
1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

1

Cryptographic Solutions for Credibility and
Liability Issues of Genomic Data

Erman Ayday, Member, IEEE, Qiang Tang, and Arif Yilmaz, Student Member, IEEE

Abstract—In this work, we consider a scenario that includes an individual sharing his genomic data (or results obtained from his
genomic data) with a service provider. In this scenario, (i) the service provider wants to make sure that received genomic data (or
results) in fact belongs to the corresponding individual (and computed correctly), (ii) the individual wants to provide a digital consent
along with his data specifying whether the service provider is allowed to further share his data, and (iii) if his data is shared without his
consent, the individual wants to determine the service provider that is responsible for this leakage. We propose two schemes based on
homomorphic signature and aggregate signature that links the information about the legitimacy of the data to the consent and the
phenotype of the individual. Thus, to verify the data, each party also needs to use the correct consent and phenotype of the individual
who owns the data.

Index Terms—Privacy, Security, Genomic privacy, Liability, Credibility.

F

1 INTRODUCTION

With the rapid decrease in the cost of whole genome se-
quencing and genotyping, today, genomic data is widely
used in healthcare, research, and even in recreational ge-
nomics. However, benefits due to this wide use of genomic
data come along with potential threats against individuals’
privacy. Genomic data of an individual includes privacy-
sensitive data about him such as his physical characteristics,
predisposition to diseases, and family members. Therefore,
it is crucial to protect privacy of an individual’s genomic
data while allowing him to utilize his data to receive cer-
tain healthcare or recreational services. As a result, there
has been significant amount of research efforts on privacy-
preserving processing and secure storage of genomic data.
However, the credibility and liability issues on genomic data
have not been widely considered in the literature.

Lots of individuals share their (anonymized) genomic
data for research purposes. Such donations are very impor-
tant for the research community as researchers need large
amounts of genomic data samples to increase the statistical
power of their studies. Similarly, some service providers
make computations on genomic data of individuals and
they are only interested in the results of such computations
(rather than the raw genomic data). However, researchers
(or service providers) want to make sure that either (i) a
donated genome indeed belongs to a particular individual,
or (ii) the results of a genetic test is indeed computed from
the correct data of the particular individual. In this work,

• E. Ayday and A. Yilmaz with the Computer Engineering Department,
Bilkent University, Ankara, Turkey. Q. Tang is with Luxembourg Institute
of Science and Technology, L-4362 Esch-sur-Alzette, Luxembourg.
E-mail: erman@cs.bilkent.edu.tr,qiang.tang@list.lu

• Erman Ayday is supported by a funding from the European Unions
Horizon 2020 research and innovation programme under the Marie
Skodowska-Curie grant agreement No. 707135 and by the Scientific and
Technological Research Council of Turkey, TUBITAK, under Grant No.
115E766. Qiang Tang is supported by a junior CORE grant from the
National Research Fund, Luxembourg.

we study this credibility issue and propose cryptographic
techniques that would enable a researcher (or a service
provider) to verify the credibility of a donated genome (or a
computed genetic test).

Furthermore, as an individual donates his genomic data
for research (to a particular entity) or undergoes a genetic
test from a service provider, he would like to make sure
that neither his genomic data nor his genetic test results are
going to be observed by other individuals. Privacy leakage
occurs when genomic data of the individual or his genetic
test results are publicly shared by the service providers that
collect such data at the first place. In such incidents, it is
important to understand whom to keep liable due to such a
leakage. Thus, (i) the individual wants to provide a digital
consent along with his data specifying whether the service
provider is allowed to further share his data, and (ii) if his
data is shared without his consent, the individual wants to
determine the service provider that is responsible for this
leakage.

Our main assumption is that the service provider (which
receives genomic data or genetic test results from an individ-
ual) should prove the legitimacy of the data when sharing it
with other entities. Otherwise, credibility of the shared data
is not guaranteed, and hence data is not valuable. Under this
assumption, if the service provider makes the data public
(without the consent of the individual), it will be detected by
the individual. Similarly, if the service provider tries to share
the data offline with another (non-malicious) entity, that
entity will understand that the corresponding data is being
shared without the consent of the data owner. Note however
that if the unauthorized offline sharing of genomic data is
between a malicious service provider and other malicious
service providers, there is no technical solution to detect
this leakage.

A real life example highlighting the use of the proposed
technique may be described as follows. Alice obtains her
sequenced genomic data from a certified institution. At
some point, Alice wants to share a part of her genomic data

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

2

with a research institution or a pharmaceutical company
(e.g., in order to enrol in a research endeavour in return
of some compensation). The research institution, both due
to the accuracy of the research and for the sake of the com-
pensation paid, wants to make sure that data received from
Alice indeed belongs to Alice (with a certain phenotype).
One contribution of our proposed system is to prove to the
research institution that data really belongs to the individual
who provides the data (either anonymously or by revealing
the identity). Furthermore, Alice, after she provides her data
to the research institution, would still want to have control
on her data. In other words, Alice wants to have control on
further re-sharing of her data by the research institution and
she wants to detect a malicious research institution in case
of a re-sharing of her data without her consent. Another
contribution of our proposed system is to make sure such
unconsented re-sharings of data will be detected and the
corresponding malicious research institution will be kept
liable due to this behavior.

1.1 Contribution

In a nutshell, we propose two schemes to share genomic
data and genetic test results, respectively. The proposed
schemes are based on both homomorphic signature and
aggregate signature that links the information about the
legitimacy of the data to the consent and the phenotype
(or the identity) of the individual. Thus, in order to verify
the data, a party also needs to use the correct consent and
phenotype of the individual who owns the data.

One proposed scheme allows the service providers to
check the validity of individuals’ genomic data. The other
proposed scheme allows service providers to conduct ge-
netic tests on individuals’ data and be assured that the test
is conducted accurately. The adoption of homomorphic sig-
nature enables the individual to honestly share any subset of
the authenticated data or the test results without interacting
with the authority. Moreover, it guarantees that the individ-
ual does not leak unnecessary information when sharing the
test results. The adoption of aggregate signature efficiently
prevents illegal (or unauthorized) sharing of genomic data
by the service providers. In such a case, either the entity
which receives the data understands that data is shared
without the consent of the data owner, or the data owner can
understand which service provider leaked his data without
his consent, and hence he can hold that party liable of the
leakage.

We note that the main novelties of the proposed work
are the proposed system, combination of homomorphic
and aggregate signatures, and application of the proposed
system for genomic data. We use existing cryptographic
primitives to build the proposed system (namely homo-
morphic and aggregate signatures), however, the proposed
system is not a straightforward use of such cryptographic
tools. In general, sharing privacy-sensitive data between
entities is an emerging research area. The main differences
of genomic data with respect to other types of sensitive data
can be summarized as follows: (i) includes privacy-sensitive
information such as predisposition to serious diseases, (ii)
includes information about the family members, (iii) it is
not revokable (and hence, it is crucial to make sure that it is

not leaked), (iv) it is typically shared partially (as different
parts of it or different computations on it is requested by
different parties), (v) its credibility is very important for the
parties that use it (e.g., for research). The proposed system
brings solutions for many of the aforementioned unique
characteristics of genomic data. That is, we bring a solution
for the liability and credibility issues that may raise during
sharing of genomic data by developing a novel application
of both homomorphic and aggregate signatures.

We emphasize that the proposed schemes can be easily
adopted by existing works on privacy-preserving process-
ing of genomic data in order to have a complete pipeline.
The rest of the paper is organized as follows. In the next
section, we discuss the related work on security/privacy
of genomic data and content ownership techniques. In Sec-
tion 3, we briefly provide background information on ho-
momorphic signatures, aggregate signatures, and genomics.
In Section 4, we introduce our system and threat models.
In Section 5, we provide the details of the solution for
sharing genomic data along with the security analysis. In
Section 6, we describe the protocol for sharing the results of
a genetic test. In Section 7, we discuss the security properties
of the solution and evaluate the practicality of the proposed
scheme. Finally, in Section 8, we conclude the paper.

2 RELATED WORK

There have been several works on security and privacy
of genomic data. However, as mentioned, credibility and
liability issues of genomic data have not been considered in
previous work. We briefly summarize the existing efforts on
security/privacy of genomic data in the following.

One line of investigation is represented by works fo-
cusing on private clinical genomics. Baldi et al. presented
efficient algorithms for privacy-preserving testing on full
genomes, including paternity and ancestry testing, and
the testing of point mutations (single nucleotide polymor-
phisms - SNPs) for partner compatibility and personalized
medicine [1]. Ayday et al. proposed a scheme to protect the
privacy of users’ genomic data yet enable medical units to
access the genomic data in order to conduct medical tests or
to develop personalized medicine methods [2]. Karvelas et
al. proposed using the oblivious RAM mechanisms to access
genomic data (that is stored at a third party) and secure two-
party computation protocols to compute various functional-
ities on the data [3]. Recently, Wang et al. proposed private
edit distance protocols to find similar patients (e.g., across
several hospitals) [4]. To provide secure storage and retrieval
of genomic data, Ayday et al. proposed techniques for the
privacy-preserving storage and retrieval of raw-genomic
data [5], and Huang et al. proposed a scheme that would
guarantee long-term security (in an information-theoretical
sense) for genomic data [6].

Another area of interest addresses the problem of pro-
tecting genomic privacy and still allowing for both basic
and translational medical research on the data. It has been
shown that standard anonymization techniques are ineffec-
tive on genomic data [7]. It has also been shown that the
identity of a participant of a genomic study can be revealed
by using a second sample, that is, part of the DNA informa-
tion from the individual and the results of the corresponding

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

3

clinical study [8]. Furthermore, Humbert et al. evaluated
the genomic privacy of an individual threatened by his or
her relatives revealing their genomes [9]. As a response to
these threats, a few solutions have been proposed. These
can be put in three main categories: (i) techniques based
on differential privacy, in which a controlled noise is added
to the result of a query (to a genomic database) [10], (ii)
techniques based on cryptography, in which the use of
homomorphic encryption, secure hardware, or secure mul-
tiparty computation are proposed for privacy-preserving
genomic research [11], [12], and (iii) techniques based on
optimization, in which the goal is to maximize the amount
of publicly shared genomic data and also comply to the
privacy preferences of individuals.

There have also been many attempts to prove the cred-
ibility (or authenticity) of a given message or document.
The most common tools to provide this functionality are
digital signatures [13]. Digital signatures are widely used
for software distribution, financial transactions, and in other
cases in which it is important to detect forgery or tampering.
However, using a digital signature to prove the credibility
of a genome has two main disadvantages: (i) digital sig-
nature can reveal the identity of the genome donor, and
(ii) genomic data is usually shared or donated partially,
but the signature is typically computed over the whole
data at the data generator side (e.g., sequencing facility).
On the other hand, liability issues of a digital content are
typically addressed by using a watermarking technique on
the document [14]. However, (i) digital watermarking tech-
niques are proved to be functional for multimedia content,
but not for informative text, (ii) watermarking techniques
typically include injecting some level of noise to the data,
which might not be tolerated for health-related data, and
(iii) a watermark is typically included on the whole file (e.g.,
image), but genomic data can be partially shared.

3 PRELIMINARIES

In this section, we provide background information for
homomorphic and aggregate signatures (which are the main
building blocks of our proposed schemes) and genomics in
general.

3.1 Signature Schemes

Homomorphic signatures. Similar to homomorphic encryp-
tion scheme which enables computation on encrypted data,
homomorphic signature scheme enables computation on
signed data. Suppose a user Alice has a set of messages
{m1, · · · ,mk}. She can (independently) sign each data ele-
ment and store the signatures at a cloud server. Later, Alice
can ask the server to compute authenticated functions of the
signed data (e.g., a signature for the mean value of the mes-
sages), solely based on the individual signatures. Given the
mean value and the signature from the server, any user can
verify the signature. Many homomorphic signature schemes
have been proposed in the literature, as surveyed in [15].
Next, we briefly introduce the Boneh-Freeman linearly ho-
momorphic signature scheme (Setup,Sign,Verify,Evaluate)

from [16] that we will use in this work1. The scheme is
detailed in Appendix A.

• Setup(1n, k). On input a security parameter n and
a dataset size k, this algorithm outputs a pub-
lic/private key pair (pkh, skh). The parameter k de-
fines how many signatures can be involved in the
homomorphic operation. The message space is Fnp ,
where p is a prime number, and signatures are short
vectors in Zn. A function f ∈ F is encoded as
〈f〉 = (c1, · · · , ck) ∈ Zk, where F includes all Fp-
linear functions on k-tuples of messages in Fp.

• Sign(skh, τ,m, i). On input a secret key skh, a tag
τ ∈ {0, 1}n, a message m ∈ Fnp , and an index i,
this algorithm outputs a signature σ. Note that τ can
be considered as an identifier of the dataset that m
belongs to, while i is the index of m in this dataset.
item Verify(pkh, τ,m, σ, f). On input a public key
pkh, a tag τ ∈ {0, 1}n, a message m ∈ Fnp , a signature
σ ∈ Zn, and a function f ∈ F , this algorithm outputs
1 (accept) or 0 (reject).

• Evaluate(pkh, τ, f,−→σ). On input a public key pkh, a
tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, · · · , ck) ∈ Zk, and a tuple of signatures −→σ =
(σ1, · · · , σk), the algorithm outputs σ =

∑k
i=1 ciσi.

Two security properties are defined for homomorphic sig-
nature: unforgeability and context-hiding. Informally, the un-
forgeability property implies that an attacker will not be
able to forge a signature for a new message with an existing
tag or any message under a new tag τ ′ (generated by
the attacker himself). Moreover, the attacker will not be
able to forge a signature for a message which is not equal
to the evaluation of f on the existing signed messages.
Suppose that −→σ = (σ1, · · · , σk) are the signatures for
messages in {m1, · · · ,mk} with respect to a tag τ , then
Verify(pkh, τ,m, σ, f) = 0 if m 6=

∑k
i=1 fimi. The context-

hiding property implies that the signature σ, namely the
output of Evaluate, does not leak more information about
{m1, · · · ,mk} than

∑k
i=1 fimi.

Aggregate signatures. To improve the efficiency of cas-
caded sharing of SNPs and test results, we also use
aggregate signatures. Suppose there are N users, de-
noted as {U1, . . . , UN}, of an aggregate signature scheme
(Setup,KeyGen,Sign,Verify,Aggregate). Suppose that each
user Ui, with the key pair (pkai, sk

a
i), generates a signa-

ture σi = Sign(skai,mi) for message mi. Then, given σi
(1 ≤ i ≤ N) values from all users, any entity can run
Aggregate to aggregate them into a single signature σagg .
With pkai,mi (1 ≤ i ≤ N) and σagg , any entity can verify
whether these signatures are valid or not. In this paper, we
use the Boneh-Lynn-Shacham aggregate signature scheme
[17], which achieves standard unforgeability property. The
scheme is detailed in Appendix B.

3.2 Genomics Background
The human genome is encoded in double stranded
DNA molecules consisting of two complementary polymer

1. We note that other similar homomorphic signature schemes can
also be used apparently.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

4

chains. Each chain consists of simple units called nucleotides
(A,C,G,T). Even though most of the DNA sequence is con-
served across the whole human population, around 0.5% of
each person’s DNA (which corresponds to several millions
of nucleotides) is different from the reference genome, ow-
ing to genetic variations. Single nucleotide polymorphism
(SNP) is the most common DNA variation. A SNP is a
position in the genome holding a nucleotide that varies
between individuals and there are approximately 4 million
SNPs in each individual. Multiple Genome Wide Associa-
tion Studies (GWAS) performed in recent years have shown
that a patient’s susceptibility to particular diseases can be
(partially) predicted from sets of his SNPs. Thus, leakage of
SNPs often poses a significant threat to individual privacy.

Each SNP position includes two alleles (i.e., two nu-
cleotides) and everyone inherits one allele of every SNP
position from each of his parents. If an individual receives
the same allele from both parents, he is said to be ho-
mozygous for that SNP position. If, however, he inherits
a different allele from each parent (one minor and one
major), he is called heterozygous. Depending on the alleles
the individual inherits from his parents, the content of a
SNP position can be simply represented as the number of
minor alleles it possesses, i.e., 0, 1, or 2. A service provider
may run various linear tests on the SNPs of an individual.
For example, a service provider may compute the predicted
susceptibility of patient P for disease X , SXP , by using
weighted averaging [2] as follows:

SXP =
∑
i∈ϕX

wi
SNPP

i
(X)× SNPPi , (1)

where, ϕX includes the indices of SNPs that are relevant
for disease X and wi

j(X) represents the contribution of
different states of SNP j (i.e., 0, 1, or 2) for disease X .

4 SYSTEM AND SECURITY MODELS

Here we describe the system model, threat model, and
the initialization for the proposed scheme. Frequently used
symbols and notations are presented in Table 1.

4.1 The System Model

We assume the existence of multiple certified institutions
(CIs), individuals, and service providers (SPs) in the system.
For the sake of simplicity, we will describe the proposed
scheme using a single CI, individual (Alice), and SP. Our
proposed system model is also illustrated in Fig. 1.

The CI is mainly responsible for sequencing, encrypting,
and signing the sequenced data. In this work, we do not
consider encryption at the CI, as it is not the main focus
of the paper. However, there has been several works in the
literature that cover such encryption techniques. Our pro-
posed scheme can easily be adopted by one of such schemes
to provide a complete pipeline. Furthermore, it is worth
noting that a certified institution for sequencing has been
proposed in many existing works on genomic privacy [2].
Having such a CI is also unavoidable in today’s sequencing
technology. In practice, the SP can be a medical institution,
a genetic researcher, or a direct-to-customer (DTC) service
provider. The SP is mainly interested in receiving a portion

Certified Institution (CI)

𝒔𝒌𝑪𝑰
𝒉 , 𝒑𝒌𝑪𝑰

𝒉

Alice
𝒔𝒌𝑨

𝒂 , 𝒑𝒌𝑨
𝒂

Service Provider (SP)
𝒔𝒌𝑺𝑷

𝒂 , 𝒑𝒌𝑺𝑷
𝒂

Fig. 1. Proposed System Model

of Alice’s genome (e.g., for research) or the result of a
(linear) genetic test that is conducted on Alice’s genome.
It has been shown that the results of such genetic tests are
particularly important to determine (i) the predisposition of
an individual for different diseases, or (ii) the exact dose
of a drug that will be prescribed to an individual. Alice,
on the other hand, is interested in either (i) enrolling in a
genetic research initiative by donating a part of her genome
(e.g., a subset of her SNPs), (ii) sharing a part of her genome
with a medical institution for treatment, or (iii) receiving a
service based on the result of a genetic test that will be run
on her genome. In all these scenarios, Alice wants to share
her data either anonymously (without her real identity)
or with her real identity. Furthermore, she also wants to
provide a consent denoting whether the SP can further share
the genomic data it received from Alice with other entities
(either anonymously or with the real identity of Alice).

When the system is set up, we assume the following keys
have been generated and certified by a certificate authority
(CA).

• The CI generates a key pair (skhCI , pk
h
CI) for

the Boneh-Freeman homomorphic signature scheme.
During the key generation, the CI should set the
parameters according to the pre-defined sequencing
tasks. Suppose the set of SNPs for Alice is G with the
size |G|, then the k parameter (number of signatures
that can be involved in the homomorphic operation)
should be |G| + 2, required by the proposed pro-
tocols. The parameter p (in Section 3.1) should be
selected such that it makes equality (3), defined in
Section 5.1, hold with very small probability.

• Alice generates a key pair (skaA, pk
a
A) for the Boneh-

Lynn-Shacham aggregate signature scheme.
• The SP generates a key pair (skaSP , pk

a
SP) for the

Boneh-Lynn-Shacham aggregate signature scheme.

As a standard practice, we assume the CA generates a
certificate for every public key and is responsible for all
maintenance issues. For simplicity, we omit the details here.
With respect to Alice’s public key pkaA, we assume the
associated certificate CertA does not contain the Alice’s real
identity IDA because we want to allow Alice to anony-
mously share her data (when desired). However, we require
the CA to issue a specific certificate Certpk−id−A to link
IDA and pkaA.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

5

(skhCI , pk
h
CI) Public/private key pair of the CI for the Boneh-Freeman homomorphic signature scheme

(skaA, pk
a
A) Public/private key pair of Alice for the Boneh-Lynn-Shacham aggregate signature scheme

(skaSP , pk
a
SP) Public/private key pair of the SP for the Boneh-Lynn-Shacham aggregate signature scheme

G Set of SNPs for Alice
IDA Alice’s real identity
CertA Certificate associated to Alice’s public key pkaA (does not contain Alice’s real identity)

Certpk−id−A Certificate issued by the CA to IDA to pkaA
gi The value of SNP i, i ∈ G and gi ∈ {0, 1, 2}

IDSP The identity of the SP
CA,SP (t) The actual consent vector ({“do not share”, “share anonymously”, “share non-anonymously”})
Ms

i Message format for SNP i, Ms
i = (IDA, gi, 0, · · · , 0)

Mc Message format for the consent, Mc = (IDA||CA,SP (t)||IDSP)
PA Vector representing Alice’s phenotype
RA Anonymization factor for anonymous sharing, RA = (`A, 0, 0, · · · , 0)
Ms

i Anonymized message format for SNP i, Ms
i = (IDA − `A, gi, 0, · · · , 0)

Si Signature on the anonymized SNP i, Si = Sign(skhCI , τA,M
s
i , i)

TA Signature on the anonymization factor RA, TA = Sign(skhCI , τA, R
A, |G|+ 1)

DA Signature on the identity (IDA) and phenotype (PA) of Alice, DA = Sign(skhCI , τA, (IDA, PA, 0, · · · , 0), |G|+ 2)

σ∗
Combined signature on Si values, TA, and DA generated by Alice using the homomorphic properties of the Boneh-Freeman
homomorphic signature scheme

σ′ Signature generated by Alice on her consent (Mc) by using the Boneh-Lynn-Shacham aggregate signature scheme
(w1, · · · , w|G|) Weights for the genetic test on Alice’s SNPs

m∗ Result of the genetic test on Alice’s SNPs
TABLE 1

Symbols and notations used in this work.

4.2 Threat Model

To be realistic and avoid single point of failure, we assume
there are two trust anchors in the system. First, all parties
trust the CA(s) to certify the public keys used to protect
genomic data, as shown in Fig. 2. In reality, the CA(s) can be
government agencies or entities endorsed by such agencies.
We could even require the CI to be certified by more than
one CAs. For simplicity, we assume there is only one CA in
our discussion. Second, all parties trust the CI to generate
genomic data (via sequencing) and link the generated data
to individual users, as shown in Fig. 3. That is, the CI does
the sequencing of the individual by taking a biological sam-
ple from the individual when the individual is physically
present at the CI. The sequencing part of the pipeline is the
less secure part as admitted by many existing work. Thus,
one has to be physically present at the CI for sequencing. If
physical presence is not needed for sequencing, anyone can
send anyone else’s sample, which is not desired at all. Thus,
this physical presence requirement at the CI guarantees that
the user cannot provide incorrect data (that does not belong
to herself) during the protocol. Currently sequencing centers
do not sequence anyone without physical presence. One
exception is the direct-to-consumer (DTC) service providers,
but (i) DTC providers do not do full sequencing, and (ii) the
reliability of their data is questionable. Once the CI takes
the sample for sequencing, it also does the verification of
the phenotype of the sequenced individual.

Since we want to focus on the credibility and liability
issues, we simply assume there are secure communication
channels between all parties. Therefore, an outside attacker
will neither learn the genomic data and test results (con-
fidentiality) nor modify them (integrity). Under these as-
sumptions, we mainly consider two types of attacks in our
security evaluation.

• Credibility attack. A malicious party (e.g., a user or
SP) may try to provide modified genomic data or
test results in participating in genomic research. In
practice, a user may provide fake genomic data or
test results to get compensation from the government

Trust anchor for
Public key certification

SPCIUser

Fig. 2. Trust model between the certificate authority (CA), the user, the
certified institution (CI), and the service provider (SP).

Trust anchor for
SNPs certification

SP-N

CI

User SP-1

Fig. 3. Trust model between the certified institution (CI), the user, and
the service provider (SP).

(or a pharmaceutical company), and a malicious SP
may forward modified genomic data or test results
to another SP to mislead the latter.

• Liability attack. A malicious party (e.g., a SP or CI)
may try to forge a user’s consent in order to share
his/her genomic data or test results with another
honest party. As mentioned before, if two malicious
parties want to share a user’s data at their hands,
we do not have technical way to stop it and should
resort to other countermeasures.

We note that in neither of our proposed schemes, we

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

6

require the SP to play by the book. That is, the SP can
be a malicious institution that wants to (i) modify Alice’s
genomic data and share it with other parties, or (ii) share
Alice’s genomic data publicly or with other parties without
the consent of Alice and still get away with this behavior.

4.3 Initialization
We have two message formats in the proposed scheme
representing the SNPs and the consent.

• The message format of SNP i of Alice is denoted
as an n-tuple Ms

i = (IDA, gi, 0, · · · , 0), where IDA

is the Alice’s identity and gi is the value of SNP i
(i ∈ G and gi ∈ {0, 1, 2}). The (n − 2) 0s in Ms

i are
to meet the message format of the Boneh-Freeman
homomorphic signature scheme.

• The message format of consent is represented as
M c = (IDA||CA,SP (t)||IDSP), where IDSP is the
identity of the SP for the corresponding transaction,
and CA,SP (t) represents the actual consent. In its
simplest form, CA,SP (t) can be {“do not share”,
“share anonymously”, “share non-anonymously”},
and can be defined freely. We assume CA,SP (t) =
(c1, c2, c3), where ci ∈ {0, 1}, and at any instant,
CA,SP (t) vector includes a single “1” (i.e., only one
of the ci values is equal to “1” and the others are
“0”).

After the setup, Alice and the CI interact as follows for
Alice to register at the CI.

1) Alice sends her identity IDA, her phonotype PA,
her public key pkaA and associated certificate
CertA, and Certpk−id−A to the CI.

2) The CI validates the following facts: Alice owns the
phonotype PA, the certificate CertA for pkaA is cor-
rect, and Certpk−id−A is valid and links IDA and
pkaA. If the validation passes, the CI selects τA ∈
{0, 1}n and sends it to Alice. Note that n is the secu-
rity parameter of the Boneh-Freeman homomorphic
signature scheme. At the end, the CI establishes
a record (IDA, PA, pk

a
A, CertA, Certpk−id−A, τA)

for Alice. The CI publishes pkaA, τA so that any
entity can see the link between them.

At any time, Alice provides her biological sample to
the CI, which will then sequence her genome and sign the
results. As discussed before (due to the current sequencing
policies), the sequencing operation requires Alice to be
physically present at the CI and provide her biological sam-
ple. During this process, the CI also verifies the phenotype
of Alice (PA) and adds this information to Alice’s record as
well. In more detail, Alice and the CI perform the following
protocol shown in Fig. 4.

1) Alice sends her biological sample along with IDA

and PA to the CI.
2) The CI does the sequencing and determines the

SNPs in G.
3) The CI constructs Ms

i = (IDA, gi, 0, · · · , 0) for each
SNP i ∈ G.

4) The CI selects the anonymization factor RA =

(`A, 0, · · · , 0) where `A
$← Zp which means `A

is chosen from Zp uniformly at random. The
anonymization factor is used when Alice wants to
share her data anonymously.

5) The CI constructs anonymized SNPs Ms
i = (IDA −

`A, gi, 0, · · · , 0) for every i ∈ G.
6) The CI signs each anonymized SNP message using

homomorphic signature scheme and skhCI to obtain
Si = Sign(skhCI , τA,Ms

i , i) for every i ∈ G.
7) The CI signs the anonymization factor RA to obtain

TA = Sign(skhCI , τA, R
A, |G|+ 1).

8) The CI verifies Alice’s phenotype (that Alice in-
deed has the phenotype PA). This process is also
done while Alice is physically present at the CI.
We assume that the PA vector is of size α and
it is represented as PA = (p1A, p

2
A, . . . , p

α
A), where

piA ∈ {0, 1}. That is, each vector entity represents
the existence of a particular phenotype and if Al-
ice has the corresponding phenotype, that entry is
marked as “1”. once the phenotype is verified, the
CI also adds PA to Alice’s record.

9) The CI signs the ID of Alice along with
her phenotype information to obtain DA =
Sign(skhCI , τA, (IDA, PA, 0, · · · , 0), |G|+ 2).

10) The CI sends anonymized SNPs, corresponding sig-
natures (i.e. Si values), the anonymization factor
(i.e. RA), TA, and DA to Alice.

11) Alice verifies all received signatures.

To facilitate the following discussions, we define a mes-
sage vector

−→
M and a signature vector −→σ with |G| + 2

elements as follows.
−→
M = (Ms

1 , · · · ,Ms
|G|, R

A, (IDA, PA, 0, · · · , 0)),

−→σ = (S1, · · · , S|G|, TA, DA)

5 PROTOCOL FOR SHARING SNPS

If Alice wants to share her SNPs with the SP non-
anonymously, they engage in the protocol shown in Fig. 5.
In more detail, the protocol takes the following steps.

1) The SP sends the indices of the SNPs it requests,
denoted by I = {i1, · · · , it}.

2) Alice retrieves the corresponding anonymized SNPs
Ms
j (j ∈ I) along with the corresponding anonymity

factor RA.
3) Alice generates |G| + 2 random coefficients to

construct a function f which has the encoding
form 〈f〉 = (f1, · · · , f|G|+2). The generation of f is
detailed below.

Let PF be a Hash function, which outputs
|G| + 2 numbers r1, · · · , r|G|+2. When Alice
generates 〈f〉 = (f1, · · · , f|G|+2) ∈ Z|G|+2,
she first generates r1, · · · , r|G|+2 using
pkA||pkSP ||τA||i1|| · · · ||it||Ms

i1
|| · · · ||Ms

it
||RA||IDA||PA

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

7

Certified Institution (CI)

𝒔𝒌𝑪𝑰
𝒉 , 𝒑𝒌𝑪𝑰

𝒉
Alice

𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice

Biological sample and 𝑰𝑫𝑨, 𝑷𝑨

Do the sequencing
Construct:
- set of SNPs 𝑴𝒊

𝒔 𝒊 ∈ G
- anonymization factor 𝑹𝑨

- set of anonymized SNPs 𝑴𝒊
𝒔 𝒊 ∈ G

Sign (using 𝒔𝒌𝑪𝑰
𝒉)

- each anonymized SNP to get 𝑺𝒊
- anonymization factor to get 𝑻𝑨
- 𝑰𝑫𝑨 and 𝑷𝑨 to get 𝑫𝑨

𝑴𝒊
𝒔 𝒊 ∈ G , 𝑺𝒊 𝒊 ∈ G , 𝑹𝑨, 𝑻𝑨, 𝑫𝑨

Verify signatures (using 𝒑𝒌𝑪𝑰
𝒉)

Fig. 4. Genome Sequencing between Alice and the CI.

as input. Then, she sets fij = rij for every requested
SNP in I, sets f|G|+1 = r|G|+1, f|G|+2 := r|G|+2,
and sets fx = 0 for other x (i.e., for the SNPs that
are not in I). Thus, any entity, including the SP, can
validate 〈f〉 is generated in this manner.

4) Alice generates a combined signature using the
homomorphic properties of the digital signature
scheme. σ∗ = Evaluate(pkhCI , τA, f,

−→σ), where
−→σ = (S1, · · · , S|G|, TA, DA).

5) Alice sends IDA, PA, τA, Ms
j values (j ∈ I), RA,

〈f〉, and σ∗ to the SP. In addition, Alice should also
sends pkaA and Certpk−id−A.

6) The SP validates 〈f〉 (as coefficients in 〈f〉 are pub-
licly verifiable) and verifies σ∗.

7) The SP requests the consent from Alice.
8) Alice generates the consent M c and

signs it using her private key to obtain
σ′ = Sign(skaA,M

c||τA||info), where
info = i1|| · · · ||it||Ms

i1
|| · · · ||Ms

it
||RA||IDA||PA.

9) Alice sends M c and σ′ to the SP.
10) The SP verifies the signature. The use of aggregate

signature for further re-sharing of the same data (as-
suming Alice has consent for re-sharing) is further
discussed below.

Suppose that SP (0) has been authorized by Alice to
further share her SNPs data. If SP (0) wants to share the
SNPs with SP (1) then it will generate a signature σ′0→1 for a
consent of the form M c||τA||info||IDSP (1) . Similarly, SP (1)

can generate a signature σ′1→2 for a consent of the form
M c||τA||info||IDSP (2) to share the SNPs with SP (2). This
process can continue, and form a chain of delegated con-
sents: σ′0→1, σ′1→2, · · · , σ′N−1→N . SP (N) can aggregate the
signatures into a single one σ′0→···→N . When SP (N) wants
to share Alice’s data with Bob, it provides the following
information.

σ∗, f,M c||τA||info, IDSP (0) , · · · , IDSP (N) , σ′0→···→N (2)

Bob can then validate all the signatures in the chain to
see whether SP (N) has obtained the permission or not.

Moreover, Bob can validate the SNPs data by validating
σ∗. Note that the SNPs data can be obtained from the info
parameter.

5.1 Security Analysis

As to security, the homomorphic signature scheme guaran-
tees that the signature σ∗ is computed based on the signed
SNPs by the CI, while the aggregate signature scheme
guarantees that the consent is actually given by the owner.
The tag τA links the two signatures together. In the proposed
protocol, the generation of challenge 〈f〉 plays a key role
in preventing credibility attacks, because it randomly links
the homomorphic signature to the original signed SNPs and
forbids malleability. We discuss two cases.

• Alice tries to cheat SP. In this case, some of the SNPs
information from Alice, namely Ms

ij
(1 ≤ j ≤ t) and

RA, is different from what has been signed by the CI.
The unforgebility property of the homomorphic sig-
nature scheme guarantees that 〈f〉 ·

−→
MT is computed

correctly by Alice, and the corresponding signature
σ∗ is valid. Otherwise, we will have a forgery for the
signature scheme. As such, Alice can only success-
fully mount an attack when the following equality
holds.

〈f〉 ·
−→
M∗

T
= 〈f〉 ·

−→
MT , (3)

where the modified message vector is denoted by
−→
M∗ =((0, 0, 0, · · · , 0), · · · ,Ms

i1
, · · · ,Ms

it
, · · · ,

(RA, 0, 0, · · · , 0), (IDA, PA, 0, · · · , 0)) (4)

Based on the generation of f , it is straightforward to
show that the equality holds with negligible proba-
bility with reasonable parameters if we assume PF
to be a random oracle. Therefore, it is infeasible for
Alice to mount the attack.

• Alice colludes with SP to cheat another SP. This scenario
is exactly the same as the above scenario. Due to the
fact that the generation of 〈f〉 is publicly verifiable,

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

8

Alice
𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice
𝝉𝑨: user tag for Alice

Set of indices of the requested SNPs (I)

Retrieve 𝑴𝒋
𝒔 𝒋 ∈ I and anonymization factor 𝑹𝑨

Generate:
- |G + 𝟐| random coefficients to construct < 𝒇 > vector
- combined signature 𝝈∗on 𝝈 = (𝑺𝟏, … , 𝑺 𝑮 , 𝑻𝑨 , 𝑫𝑨) using

< 𝒇 > and homomorphic properties of the signature
scheme

𝑰𝑫𝑨, 𝑷𝑨, 𝝉𝑨, 𝑴𝒋
𝒔 𝒋 ∈ I , 𝑹𝑨, < 𝒇 >, 𝝈∗

Validate the coefficients in < 𝒇 >

Verify 𝝈∗ (using 𝒑𝒌𝑪𝑰
𝒉)

Service Provider (SP)

Generate consent 𝑴𝒄

Sign the consent (using the aggregate signature scheme
and 𝒔𝒌𝑨

𝒂) to get 𝝈′

Request consent

𝑴𝒄, 𝝈′

Verify 𝝈′ (using 𝒑𝒌𝑨
𝒂)

Fig. 5. Non-anonymous SNP Sharing.

collusion does not give Alice any additional advan-
tage.

The unforgebility property of the Boneh-Lynn-Shacham ag-
gregate signature scheme guarantees that the SP has been
authorized by Alice to use SNPs and has the privileges
specified in the consent M c. The info parameter links the
signature σ′ to the shared SNPs data.

5.2 Anonymous Sharing

In order to stay anonymous, Alice follows the same protocol,
shown in Fig. 5, except the following.

• Alice should not include RA||IDA||PA in Step 3),
and should set f|G|+1 := 0, f|G|+2 := 0 in generating
〈f〉.

• Alice should not transmit RA, IDA, PA, and
Certpk−id−A to the SP in step 5).

• Alice should not include RA||IDA||PA in Step 8),
and should replace IDA with τA in the consent M c

After all the changes, the security analysis remains the same.

6 PROTOCOL FOR SHARING TEST RESULTS

If Alice wants to share the genetic test results with the SP,
they engage in the protocol shown in Fig. 6. The protocol
has the following steps.

1) The SP sends the weights of the test (w1, · · · , w|G|)
to Alice (to be general, we assume all SNPs to be
used in the test).

2) Alice constructs the first |G| values of 〈f〉 based on
the weights and sets f|G|+1 = f|G|+2 = 0.

3) Alice computes the result of the test m∗ = 〈f〉 ·
−→
MT

using her SNPs and the received weights.

4) Alice generates a combined signature σ∗ using
the homomorphic properties of the digital signa-
ture scheme. σ∗ = Evaluate(pkhCI , τA, f,

−→σ), where
−→σ = (S1, · · · , S|G|, TA, DA).

5) Alice also constructs her consent M c and signs it to
generate σ′ = Sign(skaA,M

c||τA||info||m∗), where
info = w1|| · · · ||w|G|.

6) Alice sends m∗, σ∗, σ′, τA, and M c to the SP.
7) The SP verifies both signatures it receives from

Alice.

If Alice wants to share her phenotype information PA
with the SP, then she can send RA, TA, IDA, PA and DA to
the SP, which can verify the signatures TA and DA indepen-
dently. In addition, she should send Certpk−id−A as well,
which links IDA to pkaA. If Alice wants to stay anonymous,
she should not share these information. Moreover, Alice
should replace IDA with τA in the consent M c.

The unforgebility property of the homomorphic signa-
ture scheme guarantees that the test result m∗ is faith-
fully computed based on Alice’s data, while the context
hiding property guarantees that the signature σ∗ does not
leak more information than m∗ about Alice’s SNPs. The
unforgebility property of the aggregate signature scheme
guarantees that the SP has been authorized by Alice to use
test results and has the privileges specified in the consent.
If the test results are going to be shared further with other
SPs, the workflow is the same as that of sharing SNPs.

7 DISCUSSION

In this section, we provide more discussion with respect to
security and performance about the proposed solutions.

7.1 Security
In general, all signatures (on data, ID, and phenotype) are
generated by the CI. Using the homomorphic properties of

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

9

Alice
𝑰𝑫𝑨: identity of Alice
𝑷𝑨: phenotype of Alice
𝝉𝑨: user tag for Alice

Weights of the test 𝒘𝟏, … ,𝒘 𝑮

Generate:
- |G + 𝟐| random coefficients based on the received

weights and construct the < 𝒇 > vector
- the result of the test 𝒎∗using the SNPs and the weights
- combined signature 𝝈∗on 𝝈 = (𝑺𝟏, … , 𝑺 𝑮 , 𝑻, 𝑫𝑨) using

< 𝒇 > and homomorphic properties of the signature
scheme

- the consent 𝑴𝒄

- signature on the consent (using the aggregate signature
scheme and 𝒔𝒌𝑨

𝒂) and get 𝝈′

𝒎∗, 𝝈∗, 𝝈′, 𝝉𝑨, 𝑴𝒄

Verify 𝝈∗ (using 𝒑𝒌𝑪𝑰
𝒉)

Verify 𝝈′ (using 𝒑𝒌𝑨
𝒂)

Service Provider (SP)

Fig. 6. Non-anonymous Test Result Sharing.

the digital signature scheme (as discussed in Section 3.1),
Alice linearly combines such signatures (depending on the
type of the query) and generates a valid signature that can
be verified by using the public key of the CI. As discussed in
Section 5.1, Alice cannot cheat an SP by providing incorrect
SNP data.

We assume that the SP, when sharing Alice’s data with
other entities, needs to show proof that the data is legiti-
mate. This proof is the digital signature that SP receives from
Alice (signed using the aggregate signature scheme and
Alice’s private key). As discussed, the signature can only
be verified by using the correct consent of Alice. Therefore,
the SP will be detected if it tries to share Alice’s data without
her consent. A malicious SP may try to modify the consent
of Alice in order to share her data with other entities (along
with a valid signature). However, since the consent is signed
by Alice’s private key at the first place, such an attack is also
not possible.

A malicious SP may also publicly share Alice’s SNP data
without her consent. We assume that such a sharing also
includes the signature to prove the credibility of the shared
data. In such a scenario, the 〈f〉 values in the corresponding
signature would reveal the identity of the malicious SP that
leaked Alice’s data without her consent. This property of
the proposed scheme brings a solution for the liability issues
on case of unauthorized sharing of genomic data (since the
values in 〈f〉 are generated using the public key of the SP,
as discussed in Section 5).

One drawback of the proposed scheme is that it does not
prevent an SP from linking the anonymous identity of Alice
to her real identity. Assume Alice shares a set of SNPs with a
particular SP in a non-anonymous way. Then, if Alice shares
another set of SNPs on a public database in an anonymous
way, the SP can deanonymize Alice’s identity as it possesses
the RA value of Alice from the previous transaction. We will
further study this issue in future work.

Another drawback of the proposed scheme is that the
scheme does not provide a solution in the case of uncon-
sented sharing of data between two malicious institutions.
For example, assume Alice shares her genomic data with

a malicious SP1 with the consent CA,SP1(t) = (1, 0, 0)
(i.e., Alice does not want further sharing of her data, and
hence “do not share” bit is set in the consent). Then, if SP1

publicly shares Alice’s data or tries to share the data with
a non-malicious SP, it will be detected. However, SP1 can
share Alice’s data with another malicious SP2 without being
detected. To the best of our knowledge, there is no technical
solution for this problem.

7.2 Performance

Note that genome sequencing is an operation that only
needs to be done once, and the sharing of genomic data
and genetic results is a frequent operation that individual or
organization will do in practice. Therefore, computational
complexity will not be a major concern. Nevertheless, we
believe the solutions are in fact quite efficient.

We also briefly remark on the performance of the pro-
posed solutions. First, we recap the implementation results
of the Boneh-Lynn-Shacham aggregate signature scheme
due to Barreto et al. [18]. Suppose that the implementation
is based on a super-singular curve. For a computer with
PIII 1 GHz CPU, signing takes 3.57 milliseconds, while
verification takes 53 milliseconds. The aggregation algo-
rithm Aggregate only incurs multiplications in the source
group, and each multiplication takes less than 14 microsec-
onds. Verifying an aggregate signature with k individual
signatures takes roughly 53 · k milliseconds. Second, we
remark on the homomorphic signature scheme. The most
costly function for the homomorphic signature scheme is
the Sign algorithm, whose main complexity comes from the
SamplePre routine which is basically a sampling algorithm
for Gaussian distribution. According to the implementation
of Lyubashevsky and Prest [19], based on an Intel Core
i5-3210M laptop with a 2.5GHz CPU and 6GB RAM, a
Gaussian sampling takes about 115 milliseconds. We also
note that the signing SNPs only need to be done once by
the CI. The Verify and Evaluate algorithms are much more
efficient because they only incur linear operations and has
no exponentiations. On the same platform, the complexity

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

10

of these operations will be (at most) at the magnitude of
microseconds. This means that, from the perspective of the
user (e.g. Alice), the solutions are extremely efficient. As
a future work, we will build a proof-of-concept prototype
and have the precise performance numbers. It also make
sense to integrate the proposed solutions into other privacy-
preserving solutions, so that we achieve a wide range of
security properties.

8 CONCLUSIONS

In this work, we proposed two cryptographic schemes to
share genomic data and genetic test results. The proposed
schemes are between a data owner and a service provider.
Using the proposed schemes, on the one hand, a service
provider can check the validity (or legitimacy) of genomic
data it receives from a data owner (individual). On the other
hand, the individual, via a digital consent, can make sure
that the service provider will not further share his data
without his permission. The proposed schemes are based
on homomorphic signatures and aggregate signatures, and
these cryptographic primitives enable us to link the infor-
mation about the legitimacy of the data to the consent and
the identity of the individual. We also discussed the security
and practicality of the proposed schemes. The proposed
schemes can be easily adopted by existing works on privacy-
preserving processing of genomic data.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

11

REFERENCES

[1] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik,
“Countering GATTACA: Efficient and secure testing of fully-
sequenced human genomes,” Proceedings of ACM CCS ’11, pp. 691–
702, 2011.

[2] E. Ayday, J. L. Raisaro, J. Rougemont, and J.-P. Hubaux, “Pro-
tecting and evaluating genomic privacy in medical tests and
personalized medicine,” in WPES, 2013.

[3] N. Karvelas, A. Peter, S. Katzenbeisser, E. Tews, and K. Hamacher,
“Privacy-preserving whole genome sequence processing through
proxy-aided ORAM,” in Proceedings of the 13th Workshop on Privacy
in the Electronic Society, 2014, pp. 1–10.

[4] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong,
“Privacy-preserving genomic computation through program spe-
cialization,” Proceedings of the 16th ACM Conference on Computer
and Communications Security, pp. 338–347, 2009.

[5] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P.
Hubaux, “Privacy-preserving processing of raw genomic data,” in
DPM, 2013.

[6] Z. Huang, E. Ayday, J.-P. Hubaux, J. Fellay, and A. Juels,
“Genoguard: Protecting genomic data against brute-force attacks,”
in n Proceedings of IEEE Symposium on Security and Privacy, 2015.

[7] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science: 339
(6117), Jan. 2013.

[8] N. Homer, S. Szelinger, M. Redman, D. Duggan, and W. Tembe,
“Resolving individuals contributing trace amounts of DNA to
highly complex mixtures using high-density SNP genotyping
microarrays,” PLoS Genetics, vol. 4, Aug. 2008.

[9] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Addressing
the concerns of the Lacks family: Quantification of kin genomic
privacy,” in CCS, 2013.

[10] A. Johnson and V. Shmatikov, “Privacy-preserving data explo-
ration in genome-wide association studies,” in KDD, 2013, pp.
1079–1087.

[11] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A cryptographic
approach to securely share and query genomic sequences,” IEEE
Transactions on Information Technology in Biomedicine, vol. 12, no. 5,
pp. 606–617, 2008.

[12] M. Canim, M. Kantarcioglu, and B. Malin, “Secure management of
biomedical data with cryptographic hardware,” IEEE Transactions
on Information Technology in Biomedicine, vol. 16, no. 1, 2012.

[13] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[14] A.Z.Tirkel, G. Rankin, R. V. Schyndel, W.J.Ho, N.R.A.Mee, and
C.F.Osborne, “Electronic water mark,” in DICTA 93, 1993, pp. 666–
673.

[15] G. Traverso, D. Demirel, and J. Buchmann, Homomorphic Signa-
ture Schemes: A Survey, ser. SpringerBriefs in Computer Science.
Springer, 2016.

[16] D. Boneh and D. M. Freeman, “Homomorphic signatures for poly-
nomial functions,” in Proceedings of the 30th Annual International
Conference on Theory and Applications of Cryptographic Techniques:
Advances in Cryptology. Springer-Verlag, 2011, pp. 149–168.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “A survey of two
signature aggregation techniques,” CryptoBytes, vol. 6, no. 2, pp.
1–9, 2003.

[18] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Advances
in cryptology — crypto 2002,” M. Yung, Ed. Springer Berlin
Heidelberg, 2002, pp. 354–369.

[19] V. Lyubashevsky and T. Prest, “Quadratic time, linear space al-
gorithms for Gram-Schmidt orthogonalization and Gaussian sam-
pling in structured lattices,” in Advances in Cryptology – EURO-
CRYPT 2015, ser. Lecture Notes in Computer Science, E. Oswald
and M. Fischlin, Eds., vol. 9056. Springer, 2015, pp. 789–815.

Erman Ayday is an assistant professor of
computer science at Bilkent University, Ankara,
Turkey. Before that he was a post-doctoral Re-
searcher at EPFL, Switzerland, in the Laboratory
for Communications and Applications 1 (LCA1)
led by Prof. Jean-Pierre Hubaux. He received his
M.S. and Ph.D. degrees from Georgia Tech Infor-
mation Processing, Communications and Secu-
rity Research Lab (IPCAS) in the School of Elec-
trical and Computer Engineering (ECE), Georgia
Institute of Technology, Atlanta, GA, in 2007 and

2011, respectively under the supervision of Dr. Faramarz Fekri.
Erman’s research interests include privacy-enhancing technologies

(including big data and genomic privacy), wireless network security,
trust and reputation management, and applied cryptography. Erman is
the recipient of Distinguished Student Paper Award at IEEE S&P 2015,
2010 Outstanding Research Award from the Center of Signal and Image
Processing (CSIP) at Georgia Tech, and 2011 ECE Graduate Research
Assistant (GRA) Excellence Award from Georgia Tech. Other various
accomplishments of Erman include several patents, research grants,
and H2020 Marie Curie individual fellowship. He is a member of the
IEEE and the ACM.

Qiang Tang holds a Master (Peking Univer-
sity, China) and a Ph.D. in Information Secu-
rity and Cryptography (University of London,
UK). The last 4 years he worked as Post-
doc Researcher and Principal Investigator at
the University of Luxembourg. As Postdoc Re-
searcher he also worked at the University of
Twente/Netherlands (2007-2012) and at Ecole
Normale Suprieure, Paris, France (2006-2007).
In 2016, Qiang participated as a cyber-security
expert in the first Blockchain Bootcamp in de-

veloping Fintech ideas (Luxembourg School of Business), in PWCs Be
in control! Conference and in the Blockchain Amsterdam conference.
Qiang is affiliated with ILNAS by serving in the subcommittee ISO/IEC
JTC 1/SC 27. He is a MC member for EU COST Action 1303 (Algo-
rithms, Architectures and Platforms for Enhanced Living Environments
(AAPELE)).

Arif Yilmaz is a Master’s student at the De-
partment of Computer Engineering, Bilkent Uni-
versity, Ankara, Turkey. His research interests
include privacy-enhancing technologies and ap-
plied cryptography.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2690422, IEEE
Transactions on Dependable and Secure Computing

12

APPENDIX A
BONEH-FREEMAN SIGNATURE SCHEME

The Boneh-Freeman homomorphic signature scheme is
based on lattices, and we recap the description here. The
reader should refer to [16] for more details.

• Setup(1n, k). On input a security parameter n and a
data set size k, do the following:

1) Choose two primes p, q = poly(n) with q ≥
(nkp)2. Define ` := bn/6 log qc.

2) Set Λ1 := pZn.
3) Use TrapGen(q, `, n) to generate a matrix A ∈

F`×nq along with a short basis Tq of Λ⊥q (A).
Define Λ2 := Λ⊥q (A) and T := p · Tq . Note
that TrapGen is a function to sample matrices
in lattices.

4) Set υ := p ·
√
n log q · log n

5) Let H : {0, 1}∗ → F`q be a hash function.
6) Output the public key pkh :=

(Λ1,Λ2, υ, k,H) and the secret key skh := T.

The public key pkh defines the following system
parameters:

– The message space is Fnp and signatures are
short vectors in Zn.

– The set of admissible functions F is all Fp-
linear functions on k-tuples of messages in Fp.

– For a function f ∈ F defined by
f(m1, · · · ,mk) =

∑k
i=1 cimi, we encode f by

interpreting the ci as integers in (−p/2, p/2]
and defining 〈f〉 = (c1, · · · , ck) ∈ Zk.

– To evaluate the hash function ωτ on an en-
coded function 〈f〉 = (c1, · · · , ck) ∈ Zk, do
the following:

1) For i = 1, · · · , k, compute αi = H(τ ||i) ∈
F`q

2) Define ωτ (〈f〉) =
∑k
i=1 ciαi ∈ F`q .

Note that ωτ is a hash function that maps
encoding of function f to elements of Zn/Λ2.

• Sign(skh, τ,m, i). On input a secret key skh, a tag τ ∈
{0, 1}n, a message m ∈ Fnp , and an index i, do:

1) Compute αi = H(τ ||i) ∈ F`q . Then, by defini-
tion, ωτ (〈πi〉) = αi.

2) Compute t ∈ Zn such that t mod p = m and
A · t mod q = αi.

3) Output σ ← SamplePre(Λ1

⋂
Λ2,T, t, υ) ∈

Λ1

⋂
Λ2 + t.

Note that SamplePre is basically a sampling algo-
rithm for Gaussian distributions.

• Verify(pkh, τ,m, σ, f). On input a public key pkh, a
tag τ ∈ {0, 1}n, a message m ∈ Fnp , a signature σ ∈
Zn, and a function f ∈ F , If all of the following
conditions hold, output 1 (accept); otherwise output
0 (reject).

1) ||σ|| ≤ k · p2 · υ
√
n.

2) σ mod p = m.
3) A · σ mod q = ωτ (〈f〉).

• Evaluate(pkh, τ, f,−→σ). On input a public key pkh, a
tag τ ∈ {0, 1}n, a function f ∈ F encoded as 〈f〉 =
(c1, · · · , ck) ∈ Zk, and a tuple of signatures −→σ =
(σ1, · · · , σk) ∈ Zn, output σ =

∑k
i=1 ciσi.

APPENDIX B
BONEH-LYNN-SHACHAM SIGNATURE SCHEME

A bilinear group generator is an algorithm GC that takes
as input a security parameter λ and outputs a description
Γ = (p,G,GT , ê, g) where:

• G and GT are groups of prime order pwith efficiently
computable group laws.

• g is a randomly-chosen generator of G.
• ê is an efficiently-computable bilinear pairing ê :

G × G → GT , i.e., a map satisfying the following
properties for g 6= 1 ∈ G:

– Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈
Zpq ;

– Non-degeneracy: ê(g, g) 6= 1.

The Boneh-Lynn-Shacham aggregate signature scheme
[17] are defined with four algorithms.

• Setup(λ). On input of the security parameter λ, this
algorithm runs GC to generate Γ = (p,G,GT , ê, g),
and generates a hash function H : {0, 1}∗ → G.

• KeyGen(Γ). This algorithm chooses s $← Zp and set
the key pair to be (pka, ska) where pka = gs and
ska = s.

• Sign(ska,m). On input of the private key ska and a
message m, this algorithm outputs the signature σ =
H(pka||m)s.

• Verify(pka,m, σ). On input of the public key pka, a
messagem and its signature σ, the algorithm outputs
1 iff ê(g, σ) = ê(H(pka||m), pka).

• Aggregate(Σ). On input of a set of signatures Σ =
{σi(1 ≤ i ≤ k)}, which are signed by pkai for
message mi correspondingly, this algorithm outputs
σagg =

∏k
i=1 σi.

With an aggregate signature, the verification outputs 1
iff ê(g, σagg) =

∏k
i=1 ê(H(pkai||m), pkai).

