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a b s t r a c t 

Assignment of aircraft types, each having different seat capacity, operational expenses and availabilities, 

critically affects airlines’ overall cost. In this paper, we assign fleet types to paths by considering not only 

flight timing and passenger demand, as commonly done in the literature, but also operational expenses, 

such as fuel burn and carbon emission costs associated with adjusting the cruise speed to ensure the pas- 

senger connections. In response to flight time uncertainty due to the airport congestions, we allow minor 

adjustments on the flight departure times in addition to cruise speed control, thereby satisfying the pas- 

senger connections at a desired service level. We model the uncertainty in flight duration via a random 

variable arising in chance constraints to ensure the passenger connections. Nonlinear fuel and carbon 

emission cost functions, chance constraints and binary aircraft assignment decisions make the problem 

significantly more difficult. To handle them, we use mixed-integer second order cone programming. We 

compare the performance of a schedule generated by the proposed model to the published schedule for 

a major U.S. airline. On the average, there exists a 20% overall operational cost saving compared to the 

published schedule. To solve the large scale problems in a reasonable time, we also develop a two-stage 

algorithm, which decomposes the problem into planning stages such as aircraft-path assignment and ro- 

bust schedule generation, and then solves them sequentially. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

To achieve significant cost savings for the airline industry, the

uel cost, which has the major component of overall operational

xpenses, should be considered in the airline scheduling process.

n general, fuel expenses account for about 30% of total operating

ost. However, in 2008, the share for fuel costs rose to 50% with

he sharp increase in the fuel prices ( ICAO, 2009 ). In addition to

ising fuel costs, greenhouse gas emissions are becoming signif-

cantly more important for airlines, as climate change is becom-

ng an ever more important subject in the world. Aviation was the

rst sector to agree upon ambitious targets. One of the targets is a

0% reduction in net aviation CO 2 emissions by 2050 compared to

005 levels ( IATA, 2013 ). Airlines have committed to achieve these

hrough improved engine technologies, infrastructure improvement

nd better operations. As discussed in Marais and Waitz (2009) ,

uel consumption per passenger kilometer has decreased by 70%

ver the past four decades. In response to fuel expenses and emis-

ion restrictions, in this paper, we manage airline operations effi-
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iently, such as flight re-timing and fleet assignment to minimize

he fuel burn and CO 2 emission costs by incorporating cruise speed

ontrol to ensure passenger connections. 

Assignment of aircraft types, each having different seat capac-

ty, operational expenses and availabilities, has a significant impact

n the airlines’ overall cost. In this paper, we assign fleet types by

onsidering not only flight timing and passenger demand, as com-

only done in the literature, but also operational expenses, such as

uel burn and carbon emission costs. We generate a robust sched-

le with improved capability in response to flight time uncertainty

ue to airport congestions. We simultaneously re-time the flight

eparture times and control the cruise speed to ensure the passen-

er connections at a desired service level. We provide more slack

ver vulnerable connections at the congested airports and remove

xcess slack from the remaining connections. We can increase the

onnection possibilities by increasing the cruise speed and insert-

ng idle times. However, this strategy incurs additional cost of idle

imes and costs of fuel and carbon emissions associated with speed

djustment. An important question arises as to whether one could

mprove the solution through assigning a fuel efficient aircraft to

n aircraft path with a high variability, which also has connected

assengers. If a fuel efficient but smaller aircraft is assigned to

http://dx.doi.org/10.1016/j.cor.2017.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.03.005&domain=pdf
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a flight, some of the passengers may not be accommodated due

to the limited seat capacity and be turned away by the airline,

thus resulting in high passenger spill costs. If a larger aircraft with

higher seat capacity is assigned to the same flight, passenger de-

mand could be met but this directly increases the flight operating

costs such as fuel and emission costs. Therefore, there is a need

to consider all of these interrelated cost terms simultaneously to

minimize the overall operating cost of the entire flight network. 

Hai and Barnhart (2013) has introduced a dynamic airline

scheduling approach that changes the schedule slightly by re-

timing and re-fleeting during the booking period. To reflect chang-

ing demand, re-timing allows the flight departure times slightly

vary within specified time intervals to increase the passenger con-

nection opportunities and a more cost effective fleeting possibility.

Based on the updated passenger demand during the booking pe-

riod, re-fleeting adjusts the capacity by re-assigning aircraft types

to flight legs to reduce the operational costs and increase the pas-

senger revenues. Sherali et al. (2005) propose a demand-driven re-

fleeting model that dynamically reassigns aircraft based on the im-

proved demand forecasts so as to maximize the total revenue. In

order to preserve the crew assignment, the aircraft reassignment

is limited within the same aircraft family. To deal with highly un-

certain demand well in advance in departures, Sherali and Zhu

(2008) propose a two-stage stochastic mixed integer program-

ming approach. In the first stage, they only assign aircraft fami-

lies to each flight leg. After receiving the improved demand fore-

casts, refleeting process within each family is conducted for each

forecasted demand realization in the second stage. Jarrah et al.

(20 0 0) also present a refleeting model while limiting the num-

ber of changes to the original fleet assignment. In the re-fleeting

approach, they re-assign the fleet types to scheduled flight legs

with minor adjustments. They only allow the swapping aircraft

within the same aircraft family or put restrictions on the changes

to the original schedule, because airlines wish to preserve the crew

schedules which have to be constructed one or two months prior

to flight departures due to the crew regulations. Similarly, in our

proposed study, we wish to leave the aircraft paths unchanged in

order to eliminate additional costs of adjustment. We assign air-

craft types to these paths. 

Rexing et al. (20 0 0) model the basic fleet assignment problem

with time windows in order to improve the fleet assignment so-

lutions. Mercier and Soumis (2007) show that allowing changes

on the scheduled departure times within an integrated aircraft

routing and crew scheduling model yields significant cost savings.

Papadakos (2009) also includes re-timing possibilities for aircraft

routing and crew scheduling. Sherali et al. (2013) propose a model

that integrates the schedule design and fleet assignment while

allowing flight departure times vary within time windows. They

claim that retiming approach increases the connection opportu-

nities for passengers and generates more profitable schedules. In

general, the flexibility in departure times is achieved with multi-

ple discretized copies of the flight legs within specified time inter-

vals. As opposed to discrete time units, in our proposed study, we

allow the departure time of each flight continuously vary within

a given time interval. In addition to flexible departure times, we

control the cruise times to provide more opportunity to satisfy the

passenger connections. 

When planned schedule is disrupted, aircraft routings, crew

pairings and passenger itineraries have to be recovered. Traditional

airline recovery approaches ignore passenger itineraries until the

end of the recovery process so recovered schedule may not be

feasible for passenger flow. Maher (2015) considers the passenger

flows in integrated schedule, aircraft and crew recovery problems.

Burke et al. (2010) observe the effect of a randomly generated dis-

ruption on KLM airlines’ schedule. They obtain recovery by simul-

taneous flight retiming and aircraft rerouting. 
Most scheduling models ignore the unexpected flight delays to

imit the complexity. However, flight delays may result in disrup-

ion on the passenger and aircraft connections, thereby lead to loss

f time and customer goodwill. This is the reason why many air-

ines have been recently interested in generating a robust schedule

ith improved capability in response to variability in airline op-

rations. Weide et al. (2010) produce solutions that are robust to

ariability in airline operations for aircraft routing and crew pair-

ng problem by penalizing aircraft changes under short connection

imes. A common approach in coping with delays is to leave idle

imes. Ahmadbeygi et al. (2010) and Chiraphadhanakul and Barn-

art (2013) propose models minimizing delay propagation in entire

etwork by redistributing the existing slack. They adjust flight de-

arture times to provide more slack over critical connections and

raw excess slack from others. Lan et al. (2006) propose a mixed

nteger programming model, which minimizes the delay propaga-

ion by allowing changes in aircraft assignment, and develop an

pproach to reduce the passenger misconnections by re-timing the

ight departure times for a fixed fleet assignment. More recently,

unbar et al. (2014) incorporate delay scenarios within the air-

raft routing and crew pairing problems while re-timing of flight

epartures. In a similar way, they use re-timing approach to pro-

ide slack across the connections so as to minimize delay prop-

gation. To capture the uncertainties in flight block times, Arıkan

nd Deshpande (2012) model the flight block time distribution and

rovide a method for estimating the schedule on-time arrival prob-

bility. Sohoni et al. (2011) propose models that capture uncertain-

ies related with block time through chance constraints and con-

ider flight re-timing. The aim is to maximize expected profit while

mproving on-time performance measure and passengers’ service

evel. Duran et al. (2015) design a robust flight schedule incorpo-

ating cruise time controllability. They propose a model which cap-

ures the variability in flight duration due to the airport conges-

ions via a random variable representing noncruise times. 

In the existing literature, cruise time has been often taken as a

xed parameter, although there occur options of flying faster to in-

rease passenger connection possibilities and flying slower for con-

ervation of fuel as discussed in Cook et al. (2009) . Bertsimas et al.

2010) decide on an optimum combination of flow management

ctions, including ground holding, rerouting, speed control and air-

orne holding. They control the speed through adjustments in the

ime spent in each en route sector. However, they do not consider

uel burn and carbon emission costs associated with speed adjust-

ent. Sherali et al. (2006) state that airline optimization models

re quite sensitive to fuel burn. Tetzloff and Crossley (2010) ad-

ress environmental and economic considerations by developing a

odel determining the new and existing aircraft assignment such

hat all passenger demand is met. The major difficulty of incorpo-

ating cruise speed control is that the fuel burn and carbon emis-

ion cost functions are nonlinear functions of cruise speed. Con-

equently, handling the nonlinear model in a reasonable amount

f time is critical for solving such problems. To overcome this dif-

culty, we use mixed integer second order cone programming as

iscussed in Aktürk et al. (2014) . 

The contributions of this paper include the following: 

• We consider the fuel burn and CO 2 emissions costs associated

with adjusting cruise speed to ensure the passenger connec-

tions. Therefore, we may prefer to assign a fuel efficient but

smaller aircraft to an aircraft path involving critical passenger

connections in albeit of an additional cost of spilled passengers.
• We assign fleet types by considering not only flight timing and

passenger demand, as commonly done in the literature, but also

operational expenses, such as fuel burn and carbon emission

costs. 
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• The proposed model has nonlinear fuel and emission cost terms

and chance constraints to ensure the passenger connections

with a desired probability. To handle nonlinearity, we utilize

mixed integer second order cone programming (MISOCP). 
• We devise a two-stage algorithm, which decomposes the prob-

lem into two planning stages such as aircraft-path assignment

and robust schedule design, and then solves them sequentially. 
• We present extensive computational results using a schedule

for a major U.S. airline to demonstrate the high quality perfor-

mance of the two-stage algorithm. 

We organize the remainder of this paper as follows. In

ection 2 , the framework of the problem is briefly described. A

roposed mathematical model is given with a numerical example.

ection 3 is devoted to the conic reformulation of the proposed

odel in detail. We describe our approach to simplify the problem

nd two-stage algorithm in Section 4 . We report the computational

esults in Section 5 . Finally, in Section 6 , we conclude with remarks

nd outline possible research directions arising from this study. 

. Problem definition 

In this study, we would like to assign fleet types to given flight

aths during the booking period. We consider not only flight tim-

ng and passenger demand, as commonly done in the literature,

ut also operational expenses, such as fuel burn and carbon emis-

ion costs associated with cruise speed adjustment to ensure the

assenger connections. Therefore, we propose a bi-criteria opti-

ization model. The first objective is to reduce the airline over-

ll operational cost, where as the second objective is to increase

he passenger connection probabilities under the non-cruise time

ncertainties due to the airport congestions. We satisfy passenger

onnections in the entire network through the chance constraints.

o achieve desirable connection probabilities, we allow minor ad-

ustments on the flight departure times by redistributing the exist-

ng slack over vulnerable connections and removing excess slack

rom the remaining connections. Simultaneously, we control the

ruise speed to ensure desirable connection probabilities. However,

here occur additional fuel and CO 2 emission costs associated with

peed adjustment. In order to reduce the fuel expenses, one ap-

roach is to assign a fuel efficient aircraft to an aircraft path with

ritical passenger connections. On the other hand, fuel efficient but

 smaller aircraft may cause an additional cost of spilled passen-

ers or lost revenue due to under-capacity. In this study, our main

laim is that we may compensate the cost of spilled passengers

y assigning fuel efficient aircraft, when we consider the fuel burn

nd CO 2 emissions costs associated with adjusting cruise speed to

nsure the passenger connections. 

In the booking period, airlines wish to keep generated schedule

lose to the original one designed well in advance. Because, even

inor changes on flight schedule or aircraft routes may lead to

 massive disruption on the aircraft, passenger and crew connec-

ions. Therefore, we work with all aircraft paths which have been

etermined through the airlines’ scheduling choices. We define an

ircraft path to be a sequence of flights operated by an individ-

al aircraft in a given time period. All input paths form a complete

artition of all the flights. 

The notation used throughout the paper is given below: 

arameters 

T set of aircraft types 

P set of paths 

J set of flights 

J p set of flights in path p ∈ P 

N 

t available number of aircraft of type t ∈ T 

CAP t number of seats in aircraft of type t ∈ T 
[
f t,l 
i 

, f t,u 
i 

]
time window for cruise time of flight i ∈ J with aircraft

t ∈ T 

A i random variable representing the non cruise time of

flight i ∈ J 

E [ A i ] expected non-cruise time of flight i ∈ J 

PAIR set of pairs of consecutive flights of the same aircraft 

T A 

t 
i j 

turnaround time needed to prepare aircraft t ∈ T be-

tween flights i, j ∈ PAIR 

D i number of passenger demand of each flight i ∈ J 

Csp i cost of spilled passengers of flight i ∈ J 

c fuel cost of fuel per kg of aircraft fuel consumption 

c CO 2 
cost of emission per kg of aircraft CO 2 emission 

I t unit idle time cost of aircraft of type t ∈ T in dollars

per minute 

P i set of flights that have a passenger connection with

flight i ∈ J 

TP ij turntime needed to connect passengers between

flights i ∈ J, j ∈ P i 
γ d 

i j 
minimum service level for each passenger connection

between flights i ∈ J and j ∈ P i 
w ij weight of the passenger connection between flights i ∈

J, j ∈ P i [
v l 

i 
, v u 

i 

]
time window for the departure time of flight i ∈ J 

O i origin of flight i ∈ J 

Dn i destination of flight i ∈ J 

B set of airports 

e b airport congestion coefficient for airport b ∈ B 

ecision Variables 

z t p 1 if aircraft of type t ∈ T is assigned to path p ∈ P , and 0,

otherwise. 

x i departure time of flight i ∈ J 

f t 
i 

cruise time of flight i ∈ J with aircraft type t ∈ T 

S t 
i 

idle time of flight i ∈ J with aircraft type t ∈ T 

γ ij service level for passenger connections between flights i

∈ J and j ∈ P i , i.e., probability that passengers from flight

i can connect to any follow-on flight j ∈ P i 

.1. Mathematical model 

The proposed nonlinear mathematical model is provided be-

ow. 

in F 1 : 
∑ 

p∈ P 

∑ 

i ∈ J p 

∑ 

t∈ T 
C i,t 

f uel& CO 2 
( f t i ) 

+ 

∑ 

p∈ P 

∑ 

i ∈ J p 

∑ 

t∈ T 
Csp i · max 

(
D i − CAP t , 0 

)
· z t p 

+ 

∑ 

i ∈ J 

∑ 

t∈ T 
S t i · I t (1) 

max F 2 : 
∑ 

i ∈ J 

∑ 

j∈ P i 
w i j · γi j (2) 

subject to 

 

t∈ T 
z t p = 1 p ∈ P (3) 

 

p∈ P 
z t p ≤ N 

t t ∈ T (4) 

 r 

[ 

A i + 

∑ 

t∈ T 
f t i ≤ x j − x i − T P i j 

] 

≥ γi j i ∈ J, j ∈ P i (5) 
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γi j ≥ γ d 
i j i ∈ J, j ∈ P i (6)

f t,l 
i 

· z t p ≤ f t i ≤ f t,u 
i 

· z t p p ∈ P, i ∈ J p , t ∈ T (7)

x j − x i −
∑ 

t∈ T 
T A 

t 
i j · z t p −

∑ 

t∈ T 
f t i − E [ A i ] −

∑ 

t∈ T 
S t i = 0 

( i, j ) ∈ PAIR (8)

v l i ≤ x i ≤ v u i i ∈ J (9)

w 

l 
i ≤ x i + 

∑ 

t∈ T 
f t i + E[ A i ] ≤ w 

u 
i i ∈ J (10)

S t i ≤ M · z t p p ∈ P, i ∈ J p , t ∈ T (11)

S t i ≥ 0 i ∈ J, t ∈ T (12)

z t p ∈ { 0 , 1 } p ∈ P, t ∈ T (13)

The most common objective that airlines minimize is the over-

all operational cost. However, a schedule that minimizes the op-

erational cost may not ensure a high service level for passengers’

connections. Thus, in this study, we consider a bi-criteria prob-

lem. The first objective minimizes the overall operational cost and

the second objective maximizes the overall service level for pas-

senger connections through the entire network. The sum of fuel

cost, CO 2 emission cost, spilled passengers cost and idle time cost

over all flights in the network constitute airline’s operational cost.

Moreover, overall service level for passenger connections is the

weighted average of the service level for each passenger connec-

tion in the network. Constraint (3) guarantees that each path is as-

signed to exactly one aircraft type. Constraint (4) limits the num-

ber of employed aircraft by N 

t . Constraint (5) is a chance con-

straint to ensure each passenger connection with a desirable ser-

vice level. We require the probability that passengers from flight

i can connect to any follow-on flight j ∈ P i , to be greater than or

equal to service level variable γ ij . Constraint (6) applies a desired

lower bound on the service level variable γ ij . Constraint (7) ap-

plies cruise time upper and lower bound for each flight. Constraint

(8) guarantees minimum aircraft turnaround time between two

consecutive flights. In (9) and (10) , we want the departure and

arrival times of each flight to be within the time intervals which

have already been determined by the airline. Time window con-

straints (9) and (10) can be used to restrict the departure and ar-

rival times of flights within the airlines’s own slot times. In this

manner, any penalty cost of flights arriving or departing outside

of the allocated slot times can be eliminated. Constraint (11) is a

Big-M constraint to eliminate the possible nonlinearity. Constraints

(12) and (13) define the domain of the variables. 

To solve this bi-criteria optimization problem, we use the ε-

constraint approach ( T’kindt and Billaut, 2006 ). In this approach,

we will solve the problem of minimizing F 1 for a given lower

bound on F 2. We add the following service level bound constraint

into the proposed model. ∑ 

i ∈ J 

∑ 

j∈ P i 
w i j .γi j ≥ γ (14)

In (14) , we want the overall service level be greater than or

equal to the desired level, γ . The ε-constraint method has been

widely used in the literature, because the decision maker can in-

teractively specify and modify the service level bounds and analyze

the influence of these changes on the total operational cost. 
.1.1. Service level 

In this paper, we generate a schedule which is robust to vari-

bility at congested airports by increasing passenger service levels.

andom variable representing non-cruise times arises in chance

onstraints (5) . Constraint (5) ensures the minimum passenger

onnection time TP ij between the arrival of flight i and departure

f flight j with a probability greater than or equal to γ ij . In con-

traint (6) , we wish to keep the service level ( γ ij ) for each connec-

ion greater than or equal to desired lower bound γ d 
i j 

, e.g., an air-

ine may prefer to satisfy the international connections with higher

robabilities. 

One of our aims is to maximize the overall service level through

he entire network. The overall service level is calculated as the

eighted average of the service level of each connection as defined

n the second objective function of F 2 in (2) . To increase the ser-

ice level for each passenger connection, we allow changes on the

ight departure times within the time window given in Constraint

9) . In addition, in response to high variability at the congested

irports, we can set a higher cruise speed to ensure the passenger

onnections with a higher service level. Consequently, we wish to

chieve a robust schedule, which is less susceptible to unexpected

ight delays due to airport congestions. 

.1.2. Distribution of non-cruise times 

Deterministic approaches model the random parameters by

heir expected values. However, expected values may be too far

rom the certain realizations in practice, thereby resulting plan

ay perform poorly. One of the uncertainties in flight appears in

on-cruise stage, because actual non-cruise time may take longer

han expected due to the airport congestions. We represent the

on-cruise time of each flight by a random variable. 

Arıkan and Deshpande (2012) show that the log-Laplace distri-

ution provides a good-fit to the block time of a flight. For each

ight i ∈ J , we assume random variable A i representing the non-

ruise time has log-Laplace distribution with a scale parameter, e α

nd the tail parameter, 1/ β i . For each flight i ∈ J , we define β i as a

unction of the congestion coefficients of the origin and destination

irports of flight i . We express β i as 

i = β. 
(
e O i 

)2 ·
(
e Dn i 

)2 

here O i and Dn i are the origin and destination airports of flight i

 J , respectively. Variability is higher at congested airports. More-

ver, the mean of the non-cruise times increases at the congested

irports. Duran et al. (2015) provide the mean of the random vari-

ble A i as follows 

[ A i ] = 

e α

(1 − βi ) · (1 + βi ) 
. (15)

.1.3. Fuel and CO 2 emission cost functions 

In this study, we utilize the idea of aircraft speed control

o ensure passenger connections. However, speed decisions affect

uel burn. To estimate the fuel burn, we use the cruise stage

uel flow model developed by the Base of Aircraft Data (BADA)

 EUROCONTROL, 2012 ) which is discussed in detail in Appendix.

uel burn (kg) as a function of cruise time f t 
i 

(min) can be calcu-

ated as 

 

t 
i 

(
f t i 

)
= c i,t 

1 
· 1 

f t 
i 

+ c i,t 
2 

· 1 (
f t 
i 

)2 
+ c i,t 

3 
·
(

f t i 

)3 + c i,t 
4 

·
(

f t i 

)2 
(16)

here coefficients c i,t 
j 

> 0 , j = 1,... ,4, are expressed in terms of air-

raft specific fuel consumption and drag as well as the mass of
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ircraft, air density and gravitational acceleration. Note that, F t 
i 

(
f t 
i 

)
s a convex function of f t 

i 
> 0 . 

Fuel cost for flight i operated by aircraft type t can be calculated

s 

 uelCost 
t 
i 

(
f t i 

)
= c f uel ·

(
F t i ( f t i ) 

)
(17) 

here c fuel is the unit price for jet fuel ($/kg). 

International Civil Aviation Organization ( ICAO ) developed stan-

ards for aircraft engine emissions, which forces airlines to

ut more emphasis on calculation of emissions. EUROCONTROL

2001) states that CO 2 emissions are approximately 3.15 times the

eight of fuel consumed. Therefore, cost of CO 2 emission can be

xpressed as a function of cruise time as 

missionCost 
t 
i 

(
f t i 

)
= c CO 2 · k · F t i 

(
f t i 

)
(18) 

here c CO 2 
is the unit cost of CO 2 emission ($/kg) and k is CO 2 

mission constant. 

For each p ∈ P, i ∈ J p , t ∈ T , we combine the fuel and emission

ost functions and redefine them as 

 

i,t 
f uel& CO 2 

( f t i ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
c f uel + c CO 2 · k 

)
·(c i,t 

1 
· 1 

f t 
i 

+ c i,t 
2 

· 1 

( f t 
i 
) 

2 + c i,t 
3 

· ( f t 
i 
) 

3 

+ c i,t 
4 

· ( f t 
i 
) 

2 
) if z t p = 1 

0 if z t p = 0 

o that if an aircraft of type t is not assigned to path p , then

 

i,t 
f uel& CO 2 

( f t 
i 
) = 0 i ∈ J p . 

Fuel consumption function F t 
i 

(
f t 
i 

)
is minimized at Maximum

ange Cruise (MRC) speed. Although the most fuel efficient case

s to fly at MRC speed, airlines sometimes prefer to fly at a higher

peed to ensure the aircraft and passengers’ connections. 

.1.4. Objectives 

In this paper, we deal with a bi-criteria optimization problem

f simultaneously minimizing airline’s operational costs, denoted

s F 1 in (1) , and maximizing service level for passenger connec-

ions, denoted as F 2 in (2) , in the proposed nonlinear mathemati-

al model. To satisfy the passenger connections with a higher ser-

ice level, we may employ both idle time insertion and cruise time

ompression, or only use one of them based on their impact on op-

rational cost. In order to decrease fuel and emission costs, we may

ssign a fuel efficient but smaller aircraft to flights whose cruise

imes need to be compressed. Although we spill some of the pas-

engers, we may compensate the cost of spilled passengers by con-

ervation of fuel. Therefore, we simultaneously consider these in-

errelated cost terms such as fuel and emission costs, idle time in-

ertion costs and cost of spilled passengers to achieve a minimum

ost schedule. 

For flight i , aircraft type t , we express idle time cost function

s 

 

i,t 
idle 

(
S t i 

)
= S t i · I t (19) 

Similarly, we represent cost of spilled passengers with a linear

unction of the number of passengers who cannot be accommo-

ated and turned away by the airlines due to the insufficient seat

apacity of aircraft. For flight i , aircraft type t , spilled passenger

ost can be expressed as 

 

i,t 
spil l ed 

= Csp i · max 
(
D i − CAP t , 0 

)
· z t p (20) 

.2. Numerical example 

In this section, a numerical example is provided to illustrate

ow fuel consumption and CO 2 emission of aircraft affect the as-

ignment decisions and how the cruise time controllability and idle

ime insertion can be utilized to generate a robust schedule. 
In this small example, we consider two given paths operated

y two different aircraft. Table 1 shows the tail numbers and flight

umbers along with the origin and destination airports, planned

eparture times, planned block and arrival times, actual arrival

imes, turnaround times, and demand of flights. Two flights with

he same flight number, 336, represents a through flight that in-

ludes one or more intermediate airports between the origin and

estination airports. The first path including flights 2303, 2336,

053 and 336 is operated by Boeing 737 500 and the second path

s flown by MD 83. While aircraft is flying at MRC speed, fuel burn

ates of B737 500 and MD 83 are estimated as 29 kg/min and

0 kg/min, respectively. The fuel burn rate is calculated using the

uel flow model of BADA as in Eq. (46) in Appendix. 

In daily operations, some flights may not be operated as

lanned. One reason is that a flight may take longer than the

xpected duration. In the published schedule, let’s assume that

5 min of the flight duration is planned non-cruise time and re-

aining is planned cruise time. However, non-cruise time has an

xpected value of 28 min for flight 2303, when we represent non-

ruise times with a log-Laplace random variable. We calculate the

xpected value as in Eq. (15) with α taken as log(20) and β taken

s 0.05. Therefore, actual flight duration is 2 h 33 min, so that the

ctual arrival time is 9:08 which is 3 min later than planned ar-

ival time. In the published schedule given in Table 1 , some time is

eft between the arrival and departure times of consecutive flights

f each aircraft. If this time is not enough to prepare an aircraft

or the next flight, there will be some delays on departure of next

ight. Such delays may result in passenger misconnections. On the

ther hand, if this time is longer, there exists idle times between

he consecutive flights. For example, time between planned arrival

f flight 1131 and planned departure of flight 1339 is 65 min.

n aircraft requires 36 min to be prepared for next flight 1339.

herefore, 29 min between these consecutive flights are enough to

apture 3 min of delay on arrival of flight 1131. In other words,

6 min of idle time remains between flights 1131 and 1339. 

The time-space network diagram of the published schedule

n Table 1 is given in Fig. 1 . In Fig. 1 continuous arcs repre-

ent planned flights, where the dashed arcs represent actual flight

imes. The blue and red arcs in Fig. 1 are for aircraft N531AA and

454AA, respectively. Turnaround times of the aircraft are repre-

ented by the continuous ground lines and idle times are repre-

ented by the dashed ground lines. 

Fig. 1 , departure of the first leg of flight 336 is delayed, since

here is not enough time between actual arrival of flight 1053 and

lanned departure of flight 336 to prepare an aircraft for flight 336.

n the other hand, there exist 18 min idle times before depar-

ure of flight 1053. Therefore, published schedule needs a better

tilization of idle times by re-timing departure times as already

iscussed in Ahmadbeygi et al. (2010) . Re-timing approach can be

sed to increase passenger connection possibilities. We also use

he idea of speeding up some aircraft especially at congested air-

orts to ensure passenger connections at a desired service level.

owever, we should consider adverse effect of speeding up aircraft

n fuel and carbon emission costs. If we assign a fuel efficient air-

raft to a flight, reduction in fuel cost may compensate the cost

f idle time insertion. On the other hand, this assignment may in-

ur an additional cost of spilled passengers. The objective function

f the integrated model (IM) considers these four conflicting cost

omponents of the schedule. The new schedule achieved by IM is

rovided in Fig. 2 . 

In Fig. 2 , we see that aircraft assignments among two paths are

witched compared to the published schedule. Red and blue arcs

n Fig. 2 are for aircraft N531AA and N454AA, respectively. inte-

rated model assigns fuel efficient aircraft B737 500 to the sec-

nd path. Our approach compresses cruise time durations of flights

441, 1986, 1872 and 1131 by 10, 10, 12 and 12 min, respectively.
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Table 1 

Published schedule. 

Tail # Flight # From To Plan. dep. Plan. dur. Plan. arr. Act. arr. TA Demand 

N531AA 2303 ORD DFW 6:35 2:30 9:05 9:08 0:48 121 

2336 DFW ORD 10:00 2:35 12:35 12:38 0:49 117 

1053 ORD ATL 13:45 2:05 15:50 15:50 0:47 110 

336 ATL ORD 16:30 2:10 18:40 18:47 0:25 120 

336 ORD LGA 19:20 2:15 21:35 21:37 112 

N454AA 2441 ORD ATL 6:45 2:10 8:55 8:55 0:33 118 

1986 ATL ORD 09:40 2:15 11:55 11:55 0:36 121 

1872 ORD DFW 12:35 2:30 15:05 15:08 0:34 129 

1131 DFW ORD 15:50 2:35 18:25 18:28 0:36 122 

1339 ORD SAN 19:30 4:30 0 0:0 0 23:56 146 

Fig. 1. Time Space Network for the Published Schedule. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Cost comparison. 

Fuel & emission Idle Spilled Total 

cost ($) cost ($) cost ($) cost ($) 

Published schedule 56,196 11,173 0 67,369 

Integrated model (IM) 54,841 4,766 708 60,315 
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The reason of speeding up the aircraft is that, passengers of flight

1131 have connections to the second leg of flight 336. The crucial

point is that total compression amount of 44 min is not imposed

upon only on flight 1131. Due to the nonlinearity of fuel cost func-

tion, it is more beneficial to allocate the required compression to

multiple flights. In Fig. 2 , continuous arcs represent flights oper-

ated under the MRC speed, where dashed lines refer to flights with

compressed cruise times. 

Speeding up aircraft may not be enough to satisfy passenger

connections at a desired service level. Therefore, 16 min of idle

time is also inserted before flight 336 to satisfy passenger connec-

tions between flights 1131 and 336. The reason for utilizing both

speed control and idle time insertion is that speeding up the air-

craft might be cheaper than idle time insertion up to a point, and

then idle time insertion might be cheaper due to the nonlinearity

of fuel cost function. 

We compare the performance of new schedule with the pub-

lished schedule in terms of operational costs. Fuel and CO 2 emis-

sion costs are calculated as explained in Eqs. (17) and (18) , respec-

tively. Idle time costs are calculated by multiplying total idle time

with the unit idle cost of aircraft, which is given in Table 5 . The

cost of spilled passengers are also calculated as multiplying total

number of spilled passengers with the unit cost which is calcu-

lated as in Eq. (44) . 

Table 2 shows the improvements in fuel and emission cost,

idle time insertion cost and total cost compared to the published

schedule. We assume that aircraft speed is constant in the pub-

lished schedule. In our approach, we use the option of flying faster

t  
o satisfy the passenger connections. However, speeding up the air-

raft incurs additional fuel and emission costs. By considering fuel

urn and carbon emission costs, integrated model switches the

ssignment of aircraft types among two paths compared to pub-

ished schedule. By this fleet assignment, we obtain 2.5% cost sav-

ng in fuel consumption and CO 2 emissions compared to the pub-

ished schedule. Total fuel and CO 2 emission costs for the published

chedule and new schedule are $56,196 and $54,841, respectively.

n the other hand, this assignment spills 31 passengers of total

,216 passengers, which costs $708. In addition to speeding up

ircraft, to satisfy the passenger connections at 90% service level,

7 min and 16 min of idle times are also inserted before flight 1053

nd second leg of flight 336. Therefore, there exists total 33 min of

dle time in the new schedule, whereas there exists 80 min of idle

ime in the published schedule. Our proposed model eliminates

he unnecessary idle times and reallocates the required amount

f slack among the flights with controllable cruise time decisions

o that passenger connections are satisfied at desired service level.

t follows that new schedule results in 57% improvement in idle

ime cost, where the costs of the idle time in the published sched-
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Fig. 2. Time Space Network - by IM. 
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that concludes the proof. �
le and new schedule are $11,173 and $4,766, respectively. In total,

perational cost saving is around 10% compared to the published

chedule. 

. Conic reformulation of integrated model 

Our model involves nonlinear fuel and carbon emission cost

erms in the objective function and chance constraints. Nonlinear

ixed integer optimization often requires significant computation

ime to achieve optimal or suboptimal solutions. To reduce the

omputation time, in this section, we utilize conic quadratic pro-

ramming. 

.1. Conic representation of chance constraints 

In this study, we ensure passenger connections through chance

onstraints with a desired service level. In the literature, most

f the studies handle the chance constraints with approximation

ethods. In this section, we show how to reformulate the chance

onstraints via second order conic inequalities. 

The random variable representing non-cruise time of a flight

rises in chance constraints. For each flight i ∈ J , we assume that

andom variable A i representing non-cruise time has Log-Laplace

istribution. The density and quantile function of the Log-Laplace

istribution can be found in Appendix. 

Constraint (5) can be expressed using the quantile function of

he probability distribution of random variable A i with parameters

 

α and 1/ β i as follows: 

e α

2 

βi · (1 − γi j ) βi 
≤ x j − x i − T P i j −

∑ 

t∈ T 
f t i , if 

1 

2 

≤ γi j ≤ 1 

(21) 

In this study, we wish to keep each service level greater than or

qual to 50%, this is the reason why we consider the quantile func-

ion for 0.5 ≤ γ ij in constraint (21) . Duran et al. (2015) achieve the

onvexity of the expression on the left hand side of inequality (21) .

hen, Proposition 1 gives the conic representation of the constraint

21) . 
roposition 1. For i ∈ J, j ∈ P i , if 0 < β i < 1 and 1 
2 ≤ γi j ≤ 1 , then

onstraint (21) : 

e α

2 

βi · (1 − γi j ) βi 
≤ x j − x i − T P i j −

∑ 

t∈ T 
f t i , 

an be represented via second order conic inequalities. 

roof. The proof is similar to the proof of Proposition 2 in Duran

t al. (2015) . In their study, fleet types are taken as fixed parame-

ers and cruise times are represented by f i for each flight i ∈ J . In

his study, cruise times represented by f t 
i 

vary among fleet types.

herefore, in their proof, we can replace f i with 

∑ 

t∈ T f t 
i 
, since

f t 
i 

= 0 if the z t p = 0 . Then, we obtain the following hypograph. 

Let the constant λ = 

e α

2 βi 
and β i = 

a i 
b i 

for integers a i and b i .

hoose l such that l = � log 2 ( a i + b i ) � . Then, chance constraints in

he original formulation can be replaced by the following con-

traints for i ∈ J, j ∈ P i : 

(x j − x i − T P i j −
∑ 

t∈ T 
f t i ) = σi j 

γ i j = 1 − γi j 

σi j 
b i · γ i j 

a i ≥ ( 
2 l 
√ 

λb i ) 2 
l 

(22) 

Due to Ben-Tal and Nemirovski (2001) , the hypograph of the

eometric mean of 2 l variables can be represented via second or-

er conic inequalities. In (22) , it can be seen that b i of the vari-

bles equal to σ ij , a i of the variables equal to γ i j and the remain-

ng 2 l − a i − b i variables can be set to 1. Hence, it is clearly ob-

erved that constraint (22) represents the hypograph of the geo-

etric mean of 2 l variables. According to Ben-Tal and Nemirovski

2001) , the hypograph can be equivalently represented by hyper-

olic inequalities of the form, 

 

2 ≤ v 1 v 2 , u, v 1 , v 2 ≥ 0 

hich can be represented by the second order conic inequality be-

ow 

 ( 2 u, v 1 − v 2 ) ‖ 

≤ v 1 + v 2 
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3.2. Conic representation of fuel and CO 2 cost functions 

In this section, we show conic quadratic reformulation of fuel

burn and carbon emission cost functions. To simplify the presen-

tation, we drop the indices of the variables and parameters as fol-

lows: 

 f uel& CO 2 ( f ) = 

⎧ ⎨ 

⎩ 

(c f uel + c CO 2 · k )(c 1 · 1 
f 

+ c 2 · 1 
f 2 

+ c 3 · f 3 + c 4 · f 2 ) if z = 1 

0 if z = 0 

C f uel& CO 2 
( f ) is discontinuous and therefore its epigraph E F ={

( f, t) ∈ R 2 : C f uel& CO 2 
( f ) ≤ t 

}
is nonconvex. In the next proposi-

tion, we describe how the convexity of E F is obtained. A more de-

tailed information can be found in Aktürk et al. (2014) and Günlük

and Linderoth (2010) . 

Proposition 2. The convex hull of E F can be expressed as 

 ≥ (c f uel + k · c CO 2 )(c 1 · q + c 2 · δ + c 3 · ϕ + c 4 · ϑ) (23)

z 2 ≤ q · f (24)

z 4 ≤ f 2 · δ · z (25)

f 4 ≤ z 2 · ϕ · f (26)

f 2 ≤ ϑ · z (27)

in the constraint set. Moreover, each inequalities (24) –(27) can be rep-

resented by conic quadratic inequalities. 

Proof. Perspective of a convex function k ( f ) is z · k ( f / z ) ( Hiriart-

Urruty and Lemare ́chal, 2001 ). Since each of the nonlinear terms
1 
f 
, 1 

f 2 
, f 3 and f 2 is a convex function for f ≥ 0, then epigragh of the

perspective of each term can be stated as, z 2 

f 
≤ q, z 4 

f 2 
≤ δ, f 3 

z 2 
≤ ϕ,

f 2 

z ≤ ϑ respectively. Since z, f ≥ 0, they can be written as stated in

the proposition. 

Finally, observe that (24) and (27) are hyperbolic inequalities,

(25) can be restated as two hyperbolic inequalities 

z 2 ≤ w · f and w 

2 ≤ δ · z 

and (26) can be restated as 

f 2 ≤ w · z and w 

2 ≤ ϕ · f 

which can be written as a conic quadratic inequality as described

in Section 3.1 . �

3.3. Conic reformulation of integrated model 

The model can be reformulated using the hyperbolic inequal-

ities which can be written as conic quadratic inequalities as fol-

lows: 

min 

∑ 

i ∈ J 

∑ 

t∈ T 

(
c f uel + c CO 2 · k 

)(
c 1 · q t i + c 2 · δt 

i + c 3 · ϕ 

t 
i + c 4 · ϑ 

t 
i 

)
+ 

∑ 

p∈ P 

∑ 

i ∈ J p 

∑ 

t∈ T 
Csp i · max 

(
D i − CAP t , 0 

)
· z t p + 

∑ 

i ∈ J 

∑ 

t∈ T 
S t i · I t i 

s.to (28)

(3) − (4) (
z t p 

)2 ≤ q t i · f t i i ∈ J p , p ∈ P, t ∈ T (29)
z t p 
)4 ≤

(
f t i 

)2 · δt 
i · z i ∈ J p , p ∈ P, t ∈ T (30)

f t i 

)4 ≤
(
z t p 

)2 · ϕ 

t 
i · f t i i ∈ J p , p ∈ P, t ∈ T (31)

f t i 

)2 ≤ ϑ 

t 
i · z t p i ∈ J p , p ∈ P, t ∈ T (32)

i j 
b i · γ i j 

a i ≥ ( 
2 l 
√ 

λb i ) 2 
l 

i ∈ J, j ∈ P i (33)

 j − x i − T P i j −
∑ 

t∈ T 
f t i = σi j i ∈ J, j ∈ P i (34)

i j = 1 − γi j i ∈ J, j ∈ P i (35)

∑ 

i ∈ J 

∑ 

j∈ P i 
w i j · γi j ≥ γ (36)

(6) − (13) 

Objective function (28) is slightly different than the original ob-

ective function of the proposed model. The original objective, F 1 is

epresented by the new objective and conic constraints (29) –(32) .

-constraint approach is implemented by Constraint (36) which

mposes a lower bound on F 2. The probabilistic constraints (5) , are

epresented by the conic constraints (33) –(35) . The remaining con-

traints are same as the original constraints of the proposed model.

. Algorithm for aircraft-path assignment and robust airline 

cheduling 

Integrated aircraft-path assignment and schedule design is a

ery complex problem with nonlinear cost terms, chance con-

traints and binary aircraft assignment decisions. To mitigate the

omputational difficulties, we utilize mixed integer second order

one programming. However, in real size problems, the vast num-

er of re-timing and re-fleeting decisions may still require prob-

ems to be broken into smaller subproblems to efficiently man-

ge tractability. Traditional approaches adopt a sequential planning

rocess. First, decisions of a flight schedule are made, and then

ssignment of airline’s fleet to scheduled flights is determined.

ven though sequential planning approach greatly simplifies the

olution process, it could create incompatibilities between vari-

us stages. For example, a flight schedule in the first stage may

ot be feasible for aircraft and passenger connections in the sub-

equent stages. Therefore, we present an approach that incorpo-

ates decisions of a downstream stage into an upstream model

nd vice versa. Our two-stage approach decomposes the problem

nto planning stages such as aircraft-path assignment defined in

ection 4.1 and robust airline scheduling defined in Section 4.2 .

n each iteration, two-stage algorithm solves each subproblem by

iving the output of one subproblem as an input for other sub-

roblem. In the first subproblem, we assign aircraft types to paths

or a given flight schedule with departure times, cruise times and

dle times. In the second subproblem, we impose assignment deci-

ions into the robust airline scheduling model, and then construct

 flight schedule with departure times, cruise times and idle times.

We first give the steps of two-stage Algorithm 1 .

lgorithm 1 starts with an initial schedule Sch 1 , and given

ruise times � f 1 and idle times � S 1 of the schedule Sch 1 . With given

ruise and idle times, the algorithm applies the Construction
lgorithm to generate a new schedule by iteratively solving the
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Algorithm 1 Two-stage algorithm. 

Require: An initial schedule Sch 1 , cruise times � f 1 and idle times � S 1 
for each flight. 

Initialize: found_improving_move ← false . 

Sch ∗ ← Sch 1 . Iteration index k ← 1 . Tabu list is empty, TL = { } . 
Apply Construction Algorithm. 

Report the generated solution. 

repeat 

Apply Improvement Algorithm. 

Report the generated solution. 

until found_improving_move is false . 
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Algorithm 2 Construction algorithm. 

Require: An initial schedule Sch 1 , cruise times � f 1 and idle times � S 1 
for each flight. 

Initialize: changed_assignment ← true . Sch ∗ ← Sch 1 . Iteration in- 

dex k ← 1 ; 

while changed_assignment do 

Solve AAM( � f k −1 , 
�
 S k −1 ) ; 

New fleet assignment sequence is � z k ; 

Solve RASM( � z k ) ; 

New schedule is Sch k 
Report the generated solution 

�
 f k and 

�
 S k ; 

if COST (Sch k , � z k ) < COST (Sch ∗, � z ∗) then 

Sch ∗ ← Sch k ; 

�
 z ∗ ← 

�
 z k 

else 

if � z k == 

�
 z ∗ then 

changed_assignment ← false ; 

k ← k+1 ; 
ircraft-path assignment problem defined in Section 4.1 and robust

irline scheduling problem defined in Section 4.2 , and then records

he solution. The next step is to apply Improvement algorithm

y changing the fleet assignment sequences and solving the robust

irline scheduling problem again. The algorithm terminates when

o further reduction in overall operational cost can be attained. In

he following, we will describe two subproblems, which motivates

he construction and improvement algorithms, and then we will

escribe the steps of Algorithm 1 in detail. 

.1. Subproblem 1: Aircraft-Path assignment problem 

We first define aircraft-path assignment problem. The solu-

ion to the subproblem is an input for Construction algorithm.

iven cruise times � f k and idle times � S k of the schedule S k , aircraft-

ath assignment problem finds an optimal fleet assignment se-

uence � z k to flight paths without assigning an aircraft more than

nce such that all paths are covered. The objective is to minimize

he overall operational cost of the schedule. The problem is formu-

ated as follows: 

AM( � f , � S ) : min 

∑ 

p∈ P 

∑ 

t∈ T 
T C t p ( 

�
 f , � S ) · z t p (37) 

.to 

∑ 

t∈ T 
z t p = 1 p ∈ P (38) 

 

p∈ P 
z t p ≤ N 

t t ∈ T (39) 

 

t 
p ∈ { 0 , 1 } p ∈ P, t ∈ T (40) 

here the total cost T C t p ( 
�
 f , � S ) involving the costs of fuel consump-

ion and CO 2 emission, cost of spilled passengers and cost of idle

ime for each path p ∈ P and for each aircraft type t ∈ T is calcu-

ated as follows: 

 C t p ( 
�
 f , � S ) = 

∑ 

i ∈ J p 

(
c f uel + c CO 2 · k 

)

·
( 

c i,t 
1 

· 1 

�
 f t 
i 

+ c i,t 
2 

· 1 (
�
 f t 
i 

)2 
+ c i,t 

3 
·
(
�
 f t i 

)3 + c i,t 
4 

·
(
�
 f t i 

)2 

) 

+ 

∑ 

i ∈ J p 
Csp i · max 

(
D i − CAP t , 0 

)
+ 

∑ 

i ∈ J p 

�
 S t i · I t (41) 

.2. Subproblem 2: Robust airline scheduling problem 

We define another subproblem robust airline scheduling prob-

em. The solution of this subproblem is an input for both

onstruction and Improvement algorithms. Given a fleet as-

ignment sequence � z k to paths, robust airline scheduling problem

nds optimal cruise times � f and idle times � S while ensuring
k k 
he desired passenger connection service level. We achieve robust-

ess by ensuring passenger connections at a desired service level

ia introducing time windows on departures and controlling cruise

peed, by leaving the fleeting decisions unchanged. The objective

s to minimize fuel consumption and CO 2 emission costs and idle

imes cost. The problem is formulated as follows: 

ASM 

(→ 

z 

)
: min 

∑ 

p∈ P 

∑ 

i ∈ J p 

∑ 

t∈ T 
C i,t 

fuel & CO 2 

(
f t i 

)
+ 

∑ 

p∈ P 

∑ 

i ∈ J p 

∑ 

t∈ T 
Cs p i · max 

(
D i − CA P t , 0 

)
· → 

z p 
t 

+ 

∑ 

i ∈ J 

∑ 

t∈ T 
S t i · I t i (42) 

.to 

∑ 

i ∈ J 

∑ 

j∈ P i 
w i j · γi j ≥ γ (43) 

(5) − (12) 

RASM( � z ) is a nonlinear model of probabilistic constraints and

onlinear cost components. Exact and fast solutions are obtained

y the use of second order conic programming reformulations as

iscussed in the previous section. 

.3. Construction algorithm 

Algorithm 2 gives the Construction algorithm. The algo-

ithm starts with an initial schedule and given cruise times and

dle times. Afterwards, it solves Aircraft-Path Assignment subprob-

em to find an optimal fleet assignment sequence to minimize the

verall operational cost. The optimal fleet assignment sequence is

mposed upon the Robust Airline Scheduling subproblem to find

he optimal cruise times and idle times corresponding the opti-

al fleet assignment sequence. This procedure iteratively contin-

es to obtain schedules with improved operational cost. The al-

orithm terminates when it is stuck in the same fleet assignment

equence. 

In the Construction algorithm, there may exist some incom-

atibilities between two subproblems, which arise as an inevitable

onsequence of sequential planning approach. For instance, sched-

le generated by the RASM may not be feasible for aircraft con-

ections of the subsequent fleet assignment. The main reason of

his infeasibility is that the RASM ensures aircraft connections by

onsidering turnaround time requirement for only the fleet assign-

ent solution of the previous AAM. Any fleet assignment different

han the previous one may require longer turnaround times, thus
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Algorithm 3 Improvement algorithm. 

Require: A given schedule Sch ∗, cruise times � f ∗, idle times � S ∗ and 

�
 z ∗. 

Initialize: improving_move ← true ; 

while improving_move do 

Generate a neighborhood N around 

�
 z ∗ using all pairwise inter- 

change; 

Calculate Cost(Sch ∗, � z ∗i ) forall i ∈ N; 

Select m fleet assignment � z ∗1 , � z ∗2 , . . . , � z ∗m 

which give the min- 

imum Cost(Sch ∗, � z ∗i ) forall i ∈ N; 

if any of the moves � z ∗ → 

�
 z ∗1 , � z ∗ → 

�
 z ∗2 … , and 

�
 z ∗ → 

�
 z ∗m 

is pro- 

hibited by a move on the tabu list then 

Eliminate that one from the neighborhood N; 

Select the (m + 1) st fleet type assignment � z ∗m +1 with mini- 

mum cost; 

Solve RASM( � z ∗i ) for i = 1 , 2 , . . . , m ; 

New schedule is Sch i for i = 1 , 2 , . . . , m ; 

Select i ∗ with minimum Cost(Sch ∗, � z ∗i ) for i = 1 , 2 , . . . , m . 

if Cost(Sch ∗, � z ∗i ∗ ) < Cost(Sch ∗, � z ∗) then 

Sch ∗ ← Sch i ∗ ; 
�
 z ∗ ← 

�
 z i ∗ ; 

if Lengthof T L < L then 

T L = T L 
⋃ { � z i ∗ → 

�
 z ∗} ; 

else 

Remove the last entry; 

T L = T L 
⋃ { � z i ∗ → 

�
 z ∗} ; 

improving_move ← true 

else 

improving_move ← false 

Table 3 

Factor values. 

Levels 

Factor description Low High 

C fuel ($/kg) 0.6 1.2 

Base Spill Cost ($/passenger) 15 60 

β 0.01 0.05 
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resulting in aircraft misconnections. To decrease these incompati-

bilities, we resolve the RASM to generate a new feasible solution

by taking the fleet assignment, for which the previous schedule is

infeasible, as an input. When the AAM model produces the same

fleet assignment as the best one found so far, Construction al-

gorithm terminates. This could be a local solution for the problem.

To explore different fleet assignment sequences, in the next sec-

tion, we describe a neighbourhood search procedure which is used

by an Improvement algorithm. 

4.4. All pairwise interchange 

To explore a larger solution space, one of the most common

approaches in the scheduling literature is the pairwise interchange

method. This method compares the cost of two fleet assignment

sequences which differ only by interchanging a pair of fleet with

two different types. We will explain how to generate many fleet

assignment sequences from one fleet assignment sequence with a

small example. Let the best fleet type assignment sequence for four

paths be � z ∗: = (1, 2, 2, 3) where numbers 1, 2 and 3 correspond

to the fleet types. All Pairwise Interchange Method produces the

following five fleet type assignment sequences; � z 1 = (2, 1, 2, 3), � z 2 
= (2, 2, 1, 3), � z 3 = (3, 2, 2, 1), � z 4 = (1, 3, 2, 2), � z 5 = (1, 2, 3, 2).

For example, the first assignment sequence, � z 1 is constructed by

interchanging fleet 1 and 2 between 1 st and 2 nd paths. 

We generate many fleet assignment sequences at each iteration

of the Improvement algorithm. The question is which fleet type

assignment sequence will be selected at each iteration. The rule

is to select the one with the smallest overall operational cost. The

costs of the schedule S ∗ with many different fleet type assignment

sequences are calculated using formula (41) . 

4.5. Improvement algorithm 

Algorithm 3 gives the Improvement algorithm. The algorithm

starts with the schedule which is generated by Construction
algorithm and iteratively applies All Pairwise Interchange
to generate a neighbourhood involving different fleet assignment

sequences. Algorithm 3 selects the most promising fleet assign-

ment sequence by solving RAS problem and comparing the cost of

corresponding schedules. Therefore, a schedule with improved cost

is obtained at each iteration of the algorithm. A reverse move of

the improving move of the fleet assignment sequence � z ∗ ← 

�
 z i ∗ is

added to the top of the tabu list to prevent cycling. If tabu list is

longer than L , the last entry is removed from the tabu list. Algo-

rithm terminates when no improvement is possible for the current

schedule. 

In this section, we have described a heuristic algorithm which

decomposes the problem into two planning stages, such as aircraft

assignment and robust airline scheduling, and then solves them se-

quentially. Unfortunately, a sequential approach eliminates the in-

terdependencies, thus resulting in a suboptimal solution or even

infeasible solution. To reduce incompatibilities between subprob-

lems, decisions of the schedule design problem are imposed upon

the aircraft assignment model, whereas decisions of aircraft-path

assignment problem are imposed upon the robust airline schedul-

ing model in each iteration. In the next section, using data of a

major U.S. airline, we show that our two-stage approach is both

tractable and capable of producing very promising results to the

aircraft-path assignment and robust airline scheduling problem. 

5. Computational results 

In our computational study, we test the performance of mixed

integer second order conic programming formulation introduced

in Section 3 and two-stage algorithm introduced in Section 4 . We
est these two approaches on three different schedules generated

rom the work of Aktürk et al. (2014) . The flight information is

xtracted from database “Airline On-Time Performance Data,” pro-

ided by the Bureau of Transportation Statistics of the US Depart-

ent of Transportation, BTS (2010a ). We perform experiments in

ections 5.1 and 5.2 on a 64-bit Windows 7 computer with 8 GB

emory and Intel Xeon E5640 2.67 GHz CPU. We implement the

onic quadratic mixed integer reformulation and the two-stage al-

orithm in JAVA programming language with a connection to com-

ercial solver IBM ILOG CPLEX Optimization Studio 12.5. Then, we

erform the experiments in Section 5.3 on a OS X Yosemite com-

uter with 8 GB memory and 2,6 GHz Intel Core i5 processor and

se commercial solver IBM ILOG CPLEX Optimization Studio 12.6. 

In order to analyze the effects of problem parameters, we con-

uct a 2 k full-factorial experimental design. The experimental fac-

ors are chosen and their levels are given in Table 3 . 

C fuel is the price of jet fuel per kg. History of fuel prices ob-

ained from IATA fuel price monitor IATA (2014) indicates that

rice of one kilogram fuel is fluctuating between $0.5 and $1.26

n 2015. In this study, fuel prices are taken as $0.6/kg and $1.2/kg

or lower and higher settings, respectively. 

Base Spill Cost represents the opportunity cost for each of

pilled passengers due to the insufficient seat capacity of the air-

raft. Number of spilled passengers is directly affected by the fleet

ssignment decisions. In order to assess the overall impact of the
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Fig. 3. What if Analysis on the Service Level. 

t  

s  

d  

c  

1

 

l  

h  

s  

s  

o  

a  

a  

p  

o  

t

 

t  

t  

f  

a  

l

 

a  

p  

a  

c  

e  

a  

s  

T

 

t  

t  

a

 

i  

c  

s  

fl  

i  

c  

l  

e  

e  

m

umber of spilled passengers on the airline’s operating cost as de-

icted as F 1 in (1) in the proposed formulation, we have selected

he base spill cost as an experimental factor in our computational

ettings and its corresponding low and high levels as shown in

able 3 . Afterwards, the cost of spilled passengers is adjusted for

ach flight using airport congestion coefficients, e.g. favoring the

opulated markets, as shown in Eq. (44) . 

sp i = BaseSpil l Cost ·
(
e O i 

)
·
(
e Dn i 

)
(44)

The third experimental factor, β , is used for the tail parameter

f Log-Laplace distribution. Duran et al. (2015) state that the high-

st possible value of β is 0.07 to ensure that tail parameter β i >

 for each flight i ∈ J needed to have finite expected values. There-

ore, we analyze the performance of the schedule by setting β val-

es as 0.01 and 0.05 under the low and high settings, respectively.

ith a scale parameter, e α , the tail parameter is used to expect the

ean and variance of the random variable. In this study, the scale

arameter, e α is taken as 20 to have a non-cruise time deviating

rom 20 min. 

To be used for computational purposes, we construct a sam-

le of flight schedules in Table 4 from the work of Aktürk et al.

2014) . We queried the planned departure and arrival times of a

ommercial airline flights for a single day. Then, we filtered the

chedule such that an aircraft first departs from Chicago O’Hare

nternational Airport (ORD) and revisits ORD at least once on the

ame day. This allows us to work on a schedule of flights, which

as passenger connections at such congested airports. The sched-

le has 114 flights operated by 32 different aircraft. In this study,

o observe the effect of seat capacity and fuel efficiency of the air-

raft on the fleet assignment, we consider randomly selected six

ifferent aircraft types. A group of flights under the same tail num-

er represents an aircraft path operated by the same aircraft. For

he computational study, we adopt the fuel burn model of BADA

 EUROCONTROL, 2012 ) mentioned in Section 2.1.3 . The fuel con-

umption coefficients of an aircraft are taken from operational per-

ormance files provided by BADA ( EUROCONTROL, 2012 ). For six

ifferent aircraft types, we list the fuel burn related parameters,

orresponding MRC speed and seat capacity in Table 5 . Base turn

imes of aircraft are adopted from airplane characteristics of Boe-

ng company Boeing . We have used the initial investment cost of

ach aircraft type to estimate the idle time cost of each aircraft

ype in dollars per minute as summarized in Table 5 . 

We generate passenger demand uniformly between 110 and

34, 110 and 122, 110 and 148, 150 and 172, 160 and 180, 160 and

18, if originally assigned aircraft types in the published schedule

re B727 228, B737 500, MD 83, A320 111, A320 212 and B767 300,

espectively. We can assume that the original aircraft assignment

atisfies all passenger demand. Under this experimental setting, we

an clearly analyze the performance of aircraft assignment consid-

ring the fuel efficiency of the aircraft as well as the passenger de-

and compared to an assignment decision solely focusing on the

assenger demand satisfaction. 

In the computational study, we compare the schedule gen-

rated by our model to the published schedule in Table 4 . We

ake some assumptions on the published schedule, such that

0 min of the flight times in the published schedule in Table 4 are

aken as planned non-cruise times and remaining is planned cruise

ime. For example, planned flight time for flight 2303 is 155 min.

35 min of the flight time are assumed to be the planned cruise

imes and 20 min are planned non-cruise times in the published

chedule. In our model, we represent the non-cruise times with a

andom variable which has a log-Laplace distribution. To be con-

istent with the published schedule, we take the scale parameter,

 

α of the random variable as 20 to have a non-cruise time devi-

ting from 20 min. We calculate the cruise length by multiplying

RC speed of originally assigned fleet type with planned cruise
ime under the assumption that speed is constant during the cruise

tage. We also calculate the upper bound f u,t 
i 

for cruise times by

ividing the cruise length of flight, i with MRC speed of the air-

raft, t . In our model, we allow compression on cruise times by

5% of f u,t 
i 

. 

We add a generated passenger connection network to the pub-

ished schedule. We construct a set P i to represent flights which

ave a passenger connection with flight i . We include flight j in

et P i , if the original departure time of flight j in the published

chedule is within 45 min or 180 min of the original arrival time

f flight i and destination airport of flight i is same as the origin

irport of flight j . Passenger connection times, TP ij in constraint 5

re taken uniformly between 25 and 40 min. The weights of the

assenger connections, w ij are assigned by adjusting the number

f passengers connected. Turn back in one way is not allowed for

he passenger connections. 

In Table 6 , we give the airport congestion coefficients used in

his experimental study. These coefficients are normalized using

he number of passengers visiting the airports, which is obtained

rom the T-100 market data of BTS (2010b ). The most congested

irport in the published schedule has 1.96 congestion level and the

east congested airport has 0.64. 

We estimate the aircraft turnaround time needed for an aircraft

t an airport by multiplying the base aircraft turntime with the air-

ort congestion coefficients as in Eq. (45) . Therefore, turntime of

n aircraft visiting a congested airport is longer. The calculated air-

raft turntimes match with the aircraft turntimes given in Arıkan

t al. (2012) . Moreover, turntime between through flights are taken

s 70% of the calculated turntimes, because boarding time of pas-

engers and time to load and unload their cargos require less time.

 A 

t 
i j = BaseT urntime t · e Dn i (45) 

To be consistent with the published schedule, the departure

ime of the first flight of each path is set to the departure time of

he first flight in the published schedule. Time window constraints

re imposed upon the rest of the flights. 

In this study, we have a bi-criteria problem where the conflict-

ng objectives are maximization of the service level for passenger

onnections and minimization of airline’s overall cost. In Fig. 3 , we

how the efficient frontier for a single problem instance using a

ight schedule with the first 41 flights of the published schedule

n Table 4 . We set each experimental factor to the highest value. It

an be clearly seen that, when airlines try to maximize the service

evel for passenger connections, their operational cost increases as

xpected. The sharp increase in the operational cost occurs while

nsuring a higher service level than 0.95. On the other hand, the

inimum cost is obtained at the lowest service level. 
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Table 4 

Published schedule. 

Tail No Flight no Departure Arrival Departure 

time 

Flight time Arrival time Tail no Flight No Departure Arrival Departure 

time 

Flight time Arrival time 

N531AA 2303 ORD DFW 6:45 2:35 9:20 N3DMAA 568 ORD FLL 7:25 2:55 10:20 

N531AA 2336 DFW ORD 10:10 2:30 12:40 N3DMAA 711 FLL ORD 11:10 3:15 14:25 

N531AA 1053 ORD AUS 13:25 2:50 16:15 N3DMAA 2021 ORD SJU 15:25 4:35 20:00 

N531AA 336 AUS ORD 17:00 2:45 19:45 N544AA 2463 ORD MCI 6:25 1:30 7:55 

N531AA 336 ORD LGA 20:40 2:14 22:54 N544AA 754 MCI ORD 8:40 1:30 10:10 

N598AA 1341 ORD SFO 7:50 4:55 12:45 N544AA 2321 ORD DFW 11:15 2:35 13:50 

N598AA 348 SFO ORD 13:30 4:25 17:55 N544AA 2356 DFW ORD 14:40 2:30 17:10 

N598AA 1521 ORD TUS 19:15 3:55 23:10 N544AA 2487 ORD DEN 17:50 2:45 20:35 

N475AA 407 ORD STL 6:20 1:10 7:30 N3EBAA 1565 ORD MSP 6:40 1:30 8:10 

N475AA 755 STL ORD 8:35 1:15 9:50 N3EBAA 779 MSP ORD 9:00 1:25 10:25 

N475AA 755 ORD SAT 10:45 3:00 13:45 N3EBAA 779 ORD SAN 11:35 4:20 15:55 

N475AA 408 SAT ORD 14:30 2:40 17:10 N3EBAA 1358 SAN ORD 16:45 3:55 20:40 

N475AA 408 ORD PHL 18:05 2:05 20:10 N3EBAA 1358 ORD BOS 21:50 2:10 0:00 

N3EEAA 876 ORD BOS 6:35 2:10 8:45 N3ETAA 1704 ORD EWR 6:35 2:05 8:40 

N3EEAA 413 BOS ORD 9:35 3:05 12:40 N3ETAA 1883 EWR ORD 9:30 2:40 12:10 

N3EEAA 413 ORD SNA 13:45 4:35 18:20 N3ETAA 810 ORD DCA 13:10 1:40 14:50 

N3EEAA 1262 SNA ORD 19:10 3:50 23:00 N3ETAA 2013 DCA ORD 15:45 2:10 17:55 

N4YDAA 451 ORD SFO 9:45 4:55 14:40 N3ETAA 2013 ORD LAS 19:00 4:05 23:05 

N4YDAA 554 SFO ORD 15:45 4:25 20:10 N3DYAA 1063 ORD LAX 8:50 4:35 13:25 

N3ERAA 496 ORD DCA 6:45 1:40 8:25 N3DYAA 874 LAX ORD 14:30 4:15 18:45 

N3ERAA 1715 DCA ORD 9:15 2:10 11:25 N3DYAA 874 ORD BOS 19:45 2:10 21:55 

N3ERAA 1715 ORD LAS 12:25 4:05 16:30 N5DXAA 1048 ORD MIA 7:35 3:00 10:35 

N3ERAA 1708 LAS ORD 17:20 3:40 21:00 N5DXAA 1763 MIA ORD 11:55 3:20 15:15 

N5CLAA 1425 ORD SNA 8:25 4:40 13:05 N5DXAA 1899 ORD MIA 16:20 3:00 19:20 

N5CLAA 556 SNA ORD 14:00 4:00 18:00 N454AA 2441 ORD ATL 6:30 2:00 8:30 

N5CLAA 1940 ORD MIA 19:25 3:00 22:25 N454AA 1986 ATL ORD 9:15 2:15 11:30 

N535AA 2460 ORD RSW 6:45 2:45 9:30 N454AA 1872 ORD MCO 12:25 2:40 15:05 

N535AA 564 RSW ORD 10:20 3:05 13:25 N454AA 1131 MCO ORD 15:50 3:05 18:55 

N535AA 1446 ORD EWR 14:55 2:45 17:40 N4YMAA 1137 ORD MSY 8:20 2:25 10:45 

N535AA 1411 EWR ORD 18:45 2:45 21:30 N4YMAA 1768 MSY ORD 11:30 2:30 14:00 

N3DRAA 1021 ORD LAS 8:30 4:05 12:35 N4YMAA 1768 ORD PHL 15:05 2:05 17:10 

N3DRAA 1544 LAS ORD 13:25 3:40 17:05 N4YMAA 1697 PHL ORD 18:00 2:35 20:35 

N3DRAA 1544 ORD DCA 18:00 1:40 19:40 N420AA 1686 ORD RDU 6:50 1:50 8:40 

N467AA 1823 ORD PBI 9:20 2:55 12:15 N420AA 2435 RDU ORD 9:25 2:15 11:40 

N467AA 2067 PBI ORD 13:00 3:20 16:20 N420AA 2435 ORD PHX 12:35 4:00 16:35 

N467AA 2067 ORD STL 17:15 1:10 18:25 N420AA 1206 PHX ORD 17:15 3:30 20:45 

N467AA 1186 STL ORD 19:10 1:15 20:25 N546AA 1462 ORD EWR 8:00 2:45 10:45 

N3DTAA 2363 ORD HDN 9:50 2:50 12:40 N546AA 1387 EWR ORD 11:25 2:45 14:10 

N3DTAA 2318 HDN ORD 13:40 2:50 16:30 N546AA 1397 ORD MCO 15:00 2:40 17:40 

N412AA 2345 ORD DFW 17:15 2:35 19:50 N546AA 1221 MCO ORD 18:25 2:55 21:20 

N412AA 2374 DFW ORD 20:40 2:20 23:00 N4WPAA 2311 ORD DFW 9:05 2:35 11:40 

N530AA 398 ORD LGA 6:15 2:14 8:29 N4WPAA 2348 DFW ORD 12:35 2:20 14:55 

N530AA 319 LGA ORD 9:25 2:50 12:15 N4WPAA 1797 ORD STL 15:50 1:10 17:00 

( continued on next page ) 
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Table 4 ( continued ) 

Tail No Flight no Departure Arrival Departure 

time 

Flight time Arrival time Tail no Flight No Departure Arrival Departure 

time 

Flight time Arrival time 

N530AA 2329 ORD DFW 13:35 2:35 16:10 N4WPAA 1982 STL ORD 18:00 1:15 19:15 

N530AA 2364 DFW ORD 17:00 2:30 19:30 N4WPAA 1339 ORD SAN 20:15 4:30 0:45 

N459AA 394 ORD LGA 6:50 2:15 9:05 N439AA 2455 ORD PHX 7:10 4:00 11:10 

N459AA 321 LGA ORD 10:00 2:50 12:50 N439AA 358 PHX ORD 11:55 3:30 15:25 

N459AA 366 ORD LGA 13:55 2:20 16:15 N439AA 358 ORD LGA 16:25 2:15 18:40 

N459AA 347 LGA ORD 17:15 2:50 20:05 N439AA 371 LGA ORD 20:00 2:50 22:50 

N4XGAA 2079 ORD SAN 8:45 4:30 13:15 N5EBAA 2375 ORD EGE 8:10 2:55 11:05 

N4XGAA 1438 SAN ORD 14:00 4:10 18:10 N4EBAA 2378 EGE ORD 12:25 2:45 15:10 

N4XGAA 346 ORD LGA 19:50 2:15 22:05 N4EBAA 1677 ORD SNA 18:40 4:40 23:20 

N536AA 2305 ORD DFW 7:45 2:35 10:20 N3DUAA 2099 ORD LAX 7:00 4:35 11:35 

N536AA 2344 DFW ORD 11:35 2:30 14:05 N3DUAA 1972 LAX ORD 12:40 4:15 16:55 

N536AA 1201 ORD STL 14:50 1:05 15:55 N3DUAA 1972 ORD RDU 17:45 1:55 19:40 

N536AA 1815 STL ORD 17:00 1:20 18:20 N3ELAA 2057 ORD SJU 8:30 4:35 13:05 

N536AA 1815 ORD SLC 19:15 3:40 22:55 N3ELAA 2078 SJU ORD 14:25 5:35 20:00 
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Table 5 

Aircraft parameters. 

Aircraft type B727 228 B737 500 MD 83 A320 111 A320 212 B767 300 

Capacity 134 122 148 172 180 218 

Mass (kgs) 74,0 0 0 50,0 0 0 61,200 62,0 0 0 64,0 0 0 135,0 0 0 

Surface( m 

2 ) 157.9 105.4 118 122.4 122.6 283.3 

C D 0, CR 0.018 0.018 0.0211 0.024 0.024 0.021 

C D 2, CR 0.06 0.055 0.0468 0.0375 0.0375 0.049 

Cf 1 0.53178 0.46 0.7462 0.94 0.94 0.763 

Cf 2 276.72 300 638.59 50,0 0 0 10 0,0 0 0 1,430 

cf CR 0.954 1.079 0.9505 1.095 1.06 1.0347 

MRC speed 867.6 859.2 867.6 855.15 868.79 876.70 

Base turntime 32 36 26 28 30 40 

Idle time cost($) 150 140 142 136 144 147 

Table 6 

Congestion coefficients ( e b ). 

Airport Location Coefficient Airport Location Coefficient 

MIA Miami, FL 1.96 DCA Washington, DC 1.17 

ORD Chicago, IL 1.88 SAN San Diego, CA 1.10 

LAX Los Angeles, CA 1.82 STL St.Louis, MO 1.10 

DEN Denver,CO 1.82 MCI Kansas City, MO 1.04 

DFW Dallas, TX 1.74 AUS Austin, TX 1.00 

LGA New York, NY 1.69 RDU Raleigh/Durham, NC 1.00 

BOS Boston, MA 1.69 MSY New Orleans, LA 0.96 

ATL Atlanta, GA 1.64 SNA Santa Ano, CA 0.96 

PHX Phoenix, AZ 1.56 SAT San Antonio, TX 0.90 

LAS Las Vegas, NV 1.56 RSW Fort Myers, FL 0.90 

SFO San Fransisco, CA 1.44 SJU San Juan, PR 0.85 

MSP Minneapolis, MN 1.32 PBI West Palm Beach, FL 0.81 

PHL Philadelphia, PA 1.32 TUS Tuscan, AZ 0.77 

EWR Newark, NJ 1.25 MCO Orlando, FL 0.72 

FLL Fort Lauderdale, FL 1.25 EGE Eagle, CO 0.72 

SLC Salt Lake City, UT 1.17 HDN Hayden, CO 0.64 

Table 7 

Original aircraft types. 

Tail no Aircraft type Tail no Aircraft type 

N531AA B767 300 N5CLAA B767 300 

N598AA B767 300 N535AA B767 300 

N475AA A320 212 N3DRAA A320 111 

N3EEAA A320 111 N467AA A320 212 

N4YDAA A320 212 N3DTAA A320 111 

N3ERAA A320 111 N412AA A320 212 
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5.1. Analysis on the schedule with 41 flights 

In this experimental study, we use a flight schedule which is

generated by taking the first 41 flights of the published schedule

in Table 4 . We consider 12 different aircraft with 3 different types

and randomly assign aircraft types in Table 7 . 

We first test the performance of the schedule achieved by

the integrated model with the published schedule. Afterwards, we

compare the results of the two-stage algorithm and the optimal

solutions of the integrated model. 

5.1.1. Computational analysis on the integrated model 

We give a comparison among different cost components be-

tween the integrated model’s optimum solution and published

schedule in Table 8 . We summarize the results for 40 problem in-

stances. For each factor level, we report the minimum, average and

maximum reduction in fuel and emission costs, idle time cost, to-

tal cost and total cost without considering delay over five repli-

cations. We consider delay cost of the published schedule, when

we calculate the total cost improvement. Unit delay cost is diffi-

cult to determine. To simplify the calculation, we assume a linear

delay cost with $200 per minute of delay. But, it is evident that

integrated model performs better cost savings in total cost even
ithout including the delay cost. The improvement percentages are

alculated using the following formula: 

ost Improvement ( % ) 

= 100 × Published Schedule - Integrated Model 

Published Schedule 

The effect of the fuel price per ton has a significant impact on

he total cost improvement. The integrated model has much more

endency to decrease fuel consumption, when fuel price is high.

herefore, integrated model assigns the fuel efficient aircraft to the

aths which require more fuel consumption and adjusts the speed

f the aircraft to minimize the fuel consumption. As a result, fuel

nd CO 2 emission cost improvements increase. On the other hand,

he cost of the spilled passengers increases with this assignment

o that it leads to low total cost improvements. 

When base spill cost is high, this leads to much more demand

atisfaction to reduce the cost of spilled passengers. However, this

pproach incurs higher fuel and CO 2 emission costs which consti-

ute the major portion of the airline operational costs. Therefore,

otal cost saving decreases compared to the low setting. 

β scale parameter of the log-Laplace distribution has significant

ffects on the idle time and total cost improvements. It is observed

hat our model achieves better idle time and total cost savings

hen β is low, and the performance of the model in improving

uel and emission costs is slightly affected by β . The reason be-

ind this is that a higher β causes a higher variance in non-cruise

imes of flights, which necessitates more idle time insertion and

ompression on the cruise times to ensure the connections. There-

ore, this leads to more idle time and total operational costs. 

Overall, improvements in the cost of fuel and CO 2 emissions

re approximately 11%, whereas the improvement in idle time is

pproximately 68%. However, 2% of the passengers are not satis-

ed due to limited seat capacity of the aircraft. It is observed that
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Table 8 

Comparison of factor effects. 

Fuel & emis. cost Idle cost Total cost Total impr. 

improvement improvement improvement without delay 

Min Avg Max Min Avg Max. Min Avg Max Min Avg. Max 

C fuel ($/kg) Low 8.3 11.1 12.3 59.8 68.4 79.8 20.5 24.5 29.2 18.2 23.3 28.8 

High 10.5 11.7 12.3 59.4 68.1 79.8 16.6 19.3 22.4 15.2 18.5 22.2 

Base Spill Cost Low 12.1 12.3 12.3 59.5 67.9 79.8 19.2 23.1 29.2 17.8 22.1 28.8 

High 8.3 10.5 12.3 59.4 68.5 79.8 16.6 20.7 27.3 15.2 19.6 26.9 

β Low 8.9 11.6 12.3 69.2 75.5 79.8 17.5 23.2 29.2 17.2 22.8 28.8 

High 8.3 11.1 12.3 59.4 61.0 66.3 16.6 20.7 24.9 15.2 18.9 22.7 

Table 9 

Cost comparison for different replications. 

Fuel & emis. cost Idle cost Total cost 

improvement (%) improvement (%) improvement (%) 

Replications Min Avg Max Min Avg Max. Min Avg Max 

1 8.3 11.1 12.3 59.6 68.3 77.1 16.7 21.7 27.5 

2 8.9 11.1 12.3 59.4 67.9 76.3 16.6 21.5 27.1 

3 11.1 11.9 12.3 60.1 69.7 79.8 18.6 23.3 29.2 

4 9.0 11.6 12.3 61.7 65.9 70.2 16.7 20.8 25.8 

5 8.8 11.2 12.3 61.0 69.3 76.5 17.6 22.3 27.5 

Table 10 

CPU time analysis of the integrated model. 

CPU time (sec) 

Factor Level Min Avg Max 

C fuel ($/kg) Low 758 2250 6490 

High 606 3425 11290 

Base Spill Cost Low 606 3474 11290 

High 743 2201 6490 

β Low 606 2350 7303 

High 743 3325 11290 
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he fuel and CO 2 emission cost savings compensate the cost of the

pilled passengers, thus resulting in 22% total cost improvement. 

We take five replications for each factor combination to observe

f random values of passenger demand and passenger connection

imes have any impact on objective values. For each replication,

he minimum, average and maximum improvements in each cost

omponent are seen in Table 9 . We could conclude that there is no

tatistically significant randomization effect on the objective func-

ion values. 

To see the effect of each factor on the computation time, min-

mum, average and maximum values of CPU in seconds over five

eplications are analyzed in Table 10 . Increase in fuel price makes

ircraft-path assignment decisions more crucial. As expected this

equires much more CPU time to deal with the nonlinear fuel and

mission cost functions. If the base spill cost increases, then the

eat capacity of the aircraft becomes more significant on the fleet

ssignment strategy. The problem complexity decreases, thereby

ecreases the overall computation time. Increasing the variability,

.e., β , increases the problem complexity as it becomes harder to

atisfy the connections at a desired service level. As a result, the

equired CPU time increases. 

Moreover the average CPU time requirement for solving the

ixed integer second order conic formulation is 30 0 0 CPU sec-

nds. As expected, the conflicting objectives increase the problem

omplexity and the computation time. When the fuel price and β
arameters are high and base spill cost is low, maximum time to

olve the five problem instances reaches to 11,290 CPU seconds.

herefore, we also devise a two-stage algorithm to solve the large

cale problems in a reasonable time. 
.1.2. Computational analysis on the two-Stage algorithm 

In this section, we use the same generated schedule having 41

ights operated by 12 different aircraft with 3 different types. We

imilarly perform a 2 3 full-factorial experimental design with 5

eplications. The parameter, m , to generate m schedules in the two-

tage algorithm is set to three and the length of the tabu list is

aken as 1. In order to test the solution quality of the two-stage

lgorithm, we compare the total cost of the schedule generated by

he two-stage algorithm with the optimum solution of the inte-

rated model. Optimality gap for the two-stage algorithm is calcu-

ated as the following: 

ptimality gap = 

Two-Stage Algorithm - Integrated Model 

Integrated Model 

For each factor combination, we provide the average optimality

ap over 5 replications in Table 11 . When the factors C fuel , Base

pill Cost and β are set to their low, high and high values, total

ost of the schedule developed by the two-stage algorithm is ap-

roximately 0.001 times worse than the total cost of the schedule

chieved by the integrated model as well as the high, high and low

etting, respectively. For the remaining ones, achieved costs by the

wo-stage algorithm are approximately the same as the optimal so-

utions of the integrated model. 

In addition, for only 6 instances out of 40 the instances, the

eet type assignment obtained by the two-stage algorithm differs

rom the optimal solutions of the integrated model. The gaps be-

ween the objectives are negligible for these instances. Our compu-

ational results indicate that for the reasonable size of the problem,

he two-stage algorithm gives very similar results to the optimum

olutions in seconds. 

.2. Analysis on the schedule with 114 flights 

For this computational study, we utilize the published sched-

le in Table 4 . The schedule has 114 flights operated by 32 dif-

erent aircraft with six different types. We again perform a 2 3 full-

actorial experimental design with 5 replications. We first solve the

ixed integer second order conic programming formulation within

 time limit of 90 0 0 CPU seconds. We obtain the best known upper

ound (objective) and the best lower bound (LB) at the time of the

ermination. Then, we also run the two-stage algorithm. We cal-

ulate the relative gap between the LB obtained by the integrated
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Table 11 

Gap between two-stage algorithm and the integrated model. 

Factor Optimality Factor Optimality 

C fuel ($/kg) Base Spill Cost β Gap C fuel ($/kg) Base Spill Cost β Gap 

Low Low Low 0.0 0 0 High Low Low 0.0 0 0 

Low Low High 0.0 0 0 High Low High 0.0 0 0 

Low High Low 0.0 0 0 High High Low 0.001 

Low High High 0.001 High High High 0.0 0 0 

Table 12 

Factor effects on the Gap. 

Gap with LB (%) Gap with LB (%) 

for integrated model for two-stage alg. 

Factor Level Min Avg Max Min Avg Max 

C fuel ($/kg) Low 5.4 7.1 10.5 2.2 6.0 7.7 

High 4.9 7.8 10.0 2.6 6.3 8.1 

Base Spill Cost Low 5.9 8.6 10.5 4.0 7.1 8.1 

High 4.9 6.2 7.7 2.2 5.1 6.1 

β Low 4.9 7.2 10.5 2.2 5.7 8.0 

High 5.4 7.7 10.0 5.0 6.6 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 

Factor effects on relative performance. 

Relative 

performance (%) 

Factor Level Min Avg Max 

C fuel ($/kg) Low 0.1 −1.0 −4.9 

High −0.8 −1.3 −3.0 

Base Spill Cost Low −0.3 −1.4 −4.9 

High 0.1 −1.0 −3.0 

β Low −0.3 −1.3 −4.9 

High 0.1 −1.0 −3.0 
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model within the time limit and the objective of the two-stage al-

gorithm. In a similar way, we also calculate the relative gap with

the LB for the integrated model. We give the calculations of rela-

tive gaps with the LB as follows: 

Gap with LB for Two-stage Alg. ( % ) 

= 100 × Objective of Two-stage Alg. - LB 

LB 

Gap with LB for Integrated Model ( % ) 

= 100 × Objective of Integrated Model - LB 

LB 

Table 12 illustrates the minimum, average and maximum of the

relative gaps over five replications both for the integrated model

and the two-stage algorithm. On the average, the gap with lower

bound for the integrated model is 7.43%, whereas it is 6.14% for

the two-stage algorithm. It is important to clarify that, on the av-

erage, the gap for the two-stage algorithm is less than the inte-

grated model within the time limit of 90 0 0 CPU seconds. In other

words, on the average, the two-stage algorithm results in a lower

cost schedule than the best incumbent solution found by the inte-

grated model within given time limit. 

Moreover, for 18 instances out of the 40 instances, the relative

gap for the two-stage algorithm becomes less than 6%, whereas

6 of them result in 5% gap. However, we do not know whether

the lower bound is weak or strong. Thus, the optimality gap with

the lower bound is not enough to analyze the performance of two-

stage algorithm. We also compare the results of the two-stage al-

gorithm to the best incumbent solutions found by the integrated

model within 90 0 0 CPU seconds as follows: 

Relative Performance ( % ) 

= 100 × Objective of Two-stage Alg. - Objective of IM 

Objective of IM 

Integrated model could not reach optimal solutions within the

time limit of 90 0 0 CPU seconds. Even, for 39 out of 40 instances,

solutions of two-stage approach give lower cost than the best in-

cumbent solutions of the integrated model. In Table 13 , nega-

tive values represent a better performance for two-stage approach

compared to solutions of the integrated model within the time

limit. For instance, when fuel price is low, two-stage approach ob-

tains a maximum cost saving of 4.9% relative to the best incumbent
olution. On the average of 40 instances, two-stage algorithm gives

.18% total cost saving compared to the best solutions found by the

ntegrated model. For 20 out of 40 instances, two-stage algorithm

rovides 1% cost saving, where 4 of them results in 2% cost saving.

n the other hand, for only 1 instance over 40 instances, two-stage

lgorithm gives 0.1% higher cost than the best solution of the inte-

rated model, when factors C fuel , Base Spill Cost and β are at their

ow, high and high levels, respectively. We can conclude that two-

tage approach is capable of producing very promising results com-

ared to the best solutions of the integrated model within 90 0 0

PU seconds. 

We also provide different cost improvements for two-stage ap-

roach compared to the published schedule in Table 14 . It can be

een that, the results of the two-stage algorithm are very promis-

ng as well. Idle time cost savings are approximately 70%, whereas

he fuel and emission cost reductions are approximately 4.5%. The

verall cost saving is around 21%. These are similar to the analysis

n the schedule with 41 flights. 

Our computational results indicate that fuel and CO 2 emission

ost improvements increase as the fuel price increases. In con-

rast, percentage of the spilled passengers increases as it is seen in

able 15 . Total cost saving decreases together with increase in the

ost of spilled passengers and slightly decrease in idle time cost

mprovement. 

Table 15 also illustrates that high value of the base spill cost

ecreases the number of spilled passengers, as expected. How-

ver, this decreases the fuel and CO 2 emission cost improvements,

hereby resulting in lower total cost savings. 

In Table 15 , we clearly observe the impact of flight time un-

ertainty on the passenger spill. Table 14 shows that increase in

he variability decreases the idle time cost improvements as well

s fuel and carbon emission cost improvements. The reason be-

ind this is that our approach inserts larger idle times over crit-

cal connections and compresses the cruise time of flights to en-

ure the passenger connections with a higher service level. At this

oint, making the appropriate fleet assignment decisions through

he network based on the availabilities, seat capacities and demand

orecasts becomes more crucial to decrease the operational ex-

enses. It may be preferable to assign a fuel efficient but a smaller

ircraft to a certain flight path involving critical passenger connec-

ions in albeit of an additional cost of spilled passengers. As it is

een in Table 15 , increase in the variability results in more number

f spilled passengers as expected. 
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Table 14 

Comparison of factor effects. 

Fuel & emis. cost Idle cost Total cost Total impr. 

improvement improvement improvement without delay 

Min Avg Max Min Avg Max. Min Avg Max Min Avg. Max 

C fuel ($/kg) Low 2.1 3.7 4.9 69.4 72.5 78.4 23.3 25.2 28.0 20.1 23.0 26.7 

High 4.3 5.3 6.1 68.2 71.6 77.3 16.1 17.6 19.5 14.2 16.2 18.7 

Base Spill Cost Low 4.4 5.3 6.1 68.7 72.3 78.4 18.0 22.3 29.0 15.9 20.5 26.7 

High 2.1 3.7 4.8 68.2 71.9 77.6 16.1 20.6 25.9 14.2 18.7 24.7 

β Low 2.4 4.6 6.1 68.2 72.5 78.4 16.1 21.8 28.0 15.2 20.7 26.7 

High 2.1 4.4 6.1 69.2 71.7 75.8 16.3 21.1 26.6 14.2 18.5 23.5 

Table 15 

Factor effects on the percentage of spilled passen- 

gers. 

Spilled 

passengers (%) 

Factor Level Min Avg Max 

C fuel ($/kg) Low 0.5 1.3 2.3 

High 1.0 2.2 3.7 

Base Spill Cost Low 1.4 2.4 3.7 

High 0.5 1.0 1.5 

β Low 0.5 1.7 3.4 

High 0.5 1.8 3.7 

Table 16 

CPU time analysis of two-stage algorithm. 

CPU time (sec) 

Factor Level Min Avg Max 

C fuel ($/kg) Low 52 140 269 

High 48 113 187 

Base Spill Cost Low 48 137 269 

High 52 117 214 

β Low 48 93 158 

High 80 160 269 
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Another measure of interest is the service level of the passen-

ers’ connections. For the accuracy of the performance of the gen-

rated schedule, the overall desired service level ( γ ) for passen-

er connections is taken as equal to the overall service level of the

ublished schedule. In the published schedule, for the lower case

f β , the service level is 0.99, whereas it is 0.96 for the higher

ase. These values are highly satisfactory to ensure the passenger

onnections with high probabilities. 

Table 16 summarizes the CPU time requirement to achieve

hese results for the two-stage algorithm. As expected, the value

f β increases the problem complexity as the increase in the vari-

bility. The fuel cost and base spill cost parameters have slightly

ess effects on the computation time. To solve the larger problem

nstances with 114 flights, maximum CPU time spent for the two-

tage algorithm is 120 s, which is still reasonable to generate a ro-

ust schedule in real time. 

.3. Analysis on the schedule with 400 flights 

In our previous results, it can be seen that two-stage algorithm

rovides very promising results on the schedule with 114 flights

perated by 32 different aircraft. In order to demonstrate the ac-

ual performance of the algorithmic approach on a more realis-

ic network, we construct another sample schedule which has 400

ights operated by 119 different aircraft, almost quadruple the size

f the previous schedule in terms of the number of flights and the

umber of aircraft. The new flight schedule is also constructed by

electing 400 flights from the work of Arıkan et al. (2016) which

as extracted from the database “Airline On-Time Performance
ata” provided by the Bureau of Transportation Statistics of the US

epartment of Transportation, BTS (2010a ). 

Although we show that there is no statistically significant ran-

omization effect on the objective function values, for each exper-

mental setting, we still generate five replications. We summarize

he results for 40 problems solved by the two-stage algorithm in

able 17 . 

Table 17 compares the performance of the schedule generated

y the two-stage algorithm and the published schedule. It can be

een that results are very promising for relatively larger size of the

roblems as well. The overall cost saving is approximately 24%,

hereas the reduction in idle time cost and fuel and emission

osts are around 78% and 9%, respectively. These are very similar

o our previous results. Although the performance of the two-stage

lgorithm is not affected by the size of the data, the fuel and emis-

ion cost savings could be affected by the number of aircraft for

ach type used in the published schedule. 

Moreover, the average CPU time that the two-stage algorithm

equires to achieve these results is approximately 6500 s. Max-

mum amount of time spent is around 13,300 s. It is important

o note that these CPU time requirements are reasonable for suc-

essful implementation of such a decision making approach in real

ime. 

. Conclusions 

We develop a global optimization tool to simultaneously re-

ime the flight departures and assign aircraft types to paths in a

iven time period. We capture the flight time uncertainty through

he chance constraints to ensure passenger connections. In order

o increase the passenger connection opportunities, we slightly al-

ow changes in departure times and adjust the speed of the air-

raft in response to flight time uncertainty. The crucial contribu-

ion of this paper is to consider the fuel burn and CO 2 emissions

osts associated with adjusting cruise speed to ensure the passen-

er connections. Therefore, one may prefer to assign a fuel efficient

ut smaller aircraft to a flight path with critical passenger connec-

ions in albeit of an additional cost of spilled passengers. In order

o handle the nonlinear costs and chance constraints, we use the

onic quadratic programming and obtain the exact solutions as op-

osed to the approximation methods. We also develop a two-stage

lgorithm which decomposes the problem into two stages such as

ircraft-path assignment and robust airline scheduling, and then

olves them sequentially. Computational experiments indicate that

he two-stage algorithm performs high quality results in acceptable

imes. 

There are several research directions arising from this work that

ould be pursued. Great advantages of conic structure of the pro-

osed model enable researchers to integrate more planning stages

f airline operations. The current model takes the aircraft paths as

nput and assigns the aircraft types to these paths. One of the in-

egrations would be to determine the assignment of fleet types to

he flight legs without knowing the aircraft path priori. The prob-
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Table 17 

Comparison of factor effects of the schedule with 400 Flights. 

Fuel & emis. cost Idle cost Total cost 

improvement (%) improvement (%) improvement (%) 

Min Avg Max Min Avg Max. Min Avg Max 

C fuel ($/kg) Low 5.5 8.1 10.3 77.5 80.0 82.7 26.1 27.8 29.6 

High 9.0 10.2 11.3 73.7 76.5 79.6 19.0 20.6 22.2 

Base Spill Cost Low 9.8 10.6 11.3 75.3 78.5 81.6 21.7 25.5 29.6 

High 5.5 7.7 9.6 73.7 78.2 82.7 18.9 22.9 27.0 

β Low 5.6 9.2 11.3 73.7 77.7 81.0 19.3 24.4 29.6 

High 5.5 9.1 11.2 75.2 78.9 82.7 18.9 24.0 29.2 
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lem can be further extended to involve the crew assignment deci-

sions as well as the fleet assignment decisions. 

One such direction would be to capture the variability in

non-cruise times by using stochastic programming. The current

method models the variability with chance constraints to ensure

the desired service level for passenger connections. The uncer-

tainty would be also handled by a stochastic model where many

of potential delay scenarios are analyzed. The effect on delay prop-

agation could be conducted in the enlarged problem involving air-

craft, passenger and crew connections through the entire network.

On the other hand, considering many scenarios may lead to large

decision trees that could requires significant computation time to

solve the overall stochastic model. 

Appendix A 

A1. Log-Laplace distribution 

The probability density and cumulative distribution functions of

Log-Laplace random variable A i with a scale parameter, e α and the

tail parameter, 1/ β i are 

f A i (x ) = 

{ 

1 
2 ·βi ·x e 

( ln (x ) −α) 
βi , if ln (x ) < α

1 
2 ·βi ·x e 

−( ln (x ) −α) 
βi , if ln (x ) ≥ α

F A i (x ) = 

{ 

1 
2 

e 
( ln (x ) −α) 

βi , if ln (x ) < α

1 − 1 
2 

e 
−( ln (x ) −α) 

βi , if ln (x ) ≥ α

The quantile function of the random variable A i , which will be used

in transformation of the chance constraints into the second order

conic inequalities, is given as: 

F −1 
A i 

(p) = 

{
(2 p) βi · e α, if p < 

1 
2 

e α

(2 −2 p) βi 
, if p ≥ 1 

2 

A2. Fuel cost function 

To estimate the fuel burn, we used the cruise stage fuel

flow model developed by the Base of Aircraft Data (BADA)

( EUROCONTROL, 2012 ). Then, for a given mass of the aircraft and

fuel consumption coefficients, fuel burn rate (kg/min) as a function

of the speed V (km/min) can be calculated as: 

f cr ( V ) = 

1 

2 

· C f 1 · C f cr ·
(

C D 0 ,CR · ρ · S · V 

2 + C D 0 ,CR · ρ · S 

C f 2 

V 

3 

+ C D 2 ,CR ·
4 · m 

2 · g 2 0 

ρ · S · cos ( φ) 
2 · V 

2 

+ C D 2 ,CR ·
4 · m 

2 · g 2 0 

C f 2 · ρ · S · cos ( φ) 
2 · V 

)
(46)

where aircraft specific fuel consumption coefficients, C f 1 , C f 2 , C fcr ,

C D 0, CR and C D 2, CR , wing surface area, S , and mass of the aircraft,
 , are taken from EUROCONTROL (2012) and listed in Table 5 . ρ ,

 0 and φ are the air density ( kg / m 

3 ) at given altitude, gravitational

cceleration ( m / s 2 ) and bank angle, respectively. We assume that

he distance flown at cruise stage is fixed d , and hence the cruise

uration is expressed as d / V . We can formulate the total fuel con-

umed (kg) as follows: 

 ( V ) = 

d 

V 

· f cr (V ) 

= 

1 

2 

· d · C f 1 · C f cr ·
(

C D 0 ,CR · ρ · S · V + C D 0 ,CR · ρ · S 

C f 2 

V 

2 

+ C D 2 ,CR ·
4 · m 

2 · g 2 0 

ρ · S · cos ( φ) 
2 · V 

3 

+ C D 2 ,CR ·
4 · m 

2 · g 2 0 

C f 2 · ρ · S · cos ( φ) 
2 · V 

2 

)
(47)

We can rewrite the fuel consumption in terms of the cruise

ime by replacing V by 
d i 
f t 
i 

for each flight i ∈ J and aircraft t ∈ T .

hen, total fuel consumed as a function of cruise time can be ex-

ressed as: 

 

t 
i 

(
f t i 

)
= c i,t 

1 
· 1 

f t 
i 

+ c i,t 
2 

· 1 (
f t 
i 

)2 
+ c i,t 

3 
·
(

f t i 

)3 + c i,t 
4 

·
(

f t i 

)2 
(48)

here 

 

i,t 
1 

= 

1 

2 

· C t f 1 · C t f cr · C t D 0 ,CR · ρ · S t · d 2 i 

 

i,t 
2 

= 

1 

2 

· C t f 1 · C t f cr ·
C t D 0 ,CR · ρ · S t · d 3 

i 

C t 
f 2 

 

i,t 
3 

= 

1 

2 

· C t f 1 · C t f cr ·
C t D 2 ,CR · 4 · m 

2 
t · g 2 0 

ρ · S t · cos ( φ) 
2 · d 2 

i 

 

i,t 
4 

= 

1 

2 

· C t f 1 · C t f cr ·
C t D 2 ,CR · 4 · m 

2 
t · g 2 0 

C t 
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