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The self-similar energy spectrum of a particle in a periodic potential under a magnetic field,
known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external
field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold atom experi-
ments necessitate the consideration of these self-similar spectra for the most general two-dimensional
lattice. In a previous work, we investigated the evolution of the spectrum for an experimentally
realized lattice which was tuned by changing the unit cell structure but keeping the square Bravais
lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the
structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point
symmetry groups. We model the optical lattice by a sinusoidal real space potential and obtain the
tight binding model for any lattice geometry by calculating the Wannier functions. We introduce
the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The tran-
sition between the two most symmetric lattices, i.e. the triangular and the square lattice displays
the importance of bipartite symmetry featuring deformation as well as closing of some of the major
energy gaps. The transition from the square to rectangular and from the triangular to centered
rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the
Chern numbers of the major gaps and Chern number transfer between bands during the transitions.
We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.

I. INTRODUCTION

The Hofstadter butterfly is the self-similar energy spec-
trum of an electron moving in a periodic potential under
a uniform magnetic field[1]. The self-similar behavior is
due to the competition between two length scales, the
lattice constant and the magnetic length. The energy
spectrum and the topological properties of the system
are determined solely by the magnetic field and the lat-
tice geometry. The lattice geometry is in turn determined
by the Bravais lattice and the structure of the unit cell.

The observation of the self-similar spectrum requires a
magnetic flux which is on the order of one flux quantum
per unit cell. For typical solid state lattices, this requires
very high magnetic fields on the order of thousands of
Tesla, which is not experimentally accessible. One solu-
tion to overcome this limitation is to increase the lattice
constant, such as the two stacked layers forming a su-
perlattice with a larger lattice constant[2]. A new and
different approach is demonstrated in cold atom experi-
ments utilizing artificial gauge fields[3, 4]. Both of these
approaches can create arbitrary lattices with desired lat-
tice parameters. A striking demonstration of this flexibil-
ity is the creation of the two dimensional tunable optical
lattices[5]. Therefore, the study of the energy spectra
under a magnetic field for arbitrary lattices and their
dynamical properties are relevant problems today.

In a previous work[6], we calculated and examined the
energy spectrum and the topological properties of the ex-
perimentally realized two-dimensional (2D) tunable op-
tical lattices created by the Zurich group[5]. That lattice
can be tuned from the square lattice to a Honeycomb-like

∗ firat.yilmaz@bilkent.edu.tr

geometry. However, throughout this transition, the unit
cell remains square and only the unit cell potential is var-
ied. The honeycomb-like geometry which also referred to
as the brick wall lattice still has a square Bravais lattice
which has a two point basis. A natural follow up question
is to ask: “How does the energy spectrum evolve as the
symmetries of the underlying Bravais lattice changes?”

In this paper, we answer this question by calculating
the energy spectrum for all two-dimensional Bravais lat-
tices. We particularly investigate the transitions between
lattices of distinct symmetry groups. To this end, we
propose a real space sinusoidal potential which can create
any arbitrary Bravais lattice with a one point basis. Such
a potential can be created as an optical lattice which can
be adjusted to generate all two dimensional Bravais lat-
tices. We consider this potential in the deep lattice limit
to describe the system by a tight binding (TB) model.
We calculate the TB parameters by both fitting momen-
tum space bands to numerical solution of the Schrödinger
equation and also by calculating the Wannier functions
(WF).

Once the zero field TB Hamiltonian is constructed, the
effect of the magnetic field is introduced by the Peierls
substitution[7]. This method modifies the hopping am-
plitude with a complex phase with the constraint that the
sum of the hopping phases over any closed loop on the
lattice is proportional to the total magnetic flux through
the loop. While this substitution only works for lattices
in the TB limit, it is actually a more factual descrip-
tion of the recent cold atom lattice experiments where
the artificial magnetic field is generated by creating these
phases by modifying the tunneling between neighboring
sites[3, 4, 8]. Because the phases are written on the links
between the sites, it is easier to envision changing the lat-
tice geometry by keeping the magnetic flux per plaquette
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of the lattice constant.

We first reduce the magnetic TB Hamiltonian to a
q-by-q matrix by using translation symmetries under a
magnetic flux per plaquette which we take to be p/q times
the magnetic flux quantum. We restrict p and q to be co-
prime integers. We numerically diagonalize this matrix
for each k-point in the magnetic Brillouin zone to deter-
mine band edges. Repeating this calculation for different
Bravais lattice parameters enables us to investigate the
evolution of the energy spectrum.

We find that the geometry of the Bravais lattice plays
a critical role in determining the energy spectrum. New
symmetries can emerge according to the point group of
the lattice. In two dimensions, Bravais lattices can be
classified into five distinct classes by their point group.
The triangular and the square lattice are the most sym-
metric 2D lattices. A reduction of one mirror symmetry
produces the centered rectangular and rectangular lat-
tices from them. The oblique lattice is the most general
form for 2D Bravais lattices. We parametrize the space
of all these lattices and observe the evolution of the Hof-
stadter butterfly during the transition between them.

The most striking evolution is between the square lat-
tice and the triangular lattice. One of the main diag-
onal gap in the square lattice energy spectrum shrinks,
and after infinitely many gap closures and openings, the
triangular lattice Hofstadter butterfly emerges. These
gap closings and re-openings through the evolution are
necessary to connect gaps with different Chern numbers
in the two limits. We find that even a small departure
from the high symmetry points such as the Triangular
lattice, causes drastic changes in the spectrum, result-
ing in sudden energy gap openings and closures. The
square lattice’s bipartite symmetry causes the reflection
symmetry along E = 0 line in the Hofstadter butterfly.
This symmetry is swiftly broken during the evolution and
completely fades away in the Triangular lattice limit. For
the Triangular lattice, the area of the primitive cell and
consequently the flux per plaquette is reduced by one half
compared to the oblique lattice. Hence, the periodicity
of energy spectrum as a function of the flux is doubled.

The transition between the square lattice butterfly and
the triangular lattice butterfly has previously been stud-
ied by Hatsugai and Kohmoto[9] by considering a square
lattice with NNN hopping. While the results obtained
directly starting from the TB model are valuable, it is
not straightforward to link the TB parameters with the
lattice geometry and real space potential. In this work,
we generate the TB parameters starting from a realis-
tic optical lattice potential and relate lattice geometry
directly to the energy spectrum. For the square to trian-
gular lattice transition, our results are in agreement with
Ref.[9].

The square to rectangular lattice transition demon-
strates how the self similar spectrum emerges from a
continuous band. For a rectangular lattice with extreme
anisotropy, the hopping amplitude in one direction is sup-
pressed and the system is equivalent to a collection of

one-dimensional chains. In one dimension, an external
magnetic field can be gauged away and has no effect on
the spectrum. As the anisotropy of the rectangular lat-
tice is reduced, the isolated one-dimensional chains are
weakly connected. Treating this connection perturba-
tively, we observe how the self similar energy gaps are
formed. A similar transition takes place between the tri-
angular lattice and the centered rectangular lattices. We
also analyze the oblique and the centered rectangular to
the triangular lattice transitions.

Finally, we investigate the Chern numbers of the main
gaps during the lattice evolution. We find that Chern
numbers are always transferred by a multiple of q when
two bands connect and split. We argue that this is due
to the q-fold degeneracy in momentum space causing q
Dirac cones to emerge simultaneously. We also investi-
gate the behavior of Chern numbers on a closed path in
the space of two dimensional Bravais lattices.

This article is organized as follows, section II intro-
duces the real space potential and constructs a proper
TB model description under magnetic field. The next
section explains the diagonalization of the magnetic TB
Hamiltonian and calculates of the corresponding energy
spectra. In Section IV, all possible Bravais lattice tran-
sitions and the corresponding Hofstadter butterflies are
discussed in detail. In Section V, the Bravais lattices are
characterized by their Chern number and the parameter
space of lattices are classified by set of Chern numbers
for each magnetic flux per plaquette. In the conclusion,
we give an overview of our results and discuss the exper-
imental implications.

II. THE MODEL

In this section, we propose a lattice potential which
can be adjusted to form any Bravais lattice in two di-
mensions. We reduce this potential to a TB model in
the deep potential limit. The effect of a magnetic field
is introduced by the Peierls substitution[7] in the next
section.

A 2D Bravais lattice is described by its primitive
vectors[10],

~a1 = λ1x̂,

~a2 = λ2 (cos θx̂+ sin θŷ) , (1)

where θ is the angle between the primitive lattice vec-
tors, the lattice constants are λ1 and λ2. Without loss of
generality, we choose ~a1 to be along the x̂ direction.

The Bravais lattice points are at positions,

~Rn1,n2
= n1~a1 + n2~a2, n1, n2 ∈ Z,
=
[
(λ1n1 + λ2n2 cos θ)x̂+ (λ2n2 sin θ)ŷ

]
. (2)

A real space potential V (x, y) which is capable of gen-
erating all possible two-dimensional Bravais lattices with
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FIG. 1. (Color online) Five Bravais lattices created by the potential in Eq.3. (from the left) Oblique, centered-
rectangular(Rhombic), triangular, rectangular, square lattices. Lattice depths are Vx = Vy = 50(ER), where ER is the recoil
energy. The unit cell and the primitive vectors are shown with thick lines.

FIG. 2. (Color online) The space of all possible 2D Bravais
lattices, parametrized as a function of the angle between the
primitive vectors and the ratio of their length. Lattices of
high symmetry are shown by lines and points.

minimum number of Fourier components is,

V (x, y) = −VXcos(~k1 · ~x)− VY cos(~k2 · ~x)

− 2 cos θ
√
VXVY cos(

(
~k1 − ~k2

)
· ~x). (3)

Sinusoidal potentials are routinely produced in cold atom
experiments by a retro reflected lasers. Two dimensional
optical lattices are generated by using at least two beams.
In principle, the above potential can be produced by at
most three laser beams, but if |k1| = |k2|, the last term
in the potential results from the interference of the first

two. The laser wave vectors are ~k1 = 2π
λ1 sin θ (0, 1), ~k2 =

2π
λ2 sin θ (− sin θ, cos θ).

Up to a scale transformation, all two dimensional Bra-

vais lattices can be formed as |λ1/λ2| and θ are varied.
The Schrödinger equation for the above potential is,[

− ~2

2m

(
∂2
x + ∂2

y

)
+ V (x, y)

]
ψ(x, y) = Eψ(x, y).

We do not introduce the magnetic field into the contin-
uum equation as the translation symmetry group under a
magnetic field is more complicated than the usual crystal
symmetries[11]. Instead, we first project the continuum
problem onto the lowest band in k-space forming a TB
description. Such a description is not only accurate in
the deep lattice limit but also easily adapted to include
the external magnetic field by Peierls substitution.

The TB parameters can be obtained by two meth-
ods. The first method is to calculate them by fitting
the energy band obtained from TB model with the low-
est energy band of the numerical solution of the con-
tinuum problem. In the second method, WFs for the
lowest energy band are constructed and used to project
the continuum problem to the TB model. If the WFs are
obtained from the numerical solution of the continuum
problem by direct Fourier transformation, these methods
are equivalent. However, we use an alternative definition
of WFs[12] which facilitates direct construction of these
functions from a finite system. We use both methods for
all our lattices and find that the methods are in good
agreement in the deep lattice limit.

The usual definition of WFs has a phase ambigu-
ity. This gauge choice is usually resolved by requiring
maximum localization which increases the computational
burden[13]. An alternative definition of WFs was given
by Kivelson[12] based on projections to the single band
Hilbert space. The projected position operators for the
nth band are defined as,

x̂n = P̂nx̂P̂n,

ŷn = P̂nŷP̂n,

where

P̂n =

BZ∑
k

|n, k〉〈n, k|, (4)
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FIG. 3. (Color online) The TB model with eight neighbors
represented on the contour plot of the potential. The bold
arrows are the primitive translation vectors. The TB model
hopping parameters are denoted with four different symbols,
t0, t1, t2 and t3.

The eigenstates of x̂n, ŷn are the WFs and the eigenvalues
are the corresponding Wannier centers,

x̂n|Wn(~r − ~R)〉 = ~R|Wn(~r − ~R)〉.

This definition reduces to the usual Fourier transform
WF definition, but is equally applicable to finite or dis-
ordered systems. Thus, we use this definition on a finite
system to generate WF and calculate the TB parameters.

We use a finite system with four unit cells along each
primitive vector. The projection operator for the low-
est band is formed by the first sixteen nearly degenerate
eigenstates. Instead of separately diagonalizing x̂n, ŷn
one after another, we diagonalize a linear combination,
say Ôn = x̂n + αŷn with arbitrary α and obtain the cor-
responding eigenstates. Surprisingly, even a 4-by-4 finite
lattice is large enough to capture the infinite lattice hop-
ping parameters within one percent error.

During the evolution of the lattice the number of near-
est neighbors (NN) and the distance between NNs and
next nearest neighbors (NNN) changes. In order to cap-
ture the physics of the transition, we calculate the TB
parameters for eight neighbors shown in Fig.3. Due to
inversion symmetry, only four distinct parameters are re-
quired.

The TB Hamiltonian for this system is,

Ĥ = −
∑
m1,m2

[
t0|m1 + 1,m2〉〈m1,m2|

+ t1|m1,m2 + 1〉〈m1,m2|
+ t2|m1 − 1,m2 + 1〉〈m1,m2|
+ t3|m1 + 1,m2 + 1〉〈m1,m2|

+ h.c.
]
. (5)

The Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉 can be expressed
in the localized basis |Ψ〉 =

∑
n1,n2

ψn1,n2 |n1, n2〉. Then
the Hamiltonian is diagonalized by a discrete Fourier
transform, yielding the eigenvalues,

E(k1, k2) = −2t0cos(k1)− 2t1cos(k2)

− 2t2cos(k1 − k2)− 2t3cos(k1 + k2). (6)

The dimensionless wavenumbers are, k1 = ~k · ~a1 and k2 =
~k · ~a2. This function reduces to TB bands for the square
and the triangular lattice with corresponding NN and
NNN hopping parameters.

We introduce the magnetic field using the Peierls sub-
stitution

tm,n|~Rn〉〈~Rm| → eiΘm,ntm,n|~Rn〉〈~Rm|,

where m = (m1,m2) and n = (n1, n2). We choose the
magnetic vector potential in the Landau gauge along ~a1

direction, ~A = Byx̂. The hopping phases are calculated
as,

Θm,n = − e
~

∫ ~Rn

~Rm

~A · ~d`

= −2πφ
(
[~Rn − ~Rm] · x̂

)( ~Rn + ~Rm

2
· ŷ
)
,

where φ = Bλ1λ2 sin θ/φ0 is magnetic flux per plaquette
normalized to flux quantum φ0 = h/e. This method
faithfully describes a uniform magnetic field as long as
the zero-field description of the TB model holds[14].

With the Peierls substitution, the TB Hamiltonian un-
der a magnetic field becomes,

Ĥ = −
∑
m1,m2

[
t0e

−i2πφm2 |m1 + 1,m2〉〈m1,m2|
+ t1e

−i2πφ cos θ(m2+1/2)|m1,m2 + 1〉〈m1,m2|
+ t2e

i2πφ(1−cos θ)(m2+1/2)|m1 − 1,m2 + 1〉〈m1,m2|
+ t3e

−i2πφ(1+cos θ)(m2+1/2)|m1 + 1,m2 + 1〉〈m1,m2|
+ h.c.]. (7)

The magnetic field enters the TB Hamiltonian only
through the parameter φ which is the magnetic flux
through a primitive unit cell of the lattice. As the lattice
geometry evolves, the area of the primitive unit cell will
in general change. Therefore, it is possible to investigate
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the evolution under two different constraints. First, one
can envision that a uniform magnetic field is acting on the
system so that φ changes with lattice geometry. Second
approach is to take φ to be constant during the evolu-
tion. We use the second approach as it is more relevant
to cold atom experiments where the artificial magnetic
flux is generated by modifying the hopping parameters
and is not affected by the unit cell area. In the next sec-
tion, we calculate the energy spectrum under a constant
φ as the geometry evolves.

III. CALCULATION OF THE ENERGY
SPECTRUM

The magnetic Hamiltonian in Eq.7 acting on the state
|Ψ〉 =

∑
n1,n2

ψn1,n2
|n1, n2〉, yields the following differ-

ence equation,

Eψm1,m2 =

− t0
(
e−i2πφm2ψm1−1,m2 + ei2πφm2ψm1+1,m2

)
− t1

(
e−i2πφ cos θ(m2−1/2)ψm1,m2−1

+ei2πφ cos θ(m2+1/2)ψm1,m2+1

)
− t2

(
ei2πφ(1−cos θ)(m2−1/2)ψm1+1,m2−1

+e−i2πφ(1−cos θ)(m2+1/2)ψm1−1,m2+1

)
− t3

(
e−i2πφ(1+cos θ)(m2−1/2)ψm1−1,m2−1

+ei2πφ(1+cos θ)(m2+1/2)ψm1+1,m2+1

)
.

The Landau gauge, ~A is parallel to ~a1 and the Hamil-
tonian consequently preserves zero-field discrete transla-
tional symmetry in this direction. We choose a superpo-
sition of plane waves as the the mutual eigenstates of the
Hamiltonian and the discrete translation operator along
~a1,

ψm1,m2(k1, k2) = eik1m1gm2(k1, k2). (8)

With this choice, we obtain a one-dimensional difference
equation for gm2

. This equation is periodic only for ra-
tional values of φ. Assuming φ = p

q , where p and q are

mutually prime integers, the one-dimensional equation
becomes,

Egm2
=− t0

(
e−i2π

p
qm2e−ik1gm2

+ei2π
p
qm2eik1gm2

)
− t1

(
+ e−i2π

p
q cos θ(m2−1/2)gm2−1

+ei2π
p
q cos θ(m2+1/2)gm2+1

)
− t2

(
ei2π

p
q (1−cos θ)(m2−1/2)eik1gm2−1

+e−i2π
p
q (1−cos θ)(m2+1/2)e−ik1gm2+1

)
− t3

(
e−i2π

p
q (1+cos θ)(m2−1/2)e−ik1gm2−1

+ei2π
p
q (1+cos θ)(m2+1/2)eik1gm2+1

)
.

However, the periodicity of this difference equation by
q is not obvious. Following Rammal’s approach[15], we

apply the following unitary transformation,

gm2
= e−iπ

p
q cosθm

2
2fm2

.

The periodicity of the resulting equation allows the use of
Bloch’s theorem. Hence, the diagonalization is reduced
to a q-by-q matrix,

Efm2
=− t0

(
2 cos (2π

p

q
m2 + k1)fm2

)
− t1

(
fm2−1 + fm2+1

)
− t2

(
ei2π

p
q (m2−1/2)eik1fm2−1

+e−i2π
p
q (m2+1/2)e−ik1fm2+1

)
− t3

(
e−i2π

p
q (m2−1/2)e−ik1fm2−1

+ei2π
p
q (m2+1/2)eik1fm2+1

)
, (9)

fm2+q = eik2qfm2 .

The calculation of the energies for all momenta (k1, k2)
within the magnetic BZ is computationally laborious. In-
stead of sampling the whole BZ, it is possible to identify
the special k-points for which the energy values will be an
extremum. Using symmetry to calculate these k-points
makes it possible to obtain the band edges[13, 15, 16] for
each φ = p/q value by a few diagonalizations of a q-by-q
matrix.

The reduced difference equation is solved numerically
and we obtain the energy spectra for any lattice geom-
etry. In the next section, we discuss these eigenvalue
spectra and analyze the lattice transitions among the five
Bravais lattices.

IV. TRANSITIONS BETWEEN BRAVAIS
LATTICES

In this section, we analyze the changes in the butterfly
spectra calculated in the previous section as the lattice
geometry between Bravais lattices of different symmetry
adiabatically evolves. As discussed in the model section,
we characterize all the Bravais lattices by two parame-
ters, θ and |~a2|/|~a1|. In Fig.2, we show the five lattices
of distinct symmetry groups and the transition paths be-
tween them in the space of these two parameters. There
are five Bravais lattices in two dimensions, the square, the
triangular, the rectangular, the centered rectangular and
the oblique lattices. The lattices with the higher symme-
try occupy regions of smaller measure. In our represen-
tation, the whole area is covered by the oblique lattice
which has the least amount of symmetry. The rectangu-
lar and the centered rectangular lattices correspond to
one-dimensional curves while the most symmetric trian-
gular and square lattices are confined to isolated points.

We start by considering the transition between the two
most symmetric lattices, the square and the triangular
lattices. In our parameter space Fig.5, the path BA in-
dicates this transition. The energy spectra at four repre-
sentative points along that path are displayed in Fig.5.
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FIG. 4. (Color online) The hopping amplitudes calculated
along the transition between the square lattice and the trian-
gular lattice as a function of θ. The parameters are calculated
for VX = VY = 20(ER). The NN hopping parameters, t0, t1
have the same magnitude and decrease until they are equal
to t2 in the triangular lattice limit. The NNN hopping, t3 is
an order of magnitude smaller.

FIG. 5. Evolution of the energy spectrum between the square
lattice and the triangular lattice in four representative points.
One of the major energy gaps disappears as the triangular
lattice is approached. The closing is accompanied by infinitely
many smaller gap closures. These results are in agreement
with[9], but show that the transition in terms of the angle θ
happens mainly near the triangular lattice limit.

During the square to the triangular lattice transi-
tion, the magnitude of the hopping elements are calcu-
lated over this path. For a real space potential with
VX = VY = 50(ER) resembling the square lattice, the
hopping parameters are t0 = t1 = 0.1913 and t2, t3 u 0.
The four NN hopping amplitudes are equal while the four
NNN hoppings almost vanish. This is an expected re-
sult in the deep lattice limit as the WFs are localized to
within a unit cell and the NNN transitions are strongly
suppressed. The interference term in the potential in
Eq.3 increases towards the triangular lattice. During the
evolution, t0 and t1 decrease with the same magnitude
until they are equal to t2 = 0.0345 in the triangular lat-
tice limit, see Fig.4. It is natural that the NN elements
are almost constant because only the angles between the
local minima of two adjacent sites changes.

The square lattice butterfly has bipartite symmetry
when NNN hopping is neglected. Even when this sym-
metry is broken by weak NNN hopping, the spectrum
approximately preserves the reflection symmetry along
E = 0 line. This symmetry is broken more strongly
when the system moves towards the triangular lattice.
The amount of the asymmetry is maximum at φ = 1/2
where it is proportional to |t0 − t2|. The asymmetry of
the energies results in shrinking of the energy gaps at the
upper right and the lower left main gaps of the butter-
fly. Meanwhile, the lower right and the upper left wings
enlarge to form the triangular butterfly main skeleton.
This lattice transition is non-trivial as infinitely many
gaps close and reopen during the evolution. This is ex-
pected as the square lattice and the triangular lattice are
adiabatically disconnected[17].

We observe that the energy spectrum is sensitively
dependent on the parameters near the high symmetry
points. Even small deviations of the lattice from these
points result in large shifts of energy bands as well as
gap closures. Hence, the triangular and the square lat-
tice butterflies are representative of only small regions in
the parameter space. This point is especially important
for design of experimental lattices.

As discussed in the model section, we keep the flux
per unit cell φ constant during the transition. The
flux per plaquette drops to φ/2 at the triangular lattice
limit. This flux halving was first discussed by Claro and
Wannier[18]. Consequently, the triangular lattice butter-
fly is periodic by φ = 2 as seen in Fig.5.

The energy spectrum is symmetric under φ→ −φ op-
eration for all the Bravais lattices. This symmetry is easy
to understand for all cases except the oblique geometry.
If the lattice geometry does not distinguish between ±z
axis, the resulting Hamiltonian is invariant under the re-
versal of the flux. For the oblique lattice, although ±z
directions can be uniquely defined, the lattice still has
inversion symmetry which coupled by a reflection in the
lattice plane restores the φ → −φ symmetry as seen in
Fig.8 and it is therefore valid for all Bravais lattices. The
inversion symmetry can only be broken when there is an
energy difference in on-site energies of NNs.
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FIG. 6. Evolution of the energy spectrum from the square lattice to the rectangular lattice, and from the triangular lattice to
the centered rectangular lattice. The first transition is along θ = π/2 line while the second transition is calculated along the
centered rectangular lattice curve shown in Fig.2. The greater the ratio of the primitive vectors, the closer the system is to
one-dimensional chains (see Fig.7), where the sub-band splitting is weak.

The next transition we consider is between the square
lattice and the rectangular lattice. Although this tran-
sition happens as soon as four-fold symmetry is broken,
it is instructive to study the evolution from the square
limit to the extremely anisotropic case. If tunneling in
one direction is much weaker than the other one, the
system is a collection of one-dimensional chains. During
this transition the square lattice butterfly energy gaps
disappear and the spectrum becomes a one-dimensional
TB band. It is not surprising that for a collection of
1D chains, the spectrum is independent of the magnetic
field. For a 1D chain, the external magnetic field can
be gauged out. Fig.7 shows the evolution of the energy
spectrum till the rectangular lattice with extreme asym-
metry (for |~a1/~a2| = 2.5 and the hopping amplitudes,
t0 = 0.19(ER), t1 = 0.04(ER)). The energy spectra are
mainly divided into three bands and corresponding two
main energy gaps are preserved for even for large |~a1/~a2|
values.

The robustness of the major gaps can be understood by
a perturbative approach. We consider the Hamiltonian
of independent 1D chains as the unperturbed system and
the hopping between the chains as the perturbation. The
dispersion of the mth unperturbed chain is,

Em(k1) = −2t0 cos (2πφm+ k1). (10)

The energy bands of adjacent chains are degenerate at
two k-points and separated by 2π pq for φ = p

q . The tun-

neling amplitude between the adjacent chains, t1 lifts the

degeneracy at these k-points and the new energies be-
come±2t0 cos (π pq + k1)±t1. Therefore, t1 is the measure

of the energy splitting for the main gaps of the butterfly
as in Fig.7. The perturbative approach can also gener-
ate the minor gaps and the Hofstadter butterfly emerges
when higher orders are included[19].

We conclude this section with the discussion of transi-
tions from the triangular lattice to the centered rectan-
gular and to the highly anisotropic oblique lattice. These
two transitions are represented in Fig.2 by the paths AG,
AE. In both cases, the evolution of the energy spec-
trum is similar to the transition from the square to the
rectangular lattice. Starting from the triangular lattice
butterfly, the smaller gaps close first and then the larger
gaps shrink to form an energy spectrum of weakly cou-
pled one-dimensional chains. Due to the lack of bipartite
symmetry, only one of the major gaps is robust unlike
the square to rectangular transition. The asymmetry be-
tween the two diagonal gaps can be used as a measure of
the closeness of the system to bipartite symmetry.

All possible energy spectra for the Bravais lattice pa-
rameter space is depicted in Fig.10.

In our TB model, the smallest plaquette area that can
be enclosed by hopping is half of the unit cell. Therefore,
all the energy spectra we calculate are periodic by φ = 2.
However, in the cases where NNN hoppings (t2, t3) are
negligible the smallest enclosed area is the unit cell and
the spectra are periodic with φ = 1. In general, the
periodicity of the spectrum with φ can be used to deter-
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FIG. 7. (Color online) The energy gaps are calculated in the
rectangular limit compared with perturbative treatment of 1D
chains. In the first order, the spectrum has two robust energy
gaps. The smaller gaps in the spectrum can be generated by
higher orders in perturbative tunneling.

FIG. 8. A representative energy spectrum of the oblique lat-
tice. We display the spectrum from φ = [−1, 1] to emphasize
the doubling of the φ periodicity and the symmetry under
φ → −φ. All 2D Bravais lattices have this symmetry which
follows from inversion.

mine how long the range of significant hopping is. In the
centered rectangular and the oblique lattice limits, the
energy spectra preserve the periodicity of φ = 2 mag-
netic flux. The smallest cells in each case are an half of
the unit cells and therefore the enclosed flux are halved
as well.

V. TOPOLOGICAL CHARACTERIZATION OF
THE BRAVAIS LATTICE PHASE SPACE

The energy bands of lattices under magnetic field are
characterized by a topological invariant, the first Chern

FIG. 9. (Color online) The evolution of the energy bands for
φ = 1

3
and φ = 1

5
on the path ATSBA shown in Fig.2. Gaps

are labeled with their Chern numbers. For φ = 1/3, there
are two topologically distinct regions, characterized by 1,−1
and 1, 2. For φ = 1/5, there are four topologically distinct
regions.

number[20]. The contribution of a band to the Hall con-
ductivity for a non-interacting fermionic system is given
by the Chern number, σxy = Ce2/h. Alternatively, Chern
numbers can be associated with gaps by summing Chern
numbers of all the bands below a certain gap. In this
section, we use the Chern numbers to characterize the
energy spectrum as the geometry of the lattice changes.

For a lattice with flux φ = p/q, the energy spectrum
will have q bands and q−1 gaps. While the number of the
gaps are determined only by the flux, the Chern numbers
associated with these gaps change with lattice geometry.
For example, for φ = 1/3, the square lattice gaps have
Chern numbers 1,−1, while the triangular lattice gaps
have 1, 2. These Chern numbers would not be affected
by small changes in the geometry as they are topolog-
ically protected. Chern numbers only change if a gap
in the spectrum closes. Thus, we can classify all lattices
into equivalence classes by their Chern number sequence.
Hence, our parametrization of the lattice space in Fig.2
can be separated into regions of topologically equivalent
phases. The phase boundaries, then, show the parame-
ters for which at least one gap closes.

Chern numbers can be calculated by k-space integra-
tion of Berry curvature over the BZ. However, we use an
indirect but computationally simpler approach[21]. The
conductivity of the system is a thermodynamic variable
and can be calculated as a variation of the number of
levels below the Fermi level with respect to the changes
in the magnetic field in two dimensions[22]. In lattice
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FIG. 10. An overal picture of the evolution of the Hofstadter butterfly in the phase space of two dimensional Bravais lattices.

systems, the Chern number for a gap is,

C =
∂n

∂φ
(11)

where n is the density per unit cell for states below the
Fermi level, φ is the magnetic flux per plaquette. Chern
number is calculated through the difference of the en-
ergy eigenvalues below the Fermi energy for two close
magnetic flux values.

We explored the lattice phase space for two simplest
non-trivial fluxes, φ = 1/3, 1/5. First, we take a closed

rectangular path over the phase space, ATSBA and cal-
culate the evolution of the energy bands. The path is
chosen such that it avoids the 1D chains limit where gaps
are very small as in Fig.6. These evolutions are given in
Fig.9. For φ = 1/3, we find that all lattices are either
equivalent to the square lattice with Chern numbers−1, 1
or equivalent to the triangular lattice with 2, 1. Thus, we
separate the parameter space into two regions as can be
seen in Fig.11. We find that the region equivalent to the
triangular lattice roughly tracks the centered rectangular
lattice curve. For φ = 1/5, we find four different regions
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FIG. 11. (Color online) The topological regions of the two
dimensional Bravais lattice phase space for φ = 1/3. All
lattices can be classified into two regions; those with Chern
numbers −1, 1 including the square lattice and those with 2, 1
including the triangular lattice. The triangular lattice region
roughly tracks the centered rectangular lattice line.

which are sampled by the rectangular cut in Fig.9. As
q is increased, we get smaller gaps and correspondingly
the phase diagram splits into smaller regions.

An important observation is that at the phase bound-
aries, the Chern numbers for energy gaps change exactly
by q for magnetic flux φ = p/q. It is possible to un-
derstand this surprising observation by a symmetry ar-
gument. Because of the magnetic translation symmetry,
the energy spectrum is q-fold degenerate inside the mag-
netic BZ. When two bands touch they must be degen-
erate at least q points. A Chern number of exactly 1 is
exchanged when a single Dirac cone closes and re-opens.
If each one of the degenerate points is a Dirac cone, total
Chern number of q is exchanged between the bands. If
degenerate points are of higher order, integer multiples of
q can be exchanged. However, we have not numerically
observed such an exchange.

VI. CONCLUSION

The cold atom experiments in optical lattices pio-
neered a vast number of interesting phenomena, which

are not possible to realize in solid state systems. Es-
pecially, the enhanced control over the lattice geometry
and the artificial gauge fields can be utilized to directly
realize the Hubbard-Hofstadter model[4, 23].

In this respect, we investigate the inherent relation be-
tween the point group symmetries in two dimensions and
the energy spectrum as a function of magnetic flux per
plaquette. We focus on the transitions between lattices
of different symmetry by using an optical lattice poten-
tial, which can realize all the two dimensional Bravais
lattices. We describe this potential through a TB model
and calculate its parameters ab-initio. The effect of the
magnetic field is introduced by the Peierls substitution.
Then, the energy spectra for each symmetry group are
calculated as well as the evolution of the energy spectrum
during transition between the symmetries.

We find that the lattice deformations around high sym-
metry points yield dramatic changes in the energy spec-
tra. The evolution between the square lattice and the
triangular lattice is mainly influenced by broken bipar-
tite symmetry. We find that the energy spectrum changes
dramatically in the vicinity of θ = π/3, the triangular lat-
tice limit. This rapid change should be experimentally
observable even for the simplest non-trivial flux value,
φ = 1/3. A few degrees of deviation from θ = π/3 is
found to make a jump in Hall conductivity if the system
is filled up to the first gap.

During the evolution, bands touch and reopen to trans-
fer Chern numbers between the gaps. We find that the
Chern number of bands only change with integer multi-
ples of q. We explain this observation by invoking the
q-fold degeneracy within a magnetic BZ. This result is
particularly important for solid state experiments where
Hall conductivity is directly measured through transport.

Finally, we regard the space of all possible Bravais lat-
tices as a phase diagram where each phase is identified by
q− 1 Chern numbers of the gaps. For φ = 1/3, there are
two distinct regions belonging to the square lattice and
the triangular lattice. In addition, the Chern number
map for the phase space indicates that the region corre-
sponding to the triangular lattice is found to roughly fol-
low the centered rectangular lattice curve. For φ = 1/5,
the space is divided into four phases and larger values of
q result in smaller topological regions.
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