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Abstract—Today, vast amounts of location data are collected by various service providers. These location data owners have a good

idea of where their users are most of the time. Other businesses also want to use this information for location analytics, such as finding

the optimal location for a new branch. However, location data owners cannot share their data with other businesses, mainly due to

privacy and legal concerns. In this paper, we propose privacy-preserving solutions in which location-based queries can be answered by

data owners without sharing their data with other businesses and without accessing sensitive information such as the customer list of

the businesses that send the query. We utilize a partially homomorphic cryptosystem as the building block of the proposed protocols.

We prove the security of the protocols in semi-honest threat model. We also explain how to achieve differential privacy in the proposed

protocols and discuss its impact on utility. We evaluate the performance of the protocols with real and synthetic datasets and show that

the proposed solutions are highly practical. The proposed solutions will facilitate an effective sharing of sensitive data between entities

and joint analytics in a wide range of applications without violating their customers’ privacy.

Index Terms—Privacy, data encryption, security, integrity, and protection, query processing, algorithm/protocol design and analysis
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1 INTRODUCTION

UNDERSTANDING the whereabouts of current and poten-
tial customers can provide valuable insights for

location-based services, facility location, and competitive
business decisions. Increasing amounts of location data
from mobile services, applications, and network operators
have introduced exciting opportunities for location-
enhanced business analytics. The approaches presented in
the marketing and operations research literature commonly
assume that a business that wants to do analysis owns the
data about it. However, this is rarely the case. Location data
is typically collected by mobile telecommunication opera-
tors and service providers, such as Foursquare. These data
owners seek ways to enable other businesses to run loca-
tion-based analytics queries without violating their custom-
ers’ privacy. Thus, one needs to prevent the location-based
service providers from tracking the users individually,
while still allowing other businesses to obtain useful infor-
mation. Similarly, businesses do not want to share their
customer lists with location-based service providers. In this
work, we develop efficient privacy-preserving query proc-
essing protocols that help to identify the best locations

to open new branches considering the distribution of the
customer locations.

Optimal location selection is a common location-based
analysis that seeks the best location to open a new facility
optimizing an objective function given a set of existing facil-
ities and a set of customers. A common approach is to uti-
lize computational geometry techniques on the customer
locations with the assumption that the locations are known.

However, third party businesses and analysts cannot use
these techniques in real life because customer locations are
not always known by these businesses. To perform success-
ful location-based queries, businesses need up-to-date loca-
tions that can be gathered from location data owners, such as
mobile operators and location-based service providers. For
instance, while retail stores or banks may know the home
addresses of their customers, they may also like to know
their locations during certain time periods in the day. Work
addresses of the customers may be missing or out-of-date in
their databases. The location information needs to be gath-
ered from data owners while preserving sensitive informa-
tion of businesses and data owners, as well as the privacy of
their customers including their identity and location.

To be consistent, in this paper we refer the location data
owner as the server, and the business that requests queries as
the client. We refer their customers as the users of the server
and the users of the client. The client has existing facilities,
such as branches of a bank, and aims to find the optimal loca-
tion for the new one among several candidates. The client is
able to request a fundamental class of queries that can be used
in optimal location selection. In these queries, the client only
obtains aggregate information about locations of its users
without learning the location of any specific user. The client
has several candidates for the new facility and it can request
the queries for each candidate location and select the best one.

A simple example to these aggregate queries is average
distance query, in which the client retrieves the average
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distance of its users to their nearest facilities. The nearest
facility of each user is the facility that has the minimum dis-
tance to that user. The average distance is a valuable infor-
mation for the client to minimize it for maximizing user
benefit. In a non-privacy-preserving solution for this query,
the client sends the facility locations and its user list to the
server. The server checks the location of each user (who
gave informed and explicit consent for this information)
and calculates distances to their nearest facilities. At the end
of the query, the server returns the average distance and
the client obtains useful information for facility location
without tracking its users individually. The client can send
a different location for the new facility in each query
together with the locations of existing facilities. As a result,
it can select the best candidate that minimizes the average
distance between users and their nearest facilities.

For a privacy-preserving solution, we need to hide the
client’s user list and the server’s user list from each other.
We also need to hide the answer to the query from the
server. Otherwise, the server learns the best candidate
for the new facility and it may share this information with
the competitors. We investigate privacy-preserving solu-
tions to aggregate queries which allow analyzing location
data in servers and selecting the best facility location. With
the proposed solutions, without sharing its user list with
the server, the client can obtain aggregate information about
user locations and find an optimal place for its new facility
among several candidates depending on different objective
functions. These objectives are (i) uniformly distributing
the cardinality of the reverse nearest neighbors (RNN),
i.e., the set of points that has the query point as the closest
facility, (ii) minimizing the average distance between each
user and her closest facility, and (iii) minimizing the maxi-
mum distance between a user and her closest facility.

We define three fundamental aggregate queries for opti-
mal location selection and propose two types of privacy-
preserving query-processing protocols for each type of
query, utilizing partially homomorphic encryption as a
building block. We encrypt the sensitive data of the server
and the client, and perform the operations on the encrypted
data to preserve the privacy of both parties. First, we
explain server-based protocols, in which most computation
is performed by the server, and hence the workload of the
client is low. This solution is particularly convenient when
the client has limited computational power. To decrease the
communication overhead in each query, we also propose
client-based protocols. In these protocols, the client per-
forms the majority of the computation during the setup
phase (which occurs only once). After completion of the
setup phase, all queries are processed with low communica-
tion overhead. Therefore, our client-based solution is highly
efficient when the client undertakes some pre-computations
before running its queries.

During the protocols, homomorphic encryption is used
for keeping the user list of the client and the query result hid-
den from the server and keeping the user list of the server
and location data hidden from the client. Initially, we
describe the protocols to return exact query results. Since the
server is unaware of the query result and the queries return
aggregate results, some queries may leak information about
users. For instance, if the result of a counting query is one,

that user can be predicted by the client. To prevent informa-
tion leak about any single user, we also satisfy differential
privacy in our protocols by adding controlled noise to the
query result. Therefore, we use homomorphic encryption
and differential privacy together to guarantee privacy of
individuals during query processing. Our contributions are
summarized as follows:

(1) We introduce a practical setting in which the client
(e.g., a business) runs a useful class of location-based
queries on the database of the server (e.g., a location-
based service provider) without violating the pri-
vacy of individuals involved both in the client and
the server side.

(2) We enhance facility location problems by removing
the assumption that the customer locations are
known to the businesses. With the proposed solu-
tions, a business can find the best location for a new
facility among several candidates without knowing
its customer locations.

(3) We introduce two novel query processing protocols
for different types of queries, i.e., RNN cardinality
query, average distance query, and maximum dis-
tance query that can be used as a service to identify
optimal facility location. Our protocols utilize homo-
morphic encryption for protecting privacy of both
parties and satisfy differential privacy. We also dis-
cuss the impact of differential privacy on the utility
of the protocols.

(4) The proposed protocols take advantage of using a
potential superset of user space to hide the user lists
of both parties. Our solution does not use any compu-
tationally expensive cryptographic comparisons such
as private equality testing or private set intersection.
The performance evaluations show that the proposed
protocols are practical, efficient, and scalable. For
instance, when the server has 25million users, execut-
ing privacy-preserving RNN cardinality query takes
around 10 seconds on amodest computer.

The remainder of this paper is organized as follows: A lit-
erature review and background information are given in
Section 2. Section 3 presents the system model, the threat
model, and the definitions of the aggregate queries for opti-
mal location selection. We describe the server-based solu-
tions in Section 4 and the client-based solutions in Section 5.
In Section 6, we explain how to achieve differential privacy
in our protocols. We present our experimental results in
Section 7. Finally, we conclude in Section 8.

2 RELATED WORK AND BACKGROUND

Since our work is related to optimal location queries and
privacy-preserving location-based query processing, we
give the literature review of both subjects and explain the
major differences between our work and previous works in
the literature. The concept of differential privacy and homo-
morphic encryption schemes are also explained in this sec-
tion as building blocks of our protocols.

2.1 Optimal Location Queries

Given a set of existing facilities and a set of users, the opti-
mal location query [8] finds a location l for the new facility
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with maximum influence. The influence of a point is com-
monly formalized based on its RNNs [17]. The RNN query
finds the set of points that has the query point as the nearest
neighbor (NN). There are two variants of RNN queries. In
the monochromatic version, all points belong to the same
category. In the bichromatic version, points are divided into
two categories, such as users and facilities. Given a facility
f , the bichromatic RNN query finds the set of users that has
f as the nearest facility. The general assumption in optimal
location queries is that each user prefers her closest facility.
Therefore, the RNN query plays an important role in facility
location problems because a facility’s RNN is the set of
users who prefers this facility.

Businesses run optimal location queries to find the best
locations for their new facilities. The definition of “best
location” or “location with maximum influence” depends
on the type of the facility. In [8], the influence of a location is
defined as the total weight of its RNNs. The authors define
the problem with weighted users and aim to maximize the
total weight of users that are closer to the new location than
to their closest facilities. L1 distance is considered in [8] and
they propose three methods to solve the problem. Another
solution to maximize the bichromatic RNN for L2 distance
is proposed in [25].

In the literature, there are also other definitions of the
“best location” which aim to maximize user benefit and
increase service quality. One of them is minimizing the
maximum distance between a user and her closest facility
[2], [3]. Another objective is minimizing the average dis-
tance between each user and her closest facility. The prob-
lem is proposed as min-dist optimal-location query in [29].
This query has many real-life applications where it aims to
improve the quality of service or reduce the logistics cost by
businesses. [29] and [23] solve the problem with L1 and L2

distance assumptions, respectively.
In previous works on facility location problems, it is

assumed that customer locations are known. In this paper,
we assume that customer locations are not known by busi-
nesses, but stored in a location-based service provider,
and businesses need to analyze location data by requesting
queries. We define three aggregate queries for optimal
location selection and develop privacy-preserving proto-
cols for them. These queries are defined to analyze the
location data and they can be used in optimal location
selection. Businesses can decide the best location among
the candidates by requesting several queries and compar-
ing the query results.

2.2 Privacy-Preserving Location-Based Query
Processing

Today, vast amounts of information are collected and ana-
lyzed in databases around the world. Data may be stored by
multiple parties and these parties may not be keen on shar-
ing their data with others. In secure multi-party computa-
tion (SMC), multiple parties jointly compute a function over
their inputs without revealing their inputs to each other. In
[7], several SMC problems are identified. One such problem
defined in [7] is the privacy-preserving database query,
where Alice seeks a match with her private string q in Bob’s
database T . The privacy requirement is hiding q and
the query result from Bob, and hiding T from Alice. The

authors develop an efficient solution for the matching prob-
lem in [6] by using a semi-trusted third party.

Privacy-preserving location-based queries have been stud-
ied in the literature. Cheng et al. [4] propose a privacy-pre-
serving range query protocol to find users within a range
with non-zero probability. In [4], each user has a cloaked
region to hide her exact location, and the probability of being
within a range depends on the intersection of the cloaked
regions. A hybrid approach that integrates private set inter-
section and location cloaking is presented in [26]. For privacy-
preserving NN queries, a privacy-aware query processing
framework calledCasper is presented in [19]. This framework
uses a location anonymizer to blur users’ exact locations into
cloaked regions. Ghinita et al. [14] eliminate the usage of
third-party anonymizers by using cryptographic techniques.
They utilize private information retrieval techniques to pre-
serve location privacy. In [24], efficient protocols are pro-
posed for privacy-preserving k-NN searches by using several
primitive SMC protocols. Yi et al. [28] present solutions for
the same problem and use Paillier encryption and location
cloaking as building blocks.

For privacy-preserving location-based query processing,
one can follow several approaches, such as location pertur-
bation [19], providing k-anonymity by dummy locations
[20], data transformation [16], and using cryptography [14],
[24], [28]. We follow the cryptographic approach, which
provides privacy without compromising utility. However,
providing exact query results may cause information leaks
in some cases such as counting queries. Therefore, we inte-
grate the principle of differential privacy [9] into the
proposed protocols. We explain the notion of differential
privacy in Section 2.3.

Existing works on location privacy try to hide the location
information that the client (i.e., querying side) has from the
server (i.e., location-based service provider). In our scenario,
user location information is stored in the server and the
server hides this sensitive information from the client. The
client wants to analyze its customers’ locations in order to
find the optimal facility location. One approach to allow ana-
lytics on the location data can be publishing anonymized
data by the server. However, the client cannot identify its
users in anonymized data and anoymized location data can
also be vulnerable to de-anonymization attacks [5]. There-
fore, the client should retrieve its users’ aggregate informa-
tion via privacy-preserving queries. Since both parties must
hide their user lists from each other, the server and the client
must find their common users collaboratively without learn-
ing these common users. In this work, we propose novel
secure two-party protocols that allow analyzing location
data in the server. We develop our protocols using potential
superset of user space to hide the user lists of both parties.

2.3 Differential Privacy

Differential privacy aims to protect the privacy of individu-
als while releasing aggregate information about the data-
base. It is based on the neighborhood of databases. Two
databases D and D0 are neighbors if they differ in only one
entry. Differential privacy requires that query results for
two neighbor databases should be indistinguishable. Let the
output of a protocol P on database D be P ðDÞ. The differen-
tial privacy is formally defined as follows:
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Definition 1. Protocol P satisfies �-differential privacy if for any
two neighbor databases D and D0, and any subset S of output
space of P ,

Pr P ðDÞ 2 S½ � � Pr P ðD0Þ 2 S½ � � e�:

A typical way to achieve differential privacy is adding
controlled random noise to the query result. For numeric
queries, Laplace mechanism can be used to produce the
noise drawn from the Laplace distribution. Let Laplaceð�Þ
be a sample from Laplace distribution with mean 0 and
standard deviation �. To obtain �-differential privacy, the
noise drawn from the Laplace distribution must be cali-
brated according to the sensitivity of the protocol [10]. The
sensitivity of the protocol is the maximum possible change
on the output by changing a single record in database.
Given a protocol P , the sensitivity of the protocol is defined
as follows:

Definition 2. Let N be the set of all pairs of neighbor databases

DP ¼ max
ðD;D0Þ2N

P ðDÞ � P ðD0Þk k:

Therefore, a protocol P satisfies �-differential privacy for
the result

P ðDÞ þ Laplace
DP

�

� �
:

In Section 6, we show the sensitivity of each considered
query and how to achieve differential privacy during the
protocols.

2.4 Homomorphic Encryption

In homomorphic encryption, a specific algebraic operation
performed on the plaintext is equivalent to another (possibly
different) algebraic operation performed on the ciphertext.
Cryptosystems that allow homomorphic computation for a
limited number of operations such as addition or multiplica-
tion are called partially homomorphic. For instance, given
two messages x and y, one can compute the encryption of
xþ y by using the encryptions of x and y in an additive
homomorphic encryption scheme. In multiplicative homo-
morphic schemes, Eðx � yÞ1 can be computed by using EðxÞ
and EðyÞ. Gentry [13] proposed first fully homomorphic

encryption scheme that supports both addition andmultipli-
cation. Since partially homomorphic schemes are more effi-
cient and calculating the sum is sufficient for our protocols,
we are interested in additive homomorphic cryptosystems
[1], [21], [22], satisfying EðxÞ � EðyÞ ¼ Eðxþ yÞ. Another
homomorphic property of these cryptosystems is that
encrypted plaintext EðxÞ raised to a constant k is equal to
encryption of the product of the plaintext x and the constant
k, i.e.,EðxÞk ¼ Eðx � kÞ.

We develop our protocols by using the Paillier cryptosys-
tem [22]. In Paillier, if the public key (PK) is the modulus m
and the base g, then the encryption of a message x is
EðxÞ ¼ gx � rm ðmod m2Þ, for some random r 2 0; . . . ;m�f 1g.
Using a random value r in encryption ensures that two mes-
sages that are the same will encrypt to the same value with
only a negligible likelihood. Hence, Paillier provides semantic
security.m should be selected as the product of two primes p
and q. The private keys (SK) of the Paillier cryptosystem are
� ¼ lcmðp� 1; q � 1Þ and m ¼ ðLðg� mod m2ÞÞ�1 mod m,
where lcmða; bÞ is the least common multiple of a and b, and

LðuÞ ¼ u�1
m . The decryption of a ciphertext c can be performed

using private keys as follows: DðcÞ ¼ ðLðc� mod m2Þ
�mÞ mod m. Paillier satisfies EðxÞ � EðyÞ ¼ Eðxþ yÞ, because
ðgx � rm1 Þ � ðgy � rm2 Þ ¼ gxþy � ðr1 þ r2Þm. As a result of this
homomorphic property, multiplying a ciphertext EðxÞ with
Eð0Þ creates another ciphertext which is the fresh encryption
of x.

3 PROBLEM FORMULATION

We present our system model in Section 3.1. Formal defini-
tions of the queries are given in Section 3.2. We describe the
threat model in Section 3.3.

3.1 System Model

There is a server (S) (e.g., a location-based service provider)
that provides analytics as a service and a client (C) that
requests queries. The server is the database owner and has
ns users US ¼ S1; S2; . . . ; Snsf g. In addition, the server has
location information for each Si at different time periods.
The client has nc users UC ¼ C1; C2; . . . ; Cncf g and a list of its
k existing facilities F ¼ F1; F2; . . . ; Fkf g. The locations of the
existing facilities are public and known by the server. The
client wants to run aggregate queries such as count, sum,
and maximum on the location data of the server, e.g., to ana-
lyze the candidate locations for a new branch. The client
aims to hide UC and the query results from the server. The
server also aims to hide US from the client and prevent user
tracking by the client. Hence, the client will not learn any-
thing about the location of any specific user; it will only
obtain the query result at the end of the protocol.

We sketch out our system model in Fig. 1. To run aggre-
gate queries about its users, the client must identify its users
in US using an identifier. Before running queries, the server
and the client decide on an identifier such as mobile phone
number. Most businesses and service providers know
mobile phone numbers of their customers. Another identi-
fier can be national identification number. If the server is a
telecommunication company and the client is a bank or a
hospital they might use national identification number as
the identifier. Let UI be US \ UC, and nI be the cardinality of

Fig. 1. System model.

1. For the rest of the paper, EðxÞ denotes the encryption of message
x.
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UI . Since the server does not have the location information
of users in UCnUS , we define our queries for the users in UI .

We define three useful types of queries for this context:
RNN Cardinality Query (RNNQ), Average Distance Query
(AVGQ), and Maximum Distance Query (MAXQ). Since the
server knows the user locations, it can calculate the distance
between a user and a facility via any distance measure. The
main challenges are keeping UC hidden from the server and
preventing user tracking by the client.

We propose two types of solutions for each query type,
the server-based solutions and the client-based solutions.
The server is responsible for most of the computation in the
server-based solutions. Hence, they are suitable when the cli-
ent prefers outsourcing computation. The drawback of
server-based solutions over the client-based version is their
communication overhead. The client-based solutions reduce
communication overhead significantly. In the client-based
solutions, most of the computation is performed by the client
only in the setup phase. In Sections 4 and 5, we describe the
server-based and the client-based protocols which return
exact query results. Since exact query results may leak infor-
mation in some cases such as counting queries, in Section 6
we explain how to add controlled random noise to the query
result in each protocol to satisfy differential privacy.

3.2 Query Definitions

3.2.1 RNN Cardinality Query

One of the objectives of optimal location queries is uniformly
distributing the workload in facilities. In this case, the new
facility should attract users from dense facilities. Attracting a
user is equivalent to being the closest facility to the user. This
query finds the number of users attracted by each facility.
The formal definition of the RNNQ is as follows:

Query 1. Given facility locations, find the total number of
users in UI attracted by each facility. In other words, cal-
culate the cardinality of RNN for each facility.

In practice, the client can initially run the RNNQ with
existing facilities F to analyze the distribution of the users.
Using the result, the client can determine candidate loca-
tions for the new facility Fkþ1. For candidate locations, the
client can run the RNNQ with F [ Fkþ1. Hence, the client
can observe the total number of users attracted by each can-
didate location for Fkþ1 and select the location that provides
the most balanced distribution.

3.2.2 Average Distance Query

One of the objectives of optimal location queries is minimiz-
ing the average distance between each user and her closest
facility. For instance, delivery services pay attention to
decreasing the average distance between their customers
and the nearest shop. The AVGQ is formalized as follows:

Query 2. Given facility locations, find the average distance
between users in UI and each one’s nearest facility.

In practice, the client can run the AVGQ with F [ Fkþ1,
where Fkþ1 is a candidate location for the new facility.
Hence, the client can select the optimal location for Fkþ1,
which minimizes the average distance.

3.2.3 Maximum Distance Query

Another objective of optimal location queries is minimizing
the maximum distance between a user and her closest facil-
ity. In this objective, the aim is to optimize the worst-case
cost of reaching the nearest facility. The MAXQ is formal-
ized as follows:

Query 3. Given facility locations, find the maximum dis-
tance between a user in UI and her nearest facility.

In practice, the client can run MAXQ with F [ Fkþ1, for
candidate Fkþ1 locations. The client can select the optimal
location for Fkþ1, which minimizes the maximum distance.

3.3 Threat Model

In our model, both the server and the client are considered
“semi-honest”. Therefore, both parties follow the protocol
correctly; however, they may try to learn additional infor-
mation by analyzing the data. That is, the server may try to
determine the client’s user list, and similarly, the client may
try to determine the individual locations of its users during
the protocol (by using the messages they receive throughout
the protocol). On the other hand, both the server and the cli-
ent follow protocol execution honestly by forming correct
messages, input, and output parameters for each other. This
is a reasonable assumption in the problem setting since both
parties are motivated to produce the correct result. The
server sells the service and the correct result increases the
client’s satisfaction. Also, the client finds the best facility
location if the query results are correctly calculated.

The proposed solutions are secure two-party protocols in
which the server and the client wish to compute the query
result securely without sharing their inputs with the oppos-
ing party. Both the server and the client have sensitive data
that should be hidden from the other party. We formally list
the sensitive data as follows:

(1) Input of the client: UC.
(2) Input of the server: (a) US and (b) location information

of users in US .
(3) Output of the protocol: Query result.
We aim to hide all of the above sensitive data (from

unauthorized parties) in our protocols. The parties must not
learn the input of each other. At the end of the protocols,
only the client must get the query result and the server
must not learn it. The privacy of the server is assured if sen-
sitive data 2 is hidden from the client, and the privacy of the
client is assured if sensitive data 1 & 3 are hidden from the
server. We prove the security of our proposed protocols in
the semi-honest model using the simulation paradigm
defined in [15].

While the locations of existing facilities are typically pub-
lic, the location of a new facility can be sensitive data for the
client. In this case, the client can run the query with some
dummy locations to provide K-anonymity [20], which pro-
vides indistinguishability among K locations. Since the
query result is hidden from the server, all of the K locations
are indistinguishable for the server.

One potential threat to the server’s sensitive data may be
obtaining information via exhaustive client queries. By
using non-existing facilities, the client can try to obtain
information about location of some users. For instance, the

YILMAZ ETAL.: PRIVACY-PRESERVING AGGREGATE QUERIES FOR OPTIMAL LOCATION SELECTION 333



client can divide the whole region into two regions and
select the center of each region as a facility location. When
the client performs RNNQ with these facility locations, it
learns the total number of users in each region. The client
can divide each region into smaller regions in subsequent
queries, until each region has at most one user. At the end,
the client learns the small regions which contains a user and
it may predict the user in a small region with background
knowledge. Therefore, if the total number of facilities in the
query is very small or very large, the client may obtain
information about user locations.

We assume the locations of k existing facilities of the
client are public and known by the server. The server
decides two threshold values u1 and u2 such that the client
can add at most u1 new facilities or remove at most u2
existing facilities in a query.2 Thus, when the client sends
the locations of the facilities, the server aborts the proto-
cols in following cases:

� if the total number of facilities is greater than kþ u1,
� if the total number of facilities is less than k� u2,
� if the facilities in the query do not include at least

k� u2 existing facilities of the client.
There is a tradeoff between utility and privacy in the

selection of these threshold values. Selecting small u1 and u2
increases privacy, however, the utility of the protocols
decreases due to rejection of more queries. Therefore, there
cannot be an optimal threshold value for the protocols.

Moreover, when the query result includes a small num-
ber of users, the client can make an estimate about these
users. For instance, there may be only one user whose near-
est facility is a particular facility in RNNQ. Hence, if the
RNN cardinality of a facility is one in RNNQ, the client can
predict that user using its background knowledge. To pre-
vent such privacy leaks in our protocols, we explain how to
provide differential privacy in Section 6.

Finally, we also assume that during the protocol, com-
munication is encrypted between the server and the client
against an eavesdropper and that the server and the client
(s) do not collude.

4 SERVER-BASED QUERY PROCESSING

PROTOCOLS

In this section, we propose server-based solutions that pre-
serve the privacy while processing the queries in Section 3.2.
We introduce the high-level overview of the server-based
protocols in this section and we give the detailed steps of the
protocols in Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TDSC.2017.2693986. We present the security
analysis of server-based protocols in Section 4.1. Table 1
shows the symbols used in the protocols.

The underlying protocols utilize the additive homo-
morphic property to hide sensitive data from other par-
ties by calculating the sum of the encrypted values
without decrypting them. We utilize Paillier cryptosys-
tem as an additive homomorphic scheme satisfying
EðxÞ � EðyÞ ¼ Eðxþ yÞ. In the server-based protocols, the
server creates a public and private key pair (PKs, SKs),
and shares the public key with the client. The client can
encrypt any value or perform homomorphic operations on
the ciphertexts, but only the server can decrypt encrypted
messages. The server performs the majority of the encryp-
tions in the protocols.

In the setup phase, the server generates (PKs, SKs) for
Paillier cryptosystem. In addition, the server selects a super-
set U ¼ U1; . . . ; Unf g of US such that US � U. The aim of
selecting U is hiding US (sensitive data 2(a)) from the client.
For instance, let the identifier used in the protocols be
mobile phone numbers. Location-based service providers
such as Foursquare and mobile telecommunication opera-
tors, and most businesses such as banks, hotels, and
retailers typically know the mobile phone numbers of their
customers. Hence, they can use mobile phone numbers as
identifiers. Assume the phone numbers consist of seven dig-
its and there are 50 different mobile operator codes. When
the superset U contains all possible mobile phone numbers,
n becomes 500 million. Since U contains all possible num-
bers, it completely protects US from the client. Another
example is using national identification numbers as identi-
fier. If national id numbers consist of nine digits and the
superset U contains all possible id numbers, n becomes one
billion. The server shares PKs ¼ ðgs;msÞ and U with the cli-
ent. Note that all multiplications and exponentiations of
ciphertexts in the server-based protocols are calculated in
mod m2

s .
Fig. 2 shows the overview of the setup phase and the pro-

tocols. Here, we briefly explain the steps of the server-based
solutions and illustrate these steps with an example
scenario for RNNQ/S. The server-based protocols consist of
10 steps. Steps 1, 4, 7, and 9 are the communication steps. In
the first step, the client sends the query and the facility loca-
tions (F ) to the server. Step 2 is the calculation of distances
between facilities and users. The server determines the
nearest facility for each user. Since encrypted values cannot
be decrypted by the client, the server computes encrypted
values based on nearest facility of each user in Step 3 to
hide US and user locations (sensitive data 2(a) & 2(b)) from
the client. Using the encrypted values, the client calculates
the ciphertext of the query result by utilizing homomorphic
properties of Paillier cryptosystem in Step 5. To hide UC and

TABLE 1
Symbols Used in Protocols

ms,mc modulus in Paillier generated by (S, C)
gs, gc base in Paillier generated by (S, C)
PKs, PKc public keys of S and C
SKs, SKc private keys of S and C
EsðxÞ, EcðxÞ Encryption of message x using (PKs, PKc)
x½ �s, x½ �c denotes x is encrypted using (PKs, PKc)
Dsð x½ �sÞ,Dcð x½ �cÞ Decryption of ciphertext x using (SKs, SKc)
dða; bÞ Distance between points a and b
US , UC user sets of S and C
U superset of US and UC
UI US \ UC
n, ns, nc, nI total number of users in (U, US , UC, UI )
F set of existing facilities of C
k total number of existing facilities
q,Q result (value, set) of the query
w random number greater than q in MAXQ

2. u1 and u2 are design parameters of RNNQ, AVGQ, and MAXQ to
be decided by the server.
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the query result (sensitive data 1 & 3) from the server, the
client masks the encrypted query result in Step 6 before
sending to the server for decryption. The server decrypts
the encrypted masked result in Step 8 and obtains the
masked result. Due to masking in Step 6, the server cannot
deduce the query result. In Step 10, the client applies
unmasking and finds the query result.

Let the identifier used by the server and the client
consists of one digit, and id numbers of the users of the
server be 1,3,5,6,7,9. The server can select the superset
U ¼ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9f g such that US � U. Assume that
we have two facilities F1 and F2. When the client requests
RNNQ/S, the server determines the nearest facility of its six
users. Let F1 be the nearest facility of the users 1, 6, and 9,
F2 be the nearest facility of the users 3, 5, and 7. In Step 3,
the server computes ½T1�s ¼ fEsð0Þ; Esð1Þ; Esð0Þ; Esð0Þ;
Esð0Þ; Esð0Þ; Esð1Þ; Esð0Þ; Esð0Þ; Esð1Þg for F1 and ½T2�s ¼
fEsð0Þ; Esð0Þ; Esð0Þ; Esð1Þ; Esð0Þ; Esð1Þ; Esð0Þ; Esð1Þ; Esð0Þ;
Esð0Þg for F2. The server sends these encrypted values T½ �s
to the client in Step 4. Let id numbers of the users of the cli-
ent be 1,2,3,5. In Step 5, the client calculates two ciphertexts
for two facilities by multiplying the ciphertexts of its users
in T½ �s. That is, ½x1�s ¼ ½T1;1�s � ½T1;2�s� ½T1;3�s � ½T1;5�s and
½x2�s ¼ ½T2;1�s � ½T2;2�s � ½T2;3�s � ½T2;5�s. These values are the
encryption of the query results such as x1½ �s¼ Esð1Þ and
x2½ �s¼ Esð2Þ. Let two random values selected by the client in
Step 6 be 15 and 11. The client encrypts these random values
and sends x0

1

� �
s
¼ x1½ �s�Esð15Þ and x0

2

� �
s
¼ x2½ �s�Esð11Þ to the

server. The server decrypts these values in Step 8 and
obtains x00

1 ¼ 16 and x00
2 ¼ 13. When the client receives these

masked values, it subtracts the random values and obtains
q1 ¼ 1 and q2 ¼ 2. Therefore, the client learns the RNN car-
dinality of F1 and F2.

4.1 Security Analysis of Server-Based Protocols

In this section, we prove the security of the server-based pro-
tocols in the semi-honest model. Semi-honest parties follow
the protocol correctly; however, they may try to learn addi-
tional information by analyzing the messages they receive
throughout the protocol. In general, in secure two-party pro-
tocol, the goal of the parties is to compute a desired output
pair fðx; yÞ ¼ ðf1ðx; yÞ; f2ðx; yÞÞ from their inputs x and y

without revealing them to each other. The first party wants
to obtain f1ðx; yÞ and the second party wants to obtain
f2ðx; yÞ at the end of the protocol. During the protocol, the
view of a party consists of its input, its random-tape, and
sequence of incoming messages throughout the protocol. A
protocol privately computes fðx; yÞ if a party’s view can be
simulated from its input and output [15].

More formally, let P be a secure two-party protocol
for computing fðx; yÞ. The views of the parties are denoted
as VIEWP

1 ðx; yÞ and VIEWP
2 ðx; yÞ. Then, the security of a

deterministic protocol in semi-honest model is defined as
follows [15]:

Definition 3. The protocol P privately computes fðx; yÞ if there
exist probabilistic polynomial-time simulators Sim1 and Sim2

such that

fSim1ðx; f1ðx; yÞÞg �c VIEWP
1 ðx; yÞ

� �

Sim2ðx; f2ðx; yÞÞf g �c VIEWP
2 ðx; yÞ

� �
;

where �c implies computational indistinguishability.
Therefore, a party’s privacy is guaranteed if there exists a
simulator that can generate a view indistinguishable from
the view of the opposing party. In the following, we prove
the security of the server-based protocols using this simula-
tion paradigm.

Let the client be the first party and the server be the sec-
ond party in our protocols. The private input x of the client
is UC and the private input y of the server is US and the user
locations. F is also the input of the protocol, which is com-
monly known by the server and the client. As discussed in
Section 3.3, it should not be hidden from the server to pre-
vent attacks via exhaustive client queries. In addition, PKs,
PKc, and U are also known by the server and the client as
background information. As discussed before, U is the
superset of the users for keeping the user list of parties from
each other. The client should get query result as f1ðx; yÞ at
the end of the protocol while the server receives no output
(i.e., f2ðx; yÞ ¼ ?).

Since the steps of the server-based protocols are similar as
shown in Fig. 2, we consider RNNQ/S in the proof. The secu-
rity of the other protocols can be proved similarly. In
RNNQ/S,Q ¼ q1; . . . ; qkf g is the query result where qi is the
total number of users in UI whose nearest facility is Fi.
Therefore, the view of the client (VIEW1) consists of UC, F ,
T½ �s, and Q. To prove that the server’s privacy is assured in
the protocol, we need to show that there exists a probabilistic
polynomial-time simulator Sim1 such that Sim1ðUC;F ;QÞ is
computationally indistinguishable from VIEW1. Since T½ �s
contains n � k Paillier ciphertexts, Sim1 can generate n � k ran-
domnumbers between 0 andm2

s and these numbers are com-
putationally indistinguishable from the ciphertexts in T½ �s
due to the semantic security of Paillier cryptosystem.

On the other hand, the view of the server (VIEW2) con-
sists of US , user locations, F , and X00. To prove that the cli-
ent’s privacy is assured in the protocol, we need to show
that there exists a probabilistic polynomial-time simulator
Sim2 such that Sim2ðUS; user locations; FÞ is computation-
ally indistinguishable from VIEW2. This is satisfied by let-
ting Sim2 generate k random numbers between 0 and ms to

Fig. 2. Overview of the server-based protocols.
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simulate X00 because X00 contains k values q1 þ v1; . . . ;f qk þ
vkg where each vi is a randomly selected number by the cli-
ent. Thus, we conclude that RNNQ/S protocol securely pro-
cesses RNN Cardinality queries in semi-honest model.

Although the server-based protocols preserve privacy
in semi-honest model, they can be vulnerable to the attack
of a malicious client. A malicious client can calculate the
encrypted result in Step 5 for a specific customer Ui. There-
fore, the client can obtain information about the location of Ui

such as the nearest facility of Ui and its distance to the nearest
facility. However, in any case, it is not possible to find the
exact location of Ui. To prevent the defined attack by mali-
cious clients while providing the exact query result, we pro-
pose client-based protocols in Section 5. Moreover, Section 6
explains satisfying differential privacy in server-based proto-
cols. To protect the privacy of individuals from these kinds of
attacks, differential privacy gives a guarantee that presence or
absence of an individual will not affect the final output of the
algorithm significantly. When the queries return noisy results
instead of exact results, a malicious client cannot obtain the
nearest facility of a specific userUi and its distance to the near-
est facility. For instance, let F1 be the nearest facility of Ui.
Then, the exact query result is ð1; 0; 0; . . . ; 0Þ for the defined
attack. However, adding a noise to each of these values will
prevent the information leak about Ui. Therefore, differential
privacy provides privacy guarantees against such attacks
from themalicious client.

5 CLIENT-BASED QUERY PROCESSING

PROTOCOLS

In the protocols defined in Section 4, the data is encrypted
with the public key of the server. The server computes most
of the encryptions, which dominates the computation cost.
In this section, we propose protocols using the public and
private keys (PKc, SKc) of the client, where the client com-
putes the majority of the encryptions, however, instead of
performing encryptions during each query, the client per-
forms encryptions in the setup. This makes the setup phase
of these protocols more costly than the protocols in Section 4,
however, query processing in these protocols is more effi-
cient in terms of computation and communication costs.
The protocols defined in this section also return exact query

results as in Section 4. We describe achieving differential
privacy during the client-based protocols in Section 6.

In the setup phase, the client generates a public and pri-
vate key pair (PKc, SKc) for Paillier cryptosystem. The client
shares PKc ¼ ðgc;mcÞ with the server. All multiplications
and exponentiations of ciphertexts in the client-based proto-
cols are calculated in mod m2

c . In addition, the server selects
a superset U ¼ U1; . . . ; Unf g and shares with the client, as
described in Section 4. Then, for each Ui 2 U, the client calcu-
lates Ti½ �c¼ Ecð0Þ if Ui =2 UC and Ti½ �c¼ Ecð1Þ if Ui 2 UC. The
client sends ½T �c ¼ f½T1�c; . . . ; ½Tn�cg to the server. Let ri be
the random number used in the calculation of Ti½ �c. To pre-
vent malicious client attack described in Section 4.1, the cli-
ent sends the total number of its users (nc) and r ¼

Qn
i¼1 ri to

the server. The server multiplies all Ti½ �c values and obtains a
ciphertext which should be equal to encryption of nc. That is,
EcðncÞ ¼ gncc � rm ¼

Qn
i¼1 Ti½ �c ðmod m2

cÞ. The server encrypts
nc with the random value r and verifies the total number of
the client’s users. If

Qn
i¼1 Ti½ �c is not equal to EcðncÞ or nc is

less than a threshold value, the server aborts the protocol.
Therefore, a malicious client cannot get the query result for a
specific user.

Once the client sends n ciphertexts to the server, any of
the aforementioned queries can be performed with small
computation and communication overheads. We can
assume that the users of the client do not change frequently.
Small number of changes on the user list do not have a nota-
ble effect on query results as well. Hence, the client can
update the encrypted list T½ �c, when there is a significant
change on its user list. In addition, when the client decides
an update in T½ �c, it is not necessary to update all values in
T½ �c. The client can only update a subset of users that con-
tains the users to be changed. For instance, if the superset U
includes 100 million users, to change 100 users in T½ �c, the
client can update a subset of T½ �c containing one million
users instead of all users in T½ �c.

Fig. 3 shows the overviewof the setup phase and the proto-
cols. The protocols in this section consist of 6 steps. The server
and the client communicate in Steps 1 and 5. Step 2 is the cal-
culation of distances as in server-based protocols. In Step 3,
the server utilizes homomorphic properties of Paillier crypto-
system to calculate the encryption of the query result by using
encrypted values in T½ �c. Before sending the encrypted result
to the client, the server anonymizes the result by multiplying
it with the encryption of zero in Step 4. This multiplication
does not alter the result; it only prevents the server from track-
ing users by the client. Therefore, the server hides user loca-
tions from the client. In Step 6, the client obtains the query
result after decryption. Since the server only receives the loca-
tions of the facilities during query processing, it is not possible
for the server to determine query result.

5.1 RNN Cardinality Query (RNNQ/C)

Let qi be the total number of users inUI whose nearest facility
is Fi. This query returns the qi values for each facility Fi 2 F .
Hence, Q ¼ q1; . . . ; qkf g is the query result. Fig. 4 illustrates
the steps of the protocol for the same example scenario
explained in Section 4. The protocol is defined as follows:

� Step 1: C sends the location of each facility to S.
� Step 2: S checks the facility locations and aborts the

protocol if C adds more than u1 new facilities or

Fig. 3. Overview of the client-based protocols.
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removes more than u2 existing facilities as described
in Section 3.3. S calculates the distance between each
facility and each user in US . S determines the nearest
facility of each user Ui in US .

� Step 3: For each facility Fj, S calculates the xj
� �

c
value

by multiplying Ti½ �c values such that Ui 2 US and the
nearest facility of Ui is Fj. At the end of this step, S
forms ½X�c ¼ f½x1�c; . . . ; ½xk�cg where xi½ �c is the
encryption of qi. In this step, S computes the
encrypted result.

� Step 4: S encrypts 0 using k different random values
and calculates x0i

� �
c
¼ xi½ �c�Ecð0Þ for each i 2 1; . . . ; kf g.

� Step 5: S sends ½X0�c ¼ f½x0
1�c; . . . ; ½x0

k�cg to C.
� Step 6: C decrypts all ½x0

i�c values in X0½ �c, and clearly,
Dcð½x0

i�cÞ is equal to qi. C obtainsQ ¼ fq1; . . . ; qkg.

5.2 Average Distance Query (AVGQ/C)

Let q be the average distance between users in UI and each
one’s nearest facility. The protocol is defined as follows:

� Step 1: C sends the location of each facility to S.
� Step 2: As described in RNNQ/C protocol, the server

aborts the protocol if it detects a threat. S calculates
the distance between each facility and each user in
US . S determines the nearest facility of each user Ui

in US and the distance di to the nearest facility.
� Step 3: S calculates the multiplication of Ti½ �dic

values and the multiplication of Ti½ �c values such
that Ui 2 US . That is, x1½ �c¼

Q
Ui2US Ti½ �dic and ½x2�c ¼Q

Ui2US Ti½ �c. Clearly, x1½ �c is equal to Ecðq � nIÞ and
x2½ �c is equal to EcðnIÞ.

� Step 4: S calculates ½x0
1�c ¼ ½x1�c � Ecð0Þ and x02

� �
c
¼

x2½ �c�Ecð0Þ.
� Step 5: S sends X0½ �c¼ f½x0

1�c; ½x02�cg to C.
� Step 6: C decrypts ½x0

1�c and ½x0
2�c. Clearly, Dcð½x0

1�cÞ is
equal to q � nI and Dcð½x0

2�cÞ is equal to nI . C obtains q
after division.

5.3 Maximum Distance Query (MAXQ/C)

Let q be the maximum distance between a user in UI and her
nearest facility. The protocol is defined as follows:

� Step 1: C sends the location of each facility to S.
� Step 2: As described in RNNQ/C protocol, the server

aborts the protocol if it detects a threat. S calculates
the distance between each facility and each user in
US . S determines the nearest facility of each user Ui

in US and the distance di to the nearest facility. Let
max be the maximum distance between a user in US
and her nearest facility. S selects a value w, which is
greater thanmax.

� Step 3: For each j 2 1; ::; wf g, S calculates the multi-
plication of Ti½ �c values such that Ui 2 US and di ¼ j.
That is, S computes ½xj�c ¼

Q
Ui2US&di¼j Ti�c

�
. If there

is no such Ui, S sets ½xj�c ¼ Ecð0Þ. Therefore, xj
� �

c
is

equal to the encryption of the total number of users
in UI whose distance to the nearest facility is equal
to j. The query result q is equal to the maximum j
value such thatDcð xj

� �
c
Þ 6¼ 0.

� Step 4: At the end of the protocol, C should not learn
anything more than the query result. To hide the
xj

� �
c
values from C, S randomizes the xj

� �
c
values

by exponentiation. S selects w random values
v1; . . . ; vwf g. Then, S calculates x0i

� �
c
¼ xi½ �vic for each

i 2 1; 2; . . . ; wf g. If xi½ �c is the encryption of 0, x0
i

� �
c
is

the encryption of 0. Therefore, q is still equal to the
maximum j value such thatDcð½x0j�cÞ 6¼ 0.

� Step 5: S sends X0½ �c¼ f½x0
1�c; . . . ; ½x0

w�cg to C.
� Step 6: C decrypts all x0

i

� �
c
values. C obtains q, since it

is equal to the maximum j value such that
Dcð½x0

j�cÞ 6¼ 0.

5.4 Security Analysis of Client-Based Protocols

In this section, we prove the security of the client-based proto-
cols using the simulation paradigm described in Section 4.1.
To prove the security of the protocols we need to show that
there exists two probabilistic polynomial-time simulators
Sim1 and Sim2 for simulating the views of the client and the
server, respectively. In client-based protocols, the view of the
client only consists of its input and output. The server only
sends the encrypted query result to the client in Step 5. Since,
the encrypted result is anonymized in Step 4, X0½ �c does not
contain any information about the users. Therefore, the view
of the client can obviously be simulated by Sim1 and the pri-
vacy of the server is assured.

The view of the server (VIEW2) consists of US , user loca-
tions, F , and T½ �c. To prove that the client’s privacy is
assured in the protocol, we need to show that there exists a
probabilistic polynomial-time simulator Sim2 such that
Sim2ðUS; user locations; FÞ �c VIEW2. This is satisfied by
letting Sim2 generate n random numbers between 0 andm2

c .
These numbers are computationally indistinguishable from
the ciphertexts in T½ �c due to the semantic security of Paillier
cryptosystem. Hence, we conclude that the client-based pro-
tocols privately process the queries in semi-honest model.

6 PROTOCOLS WITH DIFFERENTIAL PRIVACY

Differential privacy is a framework to formalize privacy in
statistical databases. The security proofs indicate that the
proposed protocols reveal no more information than the
output of the queries. However, providing aggregate statis-
tical information about a database may reveal information
about the individuals in the dataset. All of the queries
(RNNQ, AVGQ, and MAXQ) that are studied in this paper
return aggregate results and these query results may cause
information leaks in some cases. For example, RNNQ
returns the cardinality of RNNðFiÞ for each facility Fi in F .

Fig. 4. An example scenario for RNNQ/C.
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If the RNN cardinality of a facility is 1, this user can be pre-
dicted with background knowledge. However, only a
region containing the user’s location can be inferred. In any
case, it is not possible to find the exact location of a user.

The protocols defined in Sections 4 and 5 return exact
query results. To achieve differential privacy in these proto-
cols, we need to add controlled random noise to the query
result. As discussed in Section 2.3, one needs to define the
sensitivity of a query to determine the amount of noise to be
added to the result of a query. Now, we show the sensitivity
of each considered query and how to add the noise during
the protocols.

RNNQ. Returns the total number of users attracted by
each facility. It can be thought as a histogram query [10]
and its sensitivity is 2. When there is a single change in the
database, RNN of at most two facilities may change. There-
fore, we add a noise Laplaceð2�Þ to the RNN cardinality of
each facility.

AVGQ.Returns two values: (i) the total number of users in
UI (nI) and (ii) the total distance between each user and her
nearest facility (q � nI). Thus, we need to calculate the sensi-
tivity for both subqueries. Since the total number of users is a
counting query, the sensitivity for nI is 1. For the total dis-
tance, the sensitivity is the maximum distance (max)
between a user in US and her nearest facility. Therefore, we
add the noise fromLaplaceð1�Þ to nI andLaplaceðmax

� Þ to q � nI .
MAXQ. Returns w3 values containing zero and non-zero

elements. The largest index of a non-zero element is the
result of the query. In MAXQ each of w values can be con-
sidered as a counting query, and hence the sensitivity of
each one is 1. Therefore, we add Laplaceð1�Þ to each w values.

In the server-based protocols, the server adds noise to the
query result in Step 8. Before sending the masked result X00

to the client, the server adds noise to the masked result.
When the client applies unmasking in Step 10, it obtains the
noisy result instead of the exact result.

In the client-based protocols, the server adds noise to the
query result in Step 4. Before sending the encrypted result
to the client, the server anonymizes the result by multiply-
ing it with the encryption of zero in the client-based proto-
cols. Instead of encrypting zero values, the server encrypts
the values drawn from the Laplace distribution and multi-
plies the encryption of the noise with the encrypted query
result. Due to homomorphic properties of Paillier cryptosys-
tem, the noise will be added to the query result in plaintext.
When the client decrypts query result in Step 6, it obtains
the noisy result instead of the exact result.

7 EVALUATION

In this section, we analyze the complexity, performance,
and the utility of the proposed protocols. As there is no
existing work that solves the stated problems, we only
show the feasibility of our solutions. First, we analyze the
computation complexity and the communication costs theo-
retically in Section 7.1. In Section 7.2, we present the experi-
mental efficiency evaluation of each protocol with respect to
different parameters. In Section 7.3, we show the utility of
the protocols when differential privacy is achieved.

7.1 Complexity Analysis

In this section, we analyze the computation and communi-
cation costs of the proposed protocols in Sections 4 and 5.
Achieving differential privacy as described in Section 6
does not change the communication costs of the protocols.
Moreover, its effect on computation time is negligible
because only overhead to achieve differential privacy is pro-
ducing the noise drawn from the Laplace distribution.
Therefore, we give the computation costs of the protocols as
described in Sections 4 and 5.

Server-Based Protocols. Table 2 shows the total number
of operations performed during server-based protocols
in terms of total number of encryptions, decryptions, multi-
plications, exponentiations, distance calculations, and per-
mutations. In all protocols, encryptions dominate the
computation times. The number of encryptions is propor-
tional to n and the server performs at least n encryptions in
each query. However, the server encrypts 0 or 1 in each
encryption and it can encrypt these values offline before the
protocol. When the server uses precomputed Esð0Þ and
Esð1Þ values in these protocols, computation cost reduces
significantly. In addition, all of these ciphertexts must be
transferred to the client in each query. Hence, the computa-
tion costs of RNNQ/S, AVGQ/S, and MAXQ/S are n � k,
2 � n, and n � w ciphertexts, respectively.

Client-Based Protocols. In the setup phase of the client-
based protocols, n encryptions are computed by the client.
The client sends these n ciphertexts to the server in the setup.
Therefore, the communication overhead of the setup is n
ciphertexts. After completion of the setup phase, all queries
can be processed with small computation and communica-
tion overheads. Table 2 shows computation costs of client-
based protocols in each query. Total number of encryptions
in each query is very small with respect to the server-based
protocols. The computation costs of RNNQ/C, AVGQ/C,
andMAXQ/C are k, 2, andw ciphertexts, respectively.

7.2 Efficiency

We have implemented the protocols in Java and we used
the implementation in [18] for Paillier cryposystem. All
experiments were performed on a 64-bit Windows 7
machine with 2.6 GHz Intel Core i5 processor and 4 GB of
RAM. We used 1,024-bit modulus ms and mc in our tests
and each ciphertext consists of 2,048 bits. All distances were
calculated by the server in the euclidean metric.

In our experiments, we used real datasets [27] containing
227,428 check-ins in New York City and 573,703 check-ins

TABLE 2
Computation Performed in Proposed Protocols

S C
RNNQ/S ns � k dist. n � k enc. k dec. nc � kmult. k enc.
AVGQ/S ns � k dist. 2 � n enc. 2 dec. 2 � nc mult. 2 enc.

1 div.
MAXQ/S ns � k dist. n � w enc. w dec. w � ðnc � 1Þmult.

w exp. 2 per.
RNNQ/C ns � k dist. k enc. ns þ kmult. k dec.
AVGQ/C ns � k dist. 2 enc. 2 � ns

mult. ns exp.
2 dec. 1 div.

MAXQ/C ns � k dist. ns mult.
w exp. � w enc.

w� q þ 1 dec.

3. w is a random number that is selected by the server in the
MAXQ/S and MAXQ/C protocols
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in Tokyo. The x and y coordinates were scaled to integer
values from 1 to 10,000. Since the total number of users in
the datasets is less than 5,000, we considered each check-in
location as the location of a separate user. Therefore,
ns ¼ 227; 428 in NYC dataset and ns ¼ 573; 703 in Tokyo
dataset. We randomly chose 20 percent of them as the users
of the client. For existing facilities, we used the locations of
20 restaurants of a fast food chain in New York and 10 res-
taurants of a fast food chain in Tokyo.

For synthetic datasets, the x and y coordinates of the user
locations and facility locations were selected randomly as
integer values from 1 to maxCoordinate. The user id values
in the superset U were selected as the numbers from 1 to n.
We randomly chose ns of them as the users of the server
and nc of them as the users of the client. The key parameters
in the implementation were n, ns, nc, nI , k, maxCoordinate,
ms, and mc (introduced in Table 1). w is another parameter
in the Maximum Distance Query, which depends on the
value of maxCoordinate. We present the experimental eval-
uation of the server-based protocols in Section 7.2.1 and the
client-based protocols in Section 7.2.2.

7.2.1 Server-Based Protocols

When we use 1,024-bit ms in Paillier encryption, one million
encryption nearly takes 2 hours and 45 minutes and the size
of one million ciphertexts is 250 MB. For the protocols
RNNQ/S, AVGQ/S, and MAXQ/S, the computation times
and communication costs are directly proportional to n � k,
2 � n, andn � w, respectively. Therefore, whenn is onemillion,
the computation time of each protocol is more than 2 hours
and 45minutes.Moreover,whenn is onemillion, the amount
of data exchanged during each protocol is more than 250MB.

In our experiments, we set n ¼ 1; 000; 000, ns ¼ 100; 000,
nc ¼ 20; 000, k ¼ 25, and maxCoordinate ¼ 10; 000 in the
synthetic dataset. Running time of RNNQ/S with these
parameters is high because it requires n � k encryptions for
the encrypted matrix T½ �s. However, all of these ciphertexts
in T½ �s are either the encryption of 0 or the encryption of 1.
Therefore, the encrypted values in T½ �s can be computed off-
line by the server. When the server precomputes Esð0Þ and
Esð1Þ values before the protocol, the remaining computation
takes 10 seconds for these parameters. For the NYC and
Tokyo datasets, the query takes 20 and 25 seconds, respec-
tively. Similarly, for the synthetic dateset with given param-
eters, AVGQ/S takes 13.5 seconds, when the server
computes Esð0Þ and Esð1Þ values before the protocol. Since
the computation time of AVGQ/S is directly proportional
to ns, the query takes nearly 35 and 70 seconds for the NYC
and Tokyo datasets, respectively. The computation time of
MAXQ/S mostly depends on the value of w, which is a ran-
domly selected number by the server. The server performs
w decryptions and the client performs w exponentiations
and w � ðnc � 1Þ multiplications. For instance, when w is
selected as 500, the computation time of MAXQ/S is nearly
5 minutes and it increases linearly when w increases. When
w remains same, we observed the similar computation times
for the real datasets.

Our experimental results show that the computation at
the client’s side is low in server-based query processing pro-
tocols. Step 3 of these protocols necessitates calculating an

encrypted matrix T½ �s. This step dominates the computation
time of server-based protocols. However, the encrypted val-
ues can be computed offline by the server. To do offline
computation, the server does not need to know the facility
locations. The server can compute Esð0Þ and Esð1Þ values
before the protocol. When the client sends the facility loca-
tions in a protocol, the server uses previously computed
ciphertexts in the encrypted matrix T½ �s. Hence, if the server
computes these encryptions offline before the protocol, the
remaining computation takes a few minutes on a single
computer for millions of users. In addition, the computation
time of calculating T½ �s can be reduced via parallel compu-
tations because all encryptions are independent. Server-
based protocols can be preferable when the client cannot
afford to perform the computations or when the client
wants to outsource all the computations to the server. How-
ever, as we have shown, the encrypted values in T½ �s must
be transferred to the client in each query.

7.2.2 Client-Based Protocols

In Section 7.1, the computation complexity of each client-
based protocol is given. When the client performs several
queries, some of these computations are common. For
instance, the server calculates the distance between each
facility and each user in each query. For the same facilities
in separate queries, the server does not need to calculate the
same distance values. In our system model, the locations of
the existing facilities are considered as public and known
by the server. The client can share these locations in the
setup phase. Since the server knows the locations of the
existing facilities, we assume that all the distances between
users and existing facilities were calculated and the nearest
facility of each user was determined by the server before the
execution of protocols. In each query, the client sends a pos-
sible location for adding a new facility and the server only
calculates the distance between the new location and each
user. The server only updates the nearest facilities of the
users who are attracted by the new facility. Therefore, we
evaluate the following for each protocol under different
parameter settings:

� Precomputation time. Most of the computation given
in Table 2 can be precomputed by the server because
the locations of the existing facilities are known by
the server. Hence, we evaluate the precomputation
time of each protocol separately.

� Query processing time. Once the server completes the
precomputation, processing of each query requires
low computation overhead. We evaluate the query
processing time when the client sends a possible
location for adding a new facility.

� Amortized computation time. When the client requests
nq queries, amortized computation time of a query is
equal to ((precomputation time) + nq� (query proc-
essing time)) / nq.

In the setup phase of the client-based protocols, the client
computes n ciphertexts and shares them with the server.
Therefore, the computation cost and the communication
cost of the setup phase of the client-based protocols are
directly proportional to n. One ciphertext consists of
2,048 bits and one encryption takes 10 ms on the machine
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mentioned above. Therefore, if n is one million, the execu-
tion time of the setup phase is nearly 2 hours and 45
minutes4 and the amount of data sent by the client to the
server is 250 MB.

Table 2 shows computation costs of client-based proto-
cols including precomputation and query processing. We
evaluate the performance of the protocols with respect to n,
ns, nc, nI , k, and maxCoordinate. As evident in Table 2, the
parameters n, nc, and nI have no effect on query processing
times of the protocols. In our experiments, we observed the
similar computation times for different values of these
parameters. Therefore, increasing one of these parameters
does not change the precomputation time and the query
processing time of client-based protocols. For the other
parameters ns, k, and maxCoordinate, we analyze their
effects on the precomputation time, the query processing
time and the communication cost of each client-based
protocol. In our experiments, we set n ¼ 200;000;000,
ns ¼ 5;000;000, nc ¼ 1;000;000, nI ¼ 500;000, k ¼ 100, and
maxCoordinate ¼ 10;000, unless stated otherwise.

RNNQ/C. Table 2 shows the computation cost of the pro-
tocol, where ns and k are the determining parameters. In
this protocol, ns � k distance calculations, ns multiplications
and k encryptions can be precomputed by the server. The
client computes X½ �c¼ x1½ �c; . . . ; xk½ �c

� �
before the protocol.

When the client requests a query for a new facility location
(Fkþ1), the server only calculates the distance between Fkþ1

and each user. Then, the client multiplies the Ti½ �c values of
the users whose nearest facility is Fkþ1 and calculates
xkþ1½ �c. The client also multiplies the inverse of Ti½ �c values
of the same users with the xj values of their previous near-
est neighbors. Therefore, during query processing the server
performs ns distance calculations, nearly 2 � nsk multiplica-
tions, and nearly ns

k modular inverse calculations. The client
also performs k decryptions during query processing.

Although encryption and decryption are more expensive
operations than multiplication, the most time consuming
part in the precomputation time is ns multiplications
because ns is much higher than k in our experiments. There-
fore, the precomputation time mostly depends on ns and
slightly depends on k. Fig. 5a illustrates the effect of ns on
precomputation time. The precomputation time increases
from 82 to 407 seconds, when ns increases from 5 million to
25 million. As evident in Fig. 5b, the effect of k is not sharp
as ns. For instance, the precomputation takes 82 seconds
when k is 100. When k becomes 500, the time increases to
110 seconds. For the NYC and Tokyo datasets, the precom-
putation time is 4 and 9.6 seconds, respectively, due to the
lower ns values in these datasets.

The query processing time of RNNQ/C depends on the
values of ns and k. Although an increase in k decreases the
workload of the server, it increases the total number of
decryptions performed by the client. Figs. 6a and 6b shows
the query processing time for different values of ns and k.
These two variables are not the only factors that determine
the query processing time because the total number of oper-
ations also depends on the total number of users attracted
by the new facility. Query processing takes 1.9 and 2.5 sec-
onds, for the NYC and Tokyo datasets, respectively.

We also evaluate the amortized computation time of
RNNQ/C for 100 queries. For the parameters given above,
the precomputation takes 82 seconds and the query process-
ing takes 4.3 seconds. Hence, the amortized computation
time per query is 5.1 seconds.

During query processing, k ciphertexts and the facility
locations are shared between the server and the client.
Hence, k is the most crucial parameter for the communica-
tion cost. When the total number of facilities is 100, the
amount of shared data is nearly 25 KB.

AVGQ/C. In this protocol, the client obtains the total num-
ber of users in UI and the total distance between each user
and her nearest facility. Until there is a change on the total
number of users, there is no need to compute it in each query.

Fig. 5. Precomputation times of client-based protocols.

Fig. 6. Query processing times of client-based protocols.

4. Computation time can be further reduced via parallel
computations.
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Hence, the total number of users inUI can be precomputed by
the server and the client. This part of precomputation requires
ns multiplications, one encryption, and one decryption. In
addition, the server can precompute ns � k distance calcula-
tions, ns exponentiations, ns multiplications, and one encryp-
tion for the computation of the total distance. During query
processing the server performs ns distance calculations,
nearly 2 � nsk multiplications, nearly ns

k exponentiations, and
nearly ns

k modular inverse calculations. The client performs
one decryption and one division during query processing.

Due to the high number of exponentiations, the precom-
putation time of AVGQ/C is higher than the other client-
based protocols. Fig. 5a depicts the precomputation time for
different values of ns. Query processing takes nearly 12
minutes when the server has 5 million users and the time
changes linearly with respect to the value of ns. For the
smaller ns values in NYC and Tokyo datasets, the precom-
putation takes 41 and 92 seconds, respectively. In addition,
Fig. 5c shows that the value of maxCoordinate affects the
precomputation time slightly. As maxCoordinate increases,
exponent values in the computation also increase.

The query processing time of AVGQ/C is directly pro-
portional to ns and inversely proportional to k. Figs. 6a and
6b shows the query processing time for different values of
ns and k. Since there is no encryption and only one decryp-
tion in query processing, AVGQ/C has the lowest query
processing time among three client-based protocols. Query
processing takes nearly 1 second, for both NYC and Tokyo
datasets. Similar to RNNQ/C, the total number of users
attracted by the new facility affects the query processing
time. The precomputation takes 720 seconds and the query
processing takes 2 seconds for the parameters given above.
Hence, the amortized computation time per query is 9.2 sec-
onds for 100 AVGQ/C queries.

During the protocol, two ciphertexts and the facility loca-
tions are shared between the server and the client. There-
fore, the communication cost is low because the facility
locations are sent as plaintext and the total number of
ciphertexts is two. When the total number of facilities is 100,
the amount of shared data is less than 1 KB during query
processing.

MAXQ/C. In MAXQ/C, the server can precompute ns � k
distance calculations, ns multiplications and w encryptions.
During query processing, the server performs ns distance
calculations, nearly 2 � nsk multiplications, nearly ns

k modular
inverse calculations, and w encryptions. The client also per-
forms w� q þ 1 decryptions during query processing.

w and ns are crucial parameters in the precomputation
time of MAXQ/C. Similar to RNNQ/C protocol, the pre-
computation time mostly depends on ns because ns is much
higher than w in our experiments. Fig. 5a shows the precom-
putation time with respect to ns. Since ns multiplications
dominate the computation cost, the precomputation time of
MAXQ/C is similar to RNNQ/C. We also observed similar
results for the real datasets.

Due to the randomness in the selection of w, the query
processing time of MAXQ/C is not directly proportional to
ns or maxCoordinate. w is a randomly selected value that is
greater than max, which is the maximum distance between
a user in US and her nearest facility. In our experiments, w is
selected randomly in the range [max, 2 �max]. Therefore,

the parameter maxCoordinate affects the value of w, and
hence the query processing time. The query processing time
of MAXQ/C for different values of maxCoordinate is given
in Fig. 6c. As evident in Fig. 6c, query processing time is not
directly proportional to maxCoordinate. For instance, when
maxCoordinate increases from 15,000 to 20,000, the compu-
tation time decreases due to a decrease in w and an increase
in q. Therefore, the distance of each user to her nearest facil-
ity and the query result q also affect the query processing
time. In addition, Fig. 6b shows the query processing time
for different values of k. Smaller k values may result in
higher query processing times because max value may
increase in smaller k values. For instance, in real datasets
we have smaller k values such as 10 and 20. As a result, the
query processing times are 17 and 60 seconds, for the NYC
and Tokyo datasets, respectively.

For the parameters given above, the precomputation
takes 83 seconds and the query processing takes 22.2 sec-
onds. Therefore, the amortized computation time per query
is 23 seconds for 100 MAXQ/C queries. The communication
cost of the protocol is w ciphertexts and the facility loca-
tions. When w is selected as 5,000, the amount of shared
data is nearly 1.25 MB.

All these results show the practicality of our proposed
scheme in real-life settings. Any of the aforementioned
queries can be performed in less than a minute on datasets
that include millions of individuals.

7.3 Utility versus Differential Privacy

In Section 6, we explain how to achieve differential privacy
in the proposed protocols by adding controlled noise to the
query results, which affects the accuracy of the results. To
measure the utility of the protocols under differential pri-
vacy, we selected 100 candidate locations for the new facil-
ity and observed the results after executing the protocols.
We divided the whole region into a 10	10 grid and selected
the center of each grid as a candidate location for the new
facility. First, we applied the protocols without adding any
noise and ranked the 100 candidate locations with respect
to their optimality. Then, we executed the protocols by add-
ing controlled noise and observed the impact of differential
privacy on the utility. We evaluated the utility of differential
privacy for the real and synthetic datasets. For synthetic
datasets, we set the parameters as given in Section 7.2.

RNNQ. The objective of using RNNQ is uniformly dis-
tributing the cardinality of the RNNs. When the new facility
attracts users from dense facilities, the workloads of dense
facilities decrease. Hence, balancing workload reduces the
wait times by avoiding overloads. We measured the stan-
dard deviation of the cardinalities of the RNNs. We sorted
100 candidate locations with respect to the standard devia-
tion after adding the possible location as the new facility.
The best candidate is the location that minimizes the stan-
dard deviation. We also sorted the candidate locations after
achieving differential privacy. Fig. 7 shows the rankings of
the candidates for real and synthetic datasets after adding
controlled noise. We used three different � values such as
0.01, 0.1, and ln 2, which are typically chosen values in the
literature. As evident in Fig. 7, the utility increases when �
increases. When � is ln 2, the ranking of the candidates are
almost same as the rankings without adding any noise.
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Although the deviations in the rankings increase for the
smaller values of �, the best candidate is same most of the
time after achieving differential privacy. Therefore, the util-
ity of RNNQ under differential privacy is remarkable for
large � values and acceptable for small � values.

AVGQ.We sorted 100 candidate locations with respect to
the average distance value returned from the query. The
best candidate is the location that minimizes the average
distance. Fig. 8 shows the rankings of the candidates after
adding controlled noise. The deviation on the rankings is
less than RNNQ. Therefore, the utility of AVGQ under dif-
ferential privacy is better than RNNQ for all � values.

MAXQ. This query returns w values containing zero and
non-zero elements. The largest index of a non-zero element
is the result of the query. After adding the noise to each of w
values, most of the zero values becomes non-zero. There-
fore, adding the noise changes the query result significantly.
In our experiments, we observed that the query result
becomes w or w� 1 most of the time after adding the noise.
Since w is a randomly selected value, the query returns a
random result in each execution. Hence, the utility of
MAXQ under differential privacy is very low.

Discussion. Our experimental results show that achieving
differential privacy in RNNQ and AVGQ causes low utility
loss. Since these queries contain counting subqueries, run-
ning them under differential privacy increases the privacy of
individuals with a negligible computational overhead. On
the other hand, MAXQ is not suitable for differential privacy
because the query result changes significantly after adding
noise to each counter value in the query. To prevent high util-
ity loss of differential privacy in MAXQ, only non-zero val-
ues should be randomized as described in Section 5.3.

8 CONCLUSION

We proposed novel protocols for privacy-preserving analy-
sis of location data in a location-based service provider

(referred as the server) by a business (referred as the client)
as a service. We defined three queries addressing different
objectives in optimal location selection: (i) to minimize the
average distance between each user and her closest facility,
(ii) to minimize the maximum distance between a user and
her closest facility, and (iii) to uniformly distribute the work-
load in facilities. We developed two homomorphic encryp-
tion-based solutions: (i) a server-based solution, in which
most of the computation is performed by the server, and
hence the workload of the client is low, and (ii) a client-based
solution, in which the client performs the majority of the
computation during the setup phase (which only occurs
once) and after completion of the setup phase, all queries are
processed quickly. We showed that the proposed protocols
keep the client’s user list and the query result hidden from
the server, and the location information stored at the server
hidden from the client. The security provided by all proto-
cols relies on the underlying security of the Paillier crypto-
system (which relies on the decisional composite residuosity
assumption) proved in [22]. We also showed that it is possi-
ble to achieve differential privacy in the proposed protocols
with low utility loss. Using the proposed protocolswill facili-
tate sharing location information between entities without
compromising customer privacy. We evaluated the efficien-
cies of the proposed protocols through experiments for each
considered query type and showed that the proposed proto-
cols are feasible, efficient, and scalable.
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