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Abstract

Motivation: Rapid and low cost sequencing of genomes enabled widespread use of genomic data

in research studies and personalized customer applications, where genomic data is shared in pub-

lic databases. Although the identities of the participants are anonymized in these databases, sensi-

tive information about individuals can still be inferred. One such information is kinship.

Results: We define two routes kinship privacy can leak and propose a technique to protect kinship

privacy against these risks while maximizing the utility of shared data. The method involves sys-

tematic identification of minimal portions of genomic data to mask as new participants are added

to the database. Choosing the proper positions to hide is cast as an optimization problem in which

the number of positions to mask is minimized subject to privacy constraints that ensure the familial

relationships are not revealed. We evaluate the proposed technique on real genomic data. Results

indicate that concurrent sharing of data pertaining to a parent and an offspring results in high risks

of kinship privacy, whereas the sharing data from further relatives together is often safer. We also

show arrival order of family members have a high impact on the level of privacy risks and on the

utility of sharing data.

Availability and implementation: https://github.com/tastanlab/Kinship-Privacy

Contact: erman@cs.bilkent.edu.tr or oznur.tastan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advances in sequencing technologies, obtaining the se-

quence of an individual’s genome is faster and cheaper than ever

(Goodwin et al., 2016). This success and the reliability of sequenc-

ing rendered extensive use of genome sequencing in biomedical re-

search and clinical care possible. While the use of genomic data in

research studies gains traction, there is also a concurrent increase in

the number of web services that enable genomic data sharing

(openSNP and 23andme.com). Thus, today, thousands of genomes

are publicly shared online. Such a rise in the availability and use of

genomic data raises important ethical, legal, and social concerns as a

person’s genome carries sensitive information pertaining to its

owner such as ethnicity, kin, or predisposition to certain diseases.

One immediate and pressing issue is the sharing of genomic data

without compromising the privacy of the participants and their fam-

ilies (Erlich and Narayanan, 2014; Naveed et al., 2015).

Even though most of the shared genomes are anonymized in gen-

omic databases, it has been shown that anonymization is not suffi-

cient for protecting the identities of the data donors (Clayton, 2010;

Gymrek et al., 2013; Homer et al., 2008; Jacobs et al., 2009;

Lumley and Rice, 2010). Potentially dire and irreversible conse-

quences of privacy breach and the associated risks not only necessi-

tate implementing law and policies to protect individuals’ rights but

also developing safeguarding computational tools that secure indi-

viduals’ privacy. Several methods have been proposed for protecting

participants’ identities in genome-wide association studies (Chen
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et al., 2017; Wan et al., 2017; Xie et al., 2014). There are also meth-

ods that enable sharing of statistical analysis results conducted on

genomic data in a privacy-preserving manner (Johnson and

Shmatikov, 2013; Simmons and Berger, 2016; Tramèr et al., 2015;

Yu et al., 2014) or identifying relatives in a privacy preserving man-

ner (He et al., 2014; Hormozdiari et al., 2014). However, to the best

of our knowledge, there is no work in the literature that aims at pro-

tecting privacy of kinship relationships of the members when gen-

omic data is publicly shared.

Kinship information is a sensitive and its breach may lead to un-

desired parenthood issues, incidences of which have already been

experienced. In his article titled ‘With genetic testing, I gave my par-

ents the gift of divorce’ (Belluz, 2014), a researcher told his personal

story. After conducting a genetic test and comparing his genome

with others who took the same test, he accidentally found out that

he had a half-brother. This eventually led to his mother and father

getting a divorce. Kinship information can also be exploited in

multilayer attacks. For instance, if an attacker obtains the genomic

data of an individual, by inferring the kinship relationship between

this individual and his/her family members in an anonymized gen-

omic dataset, the attacker can easily de-anonymize the genomes of

the family members. Additionally, if the kin of a person is identified

together with her genome, critical information about the genomes of

the family members can be inferred (Deznabi et al., 2017; Humbert

et al., 2013), putting the whole family’s privacy at risk. Thus, not

only the deanonymized individual but also her family members may

face discrimination on the basis of their genomic makeup, examples

of which have already been experienced (Lindor, 2012). Therefore,

in addition to being sensitive information by itself, kinship informa-

tion has the potential to comprise the genomic privacy of the family

members when used with other attacks.

In this work, we develop a methodology to protect kinship infor-

mation of the individuals who share their genomic data in public

databases. We define two ways that kinship privacy may leak. We

present a computational model that renders the maximal sharing of

genomic data possible while minimizing kinship privacy risks. We

assume sequential arrival of individuals at the database and protect

privacy by selectively hiding certain SNP loci in the newly arrived

member. The number of SNPs to hide and the category of the SNP

loci, which depends on the allele type in other family members, are

determined by solving an optimization model. The number of pos-

itions to mask is minimized subject to the privacy constraints that

ensure the kinship information is not leaked. This technique lets us

systematically identify minimal portions of data to withhold as the

new donors are added to the database. The proposed technique is

evaluated with different arrival sequences in two different families.

2 Materials and methods

In the following sections, we first introduce the general framework

we propose. Next, we define the two routes that kinship privacy can

be revealed. Then, the proposed optimization model that maximizes

the amount of data shared while minimizing the privacy leakage is

explained. Finally, we describe how we solve these models.

2.1 General framework for protecting kinship privacy
As in the real life, we assume that individuals arrive at the database

sequentially. At a given time, the privacy of the individuals who are

already in the database is already protected. When a new person ar-

rives, only the genome of this individual will be partially masked if

needed. Upon the arrival of an individual at the database, we first

check whether there is any kinship privacy risk associated with the

addition of this individual’s genome to the database. The model first

infers if there is a family member already present in the database by

computing the kinship coefficient of the donor with the other people

in the database. If the donor does not have a relative, her genome

can be safely added without any withholding. If the person does

have a relative already in the database, the family structures in the

database are updated.

At a given time, assume there are already families in the database

and this family information is only known by the database. When

an individual i arrives with genotype gi, if the person has at least one

relative in the database, then the family structures will be reorgan-

ized in one of the three different ways: (i) if i has at least one relative

in a preexisting family, individual i is added to the family, (ii) if indi-

vidual i is identified as a kin of individual j who is not a member of

any of the families in the database, then a new family is instantiated

with members i and j, and finally (iii) if user i has relatives in two

different families and they are not connected; arrival of i will com-

bine the families into a single family. This can arise in cases where

the maternal and the paternal families are already in the database

before the arrival of an individual.

Once the family of i is located and the family structures are

updated, genotype data of i is added to the database in a privacy-

preserving manner. Certain parts of gi are systematically masked

(with techniques which we shall detail in Section 2.4), and hence

will not be visible to the outsiders. We denote this partially shared

genome as g0i. This overall process is illustrated in Figure 1.

2.2 Notations
Before discussing the details of the model, we introduce the fre-

quently used notations. The SNP type of an individual at a certain

position is represented with the number of its alternate alleles. Thus,

the genome loci at which both alleles are the same as the reference

genome are represented as 0, the positions wherein only one allele

differs from the reference genome are denoted as 1, and the in-

stances wherein an individual carries two alternate alleles are

denoted as 2.

Our methodology assumes sequential arrival of the family mem-

bers. We define a state vector, s ¼ sm . . . s2s1 that represents SNP

configuration of the family based on the reverse chronological order

of arrivals at the database (i.e. sm denotes the SNP state for the latest

arriving family member and s1 denotes the SNP state of the first

arriving member configuration for any SNP position) where

Fig. 1. Overview of the proposed scheme. When a new person i with geno-

type gi is added to the database, we check for i’s relatives in the database and

determine the family i is related to. The privacy of the family fk (to which i be-

longs to) is protected by selectively hiding a portion of gi. The genotype of

person i is then partially shared and this partially shared genotype is denoted

as g0i
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si 2 f0; 1; 2g. We use this state vector while referring to the size of

the genomic positions with a particular SNP configuration of the

m family members. nsm ...s2s1
denotes the number of genomic pos-

itions with the SNP configuration sm . . . s2s1. For example, for a

two-member family, n10 indicates the number of genomic loci

where the latest arrived member’s SNP type is 1 and the first arrived

family member’s SNP type is 0. Additionally, we use a star nota-

tion to denote any type of SNP in a particular person’s genome.

For instance, n1� indicates the number of positions where the

latest arrived person’s SNP is of type 1 and the first comer’s SNP

can be of any type; 0, 1, or 2. Finally, we denote the number of pos-

itions that will be hidden with a particular SNP state sequence as

xsm ...s2s1
.

2.3 Routes that leak kinship privacy
We observe that familial relationships can leak through two differ-

ent routes. In the following two subsections, we detail these leakage

routes.

2.3.1 Privacy leak due to genotype similarity

Genomes pertaining to the members of a given family resemble each

other more than the unrelated individuals. Therefore, the relatedness

of two individuals can be inferred based on their genotype similarity.

Several methods for estimating the relationship of a given pair of in-

dividuals based on genotype have been proposed in the literature

(Huff et al., 2011; Manichaikul et al., 2010; Purcell et al., 2007).

KING kinship coefficient (Manichaikul et al., 2010) is one such met-

ric that has been demonstrated to be a robust estimator of kinship,

which we utilize in this work. In this metric the kinship between two

individuals i and j is defined as follows:

/ij ¼
2n11 � 4 n02 þ n20ð Þ � n�1 þ n1�

4n1�
: (1)

Here, n11 is the number of genomic positions that are heterozy-

gous in both individuals, n02 is the number of SNPs where the first

individual (i) is homozygous dominant and the second individual

(j) is homozygous recessive. n20 denotes the positions where j is

homozygous dominant and i is homozygous recessive. n1� and n�1
are the number of SNPs that are heterozygous for individual i and

for individual j, respectively. Without loss of generality, the i-th

individual is assumed to have lower heterozygosity than the j-th

individual that is n1� < n�1. Relationship inference criteria based

on this kinship coefficient is provided in Manichaikul et al.

(2010).

2.3.2 Privacy leak due to outlier allele pair counts

Our methodology, as described in Section 2.4 in detail, involves

hiding of genotype positions of a newly arrived member to prevent

inference of kinship relationship of family members. To do so,

positions wherein the two individuals are found to be hetero-

zygous are frequently hidden as it decreases the kinship coefficient

between two family members effectively. However, this alone

will cause another privacy leakage as the number of pos-

itions where the two family members are heterozygous will be

too small. Simply comparing this number to the population,

one could infer that the two individuals are indeed in the same

family.

To prevent such leakages, the model we propose chooses the re-

gions to mask such that among family members the pairwise counts

for each allele type do not decrease beyond the level of an outlier

value. We set these threshold values for the pairwise SNP configur-

ations that include at least one heterozygote genome, as these are

the regions to be hidden to decrease the kinship coefficients. We de-

note these numbers as o10, o11, and o12. Here, o10 indicates the out-

lier count for the allele pairs where one individual’s SNP type is 1

and the other individual’s SNP type is 0; and the other two numbers

indicate the outlier values for the indexed SNP configurations. We

estimate these outlier values from a population of randomly selected

unrelated individuals from the openSNP database as described in

Supplementary Material.

2.4 A utility maximizing privacy preserving approach for

protecting kinship
2.4.1 Utility of sharing genomic data

A good solution should maximize the genomic data to be shared

while minimizing the privacy risks associated with kinship among

stored family members. We define the utility of shared data for the

first m incoming members over a M-membered family retrospect-

ively as follows:

U ¼ V �m� x

V �M
; (2)

where x is the number of SNP positions that are masked in the

family. Here, V is the size of the set of genomic positions that are

not missing in all family members. The denominator represents

the total number of genomic positions shared by all family

members if no SNP positions were hidden. The nominator rep-

resents the number of positions shared after the masking.

Supplementary Figure S1 illustrates how this utility score is calcu-

lated. As more family members’ data is shared, the utility value in-

creases. The maximum utility that can be achieved when m of the

M members are in the database is m/M (when no positions are

withheld), and the minimum utility is 0 (when all shared positions

are hidden).

2.5 Protecting privacy for a three-member family
We would like to maximize utility for the family subject to privacy

constraints that ensures that the kinship information of the family is

preserved. We consider two types of privacy risks described in

Sections 2.3.1 and 2.3.2 in deciding which portions of the genome

of a newly added family member will be masked.

Maximizing utility in Equation (2) is equivalent to minimizing

the sum of number of positions hidden, which can be represented as

the sum of all positions masked with different SNP configurations.

This can be represented as x ¼
P

s2S xs, where S denotes the set of

all possible state sequence vectors. From onwards, we describe the

model for a three-member family for clarity; however, the formula-

tion applies to handle larger families. In Section 3, we solve this

problem for two families comprising five members each.

Consider a family f, whose members are the individuals i, j, k, in

the order of latest arrived member to the first arrived member. The

first incoming family member k has no relatives in the database,

thus her genomic data, gk, is shared without truncation. When the

second family member j arrives, to conceal the relationship between

j and k, certain parts of individual j’s genome will be withheld.

Because the kinship coefficient decreases significantly when n11 de-

creases, we hide the positions of the genome where sk¼1 and sj¼1.
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After hiding x11 positions, the new KING estimate between the indi-

viduals j and k, /0jk, is calculated as follows:

/0jk ¼
2 n11 � x11ð Þ � 4 n02 þ n20ð Þ � n1� � x11ð Þ þ n�1 � x11ð Þ

4 n�1 � x11ð Þ

Thus, we solve for x11 as below:

x11 ¼
2n11 � 4ðn02 þ n20Þ � n1� þ n�1ð1� 4/0jkÞÞ

2ð1� 2/0jkÞ
(3)

We can find the sufficient number of genomic positions to be hid-

den, x11 in individual j, by setting /0jk to the desired level and plug-

ging the other numbers that are calculated from the two genomes. If

/0jk is set to zero and x11<n11, this will decrease the relationship to

the level of two unrelated person. At this stage, the system should

also check whether the outlier constraints are violated. That is,

n11 � x11ð Þ � o11 should be satisfied. If that is not the case, the data-

base owner is alerted and the individual j is not added to the data-

base. If no outlier constraint is violated, x11 number of positions are

selected and hidden from the set of SNPs of individual j where both

k and j have SNP types equal to 1. Finally, this protected version of

the genome, g0j, is published in the database.

When the third individual i arrives at the database, the goal is to

share the i-th individual’s genome without compromising the

privacy of the entire family f, given that genomes g0j and gk are al-

ready in the database. The problem becomes more involved as the

size of the family grows. To hide the relationship between i and j,

we need to hide genomic positions where si ¼ 1 and sj ¼ 1, and

there is no restriction on the third individual’s genotype. Similarly,

to hide the relationship between i and k, we need to mask certain

number of positions, where the first and the last members’ SNPs

are 1 and the second comer can be of any SNP type. Thus, the pos-

itions to be concealed should be selected from the set of SNPs

such that the latest family member’s SNP type is 1 and at least

one of the two other members’ SNP type is 1. To denote the number

of such positions, we use the notation x1•• that is defined as

x110 þ x111 þ x112 þ x101 þ x121. These five configurations are the

only configurations that will affect at least one of the pairwise rela-

tionship’s kinship estimates. To maximize the utility we would need

to minimize x1•• in a three-member family.

We generate privacy constraints and outlier constraints in the

following sections for the case when the third member arrives. The

constraints are generated under the assumption that all the members

are related to each other in family f, but if there are some members

that are not blood related, i.e. maternal aunt and paternal aunt, no

privacy constraint need to be added for such pairs.

2.5.1 Constraints to prevent privacy leakage due to genomic

similarity

As new positions are hidden [due to the nature of the kinship coeffi-

cient in Equation (1)], the kinship estimates between individuals are

updated. We would like these estimates to be above a threshold

value, U, to conceal the actual kinship relationship. If U ¼ 0, the re-

lationships are hidden such that the people in the family are dis-

played as unrelated people. Recall i-th individual is the latest arrived

member of the family, we use x1•• for the total number of positions

that are masked from person i’s genome. Below, for all the pairwise

relations, (i, j), i;kð Þ, and (j, k) pairs, we first derive expressions

to indicate what the newly updated kinship estimates are after

hiding x1�� positions. Then, based on this expression, we derive

constraints that ensure the newly updated value is above the prede-

fined U value.

Let /0ij denote the new kinship estimate attained after masking.

/0ij is calculated as:

2 n11� � x11�ð Þ � 4 n20� þ n02�ð Þ � n1�� � x1••ð Þ þ n�1� � x11�ð Þ
4 n�1� � x11�ð Þ

where n�1� < n1�� and x1•• ¼ x110 þ x111 þ x112 þ x101 þ x121. This

kinship estimate can be bounded with a preset kinship U, such that

/0ij � U. Thus, the following inequality constraint can be derived.

2n11��4 n02�þn20�ð Þþ 1�4Uð Þn�1��n1�� � 2�4Uð Þx11��x101�x121

(4)

Similarly, we derive an inequality constraint between individuals i

and k after hiding positions where i and k are both heterozygote as

below:

2n1�1�4 n2�0þn0�2ð Þ�n1��þ 1�4Uð Þn��1� 2�4Uð Þx1�1�x110�x112

(5)

Lastly, the inequality constraint between individuals j and k is

derived:

2n�11�4 n�02þn�20ð Þ�n��1þ 1�4Uð Þn�1�� 1�4Uð Þx11�þ2x111�x1�1

(6)

These three constraints [Equations (4–6)], if satisfied concurrently,

will guarantee that the kinship estimates are above U for all pairwise

relationships.

2.5.2 Constraints to prevent privacy leakage due to pairwise allele

outlier values

As mentioned in Section 2.3.2, relationships can be revealed in the

database by probing the pairwise allele counts in the population.

Hiding positions from one of the family members decreases her pair-

wise allele counts with other family members and if they are too

low, this count may reveal the relationship. Thus, we define a set of

outlier constraints to guarantee that upon selecting which positions

to hide, the pairwise allele counts do not fall below this set of out-

lier threshold values. The three outlier constraints are defined as

follows:

0 � o11 � n11� � x110

0 � o11 � n1�0 � x110

0 � o11 � n�10 � x110:

There is also the trivial constraint that the number of positions

to hide in a certain SNP configuration cannot exceed the total num-

ber of SNPs with that configuration, 0 � x110 � n110. We can

rewrite these constraints in a more compact from as follows:

0 � x110 � u110, where u110 ¼ min n110; n11� � o11ð Þ; n1�0 � o10ð Þ;ð
n�10 � o10ð ÞÞ.

Similar constraints are derived for the other type of positions to

be held as well. These constraints together will ensure that as we

hide certain positions, the population statistics are not outliers.

2.5.3 Optimization model

Subject to the constraints defined in the previous two sections,

finding the number of positions to hide in each different position
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type can be cast as a integer linear optimization problem as

follows:

min x101 þ x111 þ x121 þ x110 þ x112

s:t:

(7)

2n11� � 4 n02� þ n20�ð Þ � n1�� þ 1� 4Uð Þn�1�
� 2� 4Uð Þx11� � x101 � x121

2n1�1 � 4 n2�0 þ n0�2ð Þ � n1�� þ 1� 4Uð Þn��1
� 2� 4Uð Þx1�1 � x110 � x112

2n�11 � 4 n�02 þ n�20ð Þ � n��1 þ 1� 4Uð Þn�1�
� 1� 4Uð Þx11� þ 2x111 � x1�1

0 � x110 � u110

0 � x111 � u111

0 � x112 � u112

0 � x101 � u101

0 � x121 � u121

x11� ¼ x111 þ x110 þ x112

x1�1 ¼ x111 þ x101 þ x121

x101;x111;x121;x110; x112 2 Z�0:

The first three constraints are kinship constraints derived in Section

2.5.1. The next five inequality constraints represent the outlier con-

straints as derived in Section 2.5.2.

This problem can be solved optimally if there is a feasible solu-

tion. When there are many close relatives in the family, as was the

case in the two families we tested the models on, the optimization

problem may not have a feasible solution that satisfies all the con-

straints. In these cases, we propose to relax the constraints and

alert the database owner about the amount of the privacy viola-

tion. Then, it is up to the database owner and/or the individual

whether to share their data once they are informed about the risks.

We solve the problem by relaxing one type of privacy constraints;

the kinship or outlier constraints. In this scenario one type of

constraints is strictly satisfied whereas the other type of con-

straint is relaxed. The overall idea is depicted in Supplementary

Figure S2.

2.5.4 Solution by relaxing outlier constraints

If the problem is not feasible with all the original constraints are

strictly satisfied, one might seek approximate solutions that min-

imally sacrifice strict privacy by relaxing the outlier constraints.

Thus, the eventual solution will not be strictly below the outlier

threshold values, but we ensure that these values shall deviate

as small as possible from the original set of outlier values. We

achieve this by introducing slack variables for every type of allele

pairs. The outlier constraints given in Section 2.5.2 are relaxed as

follows:

u110 ¼ min
n110; n11� � o11 � �1ð Þð Þ;

n1�0 � o10 � �2ð Þð Þ; n�10 � o10 � �2ð Þð Þ

0
@

1
A

u111 ¼ min
n111; n11� � o11 � �1ð Þð Þ;

n1�1 � o11 � �1ð Þð Þ; n�11 � o11 � �1ð Þð Þ

0
@

1
A

u112 ¼ min
n112; n11� � o11 � �1ð Þð Þ;

n1�2 � o12 � �3ð Þð Þ; n�12 � o12 � �3ð Þð Þ

0
@

1
A

u101 ¼ min
n101; n10� � o10 � �2ð Þð Þ;

n1�1 � o11 � �1ð Þð Þ; n�01 � o10 � �2ð Þð Þ

0
@

1
A

u121 ¼ min
n121; n12� � o12 � �3ð Þð Þ;

n1�1 � o11 � �1ð Þð Þ; n�21 � o12 � �3ð Þð Þ

0
@

1
A

(8)

In the above inequalities, �1 >¼ 0; �2 >¼ 0; and �3 >¼ 0 are slack

variables that control the relaxation of imposed constraints. This is

equivalent to decreasing the outlier values than the original set val-

ues by some amount as determined by the slack variables. We mod-

ify the optimization problem with these new constraints. Before

solving the original optimization problem, we solve the optimiza-

tion problem with the same constraints wherein the objective is to

minimize �1 þ �2 þ �3. Having found the minimum values of these

variables, we plug in them to obtain the relaxed outlier constraints

and solve the original optimization problem where the aim is to

minimize x101 þ x111 þ x121 þ x110 þ x112. This integer linear pro-

gramming problem can be solved optimally. We used IBM ILOG

CPLEX as the solver.

2.5.5 Solution by relaxing kinship constraints

We can also solve the same problem where all the outlier constraints

are satisfied but U (the maximum kinship estimate value allowed

among family members) is not required to be �0. Instead, U is

forced to deviate as small as possible from 0. For example, first-

degree relationships can be shown as second or third degree relatives

as opposed to requiring them to be unrelated. To solve this opti-

mization problem, we should find the minimum U value that

(a)

(b)

Fig. 2. Two family datasets. (a) Family A consists of person A, his father,

mother, and maternal aunt. (b) Family B consists of person B, his mother,

father, maternal grandmother, and paternal grandfather. No genotype infor-

mation is available for people denoted with empty squares or circles
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satisfies the constraints through a non-linear optimization problem

stated as follows:

min U

s:t:

2n11� � 4 n02� þ n20�ð Þ � n1�� þ 1� 4Uð Þn�1�
� 2� 4Uð Þx11� � x101 � x121

2n1�1 � 4 n2�0 þ n0�2ð Þ � n1�� þ 1� 4Uð Þn��1
� 2� 4Uð Þx1�1 � x110 � x112

2n�11 � 4 n�02 þ n�20ð Þ � n��1 þ 1� 4Uð Þn�1�
� 1� 4Uð Þx11� þ 2x111 � x1�1

U0 � U � 0:5

and the constraints derived from 9ð Þwith the new definitions in 10ð Þ:
(9)

The U0 is the kinship value attained when the optimization problem

is solved for only two members. If that is already some value >0, in

solving the three-member case, we only require U to be above that

value instead of 0. In the above problem, in addition to the x values,

U is also unknown. For this, we use the genetic algorithm solver

under Global Optimization Toolbox in Matlab. After finding the

optimal value of U from the model in Equation (9), the original opti-

mization problem in Equation (8) is solved to find the minimum

number of positions to mask.

2.6 SNP data and families
We evaluated our methodology on real genomic data of two fami-

lies; we will refer these families as fA, and fB. The genomic data of

fA members are publicly shared on a personal website by person

A (Corpas et al., 2013). The family consists of a person A, his

mother, father, maternal aunt, and his sister. The pedigree is

provided in Figure 2a. The second family fB (see Fig. 2b) is inferred

from openSNP data via hierarchical clustering as described in

Supplementary Material.

To infer family fB and to calculate outlier pairwise count, we

used 23andme data that is publicly available at the openSNP data-

base (downloaded on March 2015) in which individual identities are

anonymized. Files with sizes <15 MB are eliminated, as the genomic

data were limited. In total, SNP data of 1200 individuals is used. To

obtain the reference and alternate allele information, each file is con-

verted to VCF format by PLINK tool (Purcell et al., 2007).

Reference SNP ids chromosome, position, and genotype information

are extracted from VCF files. We used the genomic positions that

are common in all individuals for our analysis.

3 Results

We present results of solving the optimization problem on two fami-

lies fA and fB for different arrival sequences of the family members

using two approaches separately. We considered all sequential ar-

rival orders; here, we present the cases when person A (or person B)

arrives the first as these sequences are more challenging as person

A (person B) bears genomic similarity to all the other family mem-

bers. Solutions for the other arrival orders are provided in the

Supplementary Material.

The solutions below are displayed in a tree structure, the root in-

dicates the first comer and each branch represents a different arrival

sequence of the family members wherein each node represents a per-

son that arrived at that particular time step. A branch stops if no

feasible solution exists after the addition of the corresponding family

member. At each branch, we only consider adding family members

that are blood related at a particular node, as other people can be

trivially added.

3.1 Results on solving optimization problem by

satisfying kinship constraints
Here, we solve the optimization model by relaxing outlier con-

straints and satisfying kinship constraints. The new outlier values

that are obtained from the solution of the optimization model is

shown as the distance to the outlier values of the population in terms

of standard deviations (r). For example, if the solution denotes that

the outlier value o10 should be 2.50r lower to add the new member,

the solution is presented as o10 � 2:50r. The standard deviation val-

ues of the population for each allele pair counts for which one mem-

ber’s SNP type is 1 is as follows; 1432 where one person has SNP

type 1 and the other person has 0, 1581 where both individuals have

SNP type 1 and finally, 743 where one person has SNP type 1 and

the other person has SNP type 2.

Figure 3a shows all the possible sequences of arrival of the family

members to the database if person A is the first member arrived

while satisfying the imposed kinship constraints. At the first level of

the tree, the addition of parents is not allowed, because such an add-

ition can only occur if the outlier thresholds are almost 0. If the out-

lier constraints are ignored for U¼0, which enforces all family

members to be inferred as non-relatives, then �36.9% utility would

be achieved.

Unlike addition of parents, addition of further relatives as second

family member does not decrease the outlier constraints drastically.

We observe that the solution for the addition of the sister requires a

higher decrease in outlier threshold values compared to the solution

for addition of the maternal aunt. The reason behind these different

outcomes is due to the more distant relationship of the aunt and per-

son A. If the second added family member is the aunt, then the sister

can be the added as the third person. This arrival sequence {person

A- aunt- sister} achieves 56.4% utility. If the addition sequence is

{person A—sister—aunt}, the utility value is slightly higher, 56.7%,

and the minimum outlier values are lower compared to the former

sequence. The o12 value is 8.5r lower, o11 value is 1r lower, and o10

value is 2.75r lower in the latter sequence. This result indicates that

arrival sequences result in different feasible solutions when the rela-

tives hold different relationship degrees.

If the second added member is the sister and the third member is

one of the parents, then the outlier constraints have to be relaxed

too much to attain a feasible solution. In this case, we observed at

least 13.5r, 13.75r, and 7.75r leakage in o10; o11;o12, respectively.

We also observed that at any level of the tree, if a sequence includes

one of the parents, the outlier constraints are rendered very low;

therefore, the privacy is violated to a great extend in terms of the

outlier constraints.

Supplementary Figure S6 illustrates all possible arrival sequences

when person B is the first member to arrive at the database. Parents

can be added at the second level but the outlier values will be very

low, rising the risk of privacy impairment. In this case, it is not pos-

sible to add a third family member because the model is infeasible

for the given outlier constraints. If the second added family member

following person B is a second degree relative such as paternal

grandfather or maternal aunt, then adding this member is feasible.

This addition results in approximately 8r leakage in o11 value

and 38.1% utility. A small amount of difference is observed in the

utility and outlier values pertaining to the addition of maternal
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U

(a)

(b)

Fig. 3. Solutions when person A or person B arrives first. (a) The solutions for family A when the kinship constraints are preserved and the outlier constraints are

relaxed. All possible arrival sequences are shown, when the person A is the first added member. Downward arrows point to the subsequent arriving member to

the database. Check mark next to a node indicates that the individual could be successfully added without compromising the family’s privacy. If the family mem-

ber can be added successfully, utility at that stage is provided at the bottom of the newly added family member’s box. The relaxed outlier values returned from

the optimization problem’s solution are shown next to each box. (b) Solution when outlier constraints are satisfied and the kinship constraints are relaxed. All

possible arrival sequence of family B is shown, when the person B is the first added member. A successful addition means at least one degree decrease in rela-

tionship of the newest member with her relatives is attained. Cross mark indicates that even there is a feasible solution, there is at least one kinship value among

the family members that reveals the relationship. The minimum possible kinship value, U, that can be attained in the solution is added next to each person
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grandmother and paternal grandfather as the second members. At

the third level of the tree, two addition sequences are obtained: {per-

son B—paternal uncle—maternal aunt} and {person B—maternal

aunt—paternal uncle}. These sequences show that the second degree

relatives of the person B can be successfully added at any level of the

tree when the outlier constraints are relaxed.

3.2 Results on solving optimization problem by

satisfying outlier constraints
We present the results when the optimization problem is solved by

satisfying the outlier constraints and relaxing the kinship con-

straints. We proceed such that a person can be successfully added to

the database if the relationship of the corresponding individual to

the relatives can be reduced by at least one degree (e.g. a parent–off-

spring relationship is inferred as a 2nd or further degree relationship

after the removal of the SNPs).

Figure 3b displays the results for family fA when the optimization

problem is solved based on satisfying the outlier constraints and re-

laxation of the kinship constraints. We observe that if the parents of

person A arrive in the second step, it is impossible to hide the rela-

tionship. When more distant relatives such as a sister or a maternal

aunt arrives at the database after the arrival of person A, the kinship

coefficient cannot be decreased to the level of two unrelated individ-

uals, but the relationship can be hidden such that they are identified

as more distant relatives: person A—aunt relationship can be de-

ciphered as a 3rd degree relationship and sister—person A relation

can be decreased to a 2nd degree relative relationship. In the third

level of the tree, the parents of person A may not be added to the

database since there is no feasible solution. Additionally, the sister

cannot be added, thus first-degree members of person A are not

allowed to be added after the aunt. At this stage of the tree, only the

maternal aunt can be added safely, if the second added member is

the sister. This scenario achieves 56% utility. In this solution, person

A and the sister can be inferred as second degree relatives and the re-

lationships of the maternal aunt to person A and the sister are not

revealed. In the 4th level of the tree, none of the family members can

be added without hurting family’s privacy.

In Supplementary Figure S6, for family fB all the possible se-

quences corresponding to the addition of the family members to the

database are illustrated, when the person B arrives first. Similar to

the fA case, we observe that when a parent of the person B arrives at

the second step, the relationship cannot be hidden. However, if the

second added member is one of the grandparents, the addition is

rendered successfully; the grandparents and the person B can only

be inferred as third degree relatives. Since the person B has lower

kinship coefficient with his grandmother, the addition of the grand-

mother results in a slightly lower U value and a higher utility com-

pared to the addition of the paternal grandfather as the second

member. The third family member can only be added to the data-

base if that member is a second degree relative of person B. As

Figure 3b illustrates, if the second added person is the maternal

grandmother, the third added person can only be the paternal grand-

father or vice versa with an �57.6% utility and a maximum kinship

coefficient U ¼ 0:09 in the family. The addition of a fourth member

is not allowed, since none of the family members’ relationships can

be successfully concealed.

4 Discussion

On the two families we worked with, a solution to the optimization

problem that satisfies both types of privacy constraints is often not

found. The families we worked with have close relatives; such a so-

lution might be feasible if all family members are more distantly

related. We suggest two ways to solve the problem by imposing one

of the privacy constraints strictly, meanwhile relaxing the other.

Based on the results obtained from the two families, we observed

that the concurrent presence of parent and off-spring data in a data-

base constitutes a risk. On the one hand, sharing genomic data of

siblings is feasible without compromising privacy. On the other

hand, reducing the two siblings’ kinship to the level of two unrelated

individuals is not possible, but they can be disguised as if they have

a second-degree relationship. Genomic data belonging to further dis-

tant relatives can be successfully shared together. We observe that

the arrival sequence of the family members also affect the results.

For instance as shown in Supplementary Figure S5, the sequence

{person A, sister, maternal aunt} can be added to the database, but

when the arrival sequence is {person A, maternal aunt, sister}, a priv-

acy preserving dissemination is not possible.

When the outlier constraints are strictly satisfied and the kinship

constraints are relaxed, we observed that it is possible to share gen-

omic data of up to three people for both families. In family A the

siblings are interpreted as second-degree relatives such as aunt–

nephew or half-siblings, whereas aunt–nephew relations revealed as

unrelated. In family B, grandparent–grandchild relatedness can be

hidden as if it is a third-degree relationship such as cousins or great-

grandparents. For family A, if the kinship constraints are strictly sat-

isfied and the outlier constraints are relaxed, up to four people can

be added successfully without revealing the real relationships.

Further addition of a fifth member is possible but this can only be

achieved if the outlier constraints are almost neglected. For family

B, adding up to three family members was observed to be feasible.

An alternative to the proposed framework would be using en-

cryption techniques and secure computing platforms. However, en-

cryption contradicts with the public availability of genomic data.

Although encrypted computing techniques (e.g. homomorphic

encryption) allows limited number of operations on encrypted gen-

omic data, to run complex data mining techniques or genome-wide-

association studies, researchers need publicly available datasets.

Moreover, secure computing platforms relies on trust to a third

party that may not be accepted by data owners or legislation.

5 Conclusion and future work

Everyday genomic data are incorporated in various domains includ-

ing biomedical research, clinical care, and direct-to-consumer ser-

vices. Realizing the promise of genome sequencing in these domains

requires widespread motivation to share genomic data. As the nega-

tive stories accumulate, and the fear of potential misuse of genomic

data escalates, the public availability of genomic data can be se-

verely restricted by new regulations and/or by unwillingness among

potential donors. Therefore, to support research that involves the

handling of large-scale genomic data and to expand the ways in

which genomic information can be used, privacy issues should be

properly addressed. Implementing robust computational models

that enable the privacy-preserving dissemination of data is the crit-

ical ingredient. Towards this aim, in this work, we specifically focus

on privacy risks associated with the kinship of the individuals in gen-

omic databases.

The method developed here can be extended in future work in

different directions. In this work, we worked with kinship privacy

risk in isolation of other genomic privacy risks. For example, cer-

tain positions reveal more information as they are shown to be
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associated with disease states or predisposition. Based on the level of

information that a position can reveal, we can assign importance

weights to it. This information can then be incorporated in the

model such that the critical positions are preferably masked.

However, one should keep in mind that, we do not have the com-

plete knowledge of the genotype-phenotype interactions. A position

that seems to release no information about the individual can be

associated with a critical disease or behavioral treat in the future.

The utility function we propose here is generic, depending on the ap-

plication it can be modified such that certain positions are down

weighted or up weighted; accordingly the objective of the optimiza-

tion model would need to be redefined. The current work is disre-

garding the statistical dependencies between genomic positions. The

proposed model could be improved by incorporating these correl-

ation structures. As a fourth line of work, the model we developed

are based on KING kinship estimator (Manichaikul et al., 2010);

thus, is limited with the assumptions of the KING, such as all pos-

itions affect the kinship equally, while we would expect rare variants

to be more influential in inferring kins. As a future work, the frame-

work can be adapted to other kinship estimates by deriving privacy

constraints based on these kinship metrics and updating the opti-

mization models accordingly.
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Tramèr,F. et al. (2015) Differential privacy with bounded priors: reconciling

utility and privacy in genome-wide association studies. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications

Security, pp. 1286–1297. ACM.

Wan,Z. et al. (2017) Expanding access to large-scale genomic data while

promoting privacy: a game theoretic approach. Am. J. Hum. Genet., 100,

316–322.

Xie,W. et al. (2014) Securema: protecting participant privacy in genetic associ-

ation meta-analysis. Bioinformatics, 30, 3334–3341.

Yu,F. et al. (2014) Scalable privacy-preserving data sharing methodology for

genome-wide association studies. J. Biomed. Inform., 50, 133–141.

Protecting kinship in genomic databases 9

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/doi/10.1093/bioinformatics/btx568/4124858
by Bilkent University Library (BILK) user
on 09 November 2017

https://www.vox.com/2014/9/9/5975653/with-genetic-testing-i-gave-my-parents-the-gift-of-divorce-23andme
https://www.vox.com/2014/9/9/5975653/with-genetic-testing-i-gave-my-parents-the-gift-of-divorce-23andme

