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Reconstruction of the polarization distribution of the Rice-Mele model
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We calculate the gauge-invariant cumulants (and moments) associated with the Zak phase in the Rice-Mele
model. We reconstruct the underlying probability distribution by maximizing the information entropy and
applying the moments as constraints. When the Wannier functions are localized within one unit cell, the
probability distribution so obtained corresponds to that of the Wannier function. We show that in the fully
dimerized limit the magnitudes of the moments are all equal. In this limit, if the on-site interaction is decreased
towards zero, the distribution shifts towards the midpoint of the unit cell, but the overall shape of the distribution
remains the same. Away from this limit, if alternate hoppings are finite and the on-site interaction is decreased,
the distribution also shifts towards the midpoint of the unit cell, but it does this by changing shape, by becoming
asymmetric around the maximum, and by shifting. We also follow the probability distribution of the polarization
in cycles around the topologically nontrivial point of the model. The distribution moves across to the next unit
cell, its shape distorting considerably in the process. If the radius of the cycle is large, the shift of the distribution
is accompanied by large variations in the maximum.
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I. INTRODUCTION

One way to derive the Berry phase [1–3] is to form a
product of scalar products between quantum states at different
points of the space of external parameters (Bargmann invariant
[4]) and to take the continuous limit along a cyclic curve.
An extension [5,6] of this derivation, keeping higher-order
terms, leads to gauge-invariant cumulants (GICs) associated
with the Berry phase. One is led to ask two questions. The
GICs give information about the distribution of what physical
quantity? Can one reconstruct the probability distribution from
the GICs?

The answer to the first question depends on the physical
context in which the Berry phase is defined. In a crystalline
solid the Berry phase (or Zak phase [7] in this context)
corresponds to the macroscopic polarization. Zak showed [7]
that the phase itself corresponds to the expectation value of
the position over a Wannier function. For the higher-order
GICs Souza et al. [5] showed that they only correspond to
the cumulants of the distribution of the position associated
with Wannier functions if the Wannier functions themselves
are localized within the unit cell (nonoverlapping among
different unit cells). Indeed, in the construction of tight-
binding-based lattice models, one starts with a continuum
description and assumes a localized basis of nonoverlapping
Wannier functions (see, for example, Ref. [8]). In practice,
however, constructing such a localized basis is not trivial [9].

The distribution of the polarization gauges the extent to
which the system is localized in the full configuration space, a
criterion [10] which distinguishes an insulator from a conduc-
tor. The second GIC was shown [5,11] to be proportional to
the integrated frequency-dependent conductivity (sum rule). A
gauge-dependent definition of the spread (similar to the second
GIC) was used to define the maximally localized Wannier
function [9]. Also, the second cumulant was proposed [12] to
distinguish conductors from insulators. In Ref. [6] the simplest
system with a Berry phase, an isolated spin- 1

2 particle in a
magnetic field, was considered, and it was shown that (based
on calculating the first four cumulants) the moments of this
underlying distribution are all equal.

The Zak phase was measured in Ref. [13] in an optical
lattice setup which corresponds to the experimental realiza-
tion of the Su-Schrieffer-Heeger (SSH) model [14] and its
extension the Rice-Mele (RM) model [15]. The RM model
is a lattice model with an alternating on-site potential and
hoppings with alternating strengths, depending on whether
a given bond is odd or even. An interesting characteristic
[3,16] of the RM model is its topological behavior, which
manifests when an adiabatic cycle in the parameter space of
the Hamiltonian encircles the point (� = 0, J = J ′ = 1). Due
to the fact that the polarization as a function of the parameters
of the Hamiltonian is not single valued, the polarization in
such a process changes by a “polarization quantum.” A recent
related study [17] realized quantized adiabatic charge pumping
[18], also in the RM model.

In this paper we calculate the leading GICs associated with
the Zak phase for the RM model. Based on the GICs (or
associated gauge-invariant moments, GIMs) we approximately
reconstruct the distribution associated with the polarization.
The RM model is a lattice model, which implies that the
underlying Wannier functions are nonoverlapping among
different unit cells and that the GICs correspond to the
distribution associated with the Wannier function. Hence, our
reconstructed probabilities correspond to the square modulus
of the Wannier function. We show that in the fully dimerized
limit the GIMs should all have the same magnitude and
that the sign of odd GIMs switches sign with respect to the
direction of the polarization. We also focus on the line of
the parameter plane where the polarization shows a line of
discontinuity (see the left inset in the bottom panel of Fig. 3
below). We also present two model calculations in which the
evolution of the probability distribution is followed around the
topologically nontrivial point of the RM model. As expected,
the distribution migrates to the next unit cell, although its shape
varies considerably during the cycle.

Reconstructing a probability distribution from knowledge
of a finite set of moments is an ill-posed mathematical problem
which already has a long history [19], although there has
been renewed interest in recent decades [20,21]. The scientific
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applications are also quite broad: image processing [22],
calculating magnetic moments [23], and molecular electronic
structure [24]. In our study, we opt for a reconstruction
based on maximizing the entropy [24–26] of the underlying
probability distribution.

This paper is organized as follows. In the next section
we introduce the GICs associated with the Zak phase. We
then discuss their connection to the distribution associated
with the Wannier functions. In Sec. IV we discuss the
connection of the cumulants to response functions, after which
the reconstruction procedure is presented. In Sec. VI the
Su-Schrieffer-Heeger and Rice-Mele models are introduced.
Subsequently, the behavior of the moments for the fully
dimerized limit is studied. Section VIII contains our results
and analysis before concluding our work.

II. GAUGE-INVARIANT CUMULANTS ASSOCIATED
WITH THE ZAK PHASE

Consider a one-dimensional system whose Hamiltonian
is periodic in L. We take Bloch functions parametrized by
the crystal momentum �0(K) on a grid of M points, KI =
2πI/(ML) − π/L, with I = 0, . . . ,M − 1. The Zak phase
can be derived from a product of the form

φZak = Im ln
M−1∏
I=0

〈�0(KI )|�0(KI+1)〉 (1)

by taking the continuous limit (M → ∞). The product in
Eq. (1) is known as the Bargmann invariant [4]. We will derive
the Zak phase, as well as the associated GICs. We start by
equating the product in Eq. (1) to a cumulant expansion,

[
M−1∏
I=0

〈�0(KI )|�0(KI+1)〉
]�K

= exp

( ∞∑
n=1

(i�K)n

n!
C̃n

)
,

(2)

with �K = 2π/M . We now expand both sides and equate
like powers of �K term by term, mindful of the fact that
the left-hand side includes a product over I . For example, the
first-order term will be

C̃1 = i

M−1∑
I=0

�Kγ1(KI ), (3)

and the second will be

C̃2 = −
M−1∑
I=0

�K[γ2(KI ) − γ1(KI )2], (4)

with γi(K) = 〈�0(K)|∂i
K |�0(K)〉. Straightforward algebra

and taking the continuous limit (�K → 0,M → ∞) give up
to the fourth-order term,

C1 = i
L

2π

∫ π
L

− π
L

dKγ1,

C2 = − L

2π

∫ π
L

− π
L

dK
[
γ2 − γ 2

1

]
,

C3 = −i
L

2π

∫ π
L

− π
L

dK
[
γ3 − 3γ2γ1 + 2γ 3

1

]
,

C4 = L

2π

∫ π
L

− π
L

dK
[
γ4 − 3γ 2

2 − 4γ3γ1 + 12γ 2
1 γ2 − 6γ 4

1

]
.

(5)

The quantities Cn in Eq. (5) are the GICs associated with
the Zak phase (the Zak phase itself being equal to C1). The
difference between C̃i and Ci is the multiplicative factor
L/2π , which is also how the phase is defined by Zak [7].
This ensures that the first moment corresponds to the average
position associated with the square modulus of the Wannier
function [Eq. (10) in Ref. [7]]. When the underlying probability
distribution is well defined, the associated moments can be
defined based on the cumulants. Following this standard
procedure, we also define a set of moments. For the first four
moments the expressions are

μ
(1)
C = C1,

μ
(2)
C = C2 + C2

1 ,
(6)

μ
(3)
C = C3 + 3C2C1 + C3

1 ,

μ
(4)
C = C4 + 4C3C1 + 3C2

2 + 6C2C
2
1 + C4

1 .

As discussed below, when the Wannier functions of a particular
model are localized within the unit cell, these moments
correspond to the moments of the polarization, or, alternatively,
to the distribution of the Wannier functions themselves.

We remark that, in general, the Berry phase is a physically
well defined observable which is thought not to correspond
to an operator acting on the Hilbert space. The Zak phase,
however, is known to correspond to the total position and is
the basic quantity in expressing the polarization in modern
theory [27–29].

III. CONNECTION TO THE DISTRIBUTION
OF WANNIER CENTERS

Cumulants of the type described in the previous section
appear in the theory of polarization [5]. In this section we
connect the cumulants to the distribution of Wannier centers.
We consider a typical term contributing to cumulant CM , which
can be written in the form

CM,α = L

2π

∫ π
L

− π
L

dK

d∏
i=1

〈unK |∂mi

K |unK〉, (7)

where
∑d

i=1 mi = M and we have used the periodic Bloch
functions unK (x) as a basis. The periodic Bloch functions can
be written in terms of Wannier functions,

unK (x) =
∞∑

p=−∞
exp[iK(pL − x)]an(x − pL), (8)

where an(x) denote the Wannier functions. With this definition
it holds that

L

2π

∫ π/L

−π/L

dK

∫ L

0
dx|unK (x)|2 =

∫ ∞

−∞
dx|an(x)| = 1. (9)
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We can rewrite a scalar product appearing in Eq. (7) as

〈unK |∂m
K |unK〉 =

∞∑
�p=−∞

exp(−iK�pL)
∫ ∞

−∞
dx

× a∗
n(x − �pL)(−ix)man(x). (10)

Substituting Eq. (10) into Eq. (7) and integrating in K results
in

CM,α =
∞∑

�p1=−∞
· · ·

∞∑
�pd=−∞

δ[�P,0]

×
d∏

j=1

{∫ ∞

−∞
dxj (−ixj )mj a∗

n(xj − �pjL)an(xj )

}
,

(11)

where �P = ∑d
j=1 �pj and δ[�P,0] is a Kronecker delta.

We note that if the Wannier functions are localized in
one unit cell, then the summation in the scalar product of
Eq. (10) will be restricted to the term �p = 0. In this case, the
cumulants CM will correspond to those of the Wannier centers.

IV. RELATION TO RESPONSE FUNCTIONS

The second GIC associated with the polarization gives a
sum rule for the frequency-dependent conductivity. This was
shown for a finite system by Kudinov [11], and the derivation
was extended to periodic systems by Souza et al. [5] by
replacing the ordinary matrix elements of the total position
operator with their counterparts valid in the crystalline case.
Their result is

C2 = h̄

πq2
e n0

∫
dω

ω
σ̄ (ω), (12)

where qe denotes the charge, n0 is the density, and σ̄ (ω) =
(V/8π3)

∫
dkσ k(ω).

For an insulating (gapped) system one can show that the
second cumulant provides an upper bound for the dielectric
susceptibility χ . This was shown by Baeriswyl [30] for an
open system. This derivation is also easily extended to periodic
systems by the appropriate replacement of the total position
matrix elements, resulting in

χ � 2qe

V �g

C2. (13)

In this equation �g denotes the gap, and V denotes the volume
of the system.

For higher-order cumulants, the derivation of relations such
as Eq. (13) is not possible. However, in the classical limit, the
cumulants correspond exactly to the response functions of
their respective order (C2 gives χ,C3 gives the first nonlinear
response function, etc.).

V. RECONSTRUCTION OF THE PROBABILITY
DISTRIBUTION

If the Wannier functions can be assumed to be localized
within a unit cell, the moments calculated based on the GICs
correspond to the actual moments associated with the Wannier
orbitals. If all the moments are known, the full probability

distribution can be reconstructed. However, in practice, usually
only a finite number of cumulants are available. In this case
the cumulants can be used as constraints to improve the
form of the probability distribution. The first and second
cumulants give the average and the variance, and if only
these two are available, the best guess for the probability
distribution is a Gaussian. Higher-order cumulants refine this
guess. The third cumulant (skewness) provides information
about the asymmetry of the distribution around the mean, while
the fourth-order one (kurtosis) represents how sharp the
maximum of the distribution is approached from either side.

Below we calculate the GICs of the Rice-Mele model,
which is a lattice model (in other words, the Wannier
functions are completely localized on particular sites), and
approximately reconstruct the probability distribution of the
polarization. Our reconstruction is based [24–26] on maxi-
mizing the information entropy under the constraints provided
by the moments calculated. The expression we use for the
entropy is

S[P (x)] = −
∫

dxP (x) ln P (x), (14)

minimized as a functional of P (x) under the constraints

μ
(k)
P =

∫
dxP (x)xk, (15)

as well as the constraint that P (x) is normalized. The functional
minimization of Eq. (14) under the constraints results in the
functional differential equation

δ

δP (x)

[
S[P (x)] −

∑
k

Ak

(
μ

(k)
P − μ

(k)
C

)] = 0, (16)

where μ
(k)
C are the moments obtained from the cumulants of

the Berry phase [see Eq. (6)] and Ak are Lagrange multipliers.
The solution of Eq. (16) is

P (x) = C exp

(
−

∑
k

Akx
k

)
, (17)

where C is the normalization constant. We determine the
constants Ak by numerically minimizing the quantity

χ2 =
∑

k

(
μ

(k)
P − μ

(k)
C

)2
(18)

as a function of Ak . As our initial guess in all cases studied
below, we take the Gaussian distribution defined by the
first two cumulants obtained for the particular case. The
minimization procedure we applied is the simulated annealing
technique [31]. Below our reconstructions are based on
calculating the first six GIMs in all cases.

VI. SU-SCHRIEFFER-HEEGER AND RICE-MELE
MODELS

The SSH model was first introduced [14] to understand the
properties of one-dimensional polyacetylene. The RM model
is an extension of the SSH model; it includes an additional
term, consisting of an alternating on-site potential, added in
order to extend the SSH model to diatomic polymers. In recent
decades it has been studied extensively due to the wealth
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FIG. 1. Schematic representation of the Rice-Mele model. �

represents the on-site potential, and A and B refer to the different
sublattices. J and J ′ are the alternating hoppings. The unit cell is
indicated in yellow. The x label corresponds to localization within
the unit cell (−1 < x < 1). The variable x is continuous; in our
subsequent calculations, the probability distribution will be shown as
a function of x. The unit of x is the lattice constant.

of interesting physical phenomena it displays: topological
soliton excitation, fractional charge, and nontrivial edge states
[32–37]. It was also realized as a system of cold atoms trapped
in an optical lattice in one dimension recently [13]. The
Berry phase in the RM model was studied by Vanderbilt and
King-Smith [16]. In that study the point of the model in the
parameter space of the model which is metallic (and which
is responsible for the topologically nontrivial behavior) was
encircled in the parameter space. This leads to the increase in
C1 (the Berry phase or the polarization) by one polarization
quantum, consistent with the quantization of charge transport
[18,27].

The SSH Hamiltonian reads

ĤSSH = −J

N/2∑
i=1

c
†
i,Aci,B − J ′

N/2∑
i=1

c
†
i,Bci+1,A + H.c., (19)

where N denotes the number of sites, and the on-site potential
has the form

Ĥ� = −�

N/2∑
i=1

c
†
i,Aci,A + �

N/2∑
i=1

c
†
i,Bci,B . (20)

The model is shown schematically in Fig. 1. This figure
shows the one-dimensional lattice, including sublattices, the
alternating hoppings, and the on-site potential. The unit cell is
indicated by yellow shading. Also shown is the continuous
variable x, which runs from −∞ to ∞ and will serve as
the axis for the reconstructed probability distributions of the
polarization calculated below.

The hoppings can also be expressed in terms of the average
hopping t and the deviation δ as

J = t

2
+ δ

2
, J ′ = t

2
− δ

2
. (21)

The total Hamiltonian we consider is

Ĥ = ĤSSH + Ĥ�. (22)

The parameters J and J ′ are hopping parameters correspond-
ing to hopping along alternating bonds. We take the lattice
constant to be unity (the unit cell is two lattice constants).
The parameter � denotes the on-site potential, whose sign
alternates from site to site. This model is metallic for J = J ′
and � = 0 but is insulating for all other values of the
parameters. In reciprocal space this Hamiltonian becomes

Ĥ =
∑

k

(
� −ρk

−ρ∗
k −�

)
, (23)

where

ρk = Jeik + J ′e−ik. (24)

At a particular value of k we can write the eigenstate for the
lower band as (

αk

βk

)
=

(
sin

(
θk

2

)
e−iφk cos

(
θk

2

)
)

, (25)

where

θk = arctan

( |ρk|
�

)
,

φk = arctan

(
(J − J ′) sin(k)

(J + J ′) cos(k)

)
. (26)

The cumulants can now be written in terms of the eigenstates.
For example,

C1 = i

π

∫ π/2

−π/2
dk(α∗

k ∂kαk + β∗
k ∂kβk), (27)

and the other cumulants can be constructed accordingly (note
that the unit cell is L = 2).

VII. FULLY DIMERIZED LIMIT

Here we show that in the fully dimerized limit the GIMs
should all have the same magnitude. In Ref. [6] we pointed out
that the Berry phase can be related to an observable Ô fixed
by requiring that

∂KH (K) = i[H (K),Ô]. (28)

This definition does not uniquely fix the operator Ô. For
example, for the magnetic-field example the matrices σz/2
and (σz + I )/2 both satisfy Eq. (28). This arbitrariness causes
a shift in the first cumulant. However, only the operator
(σz + I )/2 will give a distribution in which all moments are
equal since this matrix has the form

(σz + I )/2 =
(

1 0
0 0

)
(29)

and is equal to itself when raised to any power.
In the case of the RM model we first write the Hamiltonian

with the parameter K explicitly as

Ĥ (K) = −J exp(iK)
L/2∑
j=1

c
†
j,Acj,B + H.c.

− J ′ exp(iK)
L/2∑
j=1

c
†
j,Bcj+1,A + H.c. + Ĥ�. (30)

The operator ∂KĤ (K) is the current,

∂KĤ (K) = −iJ exp(iK)
L/2∑
j=1

c
†
j,Acj,B + H.c.

− iJ ′ exp(iK)
L/2∑
j=1

c
†
j,Bcj+1,A + H.c. (31)
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We now write a form for the operator Ô as

Ô =
L/2∑
j=1

xj c
†
j,Acj,A + yj c

†
j,Bcj,B . (32)

Evaluating the commutator gives

i[Ĥ (K),Ô] = i

L/2∑
j=1

(yj − xj )J exp(iK)c†j,Acj,B + H.c.

+ i

L/2∑
j=1

(xj+1 − yj )J ′ exp(iK)c†j+1,Acj,B + H.c.

(33)

For the case J ′ = 0 we can choose xj = 0 and yj = 1, so that
i[Ĥ (K),Ô] corresponds to the current. This is not the only
choice, but with this choice the operator Ô when written in k

space corresponds to

Ô =
∑

k

(c†k,Ac
†
k,B)

(
0 0
0 1

)(
ck,A

ck,B

)
, (34)

which gives equal moments. Clearly, the choices for the spatial
coefficients xj and yj are due to the fact that in this case the
system consists of a set of independent dipoles. When J is
taken to zero and J ′ is kept finite, then the appropriate choice
to fix Ô is xj = 0 and yj = −1. If instead the sign of � is
changed, Ô is again defined by xj = 0 and yj = −1. These
results are clearly due to the reversal of the direction of the
dipole moment within the unit cell. The results presented in
Fig. 2 corroborate our derivation.

VIII. RESULTS AND ANALYSIS

We first look at the system with J ′ = 0. In this case, the band
structure of the system is simply two flat lines in the Brillouin
zone. The system can be thought of as a simple two-state
system. We calculated the first four GICs, from which we
obtained the corresponding GIMs. The results are shown in
the first panel of Fig. 2. The moments as a function of �/J all
fall on the same curve in this case. If the hopping parameters J

and J ′ are switched (not shown), the sign of the odd moments
changes; the even moments remain the same. These results are
in accordance with Sec. VII.

Figure 2 also shows the cumulants for different ratios:
J ′/J = 0.3,0.5,0.7. The deviation of the cumulants from one
another is more pronounced and increases with an increase
in J ′/J . However, the moments become equal for any J ′/J
when � → ±∞. In this case also, the system becomes an
independent array of two state systems. The band energies in
all these cases vary continuously with k across the Brillouin
zone.

The results for the case J ′/J = 1 are also shown separately
in Fig. 3, along with the limits J ′ → J±. For finite �/J

the odd cumulants are zero, indicating an even probability
distribution. The ratio of the second and fourth cumulants
rules out a Gaussian. As �/J → 0, a discontinuity in the
slope of the band develops. In this case, the cumulants C2 and
C4 diverge. The bottom panel in Fig. 3 shows what happens
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FIG. 2. Moments for J ′/J = 0,0.3,0.5,0.7 as a function of �/J .
In these calculations J = 1. For J ′/J = 0 the curves are identical.
The insets show the corresponding cumulants.

when J ′ is close to J (larger or smaller) but the two are not
quite equal (J ′ = J + ε, ε is a small number). We see that in
this case the first moment is 1 or −1, depending on the sign of
ε, and zero is not approached as ε → 0 from either side. The
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FIG. 3. Top: Moments for J ′/J = 1 as a function of �/J .
In these calculations J = 1. The inset shows the corresponding
cumulants. In the limit �/J → 0 (the topological point of the model)
the even cumulants diverge, while the odd cumulants are always zero
for this case. Bottom: first two moments and cumulants (right inset)
for J = 1,J ′ = J ± 0.006. The left inset shows the first moment
on the � − δ plane, indicating the singular behavior along the line
� < 0,δ = 0.

left inset in the bottom panel shows the behavior of the first
moment on the � − δ plane, indicating a discontinuity along
the line � < 0,δ = 0 (the well-known result of Vanderbilt and
King-Smith [3,16]). The moments and cumulants we find are
consistent with the behavior shown in the left inset in the
bottom panel of Fig. 3.

In Fig. 4 we show examples of reconstructed probability
distributions for J ′/J = 0.0, 0.3, 0.5, 0.7, in each case for
several values of �/J . Note that χ2 [defined in Eq. (18)]
is tabulated in the Appendix (Table I). The most localized
example (J ′/J = 0 and �/J = −2) shows a sharp peak
around x = 1; as � decreases, the curves shift to the left
and spread out, but their shape is always very similar (for
smaller values of �/J this is emphasized in the inset). The
maximum of the probability distribution is always between 0
and 1. These curves are all cases for which all the moments
are equal. As the alternate hoppings J ′ are turned on, the
shifting occurs in a qualitatively different manner. Initially
(�/J = −2 in all cases), the curves are centered very near
x = 1. �/J = −2 is, for most cases, well in the region where
the moments are equal. As � decreases, the distributions shift,
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FIG. 4. Normalized probability distribution of the polarization
for different parameters of the Rice-Mele Hamiltonian. In these
calculations J = 1. The unit of length is the lattice constant. Different
values of �/J are shown for J ′/J = 0.0, 0.3, 0.5, 0.7. In the topmost
panel (J ′/J = 0) the inset shows the distribution for the cases
�/J = 0.0,−0.1,−0.2,−0.3,−0.4,−0.5.

but they do this by becoming asymmetric about their mean,
with the density increasing on the side to the left of the maxima
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TABLE I. Value of − log10 χ 2 rounded to the first digit shown for
the reconstructed probabilities in Figs. 4 and 5.

�/J − log10(χ 2) �/J − log10(χ 2)

Fig. 4, first panel
J ′/J = 0 −2 8 −1 7
J ′/J = 0 −0.5 8 −0.4 6
J ′/J = 0 −0.3 7 −0.2 6
J ′/J = 0 −0.1 7 0 6

Fig. 4, second panel
J ′/J = 0.3 −2 6 −1 5
J ′/J = 0.3 −0.5 6 −0.4 4
J ′/J = 0.3 −0.3 5 −0.2 4
J ′/J = 0.3 −0.1 5 0 4

Fig. 4, third panel
J ′/J = 0.5 −2 5 −1 4
J ′/J = 0.5 −0.5 5 −0.4 4
J ′/J = 0.5 −0.3 5 −0.2 4
J ′/J = 0.5 −0.1 5 0 4

Fig. 4, fourth panel
J ′/J = 0.7 −2 5 −1 4
J ′/J = 0.7 −0.5 5 −0.4 4
J ′/J = 0.7 −0.3 4 −0.2 4
J ′/J = 0.7 −0.1 4 0 4

Fig. 5
J ′/J = 1.0 −1 8 −0.6 7
J ′/J = 1.0 −0.9 8 −0.5 7
J ′/J = 1.0 −0.8 7 −0.4 7
J ′/J = 1.0 −0.7 7

of the distributions. The shape of the distributions changes
considerably. This is clearly due to the fact that in these latter
cases the moments vary as � is varied, and they are not all
equal. The maxima for the cases for which J ′/J �= 0 shift
much less as �/J is varied. When �/J changes sign (results
not shown), the polarization becomes centered around the
x = 0 end of the unit cell, and the probability distributions
are reflections of the ones shown in Fig. 4 across x = 1/2.

The probability distributions for the case J ′ = J = 1 are
also shown separately in Fig. 5 (with χ2 tabulated in Table I),
along with the case of J ′ close to J . All of the J ′ = J

distributions are symmetric around the origin. As �/J → 0,
the distribution broadens, and it is clear that a conducting
phase is approached [12]. If � < 0, then the polarizations are
localized near x = ±1, depending on whether J ′ is smaller or
larger than J . This is consistent with Fig. 3.

In Figs. 6 and 7 we show the evolution of the reconstructed
probability distributions along two cyclic paths which encircle
the topologically nontrivial point of the RM model, one with
a radius of unity and the other with a radius of 0.2 in the
�/t, δ/t plane. In these calculations the parametrization was
different from the previous ones; here t was set to unity, rather
than J [see Eq. (21)]. For points A∗, B, . . . in Figs. 6 and 7
the values of �/J and J ′/J are shown in Table II. The top
panels in both figures show the evolution of the different GIMs
(GICs). The even moments are single valued; the odd ones
are not. This follows from gauge-invariance properties of the
cumulants [Eq. (5)]. The first cumulant is gauge invariant only
modulo 2π times an integer [3,16]; the others do not change

FIG. 5. Normalized probability distribution of the polarization
for cases J ′ = J and J ′ = J ± ε (ε = 0.006). In these calculations
J = 1. The unit of length is the lattice constant. Different values of
�/J are shown. Top: �/J < 0. Bottom: �/J > 0.

at all due to a gauge transformation. The odd GIMs depend on
combinations of the GICs which involve odd combinations of
the cumulants; therefore, they are not multivalued in general.
In both Figs. 6 and 7 the points A∗ are not exactly on the
φ = −π/2 axis; instead, we numerically realize the limit
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FIG. 6. Moments, cumulants, and probability distribution along
a circle of radius 1 in the �/t vs δ/t plane. In these calculations
t = 1. The path encircles the topological point �/t = 0,δ/t = 0.
The top panels show the gauge-invariant moments and cumulants
along the circle as a function of angle. The bottom panel follows the
evolution of the probability distribution. The point A∗ is at an angle
φ = −π/2 + 2π/1000, not φ = −π/2. In the bottom panel the unit
of x is the lattice constant. The points φ = −π/2,3π/2 are excluded
from the curves shown in the top panels.
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FIG. 7. Moments, cumulants, and probability distribution along
a circle of radius 0.2 in the �/t vs δ/t plane. In these calculations
t = 1. The path encircles the topological point �/t = 0,δ/t = 0.
The top panels show the gauge-invariant moments and cumulants
along the circle as a function of angle. The bottom panel follows the
evolution of the probability distribution. The point A∗ is at an angle
φ = −π/2 + 2π/1000, not φ = −π/2. In the bottom panel the unit
of x is the lattice constant. The points φ = −π/2,3π/2 are excluded
from the curves shown in the top panels.

φ = limδ�→0+ (−π/2 + δ�). In the actual calculation we took
δ� = 2π/1000. Also, the point φ = −π/2 or φ = 3π/2 is
excluded from the curves shown in the top panels of these
figures.

The example with a radius of unity (Fig. 6) remains
mostly in the fully dimerized limit, as can be seen in the
top panels. The odd moments and even moments are always
equal. Except for a small region near φ/π = 0.5, the absolute
values of the moments are equal. The bottom panel shows the

TABLE II. Values of the parameters according to the parametriza-
tion used in Figs. 2–5. Also shown are values of − log10 χ 2 rounded to
the first digit for probability distributions corresponding to the points
in Figs. 6 and 7.

Fig. 6 Fig. 7

�/J J ′/J − log10(χ 2) �/J J ′/J − log10(χ 2)

A∗ −1.9875 0.9875 8 −0.3995 0.9975 6
B −1.154 0.333 7 −0.3149 0.8181 6
C −0.5359 0.072 7 −0.1705 0.7047 6
D 0 0 6 0 0.6666 6
E 0.5359 0.072 8 0.1705 0.7047 6
F 1.154 0.333 7 0.3149 0.8181 6
G 2 1 7 0.4 1 6
H 3.4641 3 6 0.3849 1.2222 6
I 7.4641 13.928 8 0.2419 1.4189 6
J 0 ∞ (1/0) 7 0 1.5 6
K −7.4641 13.928 7 −0.2419 1.4189 6
L −3.4641 3 6 −0.3849 1.2222 6

evolution of the probability distribution along the path. Starting
from a relatively sharp distribution localized near x = 1, the
maximum moves to the left. Before reaching half the unit cell,
the distribution spreads. After passing through the midpoint of
the system, where the maximum is the smallest, the distribution
begins to localize again until x = 0. From there this tendency is
repeated. Indeed, the distribution ends up at x = −1 at the end
of the process: the Wannier function “walked” to an equivalent
position in the next unit cell. For the case with the smaller
radius (0.2; Fig. 7) the initial distribution is broader, and as the
cycle is traversed, the maximum of the distribution oscillates
with a smaller amplitude, but the walking to a new equivalent
position still occurs.

In both Figs. 6 and 7 it is clear that the odd moments do not
correspond to single-valued functions. The values of the odd
moments depend on whether we approach the original point
from which the cycle begins (δ = 0,� < 0) from the left or
the right. At the same time, the probability distributions for
some cases with δ = 0,� < 0 are shown in Fig. 5; they are
centered around zero, and they spread as �/J is decreased.
The limiting cases from either direction give different results
from the result for fixing the Hamiltonian parameters such that
δ = 0,� < 0.

IX. CONCLUSION

We studied the gauge-invariant cumulants associated with
the Zak phase. We have shown that for localized Wannier
functions they correspond to the cumulants of the Wannier
centers. They are also related to the dielectric response
functions of a given system. We calculated the cumulants
for the Rice-Mele model. In the limit of isolated dimers, all
the moments (extracted from the gauge-invariant cumulants)
are equal. This can be justified for this case by constructing
the operator which corresponds to the Berry phase explicitly.
Deviations from this behavior come about when the hopping
parameters are both finite. For a system with equal hopping
parameters the odd cumulants vanish. We have also recon-
structed the full probability distribution of the polarization
based on the gauge-invariant cumulants and have studied
how they evolve as functions of different parameters of
the Hamiltonian. In particular we calculated the evolution
of the distribution around the topologically nontrivial point
of the model. We anticipate that detailed experimental mea-
surements could also provide a probability distribution of the
polarization for comparison with our predictions.
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APPENDIX

In Table I values of the negative base-10 logarithm of χ2

rounded down to the first digit [defined in Eq. (18)] are shown
for the reconstructed probabilities in Figs. 4 and 5. In all cases
χ2 decreased at least eight orders of magnitude from its initial
value during the simulated annealing calculation.
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In Table II the values of the parameters according to the
parametrization used in Figs. 2–5 are shown. Also shown are
values of the negative base-10 logarithm of χ2 rounded down

to the first digit for probability distributions corresponding to
the points in Figs. 6 and 7.
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