
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 6, JUNE 2017 3913

Joint Precoder and Artificial Noise Design for
MIMO Wiretap Channels With Finite-Alphabet
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Abstract— We consider precoder and artificial noise (AN)
design for multi-antenna wiretap channels under the finite-
alphabet input assumption. We assume that the transmitter has
access to the channel coefficients of the legitimate receiver and
knows the statistics of the eavesdropper’s channel. Accordingly,
we propose a secrecy rate maximization algorithm using a
gradient descent-based optimization of the precoder matrix and
an exhaustive search over the power levels allocated to the AN.
We also propose algorithms to reduce the complexities of direct
ergodic secrecy rate maximization by: 1) maximizing a cut-off
rate-based approximation for the ergodic secrecy rate, simpli-
fying the mutual information expression, which lacks a closed-
form and 2) diagonalizing the channels toward the legitimate
receiver and the eavesdropper, which allows for employing a per-
group precoding-based technique. Our numerical results reveal
that jointly optimizing the precoder and the AN outperforms the
existing solutions in the literature, which rely on the precoder
optimization only. We also demonstrate that the proposed low
complexity alternatives result in a small loss in performance while
offering a significant reduction in computational complexity.

Index Terms— Physical layer security, finite-alphabet inputs,
precoding, artificial noise, cut-off rate, MIMO communications.

I. INTRODUCTION

SECURITY is an increasingly important issue in wireless
networks. With the ever-growing demand for the privacy-

sensitive wireless services, researchers are getting more and
more interested in finding techniques which provide additional
confidentiality guarantees. Securing the communication at the
physical layer is an alternative or a complement to the con-
ventional higher network-layer solutions, such as encryption.
The basic principle of physical layer security is to exploit the
randomness of the communication channels to allow a trans-
mitter deliver its message to an intended receiver reliably while
guaranteeing that a third party cannot infer any information
about it [2].

Among the studies in the area of physical layer secu-
rity, multi-antenna wiretap channels have been of particular
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interest [3] as exploiting multiple antennas for transmission
has been identified as one of the key enablers for achieving
secrecy. The increased dimensionality can be utilized by apply-
ing secrecy achieving strategies such as generalized singular
value decomposition (GSVD)-based precoding [4], [5] and
artificial noise (AN) injection [6], [7].

The secrecy capacity achieving input distribution over
a Gaussian MIMO wiretap channel is proved to be
Gaussian [4], [5]. While the optimal input covariance matrix
is not available in closed form for the general case, effective
numerical algorithms have been developed in [8] and [9] for
its computation. As a result, much of the literature on physical
layer security focuses on the Gaussian input assumption.
However, an important scenario which is necessary to be
studied when moving towards a practical implementation is
the case where the channel inputs are drawn from discrete
constellations. In this regard, single-antenna wiretap channels
with discrete inputs have been studied in [10] by assuming
an AWGN channel to the legitimate receiver and a fast fading
channel to the eavesdropper. The case of MIMO wiretap chan-
nels with discrete inputs under quasi-static fading conditions
has been investigated in [11]–[13]. While Bashar et al. [11]
propose a GSVD-based precoding with the aid of the perfect
channel state information (CSI) corresponding to both chan-
nels, the works in [12] and [13] propose AN-aided strategies
for scenarios where the instantaneous CSI of the eavesdropper
is not available at the transmitter. Bashar et al. [12] employ
naive beamforming along with AN injection while considering
single-antenna receivers. The strategy proposed in [13], on the
other hand, relies on iterative maximization of an approxima-
tion to the instantaneous secrecy rate. In both of these studies,
it has been shown that for maximizing secrecy rates at higher
SNRs, it is desirable to allocate only a fraction of the total
power for signal transmission and use the remaining power
for AN injection.

In this work, we demonstrate that jointly optimizing the
precoder matrix and the portion of power allocated to AN
can outperform the solutions which rely on optimizing the
precoder only. We introduce an iterative algorithm for direct
maximization of the instantaneous secrecy rate which relies on
a gradient descent based optimization of the precoder along
with an exhaustive search for the optimal AN level. Noting that
this approach possesses a high computational complexity due
to the need for several evaluations of the mutual information
expression (which lacks closed-form), we formulate a cut-off
rate based approximation and use it as the precoder design
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metric. Once the precoder and AN using the cut-off rate based
metric are obtained, an achievable secrecy rate expression
is evaluated. Our numerical examples demonstrate that this
scheme results in only a small loss in the achieved rates with
respect to the direct maximization approach while requiring a
significantly lower computational effort.

Employing AN along with the information signal is highly
beneficial and can offer a significant enhancement in the
achievable secrecy rates under the finite-alphabet input con-
straint. However, transmitting AN in the null space of the
main channel (as done in [12] and [13]) is not applicable
when the legitimate receiver is equipped with an equal or a
larger number of antennas than the transmitter (i.e., when the
null space dimensionality is zero). Hence, we also introduce a
generalized AN aided transmission scheme in which the noise
is injected in a direction which has a minimal effect on the
received signal at the legitimate receiver.

Finally, for MIMO wiretap channels with large number of
transmit antennas, we propose a per-group precoding scheme,
as a further reduced complexity solution. Inspired by the idea
proposed in [14], we divide the problem of precoder and
AN design into a number of sub-problems via two-by-two
grouping of the transmit antennas. Then, we obtain the optimal
precoder and AN for each group independently. We demon-
strate via examples that this scheme provides comparable
secrecy rates to those achieved by the unconstrained precoders
in spite of a drastic reduction in complexity.

The paper is organized as follows. Section II describes the
system model under consideration. In Section III, we formulate
the joint signal and AN design for directly maximizing the
ergodic secrecy rates and we introduce the cut-off rate based
optimization scheme. Section IV presents the generalized AN
aided precoding. The per-group precoding scheme is explained
in Section V. Section VI provides several numerical examples
which demonstrate the efficacy of the proposed transmit signal
design schemes, and finally, Section VII concludes the paper.

Notation: Throughout the paper, vectors and matrices are
denoted with lowercase and uppercase bold letters, respec-
tively. The expectation of a random variable X is represented
by EX {.} and (.)H , (.)T and ‖ . ‖F denote Hermitian, transpose
and Frobenius norm operations, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a general MIMO wiretap channel. The transmitter,
Alice, the legitimate receiver, Bob, and the eavesdropper,
Eve, are assumed to be equipped with Nt , Nrb and Nre

antennas, respectively. The received vectors at Bob and Eve are
given by

y = Hbx + ny, (1)

z = Hex + nz, (2)

where Hb and He are the Nrb × Nt and Nre × Nt channel
matrices corresponding to the legitimate receiver’s channel
and the eavesdropper’s channel, respectively. The elements
of the channel matrix Hb are unit variance independent and
identically distributed (i.i.d.) circularly symmetric complex

Gaussian, i.e., CN (0, 1). We model the eavesdropper’s channel
as a doubly correlated fading MIMO channel, namely,

He = �
1/2
r Ĥe�

1/2
t , (3)

where �r and � t are the receive and transmit correlation
matrices. Ĥe is a complex matrix with i.i.d. zero mean
unit variance circularly symmetric complex Gaussian entries.
ny and nz are i.i.d. and they follow circularly symmetric
complex Gaussian distributions, CN (0, σ 2

ny
) and CN (0, σ 2

nz
),

respectively. Furthermore, Hb, He, ny and nz are independent.
It is assumed that the fading process is ergodic. The legitimate
receiver and the eavesdropper know their own channels per-
fectly. The transmitter knows the instantaneous channel of the
legitimate receiver and only the statistics of the eavesdropper’s
CSI. In other words, the transmitter knows the correlation
matrices �r and � t and the noise variance at the eavesdropper.

With the objective of maximizing the secrecy rates, the pre-
coded signal is constructed as

x = PDs + PAN u, (4)

where PD ∈ C
Nt ×Nt is the data precoder matrix and s ∈ C

Nt ×1

is the transmitted signal vector with zero mean and identity
covariance matrix. Each element of s is drawn equiproba-
bly from an M-ary signal constellation such as quadrature
amplitude modulation (QAM) or phase shift keying (PSK).
PAN denotes the AN precoder matrix. In the remainder of
the paper, we consider two scenarios for injection of the
AN. First, we consider scenarios with Nt > Nrb where
AN is injected along the null space of the main channel
with PAN = αAN√

Nt −Nrb

Vb where Vb ∈ C
Nt × (Nt −Nrb ) stands

for an orthonormal basis for the null space of Hb and u
denotes the noise term which follows CN (0, INt −Nrb

). The
portion of the power assigned to the AN is determined by the
coefficient αAN . For the scenarios with Nt ≤ Nrb , we consider
a generalized AN similar to [15] where u follows CN (0, INt )
and the covariance of the AN signal PAN u is more general.
We impose the power constraint

tr(PDPH
D ) + tr(PAN PH

AN ) ≤ Nt . (5)

The main user’s and the eavesdropper’s channels are both
block fading. We assume that the channel gains are fixed
during each coherence interval and they change independently
from one coherence interval to the next. Furthermore, each
coherence interval is large enough so that random coding
arguments can be invoked, therefore an achievable ergodic
secrecy rate can be calculated using [16]

R̄s = EHb,He

{(
I (s; y|Hb) − I (s; z|He)

)+}
, (6)

where I (s; y|Hb) and I (s; z|He) are the instantaneous
mutual information terms over the main channel and the
eavesdropper’s channel, respectively.1 Irrespective of the pre-
coder design approach, throughout the paper, we assume that
the precoding is adopted along with the random coding and the

1This notation is different from the standard notation [17] (where I (s; y|H)
stands for the mutual information averaged over H). Here, I (s; y|H)
refers to the instantaneous mutual information conditioned on the channel
matrix H.
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rate adaptation schemes proposed in [16]. Hence, the ergodic
secrecy rates are evaluated using (6) the achievability proof of
which follows from the proof given in Appendix B in [16].

III. JOINT PRECODER AND ARTIFICIAL NOISE DESIGN

In this section, we propose a precoder and AN design
algorithm for scenarios with Nt > Nrb where AN is injected
in null-space of the main channel. Noting that PAN =

αAN√
Nt −Nrb

Vb, with the aid of the instantaneous knowledge

of the main channel Hb and the statistical knowledge of
the eavesdropper’s channel, we seek to find the optimal
PD and αAN which maximize the instantaneous secrecy rate
given by

Rs = EHe

{(
I (s; y|Hb) − I (s; z|He)

)+}
. (7)

Noting that this is not tractable, we formulate a related
optimization problem by considering a lower-bound on Rs

(similar to what is done in [12]), given by

Rs,l = I (s; y|Hb) − EHe I (s; z|He). (8)

Therefore, we solve the following problem:

max
PD, αAN

Rs,l (9)

s.t. tr(PDPH
D ) + α2

AN ≤ Nt . (10)

As we will see later, the maximization of this lower-bound is
tractable and its solution serves to increase Rs as evidenced
by extensive simulations.

We introduce two approaches: the first one relies on directly
maximizing Rs,l in (8) while the second one utilizes a cut-off
rate based approximation of Rs,l . After obtaining the optimal
precoder matrix PD and the AN level αAN from either of
these schemes, we evaluate the ergodic secrecy rates using (6)
to demonstrate the efficacy of the proposed solutions.

A. Direct Maximization of Rs,l

Due to the nonconvexity of the problem in (9)-(10), obtain-
ing a globally optimal closed-form solution is intractable.
However, it is possible to implement numerical algorithms
which iteratively search for local maxima of the objective
function. To solve for the precoder and AN, we first optimize
over PD for a fixed αAN . In this case, the optimization problem
becomes

max
PD

(I (s; y|Hb) − EHe I (s; z|He)) (11)

s.t. tr(PDPH
D ) ≤ Nt − α2

AN , (12)

where the instantaneous mutual information over the main
channel is given by [18]

I (s; y|Hb)

= Nt log M − 1

M Nt

×
M Nt∑
i=1

Eny log
M Nt∑
j=1

exp

(
− ‖HbPDdi j +ny‖2−‖ny‖2

σ 2
ny

)
,

(13)

with di j = si − s j , where si is one of the M Nt possible
input vectors for s ∈ C

Nt ×1. To compute the second term
in (11), we note that the received vector at the eavesdropper is
given by

z = HePDs + n′
z, (14)

where n′
z is the summation of the AN and the thermal noise.

When Nt > Nrb , the channel input is as given in (4), and we
have n′

z = αAN Wu + nz with W = 1√
Nt −Nrb

HeVb.

We consider two cases separately. When Nre = 1, n′
z is a

Gaussian random variable and the average mutual information
can be written as

EHe I (s; z|He) = Nt log M − 1

M Nt

×
M Nt∑
m=1

EHe,n′
z
log

M Nt∑
k=1

exp

(
− ‖HePDdmk +n′

z‖2−‖n′
z‖2

σ 2
n′

z

)
, (15)

where σ 2
n′

z
= σ 2

nz
+ α2

AN wwH with w = 1√
Nt −Nrb

heVb.

If Nre > 1, n′
z becomes a zero-mean colored Gaussian

noise vector with covariance matrix Kn′
z
= WWH + σ 2

nz
INre

.
Therefore, in order to evaluate EHe I (s; z|He), one can first
whiten the noise term by pre-multiplying the received vector

in (14) by K
− 1

2
n′

z
resulting in

z′ = K
− 1

2
n′

z
HePDs + n′′

z , (16)

where n′′
z is a zero-mean additive white Gaussian noise vector

with Kn′′
z

= INre
, and using the expression

EHe I (s; z′|He) = Nt log M − 1

M Nt

×
M Nt∑
m=1

EHe,n′′
z
log

M Nt∑
k=1

exp
(−‖K

− 1
2

n′
z

HePDdmk +n′′
z ‖2+‖n′′

z ‖2),

(17)

which is equivalent to EHe I (s; z|He) as the transformation
is one-to-one. The necessary conditions for optimality of the
precoder matrix for maximization of Rs,l with perfect main
channel CSI and statistical CSI of the eavesdropper can be
obtained as follows.

Proposition 1: The solution of the optimization prob-
lem (11)-(12) satisfies the following optimality criteria:

log2 e

σ 2
ny

(
HH

b HbPD�b(PD)
)

− log2 e

σ 2
n′

z

EHe

{(
HH

e HePD�e(PD)
)} = θPD,

(18)

θ
(
tr(PDPH

D ) + α2
AN − Nt

) = 0, (19)

θ ≥ 0, (20)

tr(PDPH
D ) + α2

AN − Nt ≤ 0, (21)

where θ is the Lagrange multiplier corresponding to the
constraint in (12) and �b(PD) and �e(PD) are the receive
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Algorithm 1 Gradient Descent for Maximizing Rs,l

Consider different values for αAN ∈ [0 √
Nt ] and for each

value of αAN , repeat:
Step 1: Initialize PD1 with constraint tr(PD1PH

D1
) ≤ Nt −α2

AN .
Set step size μ and min. tolerance μmin

Step 2: Set k = 1, compute Rs1 = Rs,l(PD1)
Step 3: Compute ∇PD Rs,l(PD)
Step 4: If μ ≥ μmin goto Step 5, otherwise Stop algorithm
and return PDk

Step 5: Calculate P̂Dk = PDk + μ∇PD Rs,l(PDk ) and if

tr(P̂Dk P̂
H
Dk

) > Nt −α2
AN , normalize as P̂Dk =

√
Nt −α2

AN

tr(P̂Dk P̂
H
Dk

)
P̂Dk

Step 6: Compute R̂s = Rs,l(P̂Dk ); If R̂s ≥ Rsk update
Rsk+1 = R̂s and PDk+1 = P̂Dk & goto Step 7, otherwise, let
μ = 0.5μ and goto Step 4
Step 7: k = k + 1 goto Step 3
Select αAN and the corresponding optimal PD which result
in the maximum Rs,l .

minimum mean square error (MMSE) matrices at the legiti-
mate receiver and the eavesdropper, respectively, and are given
by [20]

�b(PD) = E
{
(s − E{s|y})(s − E{s|y})H}

, (22)

�e(PD) = E
{
(s − E{s|z})(s − E{s|z})H}

. (23)

Proof: This is slight modification of the [13, Proposi-
tion 1] and the proof follows from a similar Karush-Kuhn-
Tucker (KKT) analysis as given in Appendix A in [13].

In order to solve the optimization problem in (11)-(12),
a gradient descent algorithm [19] can be employed. In this
scheme, the precoder is updated as

PD(k + 1) = [
PD(k)+μ∇PD Rs,l(k)

]†
tr(PDPH

D )≤Nt−α2
AN

, (24)

where k and μ are the iteration index and the step-size of
the update, respectively, and [.]†

tr(PDPH
D )≤Nt −α2

AN
stands for the

normalization which guarantees the feasibility of the solution
at each step. More specifically, for cases where the updated
precoder matrix P̂Dk does not satisfy the constraint in (12),
similar to [20], we adopt a normalization as

P̂Dk =
√

(Nt − α2
AN )/tr(P̂Dk P̂

H
Dk

)P̂Dk , (25)

which projects the solution onto the feasible set. The optimal-
ity of the precoder matrix which is obtained as the solution of
gradient descent search can be proved by showing that (18)
holds for a fixed θ ≥ 0.

So as to obtain the optimal (αAN , PD), namely, to solve
(9)-(10), we repeat this gradient descent algorithm for dif-
ferent values of αAN and select the best (αAN , PD) pair
as described in Algorithm 1. For each value of αAN ,
the algorithm should be repeated with multiple initial-
izations of PD to increase the likelihood for the gradi-
ent descent algorithm to converge to the globally optimal
solution.

Note that the implementation of Algorithm 1 requires
evaluation of the gradient of Rs,l which is given by

∇PD Rs,l(PD) = log2 e

σ 2
ny

(
HH

b HbPD�b(PD)
)

− EHe

{
log2 e

σ 2
n′

z

(
HH

e HePD�e(PD)

)}
.

(26)

B. Cut-Off Rate Based Approximation for Rs,l

The instantaneous and average mutual information terms
in (8) lack closed-form expressions and involve multi-
ple integrals. Specifically, computation of Rs,l requires
2Nre (Nt + 1) + 2Nrb integrals to be evaluated. Alterna-
tively, to estimate I (s; y|Hb) and EHe I (s; z|He), one can take
advantage of Monte Carlo methods, which require averaging
over sufficiently large number of noise and channel samples,
making it a computationally complex task.

So as to lower the computational complexity associated with
the transmit signal design algorithm, closed form approxima-
tions of the mutual information can be employed [22], [23].
To this end, we propose to employ a cut-off rate based metric
given by

R′
s,l = R(B)

0 − R̄0
(E)

, (27)

where R′
s,l is an approximation of the instantaneous secrecy

rate, with R(B)
0 being the instantaneous cut-off rate for Bob,

which is a valid lower-bound on the mutual information, given
by [24]

R(B)
0 =2Nt log M−log

M Nt∑
i=1

M Nt∑
j=1

exp

(
− dH

i j PH
D HH

b HbPDdi j

4σ 2
ny

)
,

(28)

and R̄0
(E)

is the average cut-off rate over the eavesdropper’s
channel. The details of the derivation of R(B)

0 is given in
Appendix VII. If Nre = 1,

R̄0
(E) = 2Nt log M

−EHe log
M Nt∑
m=1

M Nt∑
k=1

exp

(
− dH

mkPH
D HH

e HePDdmk

4σ 2
n′

z

)
,

(29)

where σ 2
n′

z
= σ 2

nz
+ α2

AN wwH . Similar to the average mutual

information, R̄0
(E)

can also be evaluated for the scenarios with
Nre > 1 after noise whitening as in (16) resulting in

R̄0
(E) = 2Nt log M

−EHe log
M Nt∑
m=1

M Nt∑
k=1

exp

(
−

dH
mkPH

D HH
e K−1

n′
z

HePDdmk

4

)
.

(30)

Note that R′
s,l is not an achievable rate. However, as we will

see later, it can be used as an effective design metric to obtain
the precoder matrices. Once the solution for the transmit signal



REZAEI AGHDAM AND DUMAN: JOINT PRECODER AND AN DESIGN FOR MIMO WIRETAP CHANNELS WITH FINITE-ALPHABET INPUTS 3917

TABLE I

THE NUMBER OF MATRIX MULTIPLICATION STEPS

with this metric is obtained, the achievable secrecy rates are
evaluated using (6).

In order to demonstrate that employing the cut-off rate based
design metric in (27) instead of directly maximizing (8) can
significantly reduce the computational complexity, we com-
pare the matrix multiplication steps required for evaluation
of Rs,l and R′

s,l in Table I. We assume that Nsamp is the
number of sample points required for an accurate estima-
tion of the expectation operators, En and EHe . For instance,
it can be observed through numerical experiments that a suffi-
ciently accurate estimation of the average mutual information
EHe I (s; z|He) requires averaging over at least Nsamp = 500
realizations of noise and channel coefficients. Accordingly,
Table I reveals that the computational complexity associated
with calculation of R′

s,l is considerably smaller than that of
Rs,l . This can also be shown by comparing the CPU times
required for evaluation of these metrics. As an example, for a
4 × 4 × 4 wiretap channel with M = 2 and Nsamp = 500,
computation of Rs,l and R′

s,l takes 962.3693 and 0.6598
seconds, respectively, over an Intel Core-i7-4770, 3.4 GHz
processor.

In order to maximize R′
s,l , we jointly optimize PD and αAN

using Algorithm 1 by replacing Rs,l with R′
s,l . Gradient of R′

s,l
is given in (31), shown at the bottom of this page where

κb = 4σ 2
ny

(ln(2))

M Nt∑
i ′=1

M Nt∑
j ′=1

exp

(
− dH

i ′ j ′PH
D HH

b HbPDdi ′ j ′

4σ 2
ny

)
,

(32)

and

κe = 4σ 2
n′

z
(ln(2))

M Nt∑
m′=1

M Nt∑
k′=1

exp

(
− dH

m′k′PH
D HH

e HePDdm′k′

4σ 2
n′

z

)
.

(33)

The details of this derivation are given in Appendix VII.
For finite-alphabet inputs with equal SNR values at the

legitimate receiver and the eavesdropper, a lower fraction of
the power should be allocated to data transmission at higher
SNRs [10], [12], [25]. This is due to the fact that, under
finite-alphabet input constraints, transmission at full power for
high SNRs allows the eavesdropper to acquire the maximum
number of bits per channel use which results in zero secrecy.

Hence, it is possible to limit the search space of the optimiza-
tion in Algorithm 1 according to the SNR values. For higher
SNRs, it is reasonable to search among larger αAN values,
whereas, at low SNRs, the search should be carried out among
αAN ’s near 0.

IV. GENERALIZED AN-AIDED PRECODING

In the previous section, we introduced a precoder and
AN design algorithm in which the AN is transmitted in
conjunction with the information signal, and is designed to
be orthogonal to the intended receiver in such a way that only
the eavesdropper suffers a degradation in the receiver perfor-
mance. However, such AN injection is not applicable when the
number of antennas at the legitimate receiver is greater than
the number of transmit antennas (i.e., when the null space
dimensionality is 0), hence, we need to seek an alternative
approach.

For the cases with Nt ≤ Nrb , we employ a joint precoder
and generalized AN design scheme. The notion of generalized
AN has been proposed in [15]. Dissimilar to the conventional
AN which is only allowed to be transmitted in the null-space
of Hb, generalized AN possesses a more flexible covariance
matrix.

The received vectors at the legitimate receiver and the
eavesdropper are given as

y = HbPDs + HbPAN u′ + ny, (34)

z = HePDs + HePAN u′ + nz, (35)

where PAN is the Nt × Nt precoder matrix for the AN
signal and u′ follows CN (0, INt ). The objective is to
obtain optimal PD and PAN by solving the following
problem

max
PD, PAN

Rs,l (36)

s.t. tr(PDPH
D ) + tr(PAN PH

AN ) ≤ Nt , (37)

where Rs,l is given in (8). Since n′
y = HbPAN u′ + ny is

colored with covariance Kn′
y

= HbPAN PH
AN HH

b + σ 2
ny

INrb
,

the mutual information over the main channel can be cal-
culated after whitening the noise by pre-multiplying (34)

by K
− 1

2
n′

y
, i.e., obtaining

y′′ = K
− 1

2
n′

y
HbPDs + n′′

y, (38)

∇PD R′
s,l(PD) = 1

κb

M Nt∑
i=1

M Nt∑
j=1

(HH
b HbPDdi j dH

i j ) exp

(
− dH

i j PH
D HH

b HbPDdi j

4σ 2
ny

)
−

M Nt∑
m=1

M Nt∑
k=1

EHe

1

κe
(HH

e HePDdmkdH
mk)

× exp

(
− dH

mkPH
D HH

e HePDdmk

4σ 2
n′

z

)
, (31)
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Algorithm 2 Alternating Optimization for Maximizing Rs,l

Initialize λh > λl = 0, PD , PAN and the convergence criteria
εL and ελ:
Step 1: update λ = 1

2 (λl + λh)
Step 2: repeat:
obtain optimal PD with fixed PAN using gradient descent
optimization
obtain optimal PAN with fixed PD using gradient descent
optimization
until: consecutive values of L(PD, PAN , λ) differ by less
than εL

Step 3: If tr(PDPH
D ) + tr(PAN PH

AN ) < Nt then update λh = λ
If tr(PDPH

D ) + tr(PAN PH
AN ) > Nt then update λl = λ

until: two consecutive values of λ differ by less than ελ.

where n′′
y is a zero-mean additive white Gaussian noise with

unit variance, resulting in

I (s; y′′|Hb) = Nt log M − 1

M Nt

×
M Nt∑
i=1

En′′
y

log
M Nt∑
j=1

exp

(
−‖K

− 1
2

n′
y

HbPDdi j + n′′
y‖2+‖n′′

y‖2
)

.

(39)

The expression for EHe I (s; z|He) is given in (17) where
Kn′

z
= HePAN PH

AN HH
e + σ 2

nz
INre

.
In order to solve (36)-(37), we compute the Lagrangian of

the problem as

L(PD, PAN , λ) = Rs,l + λ(Nt − tr(PDPH
D ) − tr(PAN PH

AN )),

(40)

where λ is the Lagrange dual variable associated with the
constraint in (37). For a fixed dual variable λ, the dual function
is defined as

D(λ) = max
PD, PAN

L(PD, PAN , λ). (41)

Then, the dual optimization problem can be written as

min
λ>0

D(λ). (42)

Noting that D(λ) is a convex function in λ, we update
the dual variable using the bisection method similar to [26].
That is to say, when the subgradient ∇D(λ) = Nt −
tr(PDPH

D ) − tr(PAN PH
AN ) is positive, we decrease λ in the

bisection method; otherwise, we increase it. Indeed, we can
interpret λ in (40) as a price for power which should increase
when the power constraint is exceeded, and it should decrease
otherwise.

In order to maximize the Lagrangian for a fixed λ,
we employ a coordinate descent algorithm which relies on
updating PD and PAN in an alternating fashion as described in
Algorithm 2. After obtaining the optimal λ, the corresponding
(PD, PAN ) pair is used as the precoders. Obtaining the optimal
PD with a fixed PAN , and conversely, obtaining the optimal
PAN with a fixed PD is carried out with the aid of gradient
descent type solutions. Particularly, with a fixed PAN , the opti-
mal PD is obtained by using a similar procedure as described

in steps 1 through 7 of Algorithm 1. In this case, the data
precoder is updated as

PD(k + 1) = [
PD(k) + μ∇PD Rs,l(k)

]†
tr(PDPH

D )≤Nt −tr(PAN PH
AN )

.

(43)

Similarly, with a fixed PD , the AN precoder matrix PAN is
updated as

PAN (k+1)=[
PAN (k)+μ∇PAN Rs,l(k)

]†
tr(PAN PH

AN )≤Nt −tr(PDPH
D )

.

(44)

We note that these steps are considerably simplified by
replacing the mutual information with the cut-off rate expres-
sion as an approximate solution. The cut-off rate based approx-
imation of the instantaneous secrecy rates can be calculated
after whitening the additive noise terms in (34) and (35). That
is to say, R(B)

0 and R̄(E)
0 are calculated for the equivalent

channels in (38) and (16), respectively. The gradient of the
cut-off rate based approximation, R′

s,l with respect to PD is

attained by replacing Hb and He in (31)-(33) by K
− 1

2
n′

y
Hb and

K
− 1

2
n′

z
He, respectively.

By optimizing the matrix PAN , the transmitter can highly
suppress the useful signal at the eavesdropper whereas the
degradation over the main channel is kept at a limited level
as will be further illustrated via examples. It should be noted
that, since the problem in (36)-(37) is non-convex, there is
no guarantee that there is no duality gap, however, as will
be demonstrated using numerical examples in Section VI,
the approach is highly effective.

V. PER-GROUP PRECODING FOR LARGE

MIMO WIRETAP CHANNELS

The proposed transmit signal design algorithm in
Section III-B possesses a lower complexity with respect to
directly maximizing the secrecy rates due to the elimination
of the averaging over channel and noise samples. However,
this may still be a complex task in evaluation of the mutual
information and in obtaining the optimal precoder, especially
when Nt is large. With this motivation, we now provide a
transmit signal design algorithm which reduces the search
space for the optimal precoder and the AN, and hence the
complexity.

The basic idea behind the proposed scheme is to decouple
the data streams and the AN over parallel equivalent sub-
channels towards the legitimate receiver and the eavesdropper,
and accordingly reduce the dimensionality of the search space
for the transmit signal optimization. More specifically, such a
decoupling will allow us to group subchannels in pairs and
design the precoder and the AN for each pair separately.
We note that the idea of per-group precoding has been
recently proposed for capacity maximization in MIMO chan-
nels [14], [28] and for sum rate maximization of multiple
access channels [29]. Here, we extend it to the case of MIMO
wiretap channels.

In order to obtain a decoupled structure, we take advantage
of GSVD of the pair (Hb,�

1/2
t ) which results in [27]
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Hb = Ub�b[�−1 0k×Nt −k]QH , (45)

�
1/2
t = U�t ��t [�−1 0k×Nt −k]QH , (46)

where Ub ∈ C
Nrb ×Nrb , U�t ∈ C

Nt ×Nt and Q ∈ C
Nt ×Nt are

unitary matrices and � ∈ C
k×k is a nonsingular matrix where

k = rank([HH
b �H

t ]H ). �b and ��t are Nrb × k and Nt × k
matrices as 2

�b =
⎡
⎣

k − p − o o p

Nrb − p − o 0 0 0
o 0 Db 0
p 0 0 I

⎤
⎦, (47)

��t =
⎡
⎣

k − p − o o p

Nt − p − o I 0 0
o 0 D�t 0
p 0 0 0

⎤
⎦, (48)

where p = dim
(
null(Hb)

⊥ ∩ null(�1/2
t )

)
and o =

dim
(
null(Hb)∩null(�1/2

t )⊥
)
. Db and D�t are diagonal matri-

ces with real and strictly positive entries. Also, by applying
eigenvalue decomposition on �

1/2
r , we have

�
1/2
r = U�r ��r UH

�r
, (49)

where U�r is a unitary matrix whose columns are eigenvectors
of �

1/2
r , and ��r represents a diagonal matrix whose diagonal

entries are the eigenvalues of �
1/2
r . We now construct the

channel input in (4) with the data and AN precoder matrices
of the following form

PD = QBPDg, (50)

PAN = QBPANg , (51)

where

B =
[
�k×k 0l×l

0l×k 0l×k

]
, (52)

where l = Nt − k. Hence, the received signal vector at the
legitimate receiver is given by

y = Ub�b

[
Ik×k 0k×l

](
PDgs + PANg u′) + ny, (53)

By pre-multiplying (53) by UH
b we obtain the following

equivalent model

ỹ = �b

[
Ik×k 0k×l

](
PDgs + PANg u′) + ñy, (54)

where ñy = UH
b ny which has the same statistics as ny .

Clearly, this strategy converts the main channel to a diagonal
MIMO channel. Similarly, we obtain an equivalent diagonal
channel towards Eve. To do this, consider the received signal
at the eavesdropper

z=U�r ��r UH
�r

ĤeU�t ��t

[
Ik×k 0k×l

](
PDgs+PANg u′)+n′

z .

(55)

Pre-multiplying (55) by UH
�r

results in the following equivalent
input-output relationship

z̃ = ��r H̃e��t

[
Ik×k 0k×l

](
PDgs + PANg u′) + ñz, (56)

2The number of columns and rows of all the sub-matrices are shown
explicitly in (47) and (48).

where ñz = UH
�r

nz and H̃e = UH
�r

ĤeU�t have same statistics
as nz and Ĥe, respectively [22].

Proposition 2 (Taken from [14]): For large-dimensional
set-ups, the mutual information corresponding to the virtual
channel input-output relationship in (56) is approximated as

EH̃e
I (s; z̃|H̃e) ≈ I (xeq; zeq |√�) + log2 det(INre

+ Req)

− γeqφeq log e, (57)

where I (xeq; zeq |√�) stands for the ergodic mutual informa-
tion corresponding to the diagonal MIMO relationship

zeq = �1/2xeq + ñz, (58)

with xeq = PDgs + PANg u′ and �1/2 is a diagonal matrix
which is a function of three auxiliary variables, Req , γeq and
φeq which are the solutions of the following coupled equations:

� = γeq�2
�t

, Req = φeq�2
�r

,

γeq = tr((INre
+ Req)−1�2

�r
), φeq = tr(�eq�2

�t
), (59)

where �eq = E
{
(s − E{s|zeq})(s − E{s|zeq })H

}
is the MMSE

matrix corresponding to channel (58).
Using this result, we focus on the received vectors, ỹ and zeq

given in (54) and (58), respectively, and design precoders
which can partition the multi-antenna wiretap channel into a
number of independent groups. More specifically, by employ-
ing precoders in (50) with PD,g and PAN,g taking the follow-
ing form

⎡
⎢⎢⎢⎢⎢⎣

P11 P12 0 0 . . . 0
P21 P22 0 0 . . . 0
...

...
. . .

. . .
...

...
0 0 . . . . . . P(Nt −1)(Nt −1) P(Nt −1)Nt

0 0 . . . . . . PNt (Nt −1) PNt Nt

⎤
⎥⎥⎥⎥⎥⎦

,

(60)

we obtain two-by-two paired transmitted data streams. With
this structure, the mth data stream is transmitted along the
(2m−1)th and (2m)th diagonal entries of �b and �1/2. Hence,
we have

ỹm = �b

[
Ik×k 0k×l

](
PDgm s + PANgm u′) + ñym , (61)

zeqm
= �1/2(PDgs + PANg u′) + ñzm , (62)

PDgm =
[

PD,(2m−1)(2m−1) PD,(2m−1)(2m)

PD,(2m)(2m−1) PD,(2m)(2m)

]
, (63)

PANgm =
[

PAN,(2m−1)(2m−1) PAN,(2m−1)(2m)

PAN,(2m)(2m−1) PAN,(2m)(2m)

]
, (64)

where m = 1, 2, . . . , Nt
2 . Finally, we note that the transmit

signal design algorithm proposed in Section III can be applied
to each group, separately. This is to say, instead of the original
optimization problem in (9)-(10), the following Nt/2 sub-
problems can be solved.

max
PDgm , PANgm

R̃sm , m = 1, 2, . . . ,
Nt

2
(65)

s.t. tr(P′
Dgm

P′H
Dgm

) + tr(P′
ANgm

P′H
ANgm

) ≤ 2, (66)
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where P′
Dgm

is an Nt × Nt matrix as

P′
Dgm

= QB
[

PDgm 02× (Nt −2)

0(Nt −2)×2 0(Nt −2)× (Nt −2)

]
, (67)

P′
ANgm

= QB
[

PANgm 02× (Nt −2)

0(Nt −2)×2 0(Nt −2)× (Nt −2)

]
, (68)

and R̃sm is the difference between the instantaneous mutual
information of the mth group in (61) and the approximation
in (57) for the mth group in (62). After obtaining PD,g

and PAN,g we construct the precoder matrices PD and PAN

using (50) and (51). If these matrices do not satisfy the power
constraint tr(PDPH

D ) + tr(PAN PH
AN ) ≤ Nt , we adopt normal-

izations similar to (25) so that tr(PDPH
D )+ tr(PAN PH

AN ) = Nt .
Taking advantage of the per-group precoding scheme con-

siderably reduces the computational complexity associated
with the evaluation of mutual information or the cut-off rate,
and accordingly, it simplifies the transmit signal design. For
example, consider a 4 × 4 × 4 MIMO wiretap channel with
QPSK inputs. Using the equivalent channels ỹ and zeq with
precoders in the form of (60) reduces the computational
complexity (roughly) by a factor of 42×4

2×42×2 = 128 [14].
Finally, we emphasize that while we only consider the case

of two-by-two pairing of the data streams in (60), Ng -by-Ng

coupling of the data streams with Ng > 2 is also possible and
it is expected to improve the precoder performance (with an
increase in complexity). Namely, there is a trade-off between
performance and complexity where Ng = Nt coincides with
the case of complete search adopted in Sections III and IV.

VI. NUMERICAL EXAMPLES

In order to demonstrate the efficacy of the proposed sig-
nal design schemes, we provide several numerical examples.
Throughout the simulations, equal noise levels are assumed at
the legitimate receiver and the eavesdropper. The numerical
results are provided for the scenarios with constant and fading
main channels, separately. We set μ = 0.5 and μmin = 0.01
in implementation of Algorithm 1, and we consider
εL = ελ = 0.01 in execution of Algorithm 2.

A. Constant Main Channel

In this example, we assume that the main channel is fixed
throughout the whole transmission period and is given as

Hb = [
0.5128 − 0.3239 j −0.8903 − 0.0318 j

]
. (69)

We consider 500 realizations of He for evaluation of the
average mutual information for the eavesdropper and calculate
the secrecy rate using (7). The eavesdropper’s channel is
assumed to be correlated according to (3) where � t and �r

have exponentially decaying entries, i.e.,

[� t ]i j = ρ
|i− j |
t , and [�r ]i j = ρ

|i− j |
r , (70)

with ρt = 0.9 and ρr = 1.
Fig. 1 compares the ergodic secrecy rates for the three dif-

ferent transmit signal design algorithms. In implementation of
Algorithm 1, we perform the search among 5 different values
of αAN which are selected according to the SNR values and

Fig. 1. Secrecy rates with QPSK inputs for a wiretap channel with
(Nt , Nrb , Nre ) = (2, 1, 1) with the main channel given in (69) and the
eavesdropper channel with ρt = 0.9 and ρr = 1.

Fig. 2. Convergence of Algorithm 1 for the same setting as Fig. 1.

for each value of αAN , we repeat the algorithm for 4 different
initialization of PD . For a fair comparison, we run the algo-
rithm proposed in [13] with 20 initializations. We observe that
the maximization of Rs,l while jointly optimizing the precoder
matrix and the power allocated to the AN, i.e., employing
Algorithm 1, yields higher secrecy rates compared to the
scheme given in [13] which relies on the precoder optimization
only. Furthermore, it can be inferred from Fig. 1 that the
maximization of the cut-off rate based design metric R′

s,l using
Algorithm 1 incurs a relatively small loss with respect to the
scheme proposed in [13] in low and moderate SNR values.
While it is only approximate, the proposed algorithm even
outperforms the algorithm in [13] in high SNRs due to the
joint optimization of the precoder and AN. We also note that,
the cut-off rate based optimization undergoes a loss of 28%
and 2% in the achievable secrecy rates at SNR = −5 dB
and at SNR = 10 dB, respectively, and it achieves almost
the same performance as the direct maximization method at
high SNRs. This comparable performance is achieved with a
much lower computational complexity, e.g., for this example,
the CPU times is reduced roughly by a factor of 1000.

Fig. 2 illustrates the convergence behavior of
Algorithm 1 for given values of αAN in different SNRs. Values
of Rs,l is depicted in each iteration and it can be observed
that the proposed algorithm needs only a few iterations to
converge. The final output of Algorithm 1 in these examples
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Fig. 3. Achievable secrecy rates for fading main channel, with different
values of M (Nt = 2 and Nre = Nrb = 1).

are as follows. At SNR = −5dB, with αAN = 0.1,

PD1 =
[−0.1438 − 0.8947 j 0.0509 + 0.1416 j

0.4118 + 0.9718 j −0.0950 − 0.1522 j

]
, (71)

and at SNR = 15dB, the algorithm converges to

PD2 =
[

0.3124 − 0.2078 j −0.6076 + 0.4017 j
−0.2857 + 0.2432 j 0.5536 − 0.4914 j

]
, (72)

with αAN = 0.8. The (local) optimality of these results is
verified by showing that (18) holds as

∇ Rs,l(PD1) � θ1PD1, ∇ Rs,l(PD2) � θ2PD2, (73)

with θ1 = 0.15 and θ2 = 0.22, respectively.

B. Fading Main Channel

We now consider fading channels towards the legitimate
receiver and the eavesdropper. In particular, we assume that
the channel gains over both links change independently from
one coherence interval to the next and accordingly, optimal PD

and αAN (or PAN when employing Algorithm 2) are obtained
for each realization of Hb with the aid of the cut-off rate
based approximations and the secrecy rate is averaged over
500 realizations according to (6). The eavesdropper’s channel
is assumed to be correlated as in (3) where the transmit and
receive correlations follow (70).

Fig. 3 compares the secrecy rates achieved by transmissions
with different channel inputs under two different correlation
scenarios for the eavesdropper’s channel. We observe that,
when the SNR is sufficiently high, the proposed transmit
signal design scheme provides achievable secrecy rates close
to Nt log M , i.e., the maximum rate which can be attained
by the legitimate receiver assuming finite-alphabet inputs.
As expected, higher secrecy rates are attained when the
eavesdropper’s channel is highly correlated. It is also observed
that the achievable secrecy rates increase with M for a fixed
number of transmit and receive antennas. Furthermore, Fig. 3
reveals an important difference between the secrecy behavior
of the Gaussian vs. finite alphabet inputs. That is, while
the achievable secrecy rates with Gaussian inputs increase
monotonically with increasing SNR, it saturates for the latter
scenario.

Fig. 4. Ergodic Secrecy Rates with different number of antennas at the
receiver ends (Nt = 4, BPSK inputs).

Fig. 5. Ergodic secrecy rates for BPSK inputs using Algorithm 2 with and
without per-group precoding.

The effect of different number of receive antennas on the
achievable secrecy rates is demonstrated in Fig. 4. The eaves-
dropper’s channel is correlated with correlation matrices given
in (70) with ρt = 0.8 and ρr = 0.8. Clearly, the proposed
transmit signal design scheme is capable of providing positive
secrecy rates even for the cases where the eavesdropper is
equipped with a larger number of antennas than the legitimate
receiver. Furthermore, it can be observed that increasing the
number of receive antennas at the legitimate receiver results in
increased achievable secrecy rates for fixed Nre . It should be
noted that, for the case of Nrb = 4, the generalized AN-aided
precoding provides higher secrecy rates with respect to the
cases with Nrb < 4 in spite of a leakage of AN at the legitimate
receiver. We attribute this to the fact that the more flexible
covariance matrix of the generalized AN is more effective than
the conventional AN in terms of suppressing the reception at
the eavesdropper. Furthermore, thanks to the optimization in
Algorithm 2 the leakage of AN at the legitimate receiver is
small.

Fig. 5 compares the ergodic secrecy rates achieved with the
proposed transmit signal design algorithms with and without
per-group precoding. It can be inferred from this figure that
the secrecy rates achieved by the solution of the relaxed
problem undergoes a degradation with respect to the solution
without per-group precoding. However, the considerably lower
complexity of the per-group precoding technique makes pos-
sible obtaining suboptimal data and AN precoding matrices
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for large set-ups which is intractable by directly employing
Algorithms 1 and 2.

VII. CONCLUSIONS

In this paper, we have proposed iterative joint precoder and
AN design schemes for maximization of ergodic secrecy rates
for MIMO wiretap channels with finite-alphabet inputs with
perfect and statistical CSI corresponding to the main channel
and the eavesdropper’s channel, respectively. We show that
maximizing a cut-off rate based approximation of the instan-
taneous secrecy rate is a promising low-complexity alternative
to the direct maximization approach. We have also studied
a generalized AN-aided precoding scheme for the scenarios
where injection of AN over the null-space of the main channel
is not applicable. Our findings demonstrate that the problem
of precoder and AN design is considerably simplified for
large MIMO wiretap channels by two-by-two pairing of the
transmit antennas and obtaining the optimal solution for each
pair, separately. Examplary numerical results clearly show that
the proposed transmit signal design methods provide positive
secrecy rates in a variety of scenarios and yield an enhanced
secrecy performance compared to the existing solutions in
spite of their significantly lower computational complexities.

APPENDIX A
DERIVATION OF THE CUT-OFF RATE EXPRESSION IN (28)

The cut-off rate expression in (28) can be derived using the
formula given in [24, eq. (4.3.34)], as

R(B)
0 = − log

M Nt∑
i=1

M Nt∑
j=1

1

M2Nt

∫
p(y|si , Hb)

1/2

× p(y|s j , Hb)
1/2dy. (74)

By substituting p(y|si , Hb) and p(y|s j , Hb) in (74). Given
si and Hb and for a fixed PD , y is a complex Gaussian
random variable with zero-mean and variance HbPDsi . Hence,
the conditional probability density function can be obtained as

p(y|si , Hb) = 1

π Nrb σ
2Nrb
ny

exp
(

− ‖y − HbPDsi‖2

σ 2
ny

)
. (75)

By plugging p(y|si , Hb) and p(y|s j , Hb) into (28),
we get (76). The integrand I1 can be simplified as (77). Then,
completion of the square in the exponent and substituting I1

into (76) yields (78) (equations (76), (77) and (78) can be
found at the bottom of this page).

The integral I2 is equal to 1 since the integrand is a
multi-variate Gaussian probability density function. Therefore,
the final result simplifies to

R(B)
0 = 2Nt log M−log

M Nt∑
i=1

M Nt∑
j=1

exp
(
− ‖HbPDdi j ‖2

4σ 2
ny

)
, (79)

where di j = si − s j concluding the derivation of (28).

APPENDIX B
DERIVATION OF ∇PD R′

s,l

We apply the matrix differentiation technique in [31] to
derive the gradient of R′

s,l . As a first step, we evaluate the
derivative of logarithm of sum of exponentials. Accordingly
∇ R′

s,l can be written as

∇PD R′
s,l(PD)

= 1

κb

M Nt∑
i=1

M Nt∑
j=1

(∇PD ϒb,i j
)

exp

(
− dH

i j PH
D HH

b HbPDdi j

4σ 2
ny

)

−
M Nt∑
m=1

M Nt∑
k=1

EHe

1

κe

(∇PD ϒe,mk
)

× exp

(
− dH

mkPH
D HH

e HePDdmk

4σ 2
n′

z

)
. (80)

where κb and κe are as defined in (32) and (33), and
also, ϒb,i j = dH

i j PH
D HH

b HbPDdi j and ϒe,mk = dH
mkPH

D HH
e

HePDdmk . Using the definition of the complex gradient vector

[∇G f ]i j = ∂ f

∂[G∗]i j
, (81)

where the complex derivative of scalar function f is defined

as ∂ f
∂g∗ = ∂ Re{ f }

∂g∗ + j ∂ I m{ f }
∂g∗ , we obtain

∇PD ϒb,i j = HH
b HbPDdi j dH

i j , (82)

∇PD ϒe,mk = HH
e HePDdmkdH

mk . (83)

By replacing (82) and (83) in (80), (31) follows.

R(B)
0 = 2Nt log M − log

M Nt∑
i=1

M Nt∑
j=1

∫ [ 1

π Nrb σ
2Nrb
ny

exp
(

− ‖y − HbPDsi‖2

σ 2
ny

)] 1
2
[ 1

π Nrb σ
2Nrb
ny

exp
(

− ‖y − HbPDs j‖2

σ 2
ny

)] 1
2

︸ ︷︷ ︸
I1

dy.

(76)

I1 = 1

π Nrb σ
2Nrb
ny

exp

(
− ‖y‖2 + 1

2‖HbPDsi‖2 + 1
2‖HbPDs j‖2 − Re{(HbPDSi )

∗y} − Re{(HbPDS j )
∗y}

σ 2
ny

)
. (77)

R(B)
0 = 2Nt log M − log

M Nt∑
i=1

M Nt∑
j=1

∫ [
1

π Nrb σ
2Nrb
ny

exp
(

− ‖y − HbPD(
si+s j

2 )‖2

σ 2
ny

)]
dy

︸ ︷︷ ︸
I2

exp
(

− ‖HbPD(
si−s j

2 )‖2

σ 2
ny

)
. (78)
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