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Abstract—Individuals (and their family members) share (partial) genomic data on public platforms. However, using special charac-
teristics of genomic data, background knowledge that can be obtained from the Web, and family relationship between the individuals,
it is possible to infer the hidden parts of shared (and unshared) genomes. Existing work in this field considers simple correlations in
the genome (as well as Mendel’s law and partial genomes of a victim and his family members). In this paper, we improve the existing
work on inference attacks on genomic privacy. We mainly consider complex correlations in the genome by using an observable Markov
model and recombination model between the haplotypes. We also utilize the phenotype information about the victims. We propose
an efficient message passing algorithm to consider all aforementioned background information for the inference. We show that the
proposed framework improves inference with significantly less information compared to existing work.
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1 INTRODUCTION

Substantial progress has been achieved towards reducing
the cost of DNA sequencing. As a consequence, research
in genomics has gained speed towards paving the way
to personalized (genomic) medicine, and geneticists now
need large collections of human genomes to further
increase this speed. Furthermore, individuals are using
their genomes to learn about their health, their origins,
and even their (genetic) compatibilities with potential
partners. This trend has led to the launch of health-
related websites and online social networks (OSNs), in
which individuals can share their genomic data (e.g.,
OpenSNP or 23andMe). There are, however, significant
risks in sharing this genomic data which carries a lot
of sensitive information about its owner. By analyzing
the DNA of an individual, it is now possible to learn
about his disease predispositions (e.g., for Alzheimer’s),
ancestors, and physical attributes. This threat to genomic
privacy is magnified by the fact that a person’s genome is
correlated to his family members’ genomes, thus leading
to interdependent privacy risks.

Individuals (either directly or indirectly) share vast
amount of personal information on the Web, and some
of this information can be used to infer their genomic
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data. Hence, there is a need to clearly understand the
nature and extent of privacy risks on the genomic data
of individuals considering publicly available information
on the Web. In this paper, we propose to establish a
unifying framework to quantify the genomic privacy of
individuals using all publicly available resources.

Humbert et al. previously proposed a framework to
quantify genomic privacy of individuals considering (i)
partial genomic data that is publicly shared by the
individual and his family members, (ii) simple pairwise
correlations in the genome (i.e., linkage disequilibrium),
and (iii) other public genomic knowledge (e.g., minor
allele frequencies) [1]. In a recent study, Samani et al.
showed that higher order correlations in the genome
actually enables stronger inference power compared to
the pairwise correlations [2]. However, in that work,
authors did not study the implications of this result on
kin genomic privacy.

Motivated by these recent studies, in this work, our
two main contributions are showing the extend of pri-
vacy risk on the individuals and their family mem-
bers due to (i) complex correlations (i.e., high order
correlations) in the genome, and (ii) publicly available
phenotype information (e.g., physical traits or disease
information) about the individuals. The main objective
of this work is to develop a new unifying framework for
quantification of genomic privacy of individuals. Similar
to the previous work, we use a graph-based, iterative
algorithm to build this framework efficiently. Our results
show that the attacker’s inference power (on the genomic
data of individuals) significantly improves by using
complex correlations and phenotype information (along
with information about their family bonds). We believe
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that this paper would be a significant step towards
establishing a greater understanding of the privacy risks
on the genomic data of individuals.

The rest of the paper is organized as follows. In the
next section, we summarize the existing work on ge-
nomic privacy. In Section 3, we provide brief background
information about genomics and the belief propagation
algorithm (which is the core of the proposed framework).
In Section 4, we briefly summarize the work by Hum-
bert et al., as we build our framework on top of this
previous work. In Section 5, we describe the proposed
scheme in detail. In Section 6, we evaluate the proposed
scheme using real genomic data. Finally, in Section 7, we
conclude the paper.

2 RELATED WORK

In the last few years, there have been several works
addressing the security and privacy concerns on ge-
nomic data [3]. A large part of the related work on ge-
nomic privacy focuses on the problem of private pattern-
matching and the comparison of genomic sequences. For
example, Troncoso-Pastoriza et al. propose an algorithm
for private string searching on the DNA sequence by
using a finite state machine [4]. Their work is then revis-
ited by Blanton et al., who develop an efficient method
for sequence comparison using garbled circuits [5]. Fur-
thermore, Baldi et al. make use of private-set inter-
section and present an effective algorithm for privacy-
preserving substring matching on DNA sequences [6].
Chen et al. propose a privacy-preserving method to align
short sequences to a reference genome by outsourcing
the computation to the cloud [7]. Jha et al. propose a
privacy-preserving implementation of fundamental ge-
nomic computations for sequence alignment [8]. Further-
more, Naveed et al. proposed a scheme based on func-
tional encryption for privacy-preserving similarity test
on genomic data [9]. To hide access patterns to genomic
data that is stored at a cloud environment, Karvelas et
al. proposed using the ORAM mechanism [10]. Recently,
Wang et al. proposed an efficient privacy-preserving pro-
tocol to find genetically similar patients in a distributed
environment [11].

Another line of investigation is represented by works
focusing on private clinical genomics. De Cristofaro et
al. propose a secure protocol between two parties for
testing genomic sequences without the leaking of any
private information about the genomic sequence or the
nature of the test [12]. Wang et al. propose techniques
for computing on genomic data by distributing the task
between a data provider and consumer through program
specialization [11]. Ayday et al. proposed a scheme to
protect the privacy of users’ genomic data while enabling
medical units to access the genomic data in order to con-
duct medical tests or to develop personalized medicine
methods [13].

A third area of interest addresses the problem of
protecting genomic privacy, while still allowing for both

basic and translational medical research on the data. It
has been shown that deanonymization is a serious threat
for genomic data [14], [15]. Thus, many solutions have
been proposed for privacy-preserving genomic research
either by using statistical techniques (such as differential
privacy) [16] or cryptographic techniques [17].

Independent of these categories, Ayday et al. proposed
a technique for privacy-preserving storage and retrieval
of raw-genomic data [18] and Huang et al. proposed
an information-theoretical technique for secure storage
of genomic data [19]. In this paper, building on top
of the previous work on kin genomic privacy [1], we
develop a unifying framework for quantification of ge-
nomic privacy of individuals notably by using complex
correlations in the genome, family bonds, and publicly
available phototype information.

3 BACKGROUND

In this section we give a brief background on genomics
and the belief propagation algorithm.

3.1 Genomics

Single nucleotide polymorphism (SNP): Around 99.9% of
an individual’s genome is identical to the reference
human genome and the rest is human genetic variation.
The most common genetic variations in humans are
the SNPs. SNP is a variation in the genome in which
a single nucleotide (A, C, G, or T) differs between
members of the same species or paired chromosomes
of an individual. There are usually two different alleles
(nucleotides) that are observed at a SNP position; one
is called the minor allele and the other is the major
allele. Furthermore, each SNP carries two alleles in total.
Hence, the content of a SNP position can be in one of the
following states: (i) BB (homozygous-major genotype),
if an individual receives the same major allele from both
parents; (ii) Bb (heterozygous genotype), if he receives
a different allele from each parent (one minor and one
major); or (iii) bb (homozygous-minor genotype), if he
inherits the same minor allele from both parents (this is
also shown in Fig. 1(a)). For simplicity, in the rest of the
paper, we denote the value (content) of a SNP as the
number of minor alleles it carries. Thus, we denote BB
as 0, Bb as 1 and bb as 2.

Reproduction: The Mendel’s first law, the Law of
Segregation, states that a child’s SNPs are independent
from his ancestors’, given the SNPs of his parents.
Each child inherits one allele (nucleotide) of a SNP
from his mother and the other one from his father,
and each allele is inherited with a probability of 0.5.
In [1] authors model this law by a function (introduced
in Section 4) that simply considers the Mendelian
inheritance probabilities as in Fig. 1(b). We also use this
inheritance information in this work.
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Fig. 1. (a) Mendelian inheritance for a child. (b) Inheritance probabilities for a SNP, given different genotypes for the
parents. The probabilities of the child’s genotype are represented in parentheses. (c) Inheritance probabilities for a
SNP, given different genotypes for the child and the mother. The probabilities of the father’s genotype are represented
in parentheses (given the child and the father, the probabilities for the mother are also the same).

Correlations in the genome: It is shown that SNPs on the
DNA sequence are correlated. For example, pairwise
correlations between the SNPs in the genome are
referred to as linkage disequilibrium (LD) [20]. In [1],
the authors use the LD values between the SNPs as
an input to their inference algorithm. In this work, we
show that more complex, higher order correlations in
the genome threaten kin genomic privacy more than
the pairwise correlations.

Phenotypes: Phenotypes are observable characteristics of
individuals (e.g., physical traits or diseases) that may
be related to both their genotype and the environment.
For example, SNP Rs12821256 on chromosome 12 is
associated with having blonde hair. If an individual has
(C,C) nucleotide pair for this SNP, he is 4 times more
likely to have blonde hair compared to other individuals.
We use phenotype information of individuals to improve
the inference power of the proposed algorithm.

3.2 Belief Propagation
Belief propagation [21] is a message-passing algorithm
for performing inference on graphical models (e.g.,
Bayesian networks or Markov random fields). It is typ-
ically used to compute marginal distributions of un-
observed variables conditioned on the observed ones.
Computing marginal distributions is hard in general as
it might require summing over an exponentially large
number of terms. The belief propagation algorithm can
be described in terms of operations on a factor graph,
a graphical model that is represented as a bipartite
graph. One of the two disjoint sets of the factor graph’s

vertices represents the (random) variables of interest,
and the second set represents the functions that factor
the joint probability distribution (or global function) of
the variables based on the dependencies between them.
An edge connects a variable node to a factor node if
and only if the variable is an argument of the function
corresponding to the factor node. The marginal distribu-
tion of an unobserved variable can be exactly computed
by using the belief propagation algorithm if the factor
graph has no cycles. However, the algorithm is still
well defined and often gives good approximate results
for factor graphs with cycles (as it has been observed
in decoding of LDPC codes) [22]. Belief propagation is
commonly used in artificial intelligence and information
theory.

4 QUANTIFYING KIN GENOMIC PRIVACY [1]

In [1], authors evaluate the genomic privacy of an
individual threatened by his relatives revealing their
genomes. Focusing on the SNPs in the genome, they
quantify the loss in genomic privacy of individuals
when one or more of their family members’ genomes
are (either partially or fully) revealed. They design a
reconstruction attack, in which they formulate the SNPs,
family relationships, and the pairwise correlations (LD)
between SNPs on a factor graph and use the belief
propagation algorithm for inference. Then, using various
metrics, they quantify the genomic privacy of individ-
uals and reveal the decrease in their level of genomic
privacy caused by the published genomes of their family
members. In the following, we briefly summarize the
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framework of [1] as we build the proposed scheme on
top of this framework.

The goal of the adversary is to infer some targeted
SNPs of a member (or multiple members) of a targeted
family. Let F be the set of family members in the targeted
family (whose family tree is GF) and S be the set of
SNP IDs (on the DNA sequence), where |F| = n and
|S| = m. Let also xij be the value of SNP j (j ∈ S) for
individual i (i ∈ F), where xij ∈ {0, 1, 2} (as discussed in
Section 3.1). Also, X is an n ×m matrix that stores the
values of the SNPs of all family members. Among the
SNPs in X, the ones whose values are unknown are in
set XU, and the ones whose values are known (by the
adversary) are in set XK. FR(xMj , x

F
j , x

C
j ) is the function

representing the Mendelian inheritance probabilities (as
in Fig. 1(b)), where (M,F,C) represent mother, father,
and child, respectively. Finally, P = {pbi : i ∈ S}
represents the set of minor allele probabilities (or MAF)
of the SNPs in S.

The adversary carries out a reconstruction attack to
infer XU by relying on his background knowledge,
FR(xMj , x

F
j , x

C
j ), L1, P, and on his observation XK. The

authors formulate this reconstruction attack as finding
the marginal probability distributions of unknown vari-
ables XU, and to run this attack in an efficient way, they
formulate the problem on a factor graph and use the
belief propagation algorithm for inference. In this work,
we formulate the attack by also considering complex
correlations in the genome and publicly available phe-
notype information. We show that the inference attack is
significantly stronger when these additional factors are
also considered. In the following, we provide the details
of the proposed framework emphasizing the differences
from [1].

5 PROPOSED FRAMEWORK

Our main objective is to develop a unifying framework
for the quantification of the genomic privacy of indi-
viduals using all available public data on the Web and
background knowledge on genomics. We assume that
the attacker has access to the following resources about
the target individuals: (i) the partial genomic data of
individuals (from public genomic databases and genome
sharing websites), (ii) phenotype information (physical
characteristics) of individuals from OSNs, (iii) health
related information of individuals from OSNs and health
related social networks, and (iv) family bonds of individ-
uals (e.g., their family trees) from OSNs or genealogy
websites. Our proposed framework is also sketched in
Fig. 2.

The objective is to infer the missing parts of the
genomes of individuals in the target individuals set.
For this, we use family bonds between the individuals
in the target set, probabilistic relationship between the

1. L is a m×m matrix representing the pairwise linkage disequilib-
rium (LD) between each pair of SNPs. Instead of the LD values, we
use higher order correlations in this work for inference.

phenotype and genotype, similar relationship between
diseases and the genotype, and some genomic tools for
inference such as high order correlations in the genome
and the recombination model. To run this inference
attack efficiently, similar to the previous work, we rely
on the belief propagation algorithm on a factor graph.
Then, we quantify genomic privacy of individuals and
show the risk for each individual.

Constructing the factor graph: A factor graph is a bipar-
tite graph containing two sets of nodes (corresponding
to variables and factors) and edges connecting these two
sets. We form a factor graph by setting a variable node
for each SNP xij (j ∈ S and i ∈ F). We use three types
of factor nodes2: (i) familial factor node, representing the
familial relationships and reproduction, (ii) correlation
factor node, representing the higher order correlations
between the SNPs either by using a Markov chain or
hidden Markov model, and (iii) phenotype factor node,
representing the correlation between the SNPs and the
phenotypes (e.g., physical traits or diseases) of individ-
uals. The factor graph representation of our proposed
framework is shown in Fig. 3. We summarize the con-
nections between the variable and factor nodes below:
• Each variable node xij has its familial factor node f ij

if at least one parent of individual i is in the target
family. Furthermore, xkj (k 6= i) is also connected
to the familial factor node of xij if k is the mother
or father of i. If an individual i’s both parents are
not present in the target family, we do not assign
familial factor nodes corresponding to the variable
nodes of that individual. For example, in Fig. 3,
all familial factor nodes belong to the child as his
parents are present in the toy example. However,
father’s and mother’s variable nodes do not have
separate familial factor nodes.

• Variable nodes in set C are connected to a corre-
lation factor node giC (of individual i) if SNPs in
C have correlation among each other. In particu-
lar, we consider higher order correlations in the
genome. We model these correlations either using
a Markov chain or a hidden Markov model, HMM
(i.e., recombination model). When we use a Markov
chainwith order of k the correlation set of node i is
Ci = {nodei−k, nodei−k+1, nodei−k+2, . . . , nodei−1}
if i > k, and Ci = {node1, node2, node3, . . . , nodei−1}
if i ≤ k, and when we use HMM, C includes all
SNPs in a chromosome.

• Variable nodes of individual i in set Hi
α are con-

nected to a phenotype factor node phiα if SNPs in Hi
α

are associated with the phenotype phα. Note that
more than one SNP can be associated with a given
phenotype. Similarly, a SNP may be associated with
more than one phenotype.

Messages between the nodes: As shown in [23], follow-

2. There are two types of factor nodes in [1] representing the family
relationships and the LD between the SNPs.
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Fig. 2. Overview of the proposed framework for quantification of genomic privacy.

ing the rules of belief propagation, the global probability
distribution of the variable nodes can be factorized into
products of local functions that are defined by the fac-
tor nodes following the rules of the belief propagation
algorithm. The iterative belief propagation algorithm is
based on exchanging messages between the variable and
the factor nodes. We represent these messages as in the
following:

• The message µ(ν)
i→k(xij

(ν)
) (from a variable node i to

a factor node k) denotes the probability of xij
(ν)

= `
(` ∈ {0, 1, 2}), at the νth iteration.

• The message λ
(ν)
k→i(x

i
j
(ν)

) (from a familial factor
node to a variable node) denotes the probability that
xij

(ν)
= `, for ` ∈ {0, 1, 2}, at the νth iteration given

FR(xMj , x
F
j , x

C
j ), P, and the values of SNP j for the

other two family members (other than individual
i) that are connected to the corresponding familial
factor node.

• The message β(ν)
k→i(C, x

i
j
(ν)

) (from a correlation fac-
tor node to a variable node) denotes the probability
that xij

(ν)
= `, for ` ∈ {0, 1, 2}, at the νth iteration

given the high order correlation between the SNPs
in set C.

• The message δ
(ν)
k→i(x

i
j
(ν)

) (from a phenotype factor
node to a variable node) denotes the probability
that xij

(ν)
= `, for ` ∈ {0, 1, 2}, at the νth iteration

given the phenotype phk for individual i and the
association of the corresponding phenotype with
SNP j.

Toy example on a trio: Following [1], we choose a
simple family tree consisting of a trio (i.e., mother,
father, and child) and 3 SNPs (i.e., |F| = 3 and |S| = 3).
In Fig. 3, we show how the trio and the SNPs are

represented on a factor graph, where i = m represents
the mother, i = f represents the father, and i = c
represents the child. Furthermore, the 3 SNPs are
represented as j = 1, j = 2, and j = 3, respectively. We
describe the message exchange between the variable
node representing the first SNP of the mother (xm1 ), the
familial factor node of the child (f c1 ), the correlation
factor node gmC , and the phenotype factor node phmα
(representing the phenotype α for the mother). Here we
assume that variable nodes in set C are SNPs 1, 2, and
3. We also assume that the phenotype α is associated
with SNPs 1 and 2 (that are in set Hm

α ). The belief
propagation algorithm iteratively exchanges messages
between the factor and the variable nodes, updating
the beliefs on the values of the targeted SNPs (in XU)
at each iteration, until convergence. For simplicity, we
denote the variable and factor nodes xm1 , f c1 , gmC , and
phmα with the letters i, k, z, and s, respectively.

Messages from variable nodes: Variable node i forms
µ
(ν)
i→k(xm1

(ν)) by multiplying all information it receives
from its neighbors excluding the familial factor node k.3

Hence, the message from variable node i to the familial
factor node k at the νth iteration is given by

µ
(ν)
i→k(xm1

(ν)) =
1

Z
×β(ν−1)

z→i (C, xm1
(ν−1))×δ(ν−1)s→i (xm1

(ν−1)),

(1)
where Z is a normalization constant. This computation
is repeated for every neighbor of each variable node.
If xm1 ∈ XK (i.e., it is one of the SNPs that is observed
by the attacker), then the message µ

(ν)
i→k(xm1

(ν)) is
constructed as a constant, depending on the value of

3. Other messages from the variable node i to the other factor nodes
(z and s) are also constructed similarly.
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Fig. 3. Factor graph representation of the proposed framework.

xm1 . Note that following the rules of belief propagation,
to prevent self-bias, the message λ

(ν−1)
k→i (xm1

(ν−1)) is
not used while generating µ

(ν)
i→k(xm1

(ν)). Also, if the
parents of the mother (m) were also in the graph, xm1
would have its corresponding familial factor node fm1 ,
and hence the λ message generated from this factor
node would have been also used when generating
µ
(ν)
i→k(xm1

(ν)). Similarly, if SNP x1 is associated with
other phenotypes, δ messages from those phenotype
factor nodes are also used while generating the message.

Messages from familial factor nodes: The message from
the familial factor node k to the variable node i at the
νth iteration is formed using the principles of belief
propagation as

λ
(ν)
k→i(x

m
1

(ν)) =
∑
{xf

1 ,x
c
1}

f c1(xm1 , x
f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P)×

∏
y∈{f,c}

µ
(ν)

xy
1→k

(xy1
(ν)

), (2)

where, f c1(xm1 , x
f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P) is proportional

to p(xm1 |x
f
1 , x

c
1,FR(xMj , x

F
j , x

C
j ),P), and this probability

is computed using the table in Fig. 1(b). This
computation is performed for every neighbor of
each familial factor node.

Messages from correlation factor nodes: The message from
the correlation factor node z to the variable node i at the

νth iteration is formed as

β
(ν)
z→i(C, x

m
1

(ν)) =
∑
xm
2 ,x

m
3

gmC (xm1 , x
m
2 , x

m
3 )×

∏
y∈{2,3}

µ
(ν)
xm
y →k

(xmy
(ν)). (3)

β messages are generated for every neighbor of each
correlation factor node. As mentioned, as opposed to [1],
in this work, we consider higher order correlations in
the genome to make the inference stronger, and
hence the function gmC (xm1 , x

m
2 , x

m
3 ) depends on the

correlation model we use. We consider two different
correlation models on the genome: (i) Markov chain,
in which we consider the genome as a sequence
of SNPs, where the value of each SNP depends on
the values of neighboring k SNPs. In this scenario,
gmC (xm1 , x

m
2 , x

m
3 ) = p(xm1 |xm2 , xm3 ), for k = 2 (note that LD

is a special case of this formalization when k = 1). And,
(ii) hidden Markov model (HMM), in which the genome
is modeled as a Markov process with unobserved
(hidden) states. We realize the HMM model for the
genome by using the recombination model [24].

Messages from phenotype factor nodes: Finally, the message
from the phenotype factor node s to the variable node i
at the νth iteration is formed as

δ
(ν)
s→i(x

m
1

(ν)) =
∑
xm
2

phmα (xm1 , x
m
2 )× µ(ν)

xm
2 →s

(xm2
(ν)). (4)

Note that in this toy example, the phenotype α is
associated with SNPs x1 and x2 only. The function
phmα (xm1 , x

m
2 ) is computed based on the association of

both SNPs with the corresponding phenotype. In some
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cases, it is observed that the associations of the SNPs
to a phenotype are independent from each other. On
the other hand, in some cases, we observe that the
association depends on the values of both SNPs. Sim-
ilarly, in some cases, the association is probabilistic,
while in some cases the association may be deterministic.
For example, having blonde hair color is associated
with SNP Rs12821256 [25]. If an individual has blonde
hair, the probability distribution of the corresponding
SNP is shown to be (0.01,0.4,0.59)4, while if he does
not have blonde hair, this distribution is shown to be
(0.7,0.28,0.02). Thus, the attacker can improve his infer-
ence power by obtaining phenotype information about
the individuals in the target family.

At each iteration of the algorithm, all variable and
factor nodes generate their messages and send to all
of their neighbors as described above. At the end of
each iteration, we compute the marginal probabilities
of each variable nodes (by multiplying all incoming
messages), and we stop the algorithm when the values
of the marginal probabilities stop changing. Note that
the computational complexity of this inference attack is
linear with the number of variable or factor nodes in the
factor graph.

6 EVALUATION

Here, we summarize our methodology to evaluate the
proposed inference framework.

6.1 Datasets

In order to evaluate our method we used two datasets:

• CEPH/Utah Pedigree 1463
• Manuel Corpas Family Pedigree

6.1.1 CEPH/UTAH Pedigree 1463

To evaluate the proposed inference algorithm, we used
the CEPH/Utah Pedigree 1463 dataset [26]5. We obtained
the SNP data both in the genome variant (GVF) and
variant call (VCF) formats. Dataset contains partial DNA
sequences of 17 family members and we used 11 of
these 17 individuals (to be consistent with the previous
work). The family bonds between these 11 individuals
are illustrated in Fig. 4.

We focused on 100 neighboring SNPs (on the DNA
sequence) of the target family on the 22nd chromosome.
We also collected data for the MAF and also to model
the higher order correlations in the genome. For this
purpose, we used data of the CEU population from the
1000 Genomes Project and HapMap.

4. Each entry represents the probability that the value of the SNP is
0, 1, and 2, respectively.

5. The previous work by Humbert et al. also use the same dataset.

GP2 GP4

P6

C7 C8 C9 C11C10

P5

GP1 GP3

Fig. 4. Family tree of CEPH/Utah Pedigree 1463 consist-
ing of the 11 family members that were considered. The
blue nodes (i.e., darker ones) represent the male and the
pink ones (i.e., lighter ones) represent the female family
members.

6.1.2 Manuel Corpas Family Pedigree
Manuel Corpas is a scientist, who released his family
DNA dataset in variant call format (VCF) on his web-
site [27]. The dataset consists DNA sequences of father,
mother, son (Manuel Corpas), daughter, and aunt. The
family tree of the individuals in this dataset is illustrated
in Fig. 5. Similar to the CEPH/UTAH Pedigree dataset
setup, for this dataset, we focused on the 22nd chromo-
some and selected 100 neighboring SNPs of each family
member.

GP1 GP2 GP3 GP4

MA F

SD

Fig. 5. Family tree of Manuel Corpas consisting of the 9
family members that were considered. The blue nodes
(i.e., darker ones) represent the male and the pink ones
(i.e., lighter ones) represent the female family members.
Genomic data for the grandparents (GP1, GP2, GP3 and
GP4) is missing in the original dataset.

6.2 Evaluation Metrics
Similar to [1], we evaluated the proposed framework
in terms of both attacker’s incorrectness and uncertainty.
Incorrectness quantifies the adversary’s error in inferring
the SNPs of the individuals in the target set. This metric
can be expressed as follows:

Eij =
∑

xi
j∈{0,1,2}

p(xij |Ψ)||xij − x̂ij ||. (5)
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where, x̂ij is the true value of the inferred SNP, and
Ψ includes all the information that is available to the
attacker (as in Fig. 2). The incorrectness metric quantifies
how far the adversary is away from the actual value of
a SNP in his inference. We also evaluated the proposed
scheme based on the attacker’s uncertainty. For this
purpose, we used the following normalized entropy
metric from [1]:

Hi
j =
−
∑
xi
j∈{0,1,2}

p(xij |Ψ) log(xij |Ψ)

log(3)
. (6)

This can be described as the entropy of the adversary
for an unobserved SNP. This metric quantifies the con-
fidence of the adversary about his inference. Note that
one needs the ground truth data in order to evaluate
the incorrectness of the attacker. Here, by using both
incorrectness and uncertainty metrics, we show the cor-
relation between two, as in practice, it is not trivial
to possess the ground truth data in order to evaluate
the incorrectness of the attacker. That is, we show that
one can also use the normalized entropy to quantify an
individual’s genomic privacy (and hence the strength of
an inference attack). In fact, a recent work about genomic
privacy metrics also reports that both incorrectness and
uncertainty (normalized entropy) are suitable metrics to
quantify genomic privacy (and hence the inference attack
power) [28]. We compute the metrics in equations (5) and
(6) for each SNP and then take the average for all the
SNPs in the unknown set XU.

6.3 Results
Due to the nature of kinship and characteristics of ge-
nomic data, we cannot avoid having cycles in our factor
graph. Although there is no theoretical proof that our
solution (and belief propagation algorithm in general)
will converge to an optimal result in the presence of
cycles, according to several runs of the algorithm on
different SNPs, we observed that belief propagation
converges with a significantly low error.

6.3.1 CEPH/UTAH Pedigree 1463
We conducted experiments for both high order correla-
tion models (Markov chain and HMM). In the first exper-
iment, among the 100 SNPs we considered, we randomly
hide 50 SNPs belonging to P5 in the CEPH/UTAH
family (in Fig. 4) and tried to infer them by gradually
increasing the background information of the attacker.
We also assumed that the attacker knows the following
3 phenotypes of each family member (that are associated
with the considered SNPs) [25].
• Verbal declarative memory - associated to Rs5747035
• Neurofibromatosis - associated to Rs121434260
• Crohn’s disease - associated to Rs4820425
Because the information about these phenotypes in

family members are not publicly available, we proba-
bilistically simulated these phenotypes for the family
members (using real probabilities obtained from [25])

and used these simulated phenotypes for the inference.
Thus, the contribution of the phenotype information to
the inference attack will remain the same if we use
the real phenotype information about the individuals as
well.

We started revealing 50 random SNPs (out of 100) of
other family members (starting from the most distant
one to the P5 in terms of number of hops in Fig. 4)
and observe how the inference power of the attacker
changes. We run each experiment 50 times and take the
average of each privacy metric. We modelled the high
order correlations via both the Markov chain model (for
different orders - k) and HMM. We show our results for
the attacker’s incorrectness and uncertainty in Figs. 6
and 7, respectively. Note that the case when k = 1
(with no phenotype information) represents the previous
work by Humbert et al. We observed that both the in-
correctness and uncertainty of the attacker decreases by
revealing more data. More importantly, our results show
that high order correlations and phenotype information
contributes significantly to the inference power of the
attacker. In both figures, we see that for the Markov
chain model, attacker’s inference does not improve much
for orders of Markov chain (k) that is larger than 3.
We further discuss the relation between the amount of
unobserved (hidden) SNPs and this bottleneck (about
the order of the Markov chain) in Appendix B. We also
observed that the HMM increases the attacker’s infer-
ence power compared to the Markov chain model. In all
experiments, the accuracy of the HMM is better than the
Markov chain’s accuracy, which is also consistent with
the previous work [2].

Next, to observe the effect of number of hidden SNPs
to the high order correlation model, we run the same
experiment for the Markov chain model and HMM by
hiding different number of SNPs from the victim (P5)
and the other family members. This time, we started
revealing varying number of random SNPs (out of 100)
of other family members (starting from the most distant
one to the P5 as before) and observe the inference power
of the attacker. In Figs. 8 and 9, we show our results for
the Markov chain model when the order of the Markov
chain (k) is 3. We observed that the inference power
of the Markov chain model increases as more SNPs of
the family members are observed. We obtained similar
results for the HMM model (as before, we observed
that HMM gives better accuracy compared to Markov
chain for varying number of hidden SNPs). In order to
show the standard deviations of the experiments, we
also show the results with error bars in Appendix A.

6.3.2 Manuel Corpas Family Pedigree
We also evaluated our proposed attack on the Manuel
Corpas Family Pedigree dataset. Here, we set our target
as the mother (M in Fig. 5) and try to infer her un-
observed SNPs. Unlike the previous experiment, here,
we started revealing from the closest family members
to the farthest member to show that the strength of the
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Fig. 6. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the incorrectness of the attacker. We reveal
partial genomes of other family members for different
high order correlation models in the genome. MC stands
for the Markov chain model (with different orders) and
HMM stands for the hidden Markov model.
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Fig. 7. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the uncertainty of the attacker. We reveal
partial genomes of other family members for different
high order correlation models in the genome. MC stands
for the Markov chain model (with different orders) and
HMM stands for the hidden Markov model.
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Fig. 8. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the incorrectness of the attacker. We reveal
different number of random SNPs from other family
members and use the Markov chain model (with k = 3)
to model the high order correlation in the genome.
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Fig. 9. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the uncertainty of the attacker. We reveal
different number of random SNPs from other family
members and use the Markov chain model (with k = 3)
to model the high order correlation in the genome.

proposed inference attack is independent of the dataset
and evaluation methodology. Similar to the previous
experiment, we assumed that the attacker knows the
same set of three phenotypes about each member of this
family and we revealed 50 random SNPs (out of 100) of
other family members. We run each experiment 50 times
and take the average of each privacy metric.

The results for this experiment (in terms of normalized
error and normalized entropy) are given in Figs. 10
and 11. Obtained results are consistent with our expec-
tations (error and entropy decrease with each revealed
family member). Similar to the previous results, it can
be seen that high order correlation and phenotype in-
formation contributes significantly to inference power
of the attacker. In general, we observed that the results
are consistent with CEPH/UTAH pedigree experiments.
However, since we changed the order of revealing family

members, unlike the previous results, here we observed
a continuous decrease in error and entropy for the ge-
nomic privacy of the victim. This is because each family
member has a direct effect on our inference power.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed an attack for inferring ge-
nomic data of individuals from publicly available data
about themselves, their family members, and about ge-
nomics. We showed that the attacker can efficiently infer
privacy-sensitive point mutations of an individual with
high accuracy. We also showed that the proposed frame-
work extends and significantly improves the existing
work in this area. Establishing a unifying framework
to quantify the genomic privacy of individuals using
all publicly available resources, we believe that this
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Fig. 10. Decrease in genomic privacy of M (in Fig. 5)
in terms of the incorrectness of the attacker. We reveal
partial genomes of other family members for different
high order correlation models in the genome. MC stands
for the Markov chain model (with different orders) and
HMM stands for the hidden Markov model.
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Fig. 11. Decrease in genomic privacy of M (in Fig. 5)
in terms of the uncertainty of the attacker. We reveal
partial genomes of other family members for different
high order correlation models in the genome. MC stands
for the Markov chain model (with different orders) and
HMM stands for the hidden Markov model.

work would be a significant step towards establishing
a greater understanding of the privacy risks on the
genomic data of individuals. As future work, we will
extend this work and study the balance between privacy
and utility. Once the genomic privacy of an individ-
ual is quantified, the proposed framework will provide
recommendations to the individual (about sharing his
genomic-related data) to reduce the risk on his genomic
privacy. Furthermore, we will study different models
for high order correlations, such as recurrent neural
networks (which is shown to be a powerful technique
for classifying time series data) to capture potential
nonlinear relationships between the SNPs. We will also
extend our evaluation on different chromosomes and
other phenotypes.
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APPENDIX A
STANDARD DEVIATION OF THE CONDUCTED
EXPERIMENTS
We computed and plotted the standard deviations of
the experiments. In Fig. 12 and Fig. 13 we show
CEPH/UTAH pedigree results with error bars which
represents the standard deviation of 50 runs over error
and entropy. As shown, the results from the experiments
do not have significant deviations from the average.
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Fig. 12. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the incorrectness of the attacker. We reveal
partial genomes of other family members for different high
order correlation models in the genome. MC stands for
the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.
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Fig. 13. Decrease in genomic privacy of P5 (in Fig. 4)
in terms of the uncertainty of the attacker. We reveal
partial genomes of other family members for different high
order correlation models in the genome. MC stands for
the Markov chain model (with different orders) and HMM
stands for the hidden Markov model.

APPENDIX B
BOTTLENECK OF THE MARKOV CHAIN ORDER
We have conducted two experiments on the UTAH
family in order to see the relation between bottleneck of

the Markov chain order and number of hidden SNPs. We
hide 10 and 90 percent of SNPs of each family member
and then start to infer the missing SNPs. In Fig. 14 and
Fig. 15 we show the effect of number of hidden SNPs
on error (uncertainty) while inferring SNPs of P5. We
conclude that the Markov chain bottleneck is related to
the number of SNPs we try to infer. When the number
of observed SNPs (by the attacker) is a lot, Markov
models have more data to work with, and hence they
converge to a small error value even with low order
models. Thus, higher order models would not make the
error any smaller. On the other hand, when the attacker
observes fewer SNPs, increasing the order of the Markov
chain model also increases the chance of inferring an
unobserved SNP. For instance, in Fig. 14, when we reveal
90 percent of each family member’s SNPs (i.e., when the
attacker already observes a significant amount of data),
results obtained by Markov order 3 and 4 are totally
overlapping. However, in Fig. 15, when we reveal only
10 percent of each family member’s SNPs, Markov order
4 does a significantly better job than Markov order 3.

0 GP3 GP4 P6 C7 C8 C9 C10 C11 GP2 GP1

Revealed Family Members

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
N

or
m

al
iz

ed
 E

rr
or

MC1 Without Phenotypes
MC1 With Phenotypes
MC2 With Phenotypes
MC3 With Phenotypes
MC4 With Phenotypes

Fig. 14. Decrease in genomic privacy of P5 in terms of the
incorrectness of the attacker, when we reveal 90 percent
of random SNPs from other family members.
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Fig. 15. Decrease in genomic privacy of P5 in terms of the
incorrectness of the attacker, when we reveal 10 percent
of random SNPs from other family members.
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