t) is an integral curve of b. τ has horizontal tangent vector for all t,
hence τ(t)v is parallel in TM .

Conversely, if x(t) is an integral curve of b starting at π(u) and Uα(t)
are the parallel translates of u(eα) then τ(t) defined by τ(t)eα = Uα(t) is a
smooth horizontal curve in FO(M) and τ(t0) = u. We have

π∗τ̇ = ẋ = b(x). (3.31)

τ̇ is horizontal, so
τ̇ = (b(x))h = bh(τ). (3.32)

�

The prior lemmas show that geodesic motion, parallel transport, and
flows on M can all be related to flows on FO(M). Therefore, it should not
come as a surprise that the vector field X, Eq. (3.3), whose integral curves
characterize the trajectories of our deterministic system, can be written in
terms of the Hv’s and the forcing, V .

Proposition 3.1. Let N = FO(M) × R
n and (u, v) ∈ N . Then X(u,v), defined

by Eq. (3.3), is given by

X(u,v) = (Hv(u), u−1V (u(v))) (3.33)

where we have identified TR
n with R

n.

Proof. In a local trivialization induced by an o.n. frame Eα, Eq. (3.5) implies
that

X|(x,h,v) = hα
βvβEα(x) − hη

αAβ
δη(x)hδ

ξv
ξ∂eβ

α
+ (h−1)α

βV β(u(v))∂vα . (3.34)

The proposition then follows from Eq. (3.24). �

The geometric significance of the Hv’s will make Eq. (3.33) simpler to
work with than our initial definition of the vector field X, Eq. (3.3).

Proposition 3.1 implies that the deterministic dynamics of the system of
interest, Eq. (2.1), lifted to N = FO(M) × R

n, are given by

u̇ = Hv(u), v̇ = u−1V (u(v)), (u(t0), v(t0)) = (u0, v0). (3.35)

We want to emphasize that v is defined in terms of the dynamical frame
u, and not in reference to any choice of coordinates on M or FO(M). In other
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words, the components vα of v in the standard basis for Rn are the components
of the particle’s velocity in its own parallel-transported frame. They are not
tied to a particular coordinate system on M or FO(M) and do not transform
under coordinate changes on either space.

4. Randomly Perturbed Geodesic Flow With Forcing

In this section, we will show how we couple noise to the system Eq. (3.35) to
obtain a stochastic differential equation on N .

4.1. Stochastic Differential Equations on Manifolds

First, we recall the definition and some basic properties of semimartingales and
stochastic differential equations on manifolds. The definition and lemmas in
this section are adapted from [8], but we repeat them here for completeness.
The general theory outlined in this section does not require a Riemannian
metric on M .

Definition 1. Let M be an n-dimensional smooth manifold, (Ω,F ,Ft, P ) be
a filtered probability space satisfying the usual conditions [1], and Xt be a
continuous adapted M -valued process. X is called an M -valued continuous
semimartingale if f ◦ Xt is an R-valued semimartingale for all f ∈ C∞(M).
We will only deal with continuous semimartingales, so we drop the adjective
continuous from now on.

Note that, by Itô’s formula, if M = R
n then this agrees with the usual

definition.

Definition 2. Let V be a k-dimensional vector space and Zt be a V -valued
semimartingale, called the driving process. Let M be a smooth manifold, Xt

be an M -valued semimartingale, and σ be a smooth section of TM
⊗

V ∗. We
say that Xt is a solution to the SDE

Xt = Xt0 +
∫ t

t0

σ(Xs) ◦ dZs (4.1)

if

f(Xt) = f(Xt0) +
∫ t

t0

σ(Xs)[f ] ◦ dZs (4.2)

P -a.s. for all f ∈ C∞(M), where
∫ · · · ◦ dZs denotes the stochastic integral

in the Stratonovich sense. We use the notation Y [f ] to denote the smooth
function one obtains by operating with some vector field, Y , on a smooth
function, f , and in the stochastic integral we contract over the V ∗ and V
factors in σ[f ] and Z, respectively. We will equivalently write the SDE (4.1)
in differential notation

dXt = σ(Xs) ◦ dZs. (4.3)
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Note that when M is a finite dimensional vector space, this definition
agrees with the usual one (in the Stratonovich sense). Using a basis for V
and the dual basis for V ∗ to write the contraction in Eq. (4.2) as a sum over
components in these bases, we arrive at a formula analogous to the definition in
[8] (page 21). However, we find it useful to use the above formulation in terms
of a vector space and its dual to justify use of the summation convention over
contracted indices.

The Stratonovich integral is used in Eq. (4.2) to make the definition
diffeomorphism invariant, as captured by the following Stratonovich calculus
variant of the Itô change-of-variables formula (see [8, pp. 20–21]).

Lemma 4.1. Let Xt be an M -valued semimartingale that satisfies the SDE

Xt = Xt0 +
∫ t

t0

σ(Xs) ◦ dZs, (4.4)

N be another smooth manifold, and Φ : M → N be a diffeomorphism. Then
X̃ ≡ Φ ◦ X is an N -valued semimartingale and satisfies the SDE

X̃t = X̃t0 +
∫ t

t0

(Φ∗σ)(X̃s) ◦ dZs (4.5)

where Φ∗ denotes the pushforward.

Definition 4.2 can be restated in terms of the Itô integral as follows,
similar to p.23 of [8].

Lemma 4.2. Xt is a solution to the SDE

Xt = Xt0 +
∫ t

t0

σ(Xs) ◦ dZs (4.6)

iff

f(Xt) = f(Xt0) +
∫ t

t0

σ(Xs)[f ]dZs +
1
2

∫ t

t0

σα(Xs)[σβ [f ]]d[Zα, Zβ ]s (4.7)

for all f ∈ C∞(M) where the summation convention is employed and the
sum is over the components in any pair of dual bases for V and V ∗. This is
another manifestation of the Itô formula for the stochastic differential of the
composition of a smooth function with a semimartingale.

4.2. Coupling to Noise

For the remainder of this paper, we will assume M is compact, connected, and
without boundary. Note that this also implies FO(M) is compact and without
boundary. In this section, we describe the coupling of the dynamical system
Eq. (3.35) to noise, and hence we must also assume M is equipped with a
Riemannian metric.

Let W be an R
k-valued Wiener process and σ : FO(M) → R

n×k be
smooth. We are interested in the following SDE for (u, v) ∈ N = FO(M)×R

n,

ut = u0 +
∫ t

t0

Hvs
(us)ds, (4.8)
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vt = v0 +
1
m

∫ t

t0

u−1
s V (usvs)ds +

1
m

∫ t

t0

σ(us) ◦ dWs. (4.9)

Note that we have replaced V in Eq. (3.35) with 1
mV (where now V is inde-

pendent of m), making the dependence on particle mass, m, explicit.
To connect with Definition 2, one must view Hv(u), 1

mu−1V (uv), and
1
mσ(u) as sections of TN

⊗
(Rk+1)∗ (identifying T(u,v)N with TuFO(M)

⊕

R
n), and use the driving R

k+1-valued semimartingale Zt = (t,Wt). Alterna-
tively, one could view the above objects as k+1 vector fields on N and include
sums over indices, as done in [8], but for economy of notation, we wish to avoid
employing indices and explicit summations when possible.

Because the Wiener process only couples to the equation for v, which is a
process with values in the second factor of the product space N = FO(M)×R

n,
a solution of the SDE (4.8)–(4.9) on the manifold N in the sense of Eq. (4.2)
is equivalent to the existence of an N -valued semimartingale, (u, v), such that
the first component is pathwise C1 and pathwise satisfies the ODE

u̇t = Hvt
(ut), u(t0) = u0 (4.10)

and the second component satisfies the SDE on R
n

vt = v0 +
1
m

∫ t

t0

u−1
s V (usvs)ds +

1
m

∫ t

t0

σ(us)dWs. (4.11)

Note that u has locally bounded variation, so the choice of stochastic integral
in the second equation is not significant. We use the Itô notation here. We
emphasize that while the machinery of Sect. 4.1 is not needed to formulate the
above system, it will be required when we pass to the limit m → 0.

For the remainder of the paper, we will make the following assumption.

Assumption 1. We will assume that the deterministic vector field V is the sum
of a position-dependent force term and a position-dependent linear drag term

V (w) = F (x) − γ(x)w, w ∈ TxM, x = π(w) ∈ M, (4.12)

where F is a smooth vector field on M and γ is a smooth
(
1
1

)
tensor field on

M . We will not assume that the force field F comes from a potential.
As stated in Sect. 1.1, we will also assume that the symmetric part of

γ, γs = 1
2 (γ + γT ), has eigenvalues bounded below by a constant γ1 > 0 on all

of M . We again emphasize that this coercivity assumption will be crucial for
the momentum decay estimates of Sect. 5.

In the following it will be useful to denote u−1F (π(u)) by F (u) and
u−1γ(π(u))u by γ(u), letting the context distinguish between the different
notations. These are smooth R

n- and R
n×n-valued functions on FO(M), re-

spectively. With these definitions, the SDE (4.8)–(4.9) becomes

ut = u0 +
∫ t

t0

Hvs
(us)ds, (4.13)

vt = v0 +
1
m

∫ t

t0

[F (us) − γ(us)vs]ds +
1
m

∫ t

t0

σ(us)dWs. (4.14)
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Given k vector fields, σα(x), on M , these induce corresponding noise coeffi-
cients on the frame bundle, σ(u), given by

σ(u)eα = u−1σα(π(u)). (4.15)

Additionally, one is often interested in the case where k = n and σ(u)
comes from a

(
1
1

)
-tensor field on a M , denoted σ(x), in the same manner as

γ(u), i.e.,
σ(u) = u−1σ(π(u))u. (4.16)

For most of this work, we keep the discussion general and deal only with
σ(u).

The following lemmas will be useful.

Lemma 4.3. Let γs denote the symmetric part of γ. Then

γs(u) = u−1γs(π(u))u (4.17)

Proof. We are done if we can show

γT (u) = u−1γT (π(u))u. (4.18)

Letting · be the Euclidean inner product on R
n, for x, y ∈ R

n we have

y · γT (u)x = (γ(u)y) · x = (u−1γ(π(u))uy) · x = g(γ(π(u))uy, ux)

= g(uy, γT (π(u))ux) = y · (u−1γT (π(u))ux). (4.19)

This holds for all x, y and so the proof is complete. �
Corollary 4.1. The eigenvalues of γs(u) and γs(π(u)) are the same. In par-
ticular, by Assumption 1, the eigenvalues of γs(u) are also bounded below by
γ1 > 0 for all u ∈ FO(M).

This also implies that the real parts of the eigenvalues of γ(u) are bounded
below by γ1 for all u ∈ FO(M). In addition,

‖e−tγ(u)‖ ≤ e−γ1t, ‖e−tγ(u)T ‖ ≤ e−γ1t, (4.20)

for any u ∈ FO(M) and any t ≥ 0 (see, for example, p. 86 of [29]).

Lemma 4.4. For each (u0, v0) ∈ N there exists a unique globally defined so-
lution (ut, vt), t ∈ [0,∞) to the SDE (4.13)–(4.14) that pathwise satisfies the
initial conditions. It can be chosen so that pathwise, t �→ ut is C1 and satisfies
the ODE (4.10). We emphasize that the global-in-time existence relies on the
compactness of M .

Proof. The diffusion term for the SDE is independent of v and the drift is
an affine function of v, so compactness of FO(M) implies that the drift and
diffusion are linearly bounded in v, uniformly in u. Therefore, by embedding
FO(M) compactly in some R

l, one can use the results on global existence and
uniqueness of solutions to a vector-valued SDE with linearly bounded coef-
ficients (see for example [1, Theorem 5.2.9]) to prove existence of a unique
globally defined solution to the SDE that pathwise satisfies the initial condi-
tions. One can modify the result on a measure zero set to ensure that the u
component is also a C1-function of t and satisfies the ODE (4.10) everywhere,
not just a.s. �
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Often one is only interested in the evolution of the position, xt = π(ut),
and velocity, ẋt, degrees of freedom. The SDE (4.13) implies that ẋt = utvt

and, pathwise, u(t) is horizontal. In particular, for any w ∈ R
n, u(t)w is parallel

transported along x(t), the same as for the deterministic system. The following
lemma captures the dependence of the solution on the choice of an initial frame
in the case where σ is given by Eq. (4.16).

Lemma 4.5. Let h ∈ O(Rn) and (ut, vt) be the solution to Eqs. (4.13)–(4.14)
corresponding to the initial condition (u0, v0). Suppose σ(u) is obtained from
σ(x) as in Eq. (4.16). Then

(ũt, ṽt) ≡ (uth, h−1vt) (4.21)

is the solution to Eqs. (4.13)–(4.14) with the initial condition (u0h, h−1v0) and
the Wiener process Wt replaced by the Wiener process W̃t = h−1Wt.

Proof. (ũt, ṽt) is a semimartingale starting at (u0h, h−1v0). The map

Φ(u, v) = (uh, h−1v) (4.22)

is a diffeomorphism of N and, therefore, Lemma 4.1 implies

dũt = (Rh)∗(Hv(t)(ut))dt,

dṽt =
1
m

(Lh−1)∗(F (ut) − γ(ut)vt)dt +
1
m

(Lh−1)∗σ(us)dWs (4.23)

where R and L denote right and left multiplication, respectively. Using the
definitions of F (u), γ(u) and σ(u) this simplifies to

dũt = Hṽt
(ũt)dt, dṽt =

1
m

(F (ũt) − γ(ũt)ṽt)dt +
1
m

σ(ũt)dW̃t. (4.24)

�

5. Rate of Decay of the Momentum

We now begin our investigation of the properties of the solutions of the SDE
(4.13)–(4.14) in the small mass limit by proving that the momentum process,
pt = mvt, converges to zero in several senses as m → 0. To this end, we
will introduce a superscript to the solutions, (um

t , vm
t ), of Eqs. (4.13)–(4.14) to

denote the corresponding value of the mass. The non-random initial conditions,
u0, v0, will be fixed independently of m.

More specifically, the momentum process will be shown to converge to
zero at a rate dependent on powers of m. This convergence is shown with
respect to the uniform Lp-metric on continuous paths (Proposition 5.1), Lp

metric (Proposition 5.2), and as a stochastic integral with respect to the mo-
mentum (Proposition 5.3). To prove these propositions, the equation for vm

t ,
Eq. (4.14), is solved in terms of um

t . Estimates are made on the Lebesgue
integrals much like in the ordinary differential equation case. The stochastic
integral term is rewritten to mirror the ODE case as closely as possible and
then broken into small intervals which can be controlled using the Burkholder–
Davis–Gundy inequalities.
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First we give some useful lemmas.

5.1. Some Lemmas

Lemma 5.1. Let Xt = X0 + Mt + At be a continuous R
k-valued semimartin-

gale on (Ω,F ,Ft, P ) with local martingale component Mt and locally bounded
variation component At. Let V ∈ L1

loc(A) ∩ L2
loc(M) be R

n×k-valued and let
B(t) be a continuous R

n×n-valued adapted process. Let Φ(t) be the adapted
R

n×n-valued C1 process that pathwise solves the initial value problem (IVP)

Φ̇(t) = B(t)Φ(t), Φ(0) = I. (5.1)

Then we have the P -a.s. equalities

Φ(t)

∫ t

0

Φ−1(s)VsdXs =

∫ t

0

VsdXs + Φ(t)

∫ t

0

Φ−1(s)B(s)

(∫ s

0

VrdXr

)
ds

(5.2)

= Φ(t)

∫ t

0

VsdXs − Φ(t)

∫ t

0

Φ−1(s)B(s)

(∫ t

s

VrdXr

)
ds

(5.3)

for all t.
If the eigenvalues of the symmetric part of B,Bs = 1

2 (B + BT ), are
bounded above by −α for some α > 0 then for every T ≥ δ > 0 we have the
P -a.s. bound

sup
t∈[0,T ]

∥∥∥∥Φ(t)
∫ t

0

Φ−1(s)VsdXs

∥∥∥∥ ≤
(

1 +
4
α

sup
s∈[0,T ]

‖B(s)‖
)

×
(

e−αδ sup
t∈[0,T ]

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥ + max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

VrdXr

∥∥∥∥

)

(5.4)

where N = max{k ∈ Z : kδ < T}. Here and in the following, we use the �2

norm on every R
k.

Proof. Using integration by parts, together with the fact that Φ is a process of
locally bounded variation and Φ̇(t) = B(t)Φ(t), we obtain the P -a.s. equality

Φ(t)
∫ t

0

Φ−1(s)VsdXs =
∫ t

0

VsdXs +
∫ t

0

B(s)Φ(s)
∫ s

0

Φ−1(r)VrdXrds (5.5)

for all t.
Fix an ω ∈ Ω for which the above equality holds and consider the result-

ing continuous functions r(t) =
∫ t

0
VsdXs and y(t) = Φ(t)

∫ t

0
Φ−1(s)VsdXs.

Eq. (5.5) implies that these satisfy the integral equation

y(t) = r(t) +
∫ t

0

B(s)y(s)ds, y(0) = 0. (5.6)

The unique solution to this equation is [30]

y(t) = r(t) + Φ(t)
∫ t

0

Φ−1(s)B(s)r(s)ds. (5.7)



726 J. Birrell et al. Ann. Henri Poincaré

This proves the first equality in Eq. (5.2). For the second, we compute

Φ(t)
∫ t

0

VsdXs − Φ(t)
∫ t

0

Φ−1(s)B(s)
(∫ t

s

VrdXr

)
ds

= Φ(t)
(∫ t

0

VsdXs −
∫ t

0

Φ−1(s)B(s)
(∫ t

0

VrdXr −
∫ s

0

VrdXr

)
ds

)

= Φ(t)
∫ t

0

Φ−1(s)B(s)
(∫ s

0

VrdXr

)
ds

+ Φ(t)
(

I −
∫ t

0

Φ−1(s)B(s)ds

) ∫ t

0

VrdXr

= Φ(t)
∫ t

0

Φ−1(s)B(s)
(∫ s

0

VrdXr

)
ds

+ Φ(t)
(

I +
∫ t

0

d
ds

Φ−1(s)ds

) ∫ t

0

VrdXr

= Φ(t)
∫ t

0

Φ−1(s)B(s)
(∫ s

0

VrdXr

)
ds +

∫ t

0

VrdXr, (5.8)

where we have used the formula
d
ds

Φ−1(s) = −Φ−1(s)Φ̇(s)Φ−1(s). (5.9)

To obtain the bound Eq. (5.4) we start from Eq. (5.3) and take the norm
to find∥∥∥∥Φ(t)

∫ t

0

Φ−1(s)VsdXs

∥∥∥∥ ≤ ‖Φ(t)‖
∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥

+
∫ t

0

∥∥Φ(t)Φ−1(s)
∥∥ ‖B(s)‖

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds.

(5.10)

For t ≥ s, the fundamental solution Φ(t)Φ−1(s) satisfies the bound

‖Φ(t)Φ−1(s)‖ ≤ e
∫ t
s

λmax(r)dr (5.11)

where λmax(r) is the largest eigenvalue of Bs(r) (see, for example, p. 86 of
[29]). Therefore, assuming λmax ≤ −α < 0 gives

∥∥∥∥Φ(t)
∫ t

0

Φ−1(s)VsdXs

∥∥∥∥ ≤ e−αt

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥

+ sup
s∈[0,t]

‖B(s)‖
∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ds.

(5.12)

For any T ≥ δ > 0 we have the P -a.s. bounds

sup
t∈[0,T ]

e−αt

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥ ≤ sup
t∈[0,δ]

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥ + e−αδ sup
t∈[δ,T ]

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥
(5.13)
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and

sup
t∈[0,T ]

(
sup

s∈[0,t]

‖B(s)‖
∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds

)

≤ sup
s∈[0,T ]

‖B(s)‖
(

sup
t∈[0,δ]

∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ds

+ sup
t∈[δ,T ]

∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ds

)
. (5.14)

The first term can be bounded as follows:

sup
t∈[0,δ]

∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ds

= sup
t∈[0,δ]

∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

0

VrdXr −
∫ s

0

VrdXr

∥∥∥∥ ds

≤ sup
t∈[0,δ]

∫ t

0

e−α(t−s)2 sup
0≤τ≤δ

∥∥∥∥
∫ τ

0

VrdXr

∥∥∥∥ds ≤ 2
α

sup
0≤t≤δ

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥ .

(5.15)

In the second term, we can split the integral to obtain

sup
t∈[δ,T ]

∫ t

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds

= sup
t∈[δ,T ]

(∫ t−δ

0

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds +
∫ t

t−δ

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds

)

≤ 2
α

e−αδ sup
t∈[0,T ]

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥ + sup
t∈[δ,T ]

∫ t

t−δ

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds. (5.16)

Let N = max{k ∈ Z : kδ < T}. Then P -a.s.

sup
t∈[δ,T ]

∫ t

t−δ

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ ds

≤ max
k=0,...,N−1

sup
t∈[(k+1)δ,(k+2)δ]

∫ t

kδ

e−α(t−s)

∥∥∥∥
∫ t

s

VrdXr

∥∥∥∥ds

= max
k=0,...,N−1

sup
t∈[(k+1)δ,(k+2)δ]

∫ t

kδ

e−α(t−s)

∥∥∥∥
∫ t

kδ

VrdXr −
∫ s

kδ

VrdXr

∥∥∥∥ds

≤ 2
α

max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

VrdXr

∥∥∥∥ . (5.17)

Combining Eqs. (5.15) and (5.17) and using the inequality

sup
t∈[0,δ]

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥ ≤ max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

VrdXr

∥∥∥∥ (5.18)
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gives the P -a.s. bound

sup
t∈[0,T ]

∥∥∥∥Φ(t)
∫ t

0

Φ−1(s)VsdXs

∥∥∥∥

≤ sup
t∈[0,δ]

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥ + e−αδ sup
t∈[δ,T ]

∥∥∥∥
∫ t

0

VsdXs

∥∥∥∥

+
2
α

sup
s∈[0,T ]

‖B(s)‖
(

sup
t∈[0,δ]

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥ + e−αδ sup
t∈[0,T ]

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥

+ max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

VrdXr

∥∥∥∥

)

≤
(

1 +
4
α

sup
s∈[0,T ]

‖B(s)‖
) (

e−αδ sup
t∈[0,T ]

∥∥∥∥
∫ t

0

VrdXr

∥∥∥∥

+ max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

VrdXr

∥∥∥∥

)
(5.19)

as claimed. �

It will also be useful to recall the following (see [1]).

Lemma 5.2. If M ∈ Mc,loc, V ∈ L2
loc(M), and E[

∫ t

t0
V 2d[M ]s] < ∞ for all t

then
∫ t

t0
VsdMs is a martingale.

5.2. Limit of the Momentum Process

In this section, we show three propositions about convergence of the momen-
tum process pm

t = mvm
t to zero as m → 0.

Proposition 5.1. For any p > 0, T > 0, and 0 < β < p/2 we have

E

[
sup

t∈[0,T ]

‖pm
t ‖p

]
= O(mβ) as m → 0. (5.20)

Proof. The strategy here is to first rewrite the equation for pm
t so that the

stochastic integral term has the same form as the left-hand side of Eq. (5.2).
Using the bound Eq. (5.4), we will then be able to show that both terms decay
as m → 0. The first term will decay exponentially, and the second term will
decay because the stochastic integrals will be taken over “small” time intervals.

The momentum solves the SDE

dpm
t =

(
F (um

t ) − 1
m

γ(um
t )pm

t

)
dt + σ(um

t )dWt. (5.21)

This is a linear SDE on R
n where F (um

t ),− 1
mγ(um

t ), and σ(um
t ) are

pathwise continuous adapted vector- or matrix-valued processes, and so its
unique solution can be written in terms of um

s

pm
t = Φ(t)

(
pm
0 +

∫ t

0

Φ−1(s)F (um
s )ds +

∫ t

0

Φ−1(s)σ(um
s )dWs

)
(5.22)
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where Φ(t) is the adapted C1 process that pathwise solves the IVP

Φ̇(t) = − 1
m

γ(um
t )Φ(t), Φ(0) = I. (5.23)

This technique of utilizing the explicit solution of a linear SDE to ob-
tain estimates is used in [31], where the case of constant, scalar drag on flat
Euclidean space is studied.

By Assumption 1, the symmetric part of − 1
mγ(u) has eigenvalues

bounded above by −γ1/m < 0 with the bound uniform in u. Therefore, using
Eq. (5.11), for s ≤ t,

‖Φ(t)Φ−1(s)‖ ≤ e−γ1(t−s)/m (5.24)

and hence for every T > 0, p ≥ 1,

sup
t∈[0,T ]

‖pm
t ‖p ≤ sup

t∈[0,T ]

3p−1

(
e−γ1pt/mmp‖v0‖p

+
(∫ t

0

e−γ1(t−s)/m‖F (um
s )‖ds

)p

+
∥∥∥∥Φ(t)

∫ t

0

Φ−1(s)σ(um
s )dWs

∥∥∥∥
p
)

≤ 3p−1

(
mp‖v0‖p +

mp

γp
1

‖F‖p
∞

+ sup
t∈[0,T ]

∥∥∥∥Φ(t)
∫ t

0

Φ−1(s)σ(um
s )dWs

∥∥∥∥
p
)

, (5.25)

where ‖F‖∞ denotes the supremum of ‖F (u)‖ over u and we have employed
the inequality (

N∑

i=1

ai

)p

≤ Np−1
N∑

i=1

ap
i (5.26)

for every p ≥ 1, N ∈ N.
Taking the pth power of Eq. (5.4), for any δ with 0 < δ < T we have the

P -a.s. bound

sup
t∈[0,T ]

∥∥∥∥Φ(t)
∫ t

0

Φ−1(s)σ(um
s )dWs

∥∥∥∥
p

≤ 2p−1

(
1 +

4
γ1

sup
s∈[0,T ]

‖γ(um
t )‖

)p (
e−pδγ1/m sup

t∈[0,T ]

∥∥∥∥
∫ t

0

σ(um
r )dWr

∥∥∥∥
p

+ max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

σ(um
r )dWr

∥∥∥∥
p
)

(5.27)

where N = max{k ∈ Z : kδ < T}.
We now return to bounding the momentum using Eq. (5.25). As was done

in Eq. (5.25), the supremum of a quantity ‖A(u)‖ will be denoted by ‖A‖∞
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for an arbitrary matrix- or vector-valued function A (rather than by the more
precise but less readable ‖‖A‖‖∞).

sup
t∈[0,T ]

‖pm
t ‖p ≤ 3p−1

⎡

⎣mp‖v0‖p +
mp

γp
1

‖F‖p
∞ + 2p−1

(
1 +

4
γ1

‖γ‖∞

)p

×
(

e−pδγ1/m sup
t∈[0,T ]

∥∥∥∥
∫ t

0

σ(um
r )dWr

∥∥∥∥
p

+

(
N−1∑

k=0

sup
t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

σ(um
r )dWr

∥∥∥∥
pq

)1/q
⎞

⎠

⎤

⎦ (5.28)

where we used Eq. (5.27) and the fact that the supremum norm on R
N is

bounded by the �q norm for any q ≥ 1. We will take q > 1.
Taking the expected value and then using Hölder’s inequality on the

expectations, we get

E

[
sup

t∈[0,T ]

‖pm
t ‖p

]
≤ 3p−1

⎡

⎣mp‖v0‖p +
mp

γp
1

‖F‖p
∞

+ 2p−1

(
1 +

4
γ1

‖γ‖∞

)p
⎛

⎝e−pδγ1/mE

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0

σ(um
r )dWr

∥∥∥∥
pq

]1/q

+

(
N−1∑

k=0

E

[
sup

t∈[kδ,(k+2)δ]

∥∥∥∥
∫ t

kδ

σ(um
r )dWr

∥∥∥∥
pq

])1/q
⎞

⎠

⎤

⎦ . (5.29)

The Burkholder–Davis–Gundy inequalities (see for example Theorem 3.28
in [1]), for d > 1 imply the existence of a constant Cd,n > 0 such that

E

[
sup

0≤s≤T

∥∥∥∥
∫ s

0

σ(um
r )dWr

∥∥∥∥
d
]

≤ Cd,nE

⎡

⎣
(∫ T

0

‖σ(um
r )‖2F dr

)d/2
⎤

⎦ (5.30)

where ‖ · ‖F denotes the Frobenius (or Hilbert–Schmidt) norm.
Therefore, letting δ = m1−κ for 0 < κ < 1, we find

E

[
sup

t∈[0,T ]

‖pm
t ‖p

]
≤ 3p−1

⎡

⎣mp‖v0‖p +
mp

γp
1

‖F‖p
∞ + 2p−1C1/q

pq,n

(
1 +

4
γ1

‖γ‖∞

)p

×

⎛

⎜⎝e−pγ1/mκ

E

⎡

⎣
(∫ T

0

‖σ(um
r )‖2F dr

)pq/2
⎤

⎦
1/q

+

⎛

⎝
N−1∑

k=0

E

⎡

⎣
(∫ (k+2)δ

kδ

‖σ(um
r )‖2F dr

)pq/2
⎤

⎦

⎞

⎠
1/q

⎞

⎟⎠

⎤

⎥⎦
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≤ 3p−1

[
mp‖v0‖p +

mp

γp
1

‖F‖p
∞ + 2p−1C1/q

pq,n‖σ‖p
F,∞

×
(

1 +
4
γ1

‖γ‖∞

)p (
e−pγ1/mκ

T p/2 + 2p/2
(
Nδpq/2

)1/q
)]

,

(5.31)

where we define ‖σ‖F,∞ = supu ‖σ(u)‖F .
Nδ < T , hence

Nδpq/2 < Tδpq/2−1 = Tm(1−κ)(pq/2−1). (5.32)

Therefore,

E

[
sup

t∈[0,T ]

‖pm
t ‖p

]
= O(m(1−κ)(p/2−1/q)). (5.33)

For any 0 < β < p/2 we can choose 0 < κ < 1 and q > 1 so that
(1 − κ)(p/2 − 1/q) = β, thereby proving the claim for p ≥ 1.

For any 0 < p < 1 and 0 < β < p/2, take q ≥ 1. Then βq/p < q/2 so,
using Hölder’s inequality, we find

E

[
sup

t∈[0,T ]

‖pm
t ‖p

]
≤ E

⎡

⎣
(

sup
t∈[0,T ]

‖pm
t ‖p

)q/p
⎤

⎦
p/q

= O(mβ). (5.34)

�

If we do not take the supremum over t inside the expectation, we can
prove a stronger decay result.

Proposition 5.2. For any q > 0 and any m0 > 0 there exists a C > 0 such that

sup
t∈[0,∞)

E[‖pm
t ‖q] ≤ Cmq/2 (5.35)

for all 0 < m ≤ m0.

Proof. Let γ1 > α > 0 and define the process zm
t = eαt/mpm

t . By Itô’s formula

zm
t = pm

0 +
∫ t

0

α

m
zm
s ds +

∫ t

0

eαs/m

(
F (um

s ) − 1
m

γ(um
s )pm

s

)
ds

+
∫ t

0

eαs/mσ(um
s )dWs (5.36)

= pm
0 +

∫ t

0

[
− 1

m
(γ(um

s ) − α)zm
s + eαs/mF (um

s )
]

ds

+
∫ t

0

eαs/mσ(um
s )dWs. (5.37)

This holds for any α, but we will need 0 < α < γ1 later.
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Now, applying the Itô formula again to ‖zm
t ‖2 = (zm

t )T zm
t we find

‖zm
t ‖2 = ‖pm

0 ‖2 + 2
(∫ t

0

(zm
s )T

(
− 1

m
(γ(um

s ) − α)zm
s + eαs/mF (um

s )
)

ds

+
∫ t

0

eαs/m(zm
s )T σ(um

s )dWs

)

+
∑

i

⎡

⎣
∑

j

∫ ·

0

eαs/mσi
j(u

m
s )dW j

s ,
∑

j

∫ ·

0

eαs/mσi
j(u

m
s )dW j

s

⎤

⎦

t

.

(5.38)

The quadratic variation term is

∑

i

⎡

⎣
∑

j

∫ ·

0

eαs/mσi
j(u

m
s )dW j

s ,
∑

j

∫ ·

0

eαs/mσi
j(u

m
s )dW j

s

⎤

⎦

t

=
∫ t

0

e2αs/m‖σ(um
s )‖2F ds. (5.39)

Therefore,

‖zm
t ‖2 = ‖pm

0 ‖2 − 2
m

∫ t

0

(zm
s )T (γ(um

s ) − α)zm
s ds + 2

∫ t

0

eαs/m(zm
s )T F (um

s )ds

+
∫ t

0

e2αs/m‖σ(um
s )‖2F ds + 2

∫ t

0

eαs/m(zm
s )T σ(um

s )dWs. (5.40)

First we will show the result for q = 2p with p a positive integer. Using
Itô’s formula one more time, we obtain

‖zm
t ‖2p = ‖pm

0 ‖2p − 2
m

∫ t

0

p‖zm
s ‖2(p−1)(zm

s )T (γ(um
s ) − α)zm

s ds

+ 2
∫ t

0

p‖zm
s ‖2(p−1)eαs/m(zm

s )T F (um
s )ds

+
∫ t

0

p‖zm
s ‖2(p−1)e2αs/m‖σ(um

s )‖2F ds

+
p(p − 1)

2

∫ t

0

‖zm
s ‖2(p−2)4e2αs/m‖σT (um

s )zm
s ‖2ds

+ 2
∫ t

0

p‖zm
s ‖2(p−1)eαs/m(zm

s )T σ(um
s )dWs. (5.41)

By Assumption 1, we have yT γ(u)y ≥ γ1‖y‖2 for all u ∈ FO(M), y ∈ R
n.

Hence, defining ε = γ1−α > 0, we deduce from here the following upper bound
on the norm of pm

t .

‖pm
t ‖2p ≤ e−2pαt/m‖pm

0 ‖2p − 2pε

m

∫ t

0

e−2pα(t−s)/m‖pm
s ‖2pds

+ 2p

∫ t

0

e−2pα(t−s)/m‖pm
s ‖2(p−1)(pm

s )T F (um
s )ds
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+ p

∫ t

0

e−2pα(t−s)/m‖pm
s ‖2(p−1)‖σ(um

s )‖2F ds

+ 2p(p − 1)
∫ t

0

e−2pα(t−s)/m‖pm
s ‖2(p−2)‖σT (um

s )pm
s ‖2ds

+ 2p

∫ t

0

e−2pα(t−s)/m‖pm
s ‖2(p−1)(pm

s )T σ(um
s )dWs. (5.42)

Using Lemma 5.2, the following computation shows that

Mt ≡
∫ t

0

e2pαs/m‖pm
s ‖2(p−1)(pm

s )T σ(um
s )dWs (5.43)

is a martingale.

E

[∫ t

0

‖e2pαs/m‖pm
s ‖2(p−1)(pm

s )T σ(um
s )‖2ds

]

≤ e4pαt/m‖σ‖2∞tE

[
sup

s∈[0,t]

‖pm
s ‖4p−2

]
< ∞, (5.44)

where in the last step, the expectation is finite by Proposition 5.1. Using this
and taking the expected value of Eq. (5.42) we find, for any a > 0,

E[‖pm
t ‖2p] ≤ e−2pαt/m‖pm

0 ‖2p − 2pε

m

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2p]ds

+ 2p

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)(pm

s )T F (um
s )]ds

+ p

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)‖σ(um

s )‖2F ]ds

+ 2p(p − 1)
∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−2)‖σT (um

s )pm
s ‖2]ds

(5.45)

≤ e−2pαt/m‖pm
0 ‖2p − 2pε

m

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2p]ds

+ p

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)(a2‖pm

s ‖2 + ‖F‖2∞/a2)]ds

+ (p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞)
∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)]ds

= e−2pαt/m‖pm
0 ‖2p − p

(
2ε

m
− a2

) ∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2p]ds

(5.46)

+ p‖F‖2∞/a2

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)]ds

+ (p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞)
∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)]ds.

(5.47)
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Letting a2 = 2ε/m yields

E[‖pm
t ‖2p] ≤ e−2pαt/m‖pm

0 ‖2p +
(pm

2ε
‖F‖2∞ + p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞

)

×
∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)]ds. (5.48)

For p = 1, this becomes

E[‖pm
t ‖2] ≤ m2e−2αt/m‖v0‖2 +

m2

4εα
‖F‖2∞ +

m

2α
‖σ‖2F,∞. (5.49)

Hence,

sup
t∈[0,∞)

E[‖pm
t ‖2] ≤ m2‖v0‖2 +

m2

4εα
‖F‖2∞ +

m

2α
‖σ‖2F,∞ ≤ Cm (5.50)

for all 0 < m ≤ m0. So the claim holds for p = 1.
Now suppose it holds for p − 1. Then

sup
t∈[0,∞)

E[‖pm
t ‖2p] ≤ m2p‖v0‖2p +

(pm

2ε
‖F‖2∞ + p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞

)

× sup
t∈[0,∞)

∫ t

0

e−2pα(t−s)/mE[‖pm
s ‖2(p−1)]ds (5.51)

≤ m2p‖v0‖2p +
(pm

2ε
‖F‖2∞ + p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞

)

× sup
t∈[0,∞)

∫ t

0

e−2pα(t−s)/mds sup
t∈[0,∞)

E[‖pm
t ‖2(p−1)] (5.52)

≤ m2p‖v0‖2p + Cmp−1 m

2pα

×
(pm

2ε
‖F‖2∞ + p‖σ‖2F,∞ + 2p(p − 1)‖σ‖2∞

)

≤ C̃mp (5.53)

for all 0 < m ≤ m0. This proves the claim for all positive integers p by
induction.

Finally, let q > 0 be arbitrary. Take p ∈ N with 2p > q. Using Hölder’s
inequality we find

sup
t∈[0,∞)

E[‖pm
t ‖q] ≤

(
sup

t∈[0,∞)

E[‖pm
t ‖2p]

)q/(2p)

≤ (Cmp)q/(2p) = C̃mq/2

(5.54)
for all 0 < m ≤ m0. Therefore, the result holds for any q > 0. �

We can use the above decay results to prove that certain integrals with
respect to the momentum process also vanish in the limit.
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Proposition 5.3. For any smooth function f on FO(M), any T > 0, p > 0, and
any α, β = 1, . . . , n we have

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

f(um
s )d((pm

s )α(pm
s )β)

∣∣∣∣
p
]

= O(mp/2) as m → 0, (5.55)

where α, β refer to the components of the momentum process in the standard
basis for R

n.

Proof. First assume p > 1. Integrating by parts, and using the fact that um is
pathwise C1, we get

∫ t

0

f(um
s )d((pm

s )α(pm
s )β) = f(um

t )(pm
t )α(pm

t )β − f(um
0 )(pm

0 )α(pm
0 )β

−
∫ t

0

(pm
s )α(pm

s )β d
ds

f(um
s )ds. (5.56)

From the original SDE, Eq. (4.13), um satisfies the ODE u̇ = Hv(u), so
d
ds

f(um
s ) =

1
m

Hpm
s

(um
s )[f ]. (5.57)

FO(M) is compact, hence f is bounded. Therefore, decomposing the vector
pm

s in the standard basis eν of Rn and using the notation Hν introduced in
Lemma 3.2, we have

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

f(um
s )d((pm

s )α(pm
s )β)

∣∣∣∣
p
]

≤ 3p−1

(
E

[
sup

0≤t≤T
|f(um

t )(pm
t )α(pm

t )β |p
]

+ E
[|f(um

0 )(pm
0 )α(pm

0 )β |p]

+E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(pm
s )α(pm

s )β 1
m

Hpm
s

(um
s )[f ]ds

∣∣∣∣
p
])

≤ 3p−1

(
‖f‖p

∞E

[
sup

0≤t≤T
‖pm

t ‖2p

]
+ m2p‖f‖p

∞‖v0‖2p

)

+
3p−1

mp
E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(pm
s )α(pm

s )β(pm
s )νHν(um

s )[f ]ds

∣∣∣∣
p
]

. (5.58)

We have assumed p > 1, so we can use Hölder’s inequality with exponents
p and p/(p−1) to estimate the last term. Using boundedness of Hν [f ] (implied
by compactness of FO(M)), this gives

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

(pm
s )α(pm

s )β(pm
s )νHν(um

s )[f ]ds

∣∣∣∣
p
]

≤ E

[(∫ T

0

|(pm
s )α(pm

s )β(pm
s )νHν(um

s )[f ]|ds

)p]

≤ T p−1E

[∫ T

0

|(pm
s )α(pm

s )β(pm
s )νHν(um

s )[f ]|pds

]
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≤ CT p−1E

[∫ T

0

‖pm
s ‖3pds

]
= CT p−1

∫ T

0

E
[‖pm

s ‖3p
]
ds

≤ CT p sup
0≤s≤T

E[‖pm
s ‖3p] (5.59)

for some C > 0.
By Proposition 5.1, for any 0 < κ < p we obtain

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

f(um
s )d((pm

s )α(pm
s )β)

∣∣∣∣
p
]

≤ O(mκ) +
3p−1CT p

mp
sup

0≤s≤T
E

[‖pm
s ‖3p

]
. (5.60)

Applying Proposition 5.2 to the second term we get

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

f(um
s )d((pm

s )α(pm
s )β)

∣∣∣∣
p
]

≤ O(mκ) +
3p−1CT p

mp
C̃m3p/2

≤ O(mκ) + O(mp/2). (5.61)

Taking κ = p/2 gives the result for all p > 1. The result for arbitrary p > 0
then follows by an application of Hölder’s inequality, as in Propositions 5.1
and 5.2. �

6. Calculation of the Limiting SDE

We now manipulate the SDE, Eqs. (4.13)–(4.14), for (um
t , vm

t ) to extract the
terms that survive when m → 0 and thereby a candidate for the limiting SDE.
The actual convergence proof will be given in Sect. 7.

To express the equations in terms of Lebesgue and Itô integrals on some
R

l, we consider the composition of a function f ∈ C∞(FO(M)) with um
t . The

following equations are then satisfied on R and R
n, respectively,

df(um
t ) = Hvm

t
(um

t )[f ]dt, (6.1)

dvm
t =

1
m

(F (um
t ) − γ(um

t )vm
t )dt +

1
m

σ(um
t )dWt. (6.2)

We know that the momentum, pm
t , converges to zero (in various senses)

and our objective will be to separate out such terms. We begin by solving
for vm

t dt in the equation for dvm
t . Note that, by assumption, γs(u) is positive

definite for all u, and hence γ(u) is invertible for every u. Therefore,

vm
t dt = −γ−1(um

t )dpm
t + γ−1(um

t )F (um
t )dt + γ−1(um

t )σ(um
t )dWt. (6.3)

Using the linearity of Hv in v, the first equation can be written

df(um
t ) = (vm

t )νHν(um
t )[f ]dt, (6.4)
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where we are again using the notation Hν introduced in Lemma 3.2 and com-
ponents of the R

n-valued process vm
t will always refer to the standard basis.

For any n × l matrix A, we will let HA(u) denote the element of (Rl)∗ with
action w �→ HAw(u). For any R

l-valued semimartingale, X, we will also write
HA(u)dX as a shorthand for the contraction HAeη

(u)dXη.
With these notations, after substituting Eq. (6.3) into Eq. (6.4) we obtain

df(um
t ) = −Hν(um

t )[f ](γ−1)ν
μ(um

t )d(pm
t )μ

+ Hν(um
t )[f ](γ−1)ν

μ(um
t )Fμ(um

t )dt

+ Hν(um
t )[f ](γ−1)ν

μ(um
t )σμ

η (um
t )dW η

t

= −Hγ−1(um
t )(um

t )[f ]d(pm
t ) + H(γ−1F )(um

t )(um
t )[f ]dt

+ H(γ−1σ)(um
t )(um

t )[f ]dWt. (6.5)

Remark 2. Here and in the following, components of matrix- or R
n-valued

functions on the frame bundle, such as γ(u) or F (u), as well as the implied sums
over repeated indices, will always refer to the standard basis. We emphasize
that these components are unrelated to local coordinates on M or FO(M) and
do not in any way imply that the statements have a local character. Rather, by
lifting a tensor or vector field from M to a matrix- or vector-valued function on
FO(M), we are able to speak about its components in each frame in a globally
defined manner.

The second and third terms in Eq. (6.5) are independent of the momen-
tum, so we focus on the first term. Integrating by parts and using the fact that
um

t is pathwise C1 and satisfies the ODE (4.13) we get

Hγ−1(um
t )(um

t )[f ]d(pm
t )

= d(Hγ−1(um
t )pm

t
(um

t )[f ]) − (pm
t )νd(Hγ−1(um

t )eν
(um

t )[f ])

= d(Hγ−1(um
t )pm

t
(um

t )[f ]) − (pm
t )ν d

dt
(Hγ−1(um

t )eν
(um

t )[f ])dt

= d(Hγ−1(um
t )pm

t
(um

t )[f ]) − (pm
t )νHvm

t
(um

t )[(γ−1)μ
νHμ[f ]]dt

= d(Hγ−1(um
t )pm

t
(um

t )[f ]) − m(vm
t )ν(vm

t )ξKf
νξ(u

m
t )dt (6.6)

by Eq. (6.4), where we define

Kf
νξ(u) = Hξ(u)[(γ−1)μ

ν ]Hμ(u)[f ] + (γ−1)μ
ν (u)Hξ(u)[Hμ[f ]]. (6.7)

The equation for f(um
t ) then becomes

df(um
t ) = −d(Hγ−1(um

t )pm
t

(um
t )[f ]) + m(vm

t )ν(vm
t )μKf

νμ(um
t )dt

+ H(γ−1F )(um
t )(um

t )[f ]dt + H(γ−1σ)(um
t )(um

t )[f ]dWt. (6.8)

To simplify m(vm
t )ν(vm

t )μdt, we follow [13] and compute

d(m(vm
t )νm(vm

t )μ) = m(vm
t )νd(m(vm

t )μ) + m(vm
t )μd(m(vm

t )ν)

+ d([m(vm
t )ν ,m(vm

t )μ])
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= m(vm
t )νd(m(vm

t )μ) + m(vm
t )μd(m(vm

t )ν)

+
∑

δ

σν
δ (um

t )σμ
δ (um

t )dt, (6.9)

where we have used the SDE for (vm
t )ν , Eq. (6.2). Defining

Σνμ(u) =
∑

δ

σν
δ (u)σμ

δ (u) (6.10)

and using the SDE for (vm
t )ν again, we get

d(m(vm
t )νm(vm

t )μ) = m(vm
t )ν(Fμ(um

t ) − γμ
ξ (um

t )(vm
t )ξ)dt

+ m(vm
t )νσμ

η (um
t )dW η

t

+ m(vm
t )μ(F ν(um

t ) − γν
ξ (um

t )(vm
t )ξ)dt

+ m(vm
t )μσν

η (um
t )dW η

t + Σνμ(um
t )dt. (6.11)

Therefore,

m(vm
t )νγμ

ξ (um
t )(vm

t )ξdt + m(vm
t )μγν

ξ (um
t )(vm

t )ξdt

= −d(m(vm
t )νm(vm

t )μ) + ((pm
t )νFμ(um

t ) + (pm
t )μF ν(um

t )) dt

+
(
(pm

t )νσμ
η (um

t ) + (pm
t )μσν

η (um
t )

)
dW η

t + Σνμ(um
t )dt. (6.12)

For scalar γ, one can immediately solve for m(vm
t )ν(vm

t )μdt. To handle
the general case, we utilize the technique developed in [13]. First we rewrite
Eq. (6.12) in integral notation:

∫ t

0

(
m(vm

s )νγμ
ξ (um

s )(vm
s )ξ + m(vm

s )μγν
ξ (um

s )(vm
t )ξ

)
ds

= −m(vm
t )νm(vm

t )μ + m(v0)νm(v0)μ

+
∫ t

0

((pm
s )νFμ(um

s ) + (pm
s )μF ν(um

s )) ds

+
∫ t

0

(
(pm

s )νσμ
η (um

s ) + (pm
s )μσν

η (um
s )

)
dW η

s +
∫ t

0

Σνμ(um
s )ds. (6.13)

The formula for the left-hand side implies that the right-hand side, which
we denote by Cμν

t , is C1 P -a.s. and so we can differentiate both sides with
respect to t to obtain

m(vm
t )νγμ

ξ (um
t )(vm

t )ξ + m(vm
t )μγν

ξ (um
t )(vm

t )ξ = Ċμν
t . (6.14)

Define the matrix V νμ
t = m(vm

t )ν(vm
t )μ. The above equation can be writ-

ten in matrix form
γV + V γT = Ċ. (6.15)

This is a Lyapunov equation, where −γ has eigenvalues with real parts
bounded above by −γ1. Hence, we can solve uniquely for V ,

V =
∫ ∞

0

e−yγĊe−yγT

dy, (6.16)



Vol. 18 (2017) Small Mass Limit of a Langevin Equation on a Manifold 739

see for example Theorem 6.4.2 in [32]. Integrating with respect to t, we get
∫ t

0

m(vm
s )ν(vm

s )μds =
∫ t

0

∫ ∞

0

(e−yγ(um
s ))ν

η(e−yγ(um
s ))μ

ξ dy(Ċs)ηξds. (6.17)

Define the functions Gνμ
ηξ (u) =

∫ ∞
0

(e−yγ(u))ν
η(e−yγ(u))μ

ξ dy. Using the
dominated convergence theorem, along with the formula for the derivative
of the matrix exponential found in [33], one can prove that G is a smooth
function of u. Therefore, the Gνμ

ηξ (um
t ) are semimartingales and

∫ t

0

m(vm
s )β(vm

s )αds =
∫ t

0

Gβα
μν (um

s )dCμν
s = −

∫ t

0

Gβα
μν (um

s )d((pm
s )ν(pm

s )μ)

+
∫ t

0

Gβα
μν (um

s ) ((pm
s )νFμ(um

s ) + (pm
s )μF ν(um

s )) ds

+
∫ t

0

Gβα
μν (um

s )
(
(pm

s )μσν
η (um

s ) + (pm
s )νσμ

η (um
s )

)
dW η

s

+
∫ t

0

Gβα
μν (um

s )Σμν(um
s )ds. (6.18)

Note that if we define
Jβα(u) = Gβα

μν (u)Σμν(u) (6.19)

then J is symmetric and is the unique solution to the Lyapunov equation

γJ + JγT = Σ. (6.20)

Using Eq. (6.18) we find that f(um
t ) satisfies

df(um
t ) = H(γ−1F )(um

t )(um
t )[f ]dt + Jβα(um

t )Kf
βα(um

t )dt

+ H(γ−1σ)(um
t )(um

t )[f ]dWt

− d(Hγ−1(um
t )pm

t
(um

t )[f ]) − Kf
βα(um

t )Gβα
μν (um

t )d((pm
t )ν(pm

t )μ)

+ Kf
βα(um

t )Gβα
μν (um

t ) ((pm
t )νFμ(um

t ) + (pm
t )μF ν(um

t )) dt

+ Kf
βα(um

t )Gβα
μν (um

t )
(
(pm

t )μσν
η (um

t ) + (pm
t )νσμ

η (um
t )

)
dW η

t . (6.21)

Based on the results of Sect. 5, we expect that terms involving pm
t will

converge to zero as m → 0. Therefore, if it exists, we would expect the limiting
process ut to satisfy

df(ut) = H(γ−1F )(ut)(ut)[f ]dt + Jβα(ut)K
f
βα(ut)dt + H(γ−1σ)(ut)(ut)[f ]dWt

(6.22)
for every f ∈ C∞(FO(M)). Note that by Lemma 3.5, the first term is the
horizontal lift of the vector field (γ−1F )(x) on M to FO(M),

H(γ−1F )(u)(u) = (γ−1F )h(u). (6.23)

To express Eq. (6.22) as an SDE on the manifold FO(M) we need to
rewrite it using the Stratonovich integral. This is accomplished by the following
lemma.
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Lemma 6.1. An FO(M)-valued semimartingale ut satisfies the SDE

dut = (γ−1F )h(ut)dt + H(γ−1σ)(ut)(ut) ◦ dWt

− 1
2

∑

α

(γ−1(ut))η
μσμ

α(ut)(γ−1(ut))ξ
νHη(ut)[σν

α]Hξ(ut)dt

− 1
2

(
(γ−1(ut))η

μJμχ(ut)γν
χ(ut) − Jην(ut)

)
Hη(ut)[(γ−1)ξ

ν ]Hξ(ut)dt

− 1
2
Jξν(ut)(γ−1(ut))η

ν [Hη,Hξ](ut)dt (6.24)

iff

df(ut) = H(γ−1F )(ut)(ut)[f ]dt + Jβα(ut)K
f
βα(ut)dt + H(γ−1σ)(ut)(ut)[f ]dWt

(6.25)
for every f ∈ C∞(FO(M)). The sum over α in Eq. (6.24) is taken over the
standard basis for R

k.

Proof. By Lemma 4.2, ut satisfies the SDE (6.24) iff

df(ut) = H(γ−1F )(ut)(ut)[f ]dt + H(γ−1σ)(ut)(ut)[f ]dWt

+
1
2
(γ−1(ut))η

μσμ
α(ut)Hη(ut)[(γ−1)ξ

νσν
βHξ[f ]]d[Wα,W β ]t

− 1
2
(γ−1(ut))η

μσμ
α(ut)(γ−1(ut))ξ

νHη(ut)[σν
β ]Hξ[f ](ut)δαβdt

− 1
2

(
(γ−1(ut))η

μJμχ(ut)γν
χ(ut) − Jην(ut)

)
Hη(ut)[(γ−1)ξ

ν ]Hξ(ut)[f ]dt

− 1
2
Jξν(ut)(γ−1(ut))η

ν [Hη,Hξ](ut)[f ]dt (6.26)

for all f ∈ C∞(FO(M)).
The Lyapunov equation, Eq. (6.20), implies γ−1Σ(γ−1)T = γ−1J

+ J(γ−1)T . Together with the symmetry of J and Σ, this yields the following
for any FO(M)-valued semimartingale ut and any f ∈ C∞(FO(M)).

1

2
(γ−1(ut))

η
μσμ

α(ut)Hη(ut)[(γ
−1)ξ

νσν
βHξ[f ]]d[W α, W β ]t

=
1

2
(γ−1(ut))

η
μσμ

α(ut)
(
Hη(ut)[(γ

−1)ξ
ν ]σν

β(ut)Hξ(ut)[f ]

+(γ−1(ut))
ξ
νHη(ut)[σ

ν
β ]Hξ[f ](ut) + (γ−1(ut))

ξ
νσν

β(ut)Hη(ut)[Hξ[f ]]
)

δαβdt

(6.27)

=
1

2
(γ−1(ut))

η
μΣμν(ut)Hη(ut)[(γ

−1)ξ
ν ]Hξ(ut)[f ]dt

+
1

2
(γ−1(ut))

η
μσμ

α(ut)(γ
−1(ut))

ξ
νHη(ut)[σ

ν
β ]Hξ[f ](ut)δ

αβdt

+
1

4
(γ−1(ut))

η
μΣμν(ut)(γ

−1(ut))
ξ
ν (Hη(ut)[Hξ[f ]] + Hξ(ut)[Hη[f ]]) dt (6.28)

=
1

2
(γ−1(ut))

η
μΣμν(ut)Hη(ut)[(γ

−1)ξ
ν ]Hξ(ut)[f ]dt

+
1

2
(γ−1(ut))

η
μσμ

α(ut)(γ
−1(ut))

ξ
νHη(ut)[σ

ν
β ]Hξ[f ](ut)δ

αβdt
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+
1

2
Jξν(ut)(γ

−1(ut))
η
ν ([Hη, Hξ](ut)[f ] + 2Hξ(ut)[Hη[f ]]) dt (6.29)

= Jξν(ut)K
f
νξ(ut)dt +

1

2
(γ−1(ut))

η
μσμ

α(ut)(γ
−1(ut))

ξ
νHη(ut)[σ

ν
β ]Hξ[f ](ut)δ

αβdt

+
1

2

(
(γ−1(ut))

η
μΣμν(ut) − 2Jην(ut)

)
Hη(ut)[(γ

−1)ξ
ν ]Hξ(ut)[f ]dt

+
1

2
Jξν(ut)(γ

−1(ut))
η
ν [Hη, Hξ](ut)[f ]dt. (6.30)

Using the Lyapunov equation, Eq. (6.20), one more time gives

γ−1Σ − 2J = γ−1JγT − J. (6.31)

Therefore, combining the result of Eq. (6.27) with Eq. (6.26) yields
Eq. (6.25). �

The proposed limiting SDE, Eq. (6.24), includes a drift term generated
by the vector field S(u) = Sh(u) + Sv(u), where

Sh(u) = − 1
2

∑

α

(γ−1(ut))η
μσμ

α(ut)(γ−1(ut))ξ
νHη(ut)[σν

α]Hξ(ut)

− 1
2

(
(γ−1(ut))η

μJμχ(ut)γν
χ(ut) − Jην(ut)

)
Hη(ut)[(γ−1)ξ

ν ]Hξ(ut),

(6.32)

Sv(u) = − 1
2
Jξν(ut)(γ−1(ut))η

ν [Hη,Hξ](ut). (6.33)

This is on top of the horizontal lift of the deterministic force to the frame
bundle, (γ−1F )h(u). Sh(u) is a linear combination of the Hα(u)s, hence is
a horizontal vector field on FO(M). It corresponds to an additional “force”
on the particle’s position, which we call the noise-induced drift. A nonzero
noise-induced drift requires either a non-trivial state dependence of the noise
coefficients, σμ

ν , or non-trivial state dependence of the drag, together with
γ−1JγT �= J , but it does not require any deterministic forcing, F , to be present
in the original system. An analogous phenomenon was derived in Euclidean
space of arbitrary dimension in [13]. See [34] for a recent review of noise-
induced drift in systems with multiplicative noise.

For a torsion-free connection on M , such as the Levi–Civita connection
employed here, the [Hη,Hξ] are vertical vector fields on FO(M) that can be
expressed in terms of the curvature tensor [8]. Therefore, the Sv is a vertical
vector field on FO(M) that results in an additional rotational “force” on the
particle’s frame.

Note that if γ is a scalar then γ and J commute, hence the second term
of Sh vanishes. Sv also vanishes in this case, due to the symmetry of Jξη

combined with the antisymmetry of [Hη,Hξ].

6.1. Some Special Cases

Before we prove convergence to the proposed limiting equation, Eq. (6.24), we
will study its form in several cases of interest. For all these cases, we make the
assumption that k = n and σμ

ν comes from a
(
1
1

)
-tensor field, σ(x), on M , as
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in Eq. (4.16). The following lemma will allow us to obtain a geometric formula
for the noise-induced drift in this case. A similar study could be done in the
case of Eq. (4.15), but we do not pursue this here.

Lemma 6.2. Let σ, τ, κ, be
(
1
1

)
-tensor fields on M and define the matrix-valued

functions σ(u), τ(u), κ(u) as done in Eq. (4.16), i.e., σ(u) = u−1σ(π(u))u and
similarly for τ, κ. Let Y be the vector field on M defined by

Y χ(x) = gνρ(x)τβ
ν (x)κχ

δ (x)(∇βσδ
ρ)(x). (6.34)

The horizontal lift of Y is given by

Y h(u) =
∑

η

τν
η (u)Hν(u)[σξ

η]κχ
ξ (u)Hχ(u). (6.35)

Proof. We work in the domain of a coordinate chart and local o.n. frame Eα

and use the notation defined in Sect. 3.2. Let σμ
ν (x) be the components of σ

in the frame Eα. Therefore,

σν
ξ (u) = (h−1)ν

μσμ
α(x)hα

ξ (6.36)

and similarly for τ, κ. Using Sect. 3.2 and the fact that h ∈ O(Rn), we obtain
∑

η

τν
η (u)Hν(u)[σξ

η] =
∑

η

τν
η (u)hβ

ν ((Λ−1)i
β(x)∂iσ

ξ
η(u) − hκ

μAδ
βκ(x)∂hδ

μ
σξ

η(u))

=
∑

η

τβ
ν (x)hν

η((Λ−1)i
β(x)∂i((h−1)ξ

χσχ
ρ (x)hρ

η)

− hκ
μAδ

βκ(x)∂hδ
μ
((h−1)ξ

χσχ
ρ (x)hρ

η)) (6.37)

= τβ
ν (x)

(
∑

η

hρ
ηhν

η(Λ−1)i
β(x)(h−1)ξ

χ∂i(σχ
ρ )(x)

−
∑

η

hν
ηhκ

μAδ
βκ(x)∂hδ

μ
((h−1)ξ

χ)σχ
ρ (x)hρ

η

−
∑

η

hν
ηhκ

μAδ
βκ(x)(h−1)ξ

χσχ
ρ (x)∂hδ

μ
(hρ

η)

)
(6.38)

= τβ
ν (x)

(
δρν(Λ−1)i

β(x)(h−1)ξ
χ∂i(σχ

ρ )(x)

− δρνhκ
μAδ

βκ(x)((−h−1∂hδ
μ
(h)h−1)ξ

χ)σχ
ρ (x)

−
∑

η

hν
ηhκ

μAδ
βκ(x)(h−1)ξ

χσχ
ρ (x)δρ

δ δμ
η

)
(6.39)

= τβ
ν (x)δνρ((Λ−1)i

β(x)(h−1)ξ
χ∂i(σχ

ρ )(x)

+ hκ
μAδ

βκ(x)(h−1)ξ
φ∂hδ

μ
(hφ

ψ)(h−1)ψ
χσχ

ρ (x)

− Aδ
βρ(x)(h−1)ξ

χσχ
δ (x)) (6.40)



Vol. 18 (2017) Small Mass Limit of a Langevin Equation on a Manifold 743

= τβ
ν (x)δνρ((Λ−1)i

β(x)(h−1)ξ
χ∂i(σχ

ρ )(x)

+ hκ
μAδ

βκ(x)(h−1)ξ
δ(h

−1)μ
χσχ

ρ (x)

− Aδ
βρ(x)(h−1)ξ

χσχ
δ (x)) (6.41)

= τβ
ν (x)δνρ((Λ−1)i

β(x)∂i(σχ
ρ )(x)

+ Aχ
βκ(x)σκ

ρ (x) − Aδ
βρ(x)σχ

δ (x))(h−1)ξ
χ. (6.42)

In the last line, the terms in parentheses are the components of the co-
variant derivative of σ in the direction Eβ ; therefore,

∑

η

τν
η (u)Hν(u)[σξ

η] = τβ
ν (x)δνρ(∇βσ)χ

ρ (x)(h−1)ξ
χ. (6.43)

All tensor components are taken in the o.n. frame Eα, hence gμν = δμν .
Therefore,
∑

η

τν
η (u)Hν(u)[σξ

η]κχ
ξ (u)eχ =u−1(gνρτβ

ν (x)(∇βσ)α
ρ (x)κμ

α(x)Eμ) = u−1Y (x).

(6.44)
This proves

∑

η

τν
η (u)Hν(u)[σξ

η]κχ
ξ (u)Hχ(u) = Hu−1Y (π(u)) = Y h(u). (6.45)

�

Several applications of the above lemma can be used to show that, for
tensor σ, the noise-induced drift is a horizontal lift.

Corollary 6.1. Define the smooth tensor fields on M ,

Σξη(x) = σξ
α(x)gαβ(x)ση

β(x), (6.46)

Jμν(x) =
∫ ∞

0

(e−yγ(x))μ
δ Σδη(x)(e−yγ(x))ν

ηdy, (6.47)

Lμν(x) =
∫ ∞

0

(γ−1(x)e−yγ(x))μ
αΣαβ(x)(γ(x)e−yγ(x))ν

βdy. (6.48)

Then the noise-induced drift vector field, Sh, is the horizontal lift of the
vector field, Y , on M defined by

Y χ = −1
2
gνρ(γ−1σ)β

ν (γ−1)χ
δ ∇βσδ

ρ − 1
2
(Lβρ − Jβρ)∇β(γ−1)χ

ρ . (6.49)

An important special case is when the drag and noise satisfy the fluc-
tuation–dissipation relation.

Corollary 6.2. (A particle satisfying the fluctuation–dissipation relation) Sup-
pose the fluctuation–dissipation relation is satisfied,

γμ
ν (x) =

1
2kBT

σμ
α(x)gαβ(x)σδ

β(x)gδν(x), (6.50)
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where T is the temperature and kB is the Boltzmann constant. Then γμ
ν (u) =

1
2kBT Σμα(u)δαν , Jμν = kBTδμν , Sv = 0, and Sh is the horizontal lift of

Y χ = −kBTgβμ(σ−1)ρ
μ(γ−1)χ

δ ∇βσδ
ρ. (6.51)

Next, we specialize to scalar drag.

Corollary 6.3. (A particle with scalar drag) If γμ
ν (x) = γ(x)δμ

ν for some γ ∈
C∞(M) then Sv = 0 and

Sh = −1
2
(γ−2Y )h, Y χ = gνρσβ

ν ∇βσχ
ρ . (6.52)

The proposed limiting SDE is then

dut = (γ−1F )h(ut)dt− 1
2
(γ−2Y )h(ut)dt+γ−1(π(ut))Hσ(ut)(ut)◦dWt. (6.53)

Next, we consider the case where both γ and σ are scalars.

Corollary 6.4. (A particle with scalar drag and noise) Specializing further to
γμ

ν (x) = γ(x)δμ
ν and σμ

ν (x) = σ(x)δμ
ν for some γ, σ ∈ C∞(M) we obtain

Sv = 0,

Sh = −1
2
(γ−2σ∇σ)h, (6.54)

and hence the proposed limiting SDE is

dut = (γ−1F )h(ut)dt − 1
2
(γ−2σ∇σ)h(ut)dt + (γ−1σ)(π(ut))H(ut) ◦ dWt.

(6.55)
In particular, if σ is a constant then the noise-induced drift vanishes.

Finally, we arrive at the case that leads to Brownian motion in the limit.

Corollary 6.5. (Brownian motion) If γ = σ are constant scalars and F = 0
then the proposed limiting SDE is

dut = H(ut) ◦ dWt, (6.56)

whose solution is the lift of a Brownian motion on M to the frame bundle [8].

Once we prove convergence in the next section, this last corollary will
complete the objective set forth in the introduction, namely deriving Brownian
motion on the manifold as the small mass limit of a noisy inertial system with
drag.

6.2. Behavior Under Change of Frame

The transformation properties of the proposed limiting equation Eq. (6.24)
under right multiplication by an orthogonal matrix are given by the following
lemma.

Lemma 6.3. Let h ∈ O(Rn) and ut be the solution to Eq. (6.24) corresponding
to the initial condition u0. Suppose σ is of the form Eq. (4.16). Then

ũt = uth (6.57)

is the solution to Eq. (6.24) corresponding to the initial condition u0h with the
Wiener process Wt replaced by the Wiener process W̃t = h−1Wt.
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Proof. ũt is a semimartingale with initial condition u0h. Right multiplication
by h is a diffeomorphism, and hence by Lemma 4.1, ũt is a solution to

dũt =
(
(Rh)∗(γ−1F )h + (Rh)∗Sh + (Rh)∗Sv

)
(ũt)dt+(Rh)∗(Hγ−1σ)(ũt)◦dWt.

(6.58)
By Lemma 3.5, horizontal lifts are invariant under right translation. The

vertical term is also right invariant by the following computation:

((Rh)∗Sv)(ũt) = (Rh)∗(Sv(ut))

= −1
2
Jξν(ut)(γ−1(ut))η

ν [(Rh)∗Hη, (Rh)∗Hξ](ũt)

= −1
2
(h−1)β

ξ Jξν(ut)(γ−1(ut))η
ν(h−1)α

η [Hα,Hβ ](ũt). (6.59)

Using the definition of γ(u) along with Eq. (6.19), one can show that

(h−1)β
ξ Jξν(ut)(γ−1(ut))η

ν(h−1)α
η = Jβν(ũt)(γ−1(ũt))α

ν (6.60)

and hence
((Rh)∗Sv)(ũt) = Sv(ũt). (6.61)

The last term in Eq. (6.58) is

(Rh)∗(Hγ−1σ)(ũt) = Hh−1(γ−1σ)(ut)(ũt) = H(γ−1σ)(ũt)h−1(ũt). (6.62)

Hence, we have

dũt = (γ−1F )h(ũt) + Sh(ũt) + Sv(ũt) + (Hγ−1σ)(ũt) ◦ dW̃t (6.63)

as claimed. �
We end this section by showing that if one is only interested in the statis-

tics of the position process, then the vertical drift term, Sv, can be neglected.

Proposition 6.1. Let ut be the solution to the proposed limiting SDE, Eq. (6.24).
Suppose σ is of the form Eq. (4.16). Then there exists an O(Rn)-valued semi-
martingale, ht, with h0 = I, the identity matrix, such that ũt = utht is a
solution to the limiting SDE, minus the vertical component of the drift, i.e., a
solution to

dũt = (γ−1F )h(ũt)dt + H(γ−1σ)(ũt)(ũt) ◦ dW̃t

− 1
2

∑

α

(γ−1(ũt))η
μσμ

α(ũt)(γ−1(ũt))ξ
νHη(ũt)[σν

α]Hξ(ũt)dt

− 1
2

(
(γ−1(ũt))η

μJμχ(ũt)γν
χ(ũt) − Jην(ũt)

)
Hη(ũt)[(γ−1)ξ

ν ]Hξ(ũt)dt,

(6.64)

where the Wiener process W̃t =
∫ t

0
h−1

s dWs is used in the Stratonovich integral.
In particular, since utht and ut have the same position process and unique-

ness in law holds for an SDE on a compact manifold (as can be seen by em-
ploying a smooth embedding in some R

l along with the corresponding result in
[1]), the distribution of the position process is unchanged by the vertical com-
ponent of the drift, even if one does not make a change to the Wiener process
W̃t.
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Proof. Note that for any O(Rn)-valued semimartingale, ht, the process W̃t =∫ t

0
h−1

s dWs is a continuous R
n-valued local martingale with quadratic covari-

ation

[W̃α, W̃ β ]t =
∫ t

0

(h−1
s )α

δ (h−1
s )β

ηδδηds = tδαβ . (6.65)

Hence, W̃t is a Wiener process by Lévy’s theorem [1].
We will show more generally that given a vector field, Y (x), on M , a(

1
1

)
-tensor field, τ(x), on M , and a vertical vector field, V (u), on FO(M) (not

to be confused with the forcing, Eq. (4.12)) one can go from a solution of the
SDE

dut = (Y )h(ut)dt + V (ut)dt + Hτ(ut)(ut) ◦ dWt (6.66)

to a solution of
dũt = (Y )h(ũt)dt + Hτ(ũt)(ũt) ◦ dW̃t (6.67)

with the same initial condition in the manner described above.
Let φ : FO(M) × O(Rn) → FO(M) be the right action and, for u ∈

FO(M), define φu(h) = φ(u, h). These are both smooth maps. For each A ∈
o(Rn), the Lie algebra of O(Rn), we obtain a smooth vertical vector field VA

on FO(M) defined by
VA(u) = (φu)∗A. (6.68)

If we let Ai be a basis for o(Rn) then Vi(u) ≡ VAi
(u) form a basis for the

vertical subspace at each u [8]. Therefore, we can write V (u) = V i(u)Vi(u) for
some smooth functions V i on FO(M).

Let Xi be the smooth right-invariant vector fields on O(Rn) defined by
Xi(h) = (Rh)∗Ai. Consider the SDE on the compact manifold FO(M)×O(Rn),

dut = (Y )h(ut)dt + V (ut)dt + Hτ(ut)(ut) ◦ dWt, (6.69)

dht = −V i(ut)Xi(h)dt. (6.70)

By compactness, a unique solution, (ut, ht), corresponding to the initial
condition (u0, I) exists for all t ≥ 0. Note that the first component, ut, is a
solution to Eq. (6.66) with the initial condition u0.

Next we see how the vector fields of this SDE behave under the pushfor-
ward.

φ∗((Y )h(u) + V (u),−V i(u)Xi(h))

= (Rh)∗((Y )h(u) + V (u)) − (φu)∗(V i(u)Xi(h))

= (Y )h(uh) + (Rh)∗(V (u)) − V i(u)(φu ◦ Rh)∗Ai

= (Y )h(uh) + (Rh)∗V (u) − V i(u)(Rh)∗Vi(u)

= (Y )h(uh) (6.71)

and

φ∗(Hτ(u)eα
(u), 0) = (Rh)∗Hτ(u)eα

(u)

= Hh−1τ(u)eα
(uh) = (h−1)β

αHτ(uh)eβ
(uh). (6.72)
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Using Eqs. (6.71) and (6.72), we can derive the SDE satisfied by the
semimartingale ũt = utht = φ(ut, ht). For any f ∈ C∞(FO(M)), f̃ = f ◦ φ is a
smooth function on FO(M) × O(Rn), hence

f(ũt) = f̃(u0, I) +
∫ t

0

((Y )h(us) + V (us),−V i(us)Xi(hs))[f̃ ]ds

+
∫ t

0

Hτ(us)(us)[f̃ ] ◦ dWs (6.73)

= f(u0) +
∫ t

0

φ∗((Y )h(us) + V (us),−V i(us)Xi(hs))[f ]ds

+
∫ t

0

φ∗Hτ(us)(us)[f ] ◦ dWs (6.74)

= f(u0) +
∫ t

0

(Y )h(ũs)[f ]ds +
∫ t

0

Hτ(ũs)eβ
(ũs)[f ](h−1

s )β
α ◦ dWα

s

= f(u0) +
∫ t

0

(Y )h(ũs)[f ]ds +
∫ t

0

Hτ(ũs)(ũs)[f ] ◦ dW̃s, (6.75)

where we used the fact that ht has locally bounded variation, and hence
∫ t

0

h−1
s ◦ dWs =

∫ t

0

h−1
s dWs = W̃t. (6.76)

Therefore, ũt solves the SDE (6.67) with the initial condition u0, as
claimed. Applying this result to the proposed limiting SDE, Eq. (6.24), com-
pletes the proof. �

7. Existence of the Zero-Mass Limit

We are now in a position to prove convergence of the solutions of the SDE
with mass, Eqs. (4.13)–(4.14), to the solution of the proposed limiting SDE,
Eq. (6.24), as m → 0. First we need a pair of lemmas that relate metric dis-
tance on FO(M) to smooth functions. These lemmas will allow us to prove
convergence globally on the manifold FO(M), without explicitly patching to-
gether computations in local coordinates. Both lemmas make important use
of compactness of the manifold in question.

Lemma 7.1. Let (M, g) be a compact, connected Riemannian manifold and d
be the metric on M induced by g. For any f ∈ C∞(M) there exists a C > 0
such that

|f(x) − f(y)| ≤ Cd(x, y) (7.1)
for all x, y ∈ M .

Proof. The result follows from writing

f(y) − f(x) =
∫ 1

0

η̇t[f ]dt =
∫ 1

0

gt(η̇t,∇ft)dt (7.2)

for any piecewise smooth curve η from x to y, taking the absolute value, and
using the definition of d together with compactness of M . �
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Lemma 7.2. Let (M, g) be a compact, connected Riemannian manifold with
metric d. For any p > 0 there exist finitely many smooth functions fi such
that

d(x, y)p ≤
∑

i

|fi(x) − fi(y)|p. (7.3)

Proof. For each x ∈ M there exists a coordinate chart (Ux, φx) about x and
a constant Cx such that for y, z ∈ Ux we have d(y, z) ≤ Cx‖φx(y) − φx(z)‖
where the right-hand side is the Euclidean norm (see [35,36]). Shrinking the
charts if necessary, we can assume that φx extends smoothly to all of M .

Take another open set, Vx, containing x, with Vx having compact closure
in Ux. By compactness of M there exists a finite subcover Vi ≡ Vxi

and there
also exists R > 0 such that d(y, z) ≤ R for all y, z ∈ M . For each i let ψi be
a smooth function equal to R on Vi with compact support in Ui ≡ Uxi

and
define Ci ≡ Cxi

, φi ≡ φxi
.

Take y, z ∈ M . y ∈ Vi for some i. If z ∈ Ui then

d(y, z)2 ≤ C2
i ‖φi(y) − φi(z)‖2 =

∑

j

(Ciφ
j
i (y) − Ciφ

j
i (z))2. (7.4)

Otherwise, z �∈ Ui, hence

d(y, z)2 ≤ R2 = (ψi(y) − ψi(z))2. (7.5)

So taking the collection of functions Ciφ
j
i , ψi gives the result for p = 2.

For p > 0, if we let N be the number of functions we obtained when p = 2
then raising the p = 2 result to the power p/2 gives

d(x, y)p ≤
(

∑

i

|fi(x) − fi(y)|2
)p/2

≤ Np/2
∑

i

|fi(x) − fi(y)|p

=
∑

i

|gi(x) − gi(y)|p (7.6)

where gi = N1/2fi. �

With these two lemmas, we can now prove the convergence result.

Theorem 7.1. Fix (u0, v0) ∈ N . Let (um
t , vm

t ) be the unique solution to
Eqs. (4.13)–(4.14) with initial condition (u0, v0) and let ut be the unique solu-
tion to Eq. (6.24) with initial condition u0. Fix T > 0 and a Riemannian metric
tensor field on FO(M). Let d be the associated metric on the connected com-
ponent of FO(M) that contains u0. Then for any q > 0 and any 0 < κ < q/2
we have

E

[
sup

t∈[0,T ]

d(um
t , ut)q

]
= O(mκ) as m → 0. (7.7)

We emphasize that this result is heavily reliant on Assumption 1; the
existence of a positive lower bound on the eigenvalues of the symmetric part of
the damping tensor γ.
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Proof. As discussed in Lemma 4.4, a unique solution (um
t , vm

t ) is defined for
all t ≥ 0. Since Eq. (6.24) is an SDE on the compact manifold FO(M), it also
has a unique solution, ut, defined for all t ≥ 0. Both um

t and ut are continuous,
so they stay in the same connected component as u0.

For f ∈ C∞(FO(M)), define

Mf (u) = H(γ−1F )(u)(u)[f ] + Jβα(u)Kf
βα(u), Qf

η(u) = H(γ−1σ)(u)eη
(u)[f ]

(7.8)
where Kf and J were defined in Eqs. (6.7) and (6.19), respectively. Mf and
Qf

η are smooth functions of u.

Remark 3. We again emphasize that the indices appearing in Eq. (7.8) and in
the subsequent computations represent the components in the standard basis
of functions on FO(M) that are valued in the product of some R

ls. Though we
employ the summation convention, these expressions do not represent (con-
tractions of) tensors on M or FO(M). In particular, the following convergence
proof is global in nature and does not directly utilize any computations in local
coordinates on the base manifold or its frame bundle.

Using Eqs. (6.21) and (6.25) and rearranging we obtain

f(um
t ) − f(ut) =

∫ t

0

(
Mf (um

s ) − Mf (us)
)
ds

+
∫ t

0

(
Qf

η(um
s ) − Qf

η(us)
)
dW η

s + Rf (t), (7.9)

where we have grouped the momentum-dependent terms in the quantity

Rf (t) = −
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )d((pm
s )ν(pm

s )μ)

+
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s ) ((pm
s )νFμ(um

s ) + (pm
s )μF ν(um

s )) ds

+
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )
(
(pm

s )μσν
η (um

s ) + (pm
s )νσμ

η (um
s )

)
dW η

s

− Hγ−1(um
t )pm

t
(um

t )[f ] + Hγ−1(u0)p0(u0)[f ]. (7.10)

For now, restrict to q = 2p with p > 1. For any t ≤ T ,

E

[
sup

0≤s≤t
|f(um

s ) − f(us)|2p

]
≤ 32p−1

(
E

[(∫ t

0

|Mf (um
s ) − Mf (us)|ds

)2p
]

+ E

[
sup

0≤s≤t

∣∣∣∣
∫ s

0

Qf
η(um

r ) − Qf
η(ur)dW η

r

∣∣∣∣
2p

]

+E

[
sup

0≤s≤t
|Rf (s)|2p

])
. (7.11)
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Applying the Hölder’s inequality with exponents 2p and 2p/(2p − 1) to
the first term and the Burkholder–Davis–Gundy inequality to the second we
get

E

[
sup

0≤s≤t
|f(um

s ) − f(us)|2p

]
≤ 32p−1

(
T 2p−1E

[∫ t

0

|Mf (um
s ) − Mf (us)|2pds

]

+ CE

[(∫ t

0

∑

η

|Qf
η(um

s ) − Qf
η(us)|2ds

)p]

+E

[
sup

0≤s≤t
|Rf (s)|2p

])
. (7.12)

We have assumed p > 1, so we can use Hölder’s inequality with indices p and
p/(p − 1) on the second term.

E

[(∫ t

0

∑

η

|Qf
η(um

s ) − Qf
η(us)|2ds

)p ]

≤ T p−1E

[∫ t

0

(
∑

η

|Qf
η(um

s ) − Qf
η(us)|2

)p

ds

]
. (7.13)

Therefore,

E

[
sup

0≤s≤t
|f(um

s ) − f(us)|2p

]
≤ 32p−1

(
T 2p−1E

[∫ t

0

|Mf (um
s ) − Mf (us)|2pds

]

+ C(kT )p−1
∑

η

E

[∫ t

0

|Qf
η(um

s ) − Qf
η(us)|2pds

]

+E

[
sup

0≤s≤t
|Rf (s)|2p

])
(7.14)

where k is the number of terms in the sum over η.
The integrands of the terms involving Mf and Qf

η are of the form |g(um
s )−

g(us)|2p for some smooth functions g, depending on f . Therefore, for a fixed
f , by Lemma 7.1 there exists Cf > 0 such that

E

[
sup

0≤s≤t
|f(um

s ) − f(us)|2p

]
≤ 32p−1(T 2p−1 + CkpT p−1)Cf

×
∫ t

0

E
[
d(um

s , us)2p
]
ds + 32p−1E

[
sup

0≤s≤t
|Rf (s)|2p

]
. (7.15)

FO(M) is compact and we have equipped it with a Riemannian metric
tensor. Therefore, by Lemma 7.2, there exist finitely many smooth functions,
fi, such that for any u1, u2 in the connected component of FO(M) containing
u0 we have

d(u1, u2)2p ≤
∑

i

|fi(u1) − fi(u2)|2p. (7.16)
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Hence, applying Eq. (7.15) to each of the functions fi, we obtain

E

[
sup

0≤s≤t
d(um

s , us)2p

]
≤

∑

i

E

[
sup

0≤s≤t
|fi(um

s ) − fi(us)|2p

]

≤
∑

i

Ci

∫ t

0

E
[
d(um

s , us)2p
]
ds

+32p−1
∑

i

E

[
sup

0≤s≤t
|Rfi(s)|2p

]
(7.17)

for some constants Ci. Therefore, there exists a C > 0 such that

E

[
sup

0≤s≤t
d(um

s , us)2p

]
≤ C

∫ t

0

E

[
sup

0≤r≤s
d(um

r , ur)2p

]
ds

+32p−1
∑

i

E

[
sup

0≤s≤T
|Rfi(s)|2p

]
(7.18)

for all 0 ≤ t ≤ T . We apply Gronwall’s inequality to obtain

E

[
sup

0≤s≤T
d(um

s , us)2p

]
≤ 32p−1

∑

i

E

[
sup

0≤s≤T
|Rfi(s)|2p

]
eCT . (7.19)

Fix 0 < κ < p. The sum in Eq. (7.19) has finitely many terms, so, if we
can prove that

E

[
sup

0≤s≤T
|Rf (s)|2p

]
= O(mκ) as m → 0 (7.20)

for every smooth f , then the claim will follow for q = 2p, p > 1.
Fix f ∈ C∞(FO(M)) and compute

E

[
sup

0≤t≤T
|Rf (t)|2p

]

≤ 52p−1

(
E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )d((pm
s )ν(pm

s )μ)

∣∣∣∣
2p

]

+ E

[(∫ T

0

|Kf
βα(um

s )Gβα
μν (um

s ) ((pm
s )νF μ(um

s ) + (pm
s )μF ν(um

s )) |ds

)2p
]

+ E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )
(
(pm

s )νσμ
η (um

s ) + (pm
s )μσν

η (um
s )

)
dW η

s

∣∣∣∣
2p

]

+E

[
sup

0≤t≤T

∣∣∣Hγ−1(um
t )pm

t
(um

t )[f ]
∣∣∣
2p

]
+ E

[
|Hγ−1(u0)p0

(u0)[f ]|2p
])

. (7.21)

We will consider each term individually. Proposition 5.3 implies that

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )d((pm
s )ν(pm

s )μ)
∣∣∣∣
2p

]
= O(mp). (7.22)
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Using Hölder’s inequality, boundedness of continuous functions on the
compact manifold FO(M), and Proposition 5.2, the second term can be
bounded as follows:

E

⎡

⎣
(∫ T

0

|Kf
βα(um

s )Gβα
μν (um

s ) ((pm
s )νFμ(um

s ) + (pm
s )μF ν(um

s )) |ds

)2p
⎤

⎦

≤ T 2p−1

∫ T

0

E

[∣∣∣
(
(Kf

βαGβα
νμF ν)(um

s ) + (Kf
βαGβα

μν F ν)(um
s )

)
(pm

s )μ
∣∣∣
2p

]
ds

≤ CT 2p sup
0≤s≤T

E
[‖pm

s ‖2p
]

= O(mp). (7.23)

The third term can be bounded using the Burkholder–Davis–Gundy in-
equality, similarly to the way the second term in Eq. (7.14) was estimated,
together with Proposition 5.2.

E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

Kf
βα(um

s )Gβα
μν (um

s )
(
(pm

s )νσμ
η (um

s ) + (pm
s )μσν

η (um
s )

)
dW η

s

∣∣∣∣
2p

]

≤ C(kT )p−1
∑

η

E

[ ∫ T

0

∣∣∣
(
Kf

βα(um
s )Gβα

νμ (um
s )σν

η (um
s )

+Kf
βα(um

s )Gβα
μν (um

s )σν
η (um

s )
)

(pm
s )μ

∣∣∣
2p

ds

]
(7.24)

≤ C̃T p−1

∫ T

0

E
[‖pm

s ‖2p
]
ds ≤ C̃T p sup

0≤s≤T
E

[‖pm
s ‖2p

]
= O(mp). (7.25)

Compactness of FO(M) and Proposition 5.1 imply a bound on the fourth
term:

E

[
sup

0≤t≤T
|Hγ−1(um

t )pm
t

(um
t )[f ]|2p

]
= E

[
sup

0≤t≤T
|Hγ−1(um

t )eν
(um

t )[f ](pm
t )ν |2p

]

≤ CE

[
sup

0≤t≤T
‖pm

t ‖2p

]
= O(mκ). (7.26)

Finally, the last term is

E[|Hγ−1(u0)p0(u0)[f ]|2p] = m2pE[|Hγ−1(u0)v0(u0)[f ]|2p] = O(m2p). (7.27)

This completes the proof for q = 2p, p > 1. Similarly to Proposition 5.2, an
application of Hölder’s inequality gives the result for all q > 0. �

As a corollary, we get convergence in probability and in law on compact
time intervals.

Corollary 7.1. For any T > 0, the mass-dependent process restricted to the
compact time interval [0, T ], um|[0,T ], converges in probability (and hence also
in law) to u|[0,T ] as m → 0.

Convergence in probability on the path space C([0, T ], F i
O(M)), where

F i
O(M) is a connected component of FO(M), is defined through the metric
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dT (u, τ) = sup
t∈[0,T ]

d(u(t), τ(t)) (7.28)

where d is the metric on F i
O(M) induced by a choice of Riemannian metric

tensor on FO(M).
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