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a b s t r a c t 

Hubs are facilities that consolidate and disseminate flow in many-to-many distribution systems. The hub 

location problem considers decisions that include the locations of hubs in a network and the allocations 

of demand (non-hub) nodes to these hubs. We propose a hierarchical multimodal hub network structure, 

and based on this network, we define a hub covering problem with a service time bound. The hierarchi- 

cal network consists of three layers in which we consider a ring-star-star (RSS) network. This multimodal 

network may have different types of vehicles in each layer. For the proposed problem, we present and 

strengthen a mathematical model with some variable fixing rules and valid inequalities. Also, we develop 

a heuristic solution algorithm based on the subgradient approach to solve the problem in more reason- 

able times. We conduct the computational analysis over the Turkish network and the CAB data sets. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

i  

o  

n  

d

 

a  

l  

l  

i  

h  

h  

F  

w  

s  

n  

1

 

d  

t  

i  

e  

o  

a  

o  

c  

n  

t

 

c  

i  

w  

A  

t  

b  

K  

2  

t  

e  

s  

t

 

1  

t  

t  

c  

i  

i  

h

0

. Introduction 

Hubs function as switching, transshipment and sorting points

n many-to-many distribution networks. Instead of connecting each

rigin-destination (o-d) pair by a direct link, hubs provide a con-

ection between each pair by using fewer links and concentrating

emand flows to allow economies of scale. 

The hub location problem is to decide on the locations of hubs

nd the allocations of demand nodes to hubs. Versions of the hub

ocation problem are defined as ‘single allocation’ and ‘multiple al-

ocation’. In a single-allocation hub network, each demand node

s assigned to exactly one hub. Whereas, in a multiple-allocation

ub network, demand nodes can be allocated to more than one

ub. The classic hub location problem has three main assumptions.

irst, the hub network is assumed to have a complete structure,

ith a link between each hub pair. Second, there are economies of

cale between hubs. Third, direct transportation between demand

ode pairs (without using any hubs) is not allowed ( Campbell,

994 ). 

Main application areas of the hub location problem are cargo

elivery, telecommunications network design and air transporta-

ion. In this study, we mainly focus on a cargo delivery application

n Turkey with a given service time promise. A classic cargo deliv-

ry system consists of branch offices and operation centers. Branch

ffices collect and distribute cargoes from/to customers directly,
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nd operation centers collect and distribute cargoes from/to branch

ffices or send cargoes to another operation center. Although there

an be more than one branch office in a city, operation centers do

ot exist in every city. Thus, each branch office must be assigned

o operation center(s). 

According to the above explanation of a cargo delivery system,

argo delivery networks and hub location networks are very sim-

lar. Branch offices and operation centers in cargo delivery net-

orks can be considered as demand nodes and hubs, respectively.

lso, there are economies of scale due to bulk transportation be-

ween operation centers. Therefore, the cargo delivery problem can

e considered as a hub location problem ( Alumur and Kara, 2009;

ara and Tansel, 2001; Tan and Kara, 2007; Yaman et al., 2007;

012 and Alumur et al., 2012b ). In Kara and Tansel (2001) , the au-

hors emphasize the importance of synchronization in cargo deliv-

ry systems. Later, Yaman et al. (2012) combine the release time

cheduling and hub location problems in cargo delivery applica-

ions. 

The classic hub location problem proposed by O’Kelly (1986a ),

986b ), 1987 ) only considers minimization of the total transporta-

ion cost. However, in real life, cargo companies pay similar at-

ention to customer satisfaction. To attract more customers, cargo

ompanies focus on service levels. Service level in cargo delivery

s usually measured by delivery time Yaman et al. (2012) . Reduc-

ng delivery time is generally considered to increase customer sat-

sfaction, and thus cargo companies offer different delivery time

romises. For instance, in Turkey, cargo companies aim to de-

iver cargoes within 24 hours (next-day delivery). However, due to

http://dx.doi.org/10.1016/j.cor.2017.03.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.03.013&domain=pdf
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Fig. 1. Representation of a Multimodal Hierarchical Hub Network Instance. 
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Turkey’s geographical structure, delivery within this time frame us-

ing ground transportation is almost impossible for some city pairs.

Thus, in order to keep the next-day delivery promise between all

city pairs, cargo companies in Turkey have begun to use airplanes

in their distribution networks. 

In the classic hub location problem, the hub network (the sub-

network that is induced by the hub nodes and links between

them) is usually assumed to be complete with a link between each

hub pair. When using airplanes, a complete hub network results in

many flights, and operating a flight is very costly. Customarily, the

operational cost of a flight consists of a fixed dispatch cost and a

variable transportation cost, which depends on the length of the

flight. In this research, we limit our study to consider only the

fixed dispatch cost and to those cases where that cost is signifi-

cantly more crucial than the variable transportation cost. We have

two main motivations for this limitation. First, the fixed dispatch

cost consists of crucial cost components of a flight such as taxi-

ing and take off/landing costs, which are common for each flight

not depending on the length of flight. Second, since we consider

a real cargo delivery application in Turkey, the variable transporta-

tion cost is not as important as the fixed dispatch cost due to the

geographical structure of Turkey in which the difference among

distances between any two airport hub candidates can be negli-

gible compared to other countries that has bigger land area such

as USA. Based on these motivations and reasons, we set the main

goal as minimizing the number of airline segments (flights). Thus,

we want to provide the same worst-case level of service to all o-d

pairs with minimal number of flights. 

Motivated by the cargo company that uses trucks (small and

large) along with airplanes in their network, we consider a hierar-

chical multimodal network with three layers and two types of hubs

(ground and airport). Fig. 1 shows such an instance with 18 hubs;

nodes 0 to 4 are airport hubs; nodes 5 to 17 are ground hubs and

the small circles with no numbers represent the demand points. In

this representation, airline segments are illustrated as thick lines

between the airport hubs; highway segments are illustrated as thin

lines between demand nodes and hubs (ground or airport), and as

dashed lines between ground hubs and airport hubs. 
The lowest layer of the network consists of the allocations of

he demand points to the ground hubs and airport hubs (thin solid

ines) as necessary to meet the single allocation. In this layer, a star

tructure is used to allocate the demand points. Each demand node

s connected to exactly one hub (ground or airport) with a highway

ink. In real life, small trucks are used on these highway segments.

The middle layer includes the allocation of ground hubs to air-

ort hubs (dashed lines), and we consider a star structure to allo-

ate the ground hubs here as well. Each ground hub is connected

o exactly one airport hub with a highway link. Large trucks, which

re faster and have more capacity than small trucks, are assumed

o be used on these highway segments, and thus economies of

cale are considered. 

Fig. 1 depicts a mesh structure in the first (top) layer (thick

ines), where airport hubs are connected with each other via an

irline segment. However, to accomplish the fundamental goal,

hat is, to decrease the number of flights, we propose using a ring

tructure in the top layer instead of a mesh structure, which can

ause more flights ( Fig. 2 ). We call this type of network a ring-

tar-star (RSS). We assume each ring will be served by separate air-

lanes. To cope with synchronization issues, routing and schedul-

ng decisions must be considered together. 

With the ring structure in the top layer, the airplane route is

ecided while covering all o-d pairs within a given time bound.

n this study, motivated by the cargo company’s application, we

dopt a “pick up, then deliver” type of service, which means there

re two separate tours; a pick-up tour and a delivery tour. In the

ick-up tour, all demands are collected from their origins and sent

o a specific airport hub. After all demands arrive at this airport

ub, they are sent to their final destinations in the delivery tour.

e need a specific airport hub to collect all the demands at one

oint, and we call this the central airport hub. In Fig. 2 , we denote

he central airport hub with a big circle. If one airplane in a ring is

ot enough to cover all o-d pairs within the time limitations, there

an be more than one ring, as shown in Fig. 2 . In each ring, exactly

ne airplane can travel because there is no capacity restriction. 

Pick-ups from the origins to the central airport hub and deliv-

ries from the central airport hub to the destinations are assumed
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Fig. 2. Representation of a ring-star-star network instance. 
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o be symmetric. Therefore, the route of the delivery tour is the

everse route of the pick-up tour. 

“Pick up, then deliver” service is common to most cargo compa-

ies. The main issue is to reach the consignee within the promised

elivery time. In the pick-up tour, the airplane must complete the

ights in half the time bound so it can complete the delivery tour

n the other half. 

Based on the proposed hierarchical multimodal network, the

roblem can be defined given a set of demand nodes, a set of pos-

ible locations for ground and airport hubs, the location of the cen-

ral airport hub, the number of hubs to be located, the time bound

nd travel time parameters. Our proposed problem determines the

ocation of ground hubs and airport hubs, the allocation of demand

odes to hubs (ground or airport), the allocation of ground hubs to

irport hubs and the location of airline segments, all while ensur-

ng that all o-d pairs can be served within the given time bound.

n the objective function, the number of total flights (airline seg-

ents) is minimized. 

In Section 2 , we review the related literature, and

ection 3 presents the mathematical model and some valid

nequalities. In Section 4 , we develop a heuristic solution algo-

ithm based on the subgradient approach. In Section 5 , we conduct

 detailed computational analysis over two data sets, one from

urkey (TR) and one from the US Civil Aeronautics Board (CAB).

oncluding remarks and future research directions are given in

ection 6 . 

. Related literature 

The hub location problem was first introduced by O’Kelly

1986a ); 1986b ); 1987 ). In these studies, the author defines the

roblem and proposes the first mathematical model, which hap-

ens to be quadratic. Campbell (1994) categorizes the hub location

roblem into four problems based on the objective function: the

-hub median problem, the hub location problem with fixed costs,

he p-hub center problem and the hub covering problem. For each

roblem, he presents linear formulations. After these pioneering

tudies, different versions of the hub location problems are stud-
ed by relaxing or changing the main assumptions of the hub loca-

ion problem, which are highlighted in the previous section. Next,

e analyze studies in the literature that relax these assumptions,

amely; the hub location problem with ring structures, the mul-

imodal hub location problems and the hierarchical hub location

roblems. 

Relaxing the assumption which does not allow any direct links

etween two demand points, the ring structure concept is con-

idered between demand nodes. The ring structure, as part of the

ub location problem, is first presented by Nagy and Salhi (1998) ,

n a many-to-many hub location routing problem. The authors

tate that the many-to-many location routing problem (LRP) can

e reduced to the classic hub location problem when the routing

roblem is not considered. They present a mixed-integer program-

ing formulation and propose some solution techniques. They also

resent a hierarchical heuristic, in which hub location is consid-

red as a master problem and routing problems are considered

s sub-problems. Routing problems are solved via the neighbor-

ood search heuristic proposed by Nagy and Salhi (1996) . Liu et al.

2003) present a mixed-truck delivery system that allows hub-and-

poke shipments and direct shipments. A heuristic is developed to

etermine the mode of delivery (hub-and-spoke or direct) and to

erform vehicle routing in both delivery modes. Wasner and Zäpfel

2004) present a multi-depot hub-location vehicle-routing model

or a network design of parcel services in Austria. This model can

e considered as LRP, determining the location of hubs and de-

ots, the routes between hubs/depots and their allocated demand

oints. The hub location part of this problem differs from the clas-

ic hub location problem in two aspects. First, there can be a direct

hipment between two demand points. Second, the transportation

ost between two hubs depends on the number of transports be-

ween those two hubs. The authors present a mixed-integer op-

imization model; however, due to its complexity, they develop a

euristic based on a local search procedure. For Turkey’s postal de-

ivery system, Çetiner et al. (2010) propose a combined hub loca-

ion routing problem, which includes hub location decisions and

outing decisions between demand points. In that study, multiple-

llocation is allowed and it is assumed that the hubs and the vehi-
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cles are uncapacitated. The authors develop an iterative two-stage

heuristic to solve this problem. De Camargo et al. (2013) present a

new formulation for the many-to-many hub-location routing prob-

lem, considering single-allocation and uncapacitated hubs and ve-

hicles. The completion of a tour is bounded by a service level and

each customer is visited exactly once. Using Bender’s decomposi-

tion, they solve the problem for up to 100 nodes. In addition to

the ring structure, a tree topology on the sub-network induced by

the hubs has been also studied by several researchers ( Contreras

et al., 2009; 2010; de Sá et al., 2013 ). 

In the hub location problem, another important assumption is

that between hubs and between hubs and demand nodes, only

one transportation mode is used. Different transportation modes

are not widely studied. In the literature, some researchers extend

their studies by considering transportation mode decisions in ad-

dition to location and allocation decisions, and also by increasing

the number of transportation modes. In multimodal transportation,

transport modes have different cost structures. The first study of

the hub location problem that includes a choice of transportation

mode is proposed by O’Kelly and Lao (1991) , where there are two

fixed hub locations, called a mini hub and a master hub. This prob-

lem is solved by addressing two sub-problems. The first problem is

the decision of transportation mode (air or truck) while satisfying

given time limitations. The second problem is the allocation deci-

sion of cities to the mini hub. The multimodal hub location and

hub network design problem is first introduced by Alumur et al.

(2012a ), who, in addition to the decisions of the classic hub loca-

tion problem, consider the decision of transportation mode. The

authors present a linear mixed-integer programming model and

consider different variants of this problem. 

Additionally, in the standard hub location problem the net-

work consists of two layers; one between hubs and demand nodes

and the other among hubs. However, real-life networks require

more than two levels due to their complexity. This type of struc-

tures is called a hierarchical hub network. Smilowitz and Da-

ganzo (2007) focus on the design of integrated package distri-

bution systems for multiple transportation modes and a multiple

service-level delivery network. They consider separate networks

for each mode; for ground and air transportation modes, they pro-

pose ring-ring-complete and ring-ring-tree networks, respectively.

They use a continuum-approximation approach to minimize cost.

Yaman (2009) proposes a three-level hub network, which consists

of a complete network on the top level and star networks on

the second and third levels. Based on its objective, this problem

can be considered as a hierarchical hub median problem. Yaman

(2009) also studies a different version of this problem by con-

sidering service-level quality, proposing a mixed-integer program-

ming model. Sahraeian and Korani (2010) consider the same three-

level hub network structure under a maximal covering objective.

Finally, Alumur et al. (2012b ) present a hierarchical multimodal

hub location problem with time-definite deliveries. They consider

a star-incomplete-star network with air and ground transporta-

tion modes. They propose mixed-integer programming and a set

of valid inequalities. In the mathematical model, they minimize the

total transportation and operational costs. 

For comprehensive surveys on hub location, we refer the reader

to Alumur and Kara (2008) ; Campbell et al. (2002) ; Kara and Taner

(2011) , and Campbell and O’Kelly (2012) ; and to Nagy and Salhi

(2007) for a location-routing survey. 

3. Problem definition and formulation 

The problem is defined on a complete directed graph G = (N, A )

where N = { 0 , 1 , . . . , n } denotes the set of nodes and A = { (i, j) :

i, j ∈ N & i � = j} is the set of arcs. Demand point set is N . The pos-

sible hub and airport hub location sets are denoted by H and AH
 H ⊆ N & AH ⊆ H ), respectively and 0 be the central airport hub

 0 ∈ AH ). A fleet of trucks and airplanes serves the customers from

 ground or airport hub(s) (that need to be opened) within time

ound T for each origin-destination pair. The travel time from node

 to node j by small truck and airplane is denoted by t ij and t air 
i j 

, re-

pectively. The total loading-unloading time at airport l is denoted

y m l . α represents the discount factor of time for large trucks rel-

tive to small trucks. Maximum travel time between a ground hub

nd an airport hub plus loading-unloading time at that airport is

enoted by M . 

For this problem, we first propose a linear mixed-integer math-

matical model. 

The decision variables are defined as follows: x ij equals to 1 if

emand point i ∈ N is allocated to hub j ∈ H , and 0 otherwise.

 jj equals to 1 if a hub is opened at node j ∈ H , and 0 otherwise.

f hub j ∈ H is allocated to airport hub l ∈ AH , then y jl equals to

, and 0 otherwise. y ll equals to 1 if an airport hub is opened at

ode l ∈ AH , and 0 otherwise. u kl equals to 1 if there is a direct

ink between airport hub k ∈ AH and airport hub l ∈ AH , and 0

therwise. The earliest time that all small trucks arrive at hub j ∈
 is denoted by r j and r 

airplane 

l 
represents the earliest time that the

irplane departs from airport hub l ∈ AH to other airport hubs. 

It is assumed that travel time data is symmetric and satisfies

riangular inequality. Also, the loading and unloading time at air-

orts is assumed to be independent of the load size. The mixed-

nteger programming formulation of the proposed problem is as

ollows: 

Minimize 
∑ 

k ∈ AH 

∑ 

l∈ AH\{ k } 
u kl (1)

subject to 

∑ 

k ∈ H 
x ik = 1 ∀ i ∈ N (2)

∑ 

k ∈ H 
x kk = p (3)

 ik ≤ x kk ∀ i ∈ N, k ∈ H (4)

∑ 

l∈ AH 

y jl = x j j ∀ j ∈ H (5)

 jl ≤ y ll ∀ j ∈ H, l ∈ AH (6)

 00 = 1 (7)

∑ 

l∈ AH\{ k } 
u kl = y kk ∀ k ∈ AH : k � = 0 (8)

∑ 

l∈ AH\{ k } 
u lk = y kk ∀ k ∈ AH : k � = 0 (9)

∑ 

l∈ AH\{ 0 } 
u 0 l = 

∑ 

l∈ AH\{ 0 } 
u l0 (10)

 j ≥ t i j · x i j ∀ i ∈ N, j ∈ H (11)

 

airplane 

l 
≥ r j + (α · t jl + m l ) · y jl − M · (1 − y jl ) 

 j ∈ H, l ∈ AH : l � = j (12)
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a  
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s  

(

c  
 

airplane 

k 
− r airplane 

l 
+ T · u kl ≤ T − (t air 

kl + m l ) · u kl 

 k ∈ AH : k � = 0 , l ∈ AH : l � = k (13) 

 

airplane 

k 
≥ (t air 

0 k + m k ) · u 0 k ∀ k ∈ AH : k � = 0 (14) 

 · r airplane 
0 

≤ T (15) 

 ik ∈ { 0 , 1 } ∀ i ∈ N, k ∈ H (16) 

 jl ∈ { 0 , 1 } ∀ j ∈ H, l ∈ AH (17) 

 kl ∈ { 0 , 1 } ∀ k ∈ AH, l ∈ AH : l � = k (18) 

 j ≥ 0 ∀ j ∈ H (19) 

 

airplane 

l 
≥ 0 ∀ l ∈ AH (20) 

The objective function (1) minimizes the number of airline links

etween airport hubs. Constraint (2) ensures that every demand

ode is allocated to exactly one hub. By Constraint (3) , the num-

er of hubs to be located is p . With Constraint (4) , we guarantee

hat no demand node is allocated to a non-hub node. By Constraint

5) , a hub is allocated to exactly one airport hub. Also, with Con-

traint (5) , y kk = 1 implies that x kk = 1. Constraint (6) guarantees

hat no hub is allocated to a non-airport hub. Constraint (7) es-

ablishes the central airport hub. Constraints (8) and (9) construct

he ring structure for the airport hubs (top layer of the hierarchical

etwork). Constraint (10) allows a structure with more than one

ing, which means there can be more than one airplane, if neces-

ary. Also, with Constraint (10) , if no airport hub is opened, then

he central airport hub is used as a central ground hub. 

Constraint (11) calculates the earliest time that small trucks ar-

ive at their allocated hub. Constraint (12) guarantees that an air-

lane cannot leave an airport hub before all the vehicles (small and

arge trucks) from the other nodes (demand point or ground hub)

llocated to that airport hub have arrived. With Constraint (13) ,

e ensure that the earliest time an airplane departs from any air-

ort hub is within a predetermined time bound. Constraint (13) is

n adaptation of the well known Miller-Tucker-Zemlin (MTZ) con-

traint proposed by Miller et al. (1960) . Constraint (14) calculates

he earliest time an airplane departs from the airport hub with a

irect link to the central airport hub. We compute this time sep-

rately to complete the ring structure for the top layer. By Con-

traint (15) , we guarantee that all o-d pairs are covered within

 given time bound. Because we assume symmetrical travel time

ata, we consider pick up and delivery the same, so we multiply

y 2. Finally, Constraints (16) - (20) are the domain constraints. 

This mathematical model is a mixed binary programming

odel with O( n 2 ) binary variables, O( n ) non-negative variables and

( n 2 ) constraints where n is the number of nodes. 

.1. Pre-processing and valid inequalities 

We now propose some variable fixing rules and valid inequal-

ties. First, we present two variable fixing rules, which are pre-

pecified as parameters of the model: 

Variable Fixing Rule 1 : For i ∈ N and j ∈ H \ { i }, if t ij > T /2, then

emand node i cannot be allocated to the hub (ground or airport)

 , because travel time between city i and city j exceeds half of the
ime bound T . With Variable Fixing Rule 1, if t ij > T /2, then x ij will

e equal to 0. 

Variable Fixing Rule 2 : For j ∈ H and l ∈ A \ { j }, if α · t jl + m l >

 / 2 , then hub j cannot be allocated to the airport hub l , because

he reduced travel time between city j and city l and the load-

ng/unloading time at city l exceeds half of the time bound T . With

ariable Fixing Rule 2, if α · t jl + m l > T / 2 , then y jl will be equal to

. 

We now propose two valid inequalities: 

For i ∈ N, j ∈ H \ { i } and l ∈ A \ { i, j }, if t i j + α · t jl + m l > T / 2 , then

emand node i cannot be allocated to ground hub j , and ground

ub j cannot be allocated to airport hub l at the same time. There-

ore, the inequality 

 i j + y jl ≤ 1 ∀ i ∈ N, j ∈ H\{ i } , l ∈ A \{ i, j} , if t i j + α · t jl + m l > T / 2

(21) 

s valid. 

For i ∈ N and j ∈ H \ { i }, if t i j + α · t jl + m l > T / 2 for airport hub

 and there is a hub at city j , then demand node i cannot be al-

ocated to ground hub j , and ground hub j cannot be allocated to

irport hub l at the same time. Therefore, the inequality 

 i j + 

∑ 

l∈ A \{ i, j} : t i j + α·t jl + m l >T/ 2 

y jl ≤ x j j ∀ i ∈ N, j ∈ H\{ i } (22)

s valid. Note here that valid inequality (22) is the stronger version

f valid inequality (21) . 

We analyze the performances of these two valid inequalities in

etail in Section 5 . Based on these analysis, we include valid in-

quality (22) into the mathematical model. 

. Lagrangian relaxation based solution approach 

Since getting the optimal solution takes too much time despite

f all variable fixing rules and valid inequalities, we propose an al-

ernative solution approach for the problem under consideration.

n order to find the optimal or near optimal solutions in a rea-

onable time, a different solution method based on the subgradi-

nt algorithm is developed to solve those problem instances, which

annot be solved in a few seconds. So, we propose this algorithm

or the problem instances with tighter time bounds. 

Subgradient algorithm is one of the well-known solution ap-

roaches for the combinatorial optimization problems based on the

agrangian relaxation. The algorithm consists of two main com-

onents. First, the problem is relaxed by removing some sets of

onstraints from the formulation and adding them to the objective

unction after multiplying them with Lagrange multipliers. Solv-

ng the relaxed problem, in case of minimization, provides a lower

ound for the original problem. Second, by utilizing the solution

f the relaxed problem, a feasible solution is obtained. This fea-

ible solution gives an upper bound for the original problem. By

sing these two components, the subgradient algorithm tries to

trengthen the lower and upper bounds in order to fill the gap be-

ween them and reach the optimal solution. 

Now, we explain the proposed subgradient algorithm in three

arts. Initially, we describe the relaxed problem. Secondly, we give

 detailed explanation on how to find a feasible solution by using

he solution obtained for the relaxed problem. Finally, we define

he subgradient algorithm itself. 

.1. Relaxed problem 

In order to apply this Lagrangian relaxation approach, Con-

traints (13) are relaxed from the original formulation. Constraints

13) are versions of the Miller-Tucker-Zemlin subtour elimination 

onstraint that keeps the departure times of the airplanes in a tour.
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It is a big-M type constraint. The formulation of the relaxed prob-

lem with Lagrange multipliers π kl is as follows: 

Minimize 
∑ 

k ∈ A 

∑ 

l∈ A \{ k } 
u kl 

+ 

∑ 

k ∈ A \{ 0 } 

∑ 

l∈ A \{ k } 
πkl · (r airplane 

k 
− r airplane 

l 
+ (T + t air 

kl + m l ) · u kl − T ) 

subject to 

(2-12), (14-20), (22) 

Solving the above formulation will give a lower bound for the

original problem. 

4.2. Finding a feasible solution 

In order to apply a subgradient algorithm, we need to find an

upper bound on the original problem. One approach is to change

the solution obtained from the relaxed problem to make it feasi-

ble for the relaxed constraint. In our problem, it is hard to change

the solution to make it feasible because we need to adjust the de-

parture time of the airplanes and also we need to eliminate sub-

tours if there are any. Thus, we propose to solve another problem

which is a restricted version of the original problem. After solving

the relaxed problem, we give the values of the decision variables

associated with the location of hubs ( x jj ) to the original problem

and then we solve the resulting new problem in order to find an

upper bound. The formulation of the new restricted problem is as

follows: 

Minimize 
∑ 

k ∈ A 

∑ 

l∈ A \{ k } 
u kl (1)

subject to 

(2-20), (22) 

x j j = x ′ j j ∀ j ∈ J : | J| = p & J ⊆ H (23)

where x ′ 
j j 

is obtained from the relaxed problem. 

However, by using Constraint (23) we cannot ensure the feasi-

bility of the restricted problem. Due to the time bound constraint,

it is possible that the opened facilities cannot cover all o-d pairs

within the given time limit. Therefore, if the problem becomes in-

feasible because of Constraint (23) , we need to decrease the num-

ber of fixed locations obtained from the relaxed problem. While

decreasing the number of fixed locations, we randomly select the

fixed location to remove. The reduction on the number of fixed lo-

cations continues until one fixed location that is the given central

airport hub remains. So, we can adopt Constraint (23) as follows: 

x j j = x ′ j j ∀ j ∈ J : | J| ≤ p & J ⊆ H (23*) 

where set | J | depends on the feasibility of the problem. 

By solving this restricted problem, we can obtain an upper

bound on the original problem. 

4.3. Subgradient algorithm 

By using lower and upper bounds obtained from the solution

techniques explained previously, we can apply a subgradient algo-

rithm to the proposed problem. The algorithm is constructed as

follows: 

Step 0: Choose an initial Lagrange multiplier π0 
kl 

and set t = 0 . 

Step 1: Let πkl = π t 
kl 

and solve the relaxed problem with the

optimal value z(π t 
kl 
) and update the lower bound as follows: 

LB ← max { LB, z(π t 
kl ) } 

Step 2: Given the location of hubs from the relaxed problem,

solve the restricted problem with z(x t 
j j 
) . If the restricted problem

yield an infeasible solution, the number of fixed locations obtained
rom the relaxed problem is decreased until the restricted problem

rovides a feasible solution. Then, the upper bound is updated as

ollows: 

B ← min { UB, z(x t j j ) } 
Step 3: Update the Lagrange multipliers as follows: 

t+1 
kl 

← max { π t + μt · (r airplane 

k 
− r airplane 

l 

+(T + t air 
kl + m l ) · u kl − T ) , 0 } 

here μt = f · UB −z(π t 
kl 

) 

|| r airplane 
k 

−r 
airplane 
l 

+(T + t air 
kl 

+ m l ) ·u kl −T || 2 and being f a num-

er taken between 0 and 2 that is decreased after a certain num-

er of iterations without improvement. 

Step 4: t ← t + 1 and 

Step 5: If t reaches the maximum number of iterations, then

top. Otherwise, go to Step 1. 

In the proposed subgradient algorithm, initially, an initial La-

range multiplier ( π0 
kl 

) is chosen. Then, based on the chosen La-

range multiplier, the relaxed problem is solved and if the objec-

ive function value of the relaxed solution is greater than the lower

ound, the lower bound is updated accordingly. After that, based

n the location of hubs obtained from the relaxed solution, the

estricted problem is solved to find a feasible solution and if the

bjective function value of this feasible solution is less than the

pper bound, then the upper bound is updated accordingly. Next,

he Lagrange multipliers are updated based on the given formula in

tep 3. After updating the Lagrange multipliers, the relaxed prob-

em is solved again with the new Lagrange multipliers and the

lgorithm continues until the maximum number of iterations is

eached. The values of the different parameters of the subgradient

lgorithm are given in the computational analysis section. 

. Computational study 

.1. Data sets 

In the computational studies, since we consider a cargo deliv-

ry application in Turkey, we use Turkish network (TR) data set. In

007, Tan and Kara (2007) introduced the TR data set to the liter-

ture, and it consists of 81 cities in Turkey. 

These cities are illustrated in Fig. 3 ; the numbers represent

urkey’s vehicle license plate numbers, which are unique to each

ity. Each city is considered as a demand point, so there are 81

emand points (| N | = 81). There are 22 potential hub nodes (| H |

 22), represented as red circles in the map ( Fig. 3 ). Since Afyon

3) , Aksaray (68) and Duzce (81) do not have airports, 19 of these

otential hub nodes are considered as potential airport hubs (| AH |

 19). Ankara (6) is considered the central airport hub due to its

eographical and geopolitical advantages: it is near the center of

urkey, it has the country’s second biggest amount of flow and it

s the capital city. 

The time discount factor α is taken as 0.9. Distance data is

aken from Tan and Kara (2007) . Travel times are calculated by

ssuming that the trucks travel at a speed of 70 km/hr and that

he airplanes travel at a speed of 700 km/hr. The loading/unloading

ime at an airport is taken as 30 minutes. 

In addition to the TR data set, we also consider the CAB data

et, which is based on airline passenger interactions between 25

S cities in 1970, and was introduced to the literature by O’Kelly

1987) . The CAB data set is illustrated in Fig. 4 . Twenty-five nodes

epresent the demand nodes and the potential ground and airport

ubs ( | N| = | H| = | AH| = 25 ). The central airport hub is assigned

o New York (17) because it is the biggest city in the US in terms

f population. The distance data is taken from O’Kelly (1987) . The

ther settings are the same as in the Turkish network. 
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Fig. 3. Map of Turkey with cities and potential hub sets. 

Fig. 4. Map of the US with 25 Cities. 
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For more information on the CAB and TR data sets, we refer the

eader to Beasley (2012) . 

The subgradient algorithm related parameters are taken as the

ame for both data sets. The initial Lagrange multipliers (π0 
kl 
) are

et to 0. f is taken as 1 and it is halved after 5 iterations without

mprovement. The initial lower and upper bounds of the algorithm

re 0 and the highest number of airline segments possible, respec-

ively. While applying the subgradient algorithm, we use different

aximum number of iterations such as 1, 3, 5, 10, 20, 50 & 100. 

Computational studies were carried out on a server with 4 AMD

pteron Interlagos 6282 SEs and 96 GB of RAM. The proposed for-

ulation and the proposed subgradient algorithm were coded in

ava via NetBeans IDE 8.0.2. As solver, we used Gurobi optimiza-

ion software, version 6.0.3. The time limit was set as 6 hours. 

.2. Performance of the valid inequalities 

We first tested the performance the two valid inequalities pro-

osed in Section 3 for the mathematical model on the Turkish

etwork data set. We did not consider Valid Inequality (21) and

alid Inequality (22) together because Valid Inequality (22) is the

tronger version of Valid Inequality (21) . The results are depicted in

able 1 . The first two columns of Table 1 represent the parameters:

he time bound ( T ) in hours and the number of hubs to be opened

 p ). The “No Valid Inequalities”, “Valid Inequality (21) ” and “Valid

nequality (22) ” columns represent the solutions of the appropri-

te models. The columns indicated by “LP Gap” and “CPU” show
he gap in linear programming relaxation from the optimal value

n percentages and the CPU time requirement in seconds, respec-

ively. Finally, the column with label “Nodes” presents the number

f nodes that were evaluated in a branch-and-bound tree. 

As evident from Table 1 , including only Valid Inequality

21) and only Valid Inequality (22) generally decreases CPU time.

hen we compare the results in terms of CPU time, the highest

mprovement was observed in the Valid Inequality (21) column for

hree instances, in the Valid Inequality (22) column for remaining

even instances. Based on these results, and because Valid Inequal-

ty (22) is the stronger version of Valid Inequality (21) , we included

nly Valid Inequality (22) into the mathematical model. 

.3. Computational analysis of the mathematical model 

We next observed the effect of T (time bound) and p (number

f hubs to be opened) on the optimal network configuration by

arying them. We varied the time bound and number of hubs to

e established on both data sets. For the TR data set, we evaluated

 between 24 and 14 hours, and determined that the RSS model is

nfeasible when the time bound is 12 hours or less. Because the US

s much larger than Turkey in terms of area, the service time level

ust be higher for that case. Therefore, we varied T from 60 to

2 hours, and determined that the RSS model is infeasible when

he time bound is 22 hours or less. For each T bound, we used

hree different values of p starting from the first feasible p value

or the corresponding T value as long as the CPU time allowed it
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Table 1 

Performance of Valid Inequalities, TR Data Set. 

T p No Valid Inequalities Valid Inequality (21) Valid Inequality (22) 

Lp Gap CPU Nodes Lp Gap CPU Nodes Lp Gap CPU Nodes 

18 6 95.83 321.27 202700 82.92 85.41 127476 82.92 59.65 145235 

18 7 95.83 888.57 1910129 82.92 32.5 166974 82.92 123.52 190014 

18 8 95.83 398.09 1001490 82.92 103.96 296374 82.92 85.16 177697 

17 6 92.86 24.08 98732 78.57 25.51 95806 78.57 23.83 81900 

17 7 92.86 641.98 1584395 78.57 303.15 1289257 78.57 172.77 873851 

17 8 92.86 1021.43 4340362 78.57 899.56 8071544 78.57 494.23 2339322 

16 6 94.44 60.4 288113 78.89 16.92 83396 78.89 74.22 226549 

16 7 94.44 885.92 4408706 78.89 450.47 2890848 78.89 822.47 4992912 

16 8 93.75 6 864.4 9 19089335 76.25 2404.16 10474880 76.25 1731.65 8296941 

15 8 95 7765.05 39483982 70 1577.5 10597225 70 1210.64 8305331 

Table 2 

Results on TR data set. 

T p # Flights # Airplanes A. Hubs G. Hubs (allocated A. Hubs) CPU 

24 2 2 1 6,23 – 0.09 

24 3 2 1 6,23 21(23) 0.26 

24 4 2 1 6,25 21(25), 65(25) 0.41 

23 2 2 1 6,23 – 0.09 

23 3 2 1 6,21 61(21) 0.28 

23 4 2 1 6,25 21(25), 61(25) 0.29 

22 2 2 1 6,23 – 0.09 

22 3 2 1 6,23 21(23) 0.3 

22 4 2 1 6,23 20(6), 61(23) 0.26 

21 3 3 1 6,21,25 – 0.41 

21 4 2 1 6,25 1(6), 65(25) 1.04 

21 5 2 1 6,25 1(6), 21(25), 65(25) 0.81 

20 4 3 1 6,21,25 34(6) 0.9 

20 5 3 1 6,23,65 34(6), 61(23) 1.27 

20 6 3 1 6,21,25 23(21), 65(21), 81(6) 1.36 

19 5 5 2 6,21,25,26 27(21) 2.08 

19 6 4 1 6, 21, 25, 34 16(6), 27(21) 5.73 

19 7 4 1 6, 21, 25, 34 16(6), 27(21), 42(6) 1.3 

18 6 6 2 6,27,34,61,65 20(6) 59.65 

18 7 6 2 6,25,34,44,65 20(6), 55(6) 123.52 

18 8 6 2 6,26,44,61,65 23(61), 34(26), 81(6) 85.16 

17 6 7 2 6,25,27,34,35,65 – 23.83 

17 7 7 2 6,1,16,20,25,65 27(1) 172.77 

17 8 7 2 6,16,20,25,27,65 21(65), 23(25) 494.23 

16 6 9 4 6,20,34,44,61,65 – 74.22 

16 7 9 4 6,16,20,44,61,65 21(44) 822.47 

16 8 8 3 6,7,16,21,25,27,65 55(6) 1731.65 

15 8 10 3 6,20,21,25,27,34,61,65 – 1210.64 

15 9 10 3 6,1,20,21,25,34,61,65 68(6) 14987.67 

14 8 11 4 6,1,20,21,25,34,61,65 – 990.34 

14 9 10 3 6,1,20,21,25,34,61,65 16(34) 18659.45 
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(the CPU time requirement of the model increases exponentially

with p ). Thus, for some T values, we only report results with two

different p values. The results can be seen in Tables 2 and 3 . 

The first two columns in Table 2 represent the two parameters:

T and p . The third and fourth columns in the table present the op-

timal objective function value (the number of airline links) and the

number of airplanes (number of rings), respectively. We can de-

duce the number of airplanes from the solution by observing for

how many i nodes, the value of u 0 i equals to 1. The fifth column

lists the location of airport hubs. The sixth column presents the

location of ground hubs and their allocated airport hubs in paren-

thesis. Finally, the last column indicates the CPU time in seconds

to solve the instance to optimality. 

As evident from Table 2 , two airline segments and two airport

hubs with one airplane are enough to cover all o-d pairs in Turkey

within 24, 23 or 22 hours. When we decrease T to 21 hours, three

airport hubs with three airline segments are required. Then, if we

increase p from 3 to 4, two airport hubs with two airline segments

are enough to cover the country because of two additional ground

hubs (which shows the importance of ground hubs). When T = 20
nd p = 3, the problem becomes infeasible. If we increase p from

 to 4, there can be a solution with three airport hubs and one

round hub rather than with four airport hubs. When we further

ecrease the time bound to 19 hours with five hubs are opened,

wo airplanes are required to cover all cities in Turkey with five

ights among four airport hubs. If we continue to decrease the

ime bound to 16, 15 and 14 hours (which are very tight time

ounds for the Turkish network), the number of airline segments

ncreases to eight, nine, 10 and 11, and the number of airplanes

ncreases to three and four. 

On the other hand, one airplane and two airport hubs are

nough to cover the US when the time bound is between 60 and

6 hours and where the central airport hub is New York (17)

 Table 3 ). If the time bound is between 52 and 36 hours, then gen-

rally one airplane and more than two airport hubs are required.

hen we reduce T to 32 hours or fewer, more than one airplane

s needed. 

Also, as evident from Table 3 , when we increase p for each time

ound level, generally the additional hub is opened as a ground

ub because each additional airport hub can lead to an increase
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Table 3 

Results on CAB Data Set. 

T p # Flights # Airplanes A. Hubs G. Hubs (allocated A. Hubs) CPU 

60 2 2 1 17,8 – 0.06 

60 3 2 1 17,8 18(17) 0.23 

60 4 2 1 17,22 7(17), 10(17) 0.63 

56 3 2 1 17,8 23(8) 0.16 

56 4 2 1 17,8 3(17), 23(8) 0.41 

56 5 2 1 17,8 10(8), 12(8), 23(8) 0.73 

52 3 3 1 17,10,22 – 0.16 

52 4 3 1 17,8,22 16(17) 1.76 

52 5 2 1 17,8 1(17), 22(8), 23(8) 0.58 

48 3 3 1 17,13,22 – 0.13 

48 4 3 1 17,13,22 1(13) 3.46 

48 5 3 1 17,13,22 11(13), 14(17) 2.71 

44 5 4 1 17,13,19,23 14(13) 10.05 

44 6 4 1 17,12,13,23 8(13), 24(13) 3.4 

44 7 4 1 17,12,13,23 8(13), 16(13), 24(13) 6.64 

40 5 5 1 17,1,11,12,23 – 2.33 

40 6 5 1 17,1,12,15,23 8(15) 8.81 

40 7 5 1 17,1,12,15,23 8(15),13(1) 11.73 

36 6 5 1 17,1,11,12,23 10(1) 7.51 

36 7 5 1 17,11,12,16,23 8(11), 14(16) 7.67 

36 8 5 1 17,1,11,12,23 8(11), 10(1), 16(1) 43.54 

32 7 7 2 17,11,12,13,14,23 8(11) 197.15 

32 8 7 2 17,10,11,12,23,24 8(11), 15(11) 493.92 

32 9 7 2 17,11,12,13,14,23 8(11), 18(17), 22(12) 224.24 

Table 4 

Results of different central airport hubs, TR Data Set. 

T p Ankara (6) Istanbul (34) Izmir (35) Kayseri (38) Elazig (23) 

# # CPU # # CPU # # CPU # # CPU # # CPU 

Flights Airplanes Flights Airplanes Flights Airplanes Flights Airplanes Flights Airplanes 

24 3 2 1 0.26 2 1 0.36 3 1 0.39 3 1 0.15 2 1 0.55 

24 4 2 1 0.41 2 1 0.43 3 1 4.54 3 1 0.75 2 1 0.62 

24 5 2 1 0.43 2 1 0.66 3 1 4.11 3 1 0.96 2 1 1.29 

21 5 2 1 0.81 5 2 13.39 4 1 37 4 1 2.99 3 1 2 

21 6 2 1 0.49 4 1 19.67 4 1 8.62 4 1 2.98 3 1 2.04 

21 7 2 1 0.68 4 1 21.12 4 1 224.08 4 1 2.54 3 1 1.82 

18 6 6 2 59.65 7 2 454.41 7 2 445.31 6 2 66.11 6 2 68.88 

18 7 6 2 123.52 7 2 2662.24 7 3 2361.68 6 2 104.17 6 2 78.09 

18 8 6 2 85.16 7 2 2122.34 7 3 2985.12 6 2 96.1 6 2 158.18 
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n the number of airline segments as the objective function of the

athematical model minimizes it. 

Decreasing the time bound and increasing the number of hubs

o be opened generally increases the CPU time. For the TR data set,

f the time bound is between 24 and 19 hours, the model is solved

ithin a few seconds for all instances. If it is between 18 and 14

ours, the CPU time requirement is within two hours except in two

nstances, T = 15 and p = 9 and T = 14 and p = 9. When the

ime bound is between 60 and 48 hours in the CAB data set, the

roblem is solved within a few seconds. If it is between 44 and 32

ours, all instances are solved within 10 minutes. 

We also analyzed the effect of a different central airport hub lo-

ation on the results of the RSS model for both data sets ( Table 4 ).

n Turkey, we chose Istanbul (34; northwestern Turkey) and Izmir

35; western Turkey) as central airport hubs due to the high

mount of demand; Istanbul is the country’s largest city and Izmir

s the third largest. We also selected Kayseri (38) and Elazig (23)

ecause of their locations (central and eastern Turkey, respec-

ively). We varied the time bounds and the number of hubs to be

ocated for each possible central airport hub location. As expected,

he cities’ geographical positions directly affects the results. For ex-

mple, for some p values, the problem becomes infeasible when

he central airport hub is not Ankara. When T = 24 and p = 2, if

he central airport hub is Ankara, Istanbul or Elazig, there exists a

olution; if it is Izmir or Kayseri, the problem is infeasible because
he time bound cannot be satisfied with two hubs. Because Izmir a
s located in the far west of Turkey, cities in the east cannot be

overed with only two airport hubs. Interestingly, although Kayseri

s in the center of Turkey, two airport hubs are also not enough

o cover all o-d pairs in Turkey because if a second airport hub is

pened in the west, then cities in the east cannot be reached on

ime, and if it in the east, then cities in the west cannot be cov-

red on time. To satisfy the time bound for Kayseri, at least three

ubs are required; therefore, having the central airport hub in the

enter of the country may not be as efficient as it might seem. 

When we compare the results, we see that the objective func-

ion values (the number of airline links) for the Istanbul, Izmir and

ayseri cases are generally higher than for Ankara and Elazig. This

nding indicates that if the central airport hub is located on one

ide of the country (such as in Istanbul or Izmir) or in the center

f the country (such as in Kayseri), more flights are necessary to

nsure coverage of the whole country. On the other hand, cities lo-

ated near the center, but not exactly in the center (such as Ankara

nd Elazig) are more advantageous for being a central airport hub

n terms of the number of flights. 

We also explored different options for the central airport hub

or the CAB data set ( Table 5 ). We first chose Los Angeles (12) ,

hich is the second-biggest city in the US in terms of population.

e also chose Kansas City (11) , because it is very near the center

f the US. Additionally, we considered Memphis (13) and Cincin-

ati (5) as the central airport hub because several cargo companies

re headquartered there. 
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Table 5 

Results for different central airport hubs, CAB data set. 

T p New York (17) Los Angeles (12) Kansas City (11) Memphis (13) Cincinnati (5) 

# # CPU # # CPU # # CPU # # CPU # # CPU 

Flights Airplanes Flights Airplanes Flights Airplanes Flights Airplanes Flights Airplanes 

60 2 2 1 0.06 2 1 0.1 2 1 0.05 2 1 0.05 2 1 0.06 

60 3 2 1 0.23 2 1 0.78 2 1 0.21 2 1 0.2 2 1 0.23 

60 4 2 1 0.63 2 1 5.9 2 1 0.13 2 1 0.16 2 1 0.2 

48 4 3 1 3.46 3 1 8.73 3 1 1.74 3 1 0.85 2 1 0.18 

48 5 3 1 2.71 3 1 7 3 1 2.28 3 1 2.76 2 1 0.17 

48 6 3 1 2.23 3 1 7.01 3 1 1 3 1 0.9 2 1 0.2 

36 6 5 1 7.51 6 2 148.56 5 1 8.04 6 1 17.4 5 1 2.07 

36 7 5 1 7.67 6 2 159.36 5 1 9.02 6 2 47.46 5 1 3.84 

36 8 5 1 43.54 5 1 87.18 5 1 7.07 6 2 17.3 5 1 3.71 

Table 6 

Coverage Percentages of O-D Pairs in TR Data Set for T = 19, p = 6. 

Ankara Istanbul Izmir Kayseri Elazig 

# Flights 4 flights 6 flights 6 flights 5 flights 4 flights 

# Airplanes 1 airplane 2 airplanes 2 airplanes 2 airplanes 1 airplane 

Service Time Percentage of Coverage 

18 98.3 98.09 99.78 96.45 97.84 

16 88.03 84.29 91.88 80.46 81.48 

14 67.22 61.94 67.35 58.24 58.55 

12 41.42 38.77 37.96 35.19 33.83 

10 20.43 18.55 17.41 17.13 15.74 
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We varied the time bound and the number of hubs to be

opened for these five central airport hub locations, as we did in

the New York case. As evident from the table, the results differ

markedly from each other, especially for the tight time bounds, be-

cause of their locations in different regions. New York is located in

the northeastern US, Los Angeles is in the southwest and Kansas

City in the center. Memphis and Cincinnati are located in the cen-

tral eastern portion of the US. 

For a loose time bound such as 60 or 48 hours, the results are

generally the same for each case. If we tighten the time bound to

36 hours, again for New York, Kansas City and Cincinnati, the re-

sults are the same, but for Los Angeles, more airplanes and flights

are required because of how far west it is located and because

most of the cities in the CAB data set are located in the east. The

Memphis case also requires more airplanes and flights, for a simi-

lar reason as the Kayseri case in the TR data set. 

The results of the TR and CAB data sets indicate that if the cen-

tral airport hub is in the east or west of the country, the airplane

first travels to an airport hub located on the other side of the coun-

try, which is generally farthest from the central one. If the central

airport hub is in the central part of the country, the airplane first

travels to one side (west or east) of the country, then to the other

side and then returns to the central airport hub. The results for

both data sets also show that when the central airport hub is more

centrally located, CPU time generally decreases. 

While analyzing the outputs for both data sets, we observed

that although all o-d pairs are covered within the fixed time bound

T , some are covered within a bound far shorter than the time

bound T over the proposed network. We now provide a different

analysis where we compare the resulting networks based on their

“percentage of coverage” performance, which we define as the per-

centage of the whole demand served within different (smaller than

T ) time bounds. In the TR data set, we analyzed one instance ( T =
19, p = 6) for five central airport hub locations. For this analysis,

after calculating the service time for every o-d pair, we computed

the percentage of coverage based on service time ( Table 6 ). 

The analysis indicates that actually more than half of the o-d

pairs are covered within 14 hours, regardless of where the central

airport hub is located. When we compare the results, we see that
zmir has the highest service level percentage for T = 18, 16 and

4. When the time bound is equal to 12 and 10 hours, we see that

nkara has the highest coverage. Generally, the coverage percent-

ges for Ankara, Izmir and Istanbul are more than for Kayseri and

lazig. However, we should note that the Istanbul, Izmir and Kay-

eri cases have two airplanes and the Ankara and Elazig cases just

ne. Having two airplanes directly increases service level percent-

ges; therefore, the Istanbul, Izmir and Kayseri cases have more

dvantages compared to the Ankara and Elazig cases. Nevertheless,

nkara has the second-highest service level percentage when the

ime bound is between 18 and 14 hours, and the highest when T

s between 12 and 10 hours. Therefore, in terms of service level

ercentage, Ankara is the most advantageous city ( T = 19, p = 6). 

We also compare the service level percentages of the five cen-

ral airport hub locations in the CAB data set for T = 48 and p = 4

see Table 7 ). 

Based on the results shown in Table 7 , nearly 70% of all o-d

airs are covered within 32 hours for each case. When the service

evel is between 44 and 36 hours, the Cincinnati and Kansas City

ases have the highest coverage percentages. If the service level

s tightened to fewer than 36 hours, Cincinnati and New York have

he highest percentages. Although New York is located on the east-

rn edge of the country, when we decrease the time bound, its ser-

ice level percentage is generally higher than the other cases per-

entages; this finding is related to the high number of cities close

o it. This situation is also valid for Cincinnati, but not for Kansas

ity, Memphis or (and especially) Los Angeles. The Cincinnati case

enerally gives the highest coverage percentages for this instance

 T = 48, p = 4). 

.4. Computational analysis of the subgradient heuristic algorithm 

In this section, the solution obtained from the subgradient

ased heuristic algorithm will be compared with the optimal so-

ution in order to evaluate the quality of the proposed solution ap-

roaches in terms of the optimality gap and CPU time. 

When we apply the proposed subgradient algorithm for both

R and CAB data set, for most of the instances, the gap between

ower and upper bounds is really high. The reason for this can be
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Table 7 

Coverage percentages of O-D Pairs in CAB Data Set for T = 48, p = 4. 

New York Los Angeles Kansas City Memphis Cincinnati 

# Flights 3 flights 3 flights 3 flights 3 flights 2 flights 

# Airplanes 1 airplane 1 airplane 1 airplane 1 airplane 1 airplane 

Service Time Percentage of Coverage 

44 93.67 98 98 97.33 99 

40 89 89.33 95 90 94 

36 80.67 78 82.33 77 87.33 

32 69 63 67.67 62 76.33 

28 54.33 44 49 45.67 59 

24 40 29.33 31 30 41.67 

20 28 17 18 18 27.67 

Table 8 

Comparison between Optimal and Heuristic Solutions (1 iteration) on the TR Data Set. 

T p # Fl Optimal Solution Heuristic Solution Gap Time Imp. 

Obj. Func. CPU Obj. Func. CPU 

20 4 2 3 0.9 3 0.49 0.00 45.56 

20 5 5 3 1.27 3 0.36 0.00 71.65 

20 6 6 3 1.36 3 0.76 0.00 44.12 

19 5 4 5 2.08 7 1.14 40.00 45.19 

19 6 6 4 5.73 6 0.53 50.00 90.75 

19 7 6 4 1.3 6 1.89 50.00 −45.38 

18 6 5 6 59.65 6 1.42 0.00 97.62 

18 7 6 6 123.52 7 2.8 16.67 97.73 

18 8 5 6 85.16 6 35.27 0.00 58.58 

17 6 1 7 23.83 7 22.92 0.00 3.82 

17 7 5 7 172.77 7 7.72 0.00 95.53 

17 8 6 7 494.23 7 22.1 0.00 95.53 

16 6 1 9 74.22 9 69.2 0.00 6.76 

16 7 2 9 822.47 9 297.2 0.00 63.86 

16 8 4 8 1731.65 9 844.79 12.50 51.21 

15 8 1 10 1210.64 10 1459.24 0.00 −20.53 

15 9 3 10 14987.67 11 5270 10.00 64.84 

14 8 2 11 990.34 11 541.36 0.00 45.34 

14 9 6 10 18659.45 12 641.79 20.00 96.56 

Average 10.48 53.09 
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Table 9 

The heuristic algorithm results with different 

number of iterations (TR Data Set). 

# Iterations Average 

Gap Time Imp. 

1 10.48 53.09 

3 8.90 −29.79 

5 8.25 −85.99 

10 8.25 −178.39 

20 8.25 −406.47 

50 8.25 −942.11 

100 8.25 −1770.92 

a  

a  

t

 

i  

H  

s  

t  

b  

f  

w  

o  

l  
elated to the objective function. However, since the gaps are re-

lly high, the optimal solution cannot be found by using the sub-

radient algorithm. Instead, we can consider the solution of the re-

tricted problem as a heuristic solution and the upper bounds that

e obtained from the restricted problem as the objective function

alue of the heuristic solution. 

First, we show the results of TR data set by considering differ-

nt T (time bound) and p (number of hubs to be opened) pairs.

n Table 8 , we compared the optimal solutions with the heuristics

olutions obtained from the proposed subgradient based heuristic

lgorithm with only 1 iteration. The first three columns of the table

ndicate the parameters: the time bound, the number of hubs to be

pened and the number of fixed locations. The next four columns

how the objective function values and CPU times for both the op-

imal solution and heuristic solution, respectively. Finally, the last

wo columns show the optimality gap and time improvement in

ercentages, respectively. 

Except 7 out of all 19 instances, the upper bounds found at the

rst iteration of the heuristic algorithm give the optimal solution

nd the average optimality gap and the worst optimality gap for

hese 13 instances are 10.48% and 50%, respectively. This indicates

hat the heuristic method can be considered as a good solution

pproach for this problem in terms of solution quality. Also, it per-

orms even better when we consider CPU times. As evident from

able 8 , except 2 out of 19 instances, the CPU times improve very

ell. The average time improvement is equal to 53.09%. 

In Table 9 , we compare heuristic algorithm with different max-

mum number of iterations; 1, 3, 5, 10, 20, 50 and 100 iterations.

n the table, the first column indicates the number of iterations
 o
nd in the next two columns, we report the average optimality gap

nd the average solution time improvement in percentages, respec-

ively. 

As it can be seen from Table 9 , if the number of iterations is

ncreased to three, the average optimality gap is reduced to 8.90%.

owever, with three iterations, the heuristic algorithm becomes

lower than solving the formulation. When the number of itera-

ions is equal to five or more, the average optimality gap is 8.25%,

ut the heuristic algorithm performs much worse than solving the

ormulation in terms of solution time. We can conclude that when

e increase the number of iterations, the reduction on the average

ptimality gap is very small compared to the increase on the so-

ution time. Thus, we propose to use the heuristic algorithm with

ne iteration. 
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Table 10 

Comparison between Optimal and Heuristic Solutions (1 iteration) on the CAB Data Set. 

T p # Fl Optimal Solution Heuristic Solution Gap Time Imp. 

Obj. Func. CPU Obj. Func. CPU 

40 5 1 5 2.33 5 3.62 0.00 −55.36 

40 6 2 5 8.81 5 10.53 0.00 −19.52 

40 7 5 5 11.73 6 2.16 20.00 81.59 

38 5 1 5 6.24 5 2.69 0.00 56.89 

38 6 2 5 12.15 5 9.92 0.00 18.35 

38 7 4 5 43.87 5 2.55 0.00 94.19 

36 6 2 5 7.51 5 7.22 0.00 3.86 

36 7 4 5 7.67 6 13.07 20.00 −70.40 

36 8 6 5 43.54 7 5.07 40.00 88.36 

34 6 3 6 39.76 6 4.37 0.00 89.01 

34 7 4 6 63.54 6 6.3 0.00 90.08 

34 8 6 6 179.51 7 5.64 16.67 96.86 

32 7 5 7 197.15 7 1.90 0.00 99.04 

32 8 5 7 493.92 8 48.57 14.29 90.17 

32 9 6 7 224.24 7 19.21 0.00 91.43 

30 7 1 8 99.7 8 32.71 0.00 67.19 

30 8 4 7 842.04 8 11.38 14.29 98.65 

30 9 6 7 471.27 7 13.3 0.00 97.18 

Average 6.96 56.53 

Table 11 

The heuristic algorithm results with different num- 

ber of iterations (CAB Data Set). 

# Iterations Average 

Gap Time Imp. 

1 6.96 56.53 

3 6.16 −0.25 

5 6.16 −60.39 

10 6.16 −139.67 

20 6.16 −303.21 

50 6.16 −783.28 

100 6.16 −1580.40 
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Next, we considered CAB data set with the same approach as

we did for the TR data set. Initially, we applied the subgradient al-

gorithm with only 1 iteration in order to observe its performance.

Again, due to the high gaps obtained by the subgradient algorithm,

we consider the solution of the restricted problem (upper bound)

as a heuristic solution as we did for the TR data set. The opti-

mal and heuristic solutions with only 1 iteration are compared in

Table 10 . 

For 12 out of 18 instances, the heuristic method gives the opti-

mal solution. In terms of CPU time, the heuristic method performs

well. For all instances expect 3, CPU times improve and the av-

erage time improvement is 56.53%, which is higher than the one

obtained by the TR data set. 

For the CAB data set, we also compare the heuristic algorithm

with different number of iterations. The average results are de-

picted in Table 11 . 

The results on Table 11 indicate that with 3 iterations, the aver-

age optimality gap is reduced to 6.16%, whereas the average solu-

tion time is very close to the one of solving the formulation. When

the number of iterations is increased even further, the average op-

timality gap does not decrease, while the average solution time in-

creases rapidly. Similar to the results obtained for the TR data set,

the heuristic algorithm with only 1 iteration is the only solution

technique that has a solid improvement on the CPU time. There-

fore, it is the best version of the heuristic algorithm. 

In general, for both data sets, this heuristic algorithm with only

1 iteration performs very well in terms of solution quality and CPU

time. It yields very low optimality gap despite the structure of the
bjective function and it solves the problem very fast compared to

he mixed integer programming model. 

. Conclusions and future work 

In this study, we introduce the hierarchical multimodal hub

overing problem over a service network configuration. We pro-

ose to configure the upper level as a ring structure mainly be-

ause upper levels usually require more sophisticated transporta-

ion vessels leading to more costs. In the top layer, airplanes pick

p and deliver cargoes with tours between airport hubs. Therefore,

n addition to routing decisions, scheduling decisions are also in-

luded in this problem. 

We develop a mixed-integer programming formulation and pro-

ose some valid inequalities to strengthen the model. Also, an al-

ernative solution approach based on Lagrangian relaxation is de-

eloped in order to solve the problem instances with tighter time

ounds in a reasonable time. The proposed approach is directly re-

ated to a subgradient algorithm. Initially, the problem is attempted

o solve by using a subgradient algorithm, but due to high gaps be-

ween lower bounds obtained from the relaxed problem and upper

ounds obtained from the restricted problem, we propose a heuris-

ics method based on the subgradient approach, in which the up-

er bounds obtained from the restricted problems in the subgradi-

nt algorithm are considered as a heuristic solution to the original

roblem. 

We conduct comprehensive computational studies for the pro-

osed mathematical model on both CAB and Turkish network data

ets. First of all, we solve the proposed problem to optimality

nd present some computational analysis to observe the effects of

ome key parameters such as the time bound, the number of hubs

o open and the central airport hub. After, we conduct another

omputational study over TR and CAB data sets in order to evaluate

he performance of the subgradient based heuristic method with

he proposed formulation. Based on the computational results, we

onclude that the heuristic approach with only 1 iteration works

ery well in terms of the solution quality (the optimality gap) and

he CPU time for both data sets. 

As stated earlier, we aim to cover all o-d pairs in a given time

ound ( T ). The computational analysis show that most o-d pairs

re covered within a bound far lower than T. Further, when we

ompare different locations for the central airport hub for the
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SS model, we find that cities located near the center of the

ountry (Ankara for TR and Cincinnati for CAB), as distinct from

ities on the edges or exactly in the center, are more favorable in

erms of the number of airplanes, airline segments and coverage

ercentages. 

In future research, flow and variable transportation cost issues

ould be included in the proposed problem settings to observe

heir effects on the solutions. Vehicle capacity could also be added

nto the problem if flow is considered. With a capacity constraint,

ore vehicles might be required to deliver the cargoes within the

ime bound. Cargo delivery with “pick up and deliver together”

ervice could also be considered, which would decrease package

ravel time. Finally, to solve the proposed problem, more sophisti-

ated solution techniques such as branch and cut approach can be

eveloped. 

cknowledgements 

The authors thank two anonymous reviewers and the Editor for

heir valuable comments on an earlier version of this paper that

esulted in improved content and exposition. 

eferences 

lumur, S. , Kara, B.Y. , 2008. Network hub location problems: the state of the art.
Eur. J. Oper. Res. 190 (1), 1–21 . 

lumur, S. , Kara, B.Y. , 2009. A hub covering network design problem for cargo ap-
plications in turkey. J. Oper. Res. Soc. 60 (10), 1349–1359 . 

lumur, S.A. , Kara, B.Y. , Karasan, O.E. , 2012a. Multimodal hub location and hub net-
work design. Omega (Westport) 40 (6), 927–939 . 

lumur, S.A. , Yaman, H. , Kara, B.Y. , 2012b. Hierarchical multimodal hub location

problem with time-definite deliveries. Transp. Res. Part E: Log. Transp. Rev. 48
(6), 1107–1120 . 

easley, J. E., 2012. Or-library: Hub location. http://people.brunel.ac.uk/ ∼mastjjb/jeb/
orlib/phubinfo.html . Accessed: 2012-09-17. 

ampbell, J.F. , 1994. Integer programming formulations of discrete hub location
problems. Eur. J. Oper. Res. 72 (2), 387–405 . 

ampbell, J.F. , Ernst, A.T. , Krishnamoorthy, M. , 2002. Hub location problems. Facility

Location: Applic. Theory 1, 373–407 . 
ampbell, J.F. , O’Kelly, M.E. , 2012. Twenty-five years of hub location research. Transp.

Sci. 46 (2), 153–169 . 
etiner, S. , Sepil, C. , Süral, H. , 2010. Hubbing and routing in postal delivery systems.

Ann. Oper. Res. 181 (1), 109–124 . 
ontreras, I. , Fernández, E. , Marín, A. , 2009. Tight bounds from a path based for-
mulation for the tree of hub location problem. Comput. Oper. Res 36 (12),

3117–3127 . 
ontreras, I. , Fernández, E. , Marín, A. , 2010. The tree of hubs location problem. Eur.

J. Oper. Res. 202 (2), 390–400 . 
e Camargo, R.S. , de Miranda, G. , Løkketangen, A. , 2013. A new formulation and

an exact approach for the many-to-many hub location-routing problem. Appl.
Math. Model. 37 (12), 7465–7480 . 

ara, B.Y. , Taner, M.R. , 2011. Hub location problems: The location of interacting fa-

cilities. Springer, New York, NY, pp. 273–288 . 
ara, B.Y. , Tansel, B.Ç. , 2001. The latest arrival hub location problem. Manag. Sci. 47

(10), 1408–1420 . 
iu, J. , Li, C.-L. , Chan, C.-Y. , 2003. Mixed truck delivery systems with both

hub-and-spoke and direct shipment. Transp. Res. Part E: Log. Transp. Rev. 39
(4), 325–339 . 

iller, C.E. , Tucker, A .W. , Zemlin, R.A . , 1960. Integer programming formulation of

traveling salesman problems. J. ACM (JACM) 7 (4), 326–329 . 
agy, G. , Salhi, S. , 1996. Nested heuristic methods for the location-routeing problem.

J. Oper. Res. Soc. 1166–1174 . 
agy, G. , Salhi, S. , 1998. The many-to-many location-routing problem. Top 6 (2),

261–275 . 
agy, G. , Salhi, S. , 2007. Location-routing: issues, models and methods. Eur. J. Oper.

Res. 177 (2), 649–672 . 

’Kelly, M.E. , 1986a. Activity levels at hub facilities in interacting networks. Geogr.
Anal. 18 (4), 343–356 . 

’Kelly, M.E. , 1986b. The location of interacting hub facilities. Transp. Sci. 20 (2),
92–106 . 

’Kelly, M.E. , 1987. A quadratic integer program for the location of interacting hub
facilities. Eur. J. Oper. Res. 32 (3), 393–404 . 

’Kelly, M.E. , Lao, Y. , 1991. Mode choice in a hub-and-spoke network: a zero-one

linear programming approach. Geogr. Anal . 
e Sá, E.M. , de Camargo, R.S. , de Miranda, G. , 2013. An improved benders decompo-

sition algorithm for the tree of hubs location problem. Eur. J. Oper. Res. 226 (2),
185–202 . 

ahraeian, R. , Korani, E. , 2010. The hierarchical hub maximal covering problem with
determinate cover radiuses. In: Proceedings of the 2010 IEEE International Con-

ference on Industrial Engineering and Engineering Management (IEEM). IEEE,

pp. 1329–1333 . 
milowitz, K.R. , Daganzo, C.F. , 2007. Continuum approximation techniques for the

design of integrated package distribution systems. Networks 50 (3), 183–196 . 
an, P.Z. , Kara, B.Y. , 2007. A hub covering model for cargo delivery systems. Net-

works 49 (1), 28–39 . 
asner, M. , Zäpfel, G. , 2004. An integrated multi-depot hub-location vehicle routing

model for network planning of parcel service. Int. J. Prod. Econ. 90 (3), 403–419 .

aman, H. , 2009. The hierarchical hub median problem with single assignment.
Transp. Res. Part B: Methodol. 43 (6), 643–658 . 

aman, H. , Kara, B.Y. , Tansel, B.Ç. , 2007. The latest arrival hub location problem for
cargo delivery systems with stopovers. Transp. Res. Part B: Methodol. 41 (8),

906–919 . 
aman, H. , Karasan, O.E. , Kara, B.Y. , 2012. Release time scheduling and hub location

for next-day delivery. Oper. Res. 60 (4), 906–917 . 

http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0004
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/phubinfo.html
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0028
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0029
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0030
http://refhub.elsevier.com/S0305-0548(17)30078-3/sbref0030

	Routing and scheduling decisions in the hierarchical hub location problem
	1 Introduction
	2 Related literature
	3 Problem definition and formulation
	3.1 Pre-processing and valid inequalities

	4 Lagrangian relaxation based solution approach
	4.1 Relaxed problem
	4.2 Finding a feasible solution
	4.3 Subgradient algorithm

	5 Computational study
	5.1 Data sets
	5.2 Performance of the valid inequalities
	5.3 Computational analysis of the mathematical model
	5.4 Computational analysis of the subgradient heuristic algorithm

	6 Conclusions and future work
	 Acknowledgements
	 References


