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Abstract Let ( fn)∞n=1 be a sequence of non-linear polynomials satisfying some mild
conditions. Furthermore, let Fm(z) := ( fm ◦ fm−1 · · · ◦ f1)(z) and ρm be the leading
coefficient of Fm . It is shown that on the Julia set J( fn), the Chebyshev polynomial
of degree deg Fm is of the form Fm(z)/ρm − τm for all m ∈ N where τm ∈ C. This
generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc.
Univ. Math. Bull. 49:44–45, 1994).

Keywords Chebyshev polynomials · Extremal polynomials · Julia sets · Widom
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1 Introduction

Let ( fn)∞n=1 be a sequence of rational functions in C = C ∪ {∞}. Let us define the
associated compositions by Fm(z) := ( fm ◦ · · · f1)(z) for each m ∈ N. Then the set
of points in C for which (Fn)∞n=1 is normal in the sense of Montel is called the Fatou
set for ( fn)∞n=1. The complement of the Fatou set is called the Julia set for ( fn)∞n=1
and is denoted by J( fn). The metric considered here is the chordal metric. Julia sets
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corresponding to a sequence of rational functions, to our knowledge, were considered
first in [9]. Several papers that have appeared in the literature (see e.g. [3,6,8,18])
show the possibility of adapting the results on autonomous Julia sets to this more
general setting with some minor changes. By an autonomous Julia set, we mean the
set J( fn) with fn(z) = f (z) for all n ∈ N where f is a rational function.

The Julia set J( fn) is never empty provided that deg fn ≥ 2 for all n. If, in addi-
tion, we assume that fn = f for all n then f (J ( f )) = f −1(J ( f )) = J ( f ) where
J ( f ) := J( fn). But without the last assumption, we only have F−1

k (Fk(J( fn))) =
J( fn) and J( fn) = F−1

k (J( fk+n)) for all k ∈ N in general, where ( fk+n) =
( fk+1, fk+2, fk+3, . . .). That is the main reason why further techniques are needed in
this framework.

Let K ⊂ C be a compact set with Card K ≥ m for some m ∈ N. Recall that, for
every n ∈ N with n ≤ m, the unique monic polynomial Pn of degree n satisfying

‖Pn‖K = min{‖Qn‖K : Qn monic of degree n}

is called the nth Chebyshev polynomial on K where ‖ · ‖K is the sup-norm on K .
If f is a non-linear complex polynomial then J ( f ) = ∂{z ∈ C : f (n)(z) → ∞}

and J ( f ) is an infinite compact subset of C where f (n) is the nth iteration of f . The
next result is due to Kamo and Borodin [12]:

Theorem 1 Let f (z) = zm+am−1zm−1+· · ·+a0 be a non-linear complex polynomial
and Tk(z) be aChebyshev polynomial on J ( f ). Then (Tk◦ f (n))(z) is also aChebyshev
polynomial on J ( f ) for each n ∈ N. In particular, this implies that there exists a
complex number τ such that f (n)(z) − τ is a Chebyshev polynomial on J ( f ) for all
n ∈ N.

In Sect. 2, we review some facts about generalized Julia sets and Chebyshev poly-
nomials. In the last section, we present a result which can be seen as a generalization of
Theorem 1. Polynomials considered in these sections are always non-linear complex
polynomials unless stated otherwise. For a deeper discussion of Chebyshev polyno-
mials, we refer the reader to [15,16,19]. For different aspects of the theory of Julia
sets, see [2,4,13] among others.

2 Preliminaries

Autonomous polynomial Julia sets enjoy plenty of nice properties. These sets are non-
polar compact sets which are regular with respect to the Dirichlet problem. Moreover,
there are a couple of equivalent ways to describe these sets. For further details, see
[13]. In order to have similar features for the generalized case, we need to put some
restrictions on the given polynomials. The conditions used in the following definition
are from [4, Sec. 4].

Definition 1 Let fn(z) = ∑dn
j=0 an, j · z j where dn ≥ 2 and an,dn �= 0 for all n ∈ N.

We say that ( fn) is a regular polynomial sequence if the following properties are
satisfied:
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• There exists a real number A1 > 0 such that |an,dn | ≥ A1, for all n ∈ N.
• There exists a real number A2 ≥ 0 such that |an, j | ≤ A2|an,dn | for j =
0, 1, . . . , dn − 1 and n ∈ N.

• There exists a real number A3 such that

log |an,dn | ≤ A3 · dn,

for all n ∈ N.

If ( fn) is a regular polynomial sequence then we use the notation ( fn) ∈ R.
Here and in the rest of this paper, Fl(z) := ( fl ◦ · · · ◦ f1)(z) and ρl is the leading
coefficient of Fl . LetA( fn)(∞) := {z ∈ C : (Fn(z))∞n=1 goes locally uniformly to ∞}
andK( fn) := {z ∈ C : (Fn(z))∞n=1 is bounded}. In the next theorem, we list some facts
that will be necessary for the subsequent results.

Theorem 2 [4,6] Let ( fn) ∈ R. Then the following hold:

(a) J( fn) is a compact set in C with positive logarithmic capacity.
(b) For each R > 1 satisfying

A1R

(

1 − A2

R − 1

)

> 2, (1)

we have A( fn)(∞) = ∪∞
k=1Fk

−1(�R) and fn(�R) ⊂ �R where

�R = {z ∈ C : |z| > R}

Furthermore, A( fn)(∞) is a domain in C containing �R.

(c) �R ⊂ F−1
k (�R) ⊂ F−1

k+1(�R) ⊂ A( fn)(∞) for all k ∈ N and each R > 1
satisfying (1).

(d) ∂A( fn)(∞) = J( fn) = ∂K( fn) andK( fn) = C\A( fn)(∞). Thus,K( fn) is a compact
subset of C and J( fn) has no interior points.

The next result is an immediate consequence of Theorem 2.

Proposition 1 Let ( fn) ∈ R. Then

lim
k→∞

⎛

⎝ sup
a∈C\F−1

k (�R)

dist(a,K( fn))

⎞

⎠ = 0,

where R be a real number satisfying (1).

Proof Using the part (c) of Theorem 2, we have C\F−1
k+1(�R) ⊂ C\F−1

k (�R) which
implies that

(ak) :=
⎛

⎝ sup
a∈C\F−1

k (�R)

dist(a,K( fn))

⎞

⎠

is a decreasing sequence.
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Suppose that ak → ε as k → ∞ for some ε > 0. Then, by compactness of
the set C\F−1

k (�R), there exists a number bk ∈ C\F−1
k (�R) for each k such that

dist(bk,K( fn)) ≥ ε. But since ∩∞
k=1C\F−1

k (�R) = K( fn) by parts (b) and (d) of
Theorem 2, (bk) should have an accumulation point b in K( fn) with dist(b,K( fn)) >

ε/2 which is clearly impossible. This completes the proof. ��
For a compact set K ⊂ C, the smallest closed disk D(a, r) containing K is called the
Chebyshev disk for K . The center a of this disk is called the Chebyshev center of K .
These concepts were crucial and widely used in the paper [14]. The next result which
is vital for the proof of Lemma 1 is from [14]:

Theorem 3 Let L ⊂ C be a compact set with card L ≥ 2 having the origin as its
Chebyshev center. Let L p = p−1(L) for some monic complex polynomial p with
deg p = n. Then p is the unique Chebyshev polynomial of degree n on L p.

3 Results

First, we begin with a lemma which is also interesting in its own right.

Lemma 1 Let f and g be two non-constant complex polynomials and K be a compact
subset of C with card K ≥ 2. Furthermore, let α be the leading coefficient of f . Then
the following propositions hold.

(a) The Chebyshev polynomial of degree deg f on the set (g ◦ f )−1(K ) is of the form
f (z)/α − τ where τ ∈ C.

(b) If g is given as a linear combination ofmonomials of even degree and K = D(0, R)

for some R > 0 then thedeg f thChebyshev polynomial on (g◦ f )−1(K ) is f (z)/α.

Proof Let K1 := g−1(K ). Then (g ◦ f )−1(K ) = f −1(K1) = ( f/α)−1(K1/α)

where K1/α − τ = {z : z = z1/α − τ for some z1 ∈ K1}. By the fundamental
theorem of algebra, card(K1/α) = card K1 ≥ card K and K1 is compact by the
continuity of g(z). The set K1/α is also compact since the compactness of a set is
preserved under a linear transformation. Let τ be the Chebyshev center for K1/α.
Then K1/α − τ is a compact set with the Chebyshev center as the origin. Note that,
card(K1/α − τ) = card(K1/α) and ( f/α)−1(K1/α) = ( f/α − τ)−1(K1/α − τ).
Using Theorem 3, for p(z) = f (z)/α − τ and L = K1/α − τ , we see that p(z) is the
deg f th Chebyshev polynomial on L p = (g ◦ f )−1(K ). This proves the first part of
the lemma.

Suppose further that g(z) = ∑n
j=0 a j ·z2 j for some n ≥ 1 and (a0, . . . , an) ∈ C

n+1

with an �= 0. Let K = D(0, R) for some R > 0. Then the Chebyshev center for
K1/α = g−1(K )/α = g−1(D(0, R))/α is the origin since g(z)/α = g(−z)/α for all
z ∈ C. Thus, f (z)/α is the deg f th Chebyshev polynomial for (g ◦ f )−1(K ) under
these extra assumptions. ��
The next theorem shows that it is possible to obtain similar results to Theorem 1 in a
richer setting.

Theorem 4 Let ( fn) ∈ R. Then the following hold:
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(a) For each m ∈ N, the deg Fmth Chebyshev polynomial on J( fn) is of the form
Fm(z)/ρm − τm where τm ∈ C.

(b) If, in addition, each fn is given as a linear combination of monomials of even
degree then Fm(z)/ρm is the deg Fmth Chebyshev polynomial on J( fn) for all m.

Proof Let m ∈ N be given and R > 1 satisfy (1). For each natural number l > m,
define gl := fl ◦ · · · ◦ fm+1. Then Fl = gl ◦ Fm for each such l. Using part (a)
of Lemma 1 for g = gl , f = Fm and K = D(0, R), we see that the (d1 · · · dm)th
Chebyshev polynomial on (gl ◦ Fm)−1(D(0, R)) is of the form Fm(z)/ρm − τl where
τl ∈ C. Let Cl := ‖Fm/ρm − τl‖(gl◦Fm)−1(K ). Note that, by part (c) of Theorem 2,

F−1
t (D(0, R)) ⊂ F−1

s (D(0, R)) ⊂ D(0, R) (2)

provided that s < t . This implies that (C j )
∞
j=m+1 is a decreasing sequence of positive

numbers and hence has a limitC . The last follows from the observation that the norms
of the Chebyshev polynomials of same degree on a decreasing sequence of compact
sets constitute a decreasing sequence on R.

Let Pd1···dm (z) = ∑d1···dm
j=0 a j z j be the (d1 · · · dm)th Chebyshev polynomial

on K( fn). Since K( fn) ⊂ (gl ◦ Fm)−1(D(0, R)) for each l, we have C0 :=
‖Pd1···dm‖K( fn )

≤ C . Suppose that C0 < C .

Let ε = min{C − C0, 1}. Using the compactness of D(0, R) let us choose a
δ > 0 such that for all |z1 − z2| < δ and z1, z2 ∈ D(0, R) we have

|Pd1···dm (z1) − Pd1···dm (z2)| <
ε

2

By Proposition 1, there exists a real number N0 > m such that N > N0 with N ∈ N

implies that

sup
z∈C\F−1

N (�R)

dist(z,K( fn)) < δ.

Therefore, for any z ∈ F−1
N0+1(D(0, R)), there exists a z′ ∈ K( fn) with |z − z′| < δ.

Hence, for each z ∈ F−1
N0+1(D(0, R)), we have

|Pd1···dm (z)| < |Pd1···dm (z′)| + ε

2
< C ≤

∥
∥
∥
∥
Fm
ρm

− τN0+1

∥
∥
∥
∥
F−1
N0+1(D(0,R))

,

where in the first inequality, we use z, z′ ∈ D(0, R). This contradicts with the fact that
Fm(z)/ρm + τN0+1 is the (d1 · · · dm)th Chebyshev polynomial on F−1

N0+1(D(0, R)).
Thus, C0 = C .

Using the triangle inequality in (4) and (5), the monotonicity of (Cl)
∞
l=m+1 in (6)

and (2) in (7), we have

|τl | =
∥
∥
∥
∥− Fm

ρm
+ Fm

ρm
− τl

∥
∥
∥
∥
F−1
l (D(0,R))

(3)
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≤
∥
∥
∥
∥
Fm
ρm

− τl

∥
∥
∥
∥
F−1
l (D(0,R))

+
∥
∥
∥
∥
Fm
ρm

∥
∥
∥
∥
F−1
l (D(0,R))

(4)

≤ Cl + |τm+1| +
∥
∥
∥
∥
Fm
ρm

− τm+1

∥
∥
∥
∥
F−1
l (D(0,R))

(5)

≤ Cm+1 + |τm+1| +
∥
∥
∥
∥
Fm
ρm

− τm+1

∥
∥
∥
∥
F−1
l (D(0,R))

(6)

≤ 2Cm+1 + |τm+1|. (7)

for l ≥ m + 1. This shows that (τl)∞l=m+1 is a bounded sequence. Thus, (τl)
∞
l=m+1 has

at least one convergent subsequence (τlk )
∞
k=1 with a limit τm . Therefore,

C ≤ lim
k→∞

∥
∥
∥
∥
Fm
ρm

− τm

∥
∥
∥
∥
F−1
lk

(D(0,R))

≤ lim
k→∞(Clk + |τlk − τm |) = C. (8)

By the uniqueness of Chebyshev polynomials and (8), Fm(z)/ρm − τm is the
(d1 · · · dm)th Chebyshev polynomial on K( fn). By the maximum principle, for any
polynomial Q, we have

‖Q‖K( fn )
= ‖Q‖∂K( fn )

= ‖Q‖J( fn )
.

Hence, the Chebyshev polynomials on K( fn) and J( fn) should coincide. This proves
the first assertion.

Suppose that the assumption given in part (b) is satisfied. Then by the part (b)
of Lemma 1, for g = gl , f = Fm and K = D(0, R), the (d1 · · · dm)th Chebyshev
polynomial on (gl ◦ Fm)−1(D(0, R)) is of the form Fm(z)/ρm − τl where τl = 0 for
l > m. Thus, arguing as above, we can reach the conclusion that Fm(z)/ρm is the
(d1 · · · dm)th Chebyshev polynomial for J( fn) provided that the assumption in the part
(b) holds. This completes the proof. ��

This theorem gives the total description of 2n degree Chebyshev polynomials for
the most studied case, i.e., fn(z) = z2+cn with cn ∈ C for all n. If (cn)∞n=1 is bounded
then the logarithmic capacity of J( fn) is 1.Moreover, by [5], we know that if |cn| ≤ 1/4
for all n then J( fn) is connected. If |cn| < c < 1/4, then J( fn) is a quasicircle and
hence a Jordan curve. See [3], for the definition of a quasicircle and proof of the above
fact.

For a non-polar compact set K ⊂ C, let us define the sequence (Wn(K ))∞n=1 by
Wn(K ) = ‖Pn‖/(Cap(K ))n for all n ∈ N. There are recent studies on the asymptotic
behavior of these sequences on several occasions. See e.g. [1,10,20].

In [1,20], sufficent conditions are given for (Wn(K ))∞n=1 to be bounded in terms of
the smoothness of the outer boundary of K . There is also an old and open question (we
consider this as an open problem since we could not find any concrete examples in the
literature although in [17], Pommerenke says that “D. Wrase in Karlsruhe has shown
that an example constructed by J. Clunie [Ann. of Math., 69 (1959), 511–519] for a
different purpose has the required property.”) proposed by Pommerenke [17] which
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is in the inverse direction: Find (if possible) a continuum K with Cap(K ) = 1 such
that (Wn(K ))∞n=1 is unbounded. To answer this question positively, it is very natural
to consider a continuum with a non-rectifiable outer boundary. Thus, we make the
following conjecture:

Conjecture 1 Let f (z) = z2 + 1/4. Then, (Wn(J ( f ))∞n=1 is unbounded.

By [11, Thm. 1], for f (z) = z2 + 1/4, J ( f ) has Hausdorff dimension greater than
1 and in this case (see e.g. [7, p. 130]) J ( f ) is not a quasicircle. Hence, [1, Thm. 2]
is not applicable for J ( f ) since it requires even stronger assumptions on the outer
boundary.
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