
39

GOOWE: Geometrically Optimum and Online-Weighted Ensemble
Classifier for Evolving Data Streams

Hamed R. Bonab, Bilkent University
Fazli Can, Bilkent University

Designing adaptive classifiers for an evolving data stream is a challenging task due to the data size and its
dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach,
is a well-known solution. It is possible that a subset of classifiers in the ensemble outperforms others in a
time-varying fashion. However, optimum weight assignment for component classifiers is a problem which is
not yet fully addressed in online evolving environments. We propose a novel data stream ensemble classifier,
called Geometrically Optimum and Online-Weighted Ensemble (GOOWE), which assigns optimum weights
to the component classifiers using a sliding window containing the most recent data instances. We map
vote scores of individual classifiers and true class labels into a spatial environment. Based on the Euclidean
distance between vote scores and ideal-points, and using the linear least squares (LSQ) solution, we present
a novel, dynamic, and online weighting approach. While LSQ is used for batch mode ensemble classifiers,
it is the first time that we adapt and use it for online environments by providing a spatial modeling of
online ensembles. In order to show the robustness of the proposed algorithm, we use real-world datasets and
synthetic data generators using the MOA libraries. First, we analyze the impact of our weighting system on
prediction accuracy through two scenarios. Second, we compare GOOWE with 8 state-of-the-art ensemble
classifiers in a comprehensive experimental environment. Our experiments show that GOOWE provides
improved reactions to different types of concept drift compared to our baselines. The statistical tests indicate
a significant improvement in accuracy, with conservative time and memory requirements.

CCS Concepts: rInformation systems → Data stream mining; rTheory of computation → Online
learning theory;

Additional Key Words and Phrases: Ensemble classifier, concept drift, evolving data stream, dynamic
weighting, geometry of voting, least squares, spatial modeling for online ensembles

ACM Reference Format:
Hamed R. Bonab and Fazli Can, 2017. GOOWE: Geometrically Optimum and Online-Weighted Ensemble
Classifier for Evolving Data Streams. ACM Trans. Knowl. Discov. Data. 9, 4, Article 39 (August 2017), 33
pages.
DOI: 0000001.0000001

1. INTRODUCTION
The automation of several processes in daily life has dramatically increased the num-
ber of data stream generators. Mining the data generated in real-world applications;
like traffic management data, click streams in web exploration, detailed call logs, stock
market and business transactions, social and computer network logs, and many other
such examples; introduced several challenges to the domain. These challenges are

The paper is accepted for publication in the ACM Transactions on Knowledge Discovery from Data (TKDD)
in August 2017.
The authors are with the Bilkent Information Retrieval Group, Computer Engineering Department, Bilkent
University, 06800, Ankara, Turkey.
The current address of Hamed R. Bonab: College of Information and Computer Sciences, University of Mas-
sachusetts, Amherst, MA 01003, USA.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2017 ACM. 1556-4681/2017/08-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

ar
X

iv
:1

70
9.

02
80

0v
1

 [
cs

.L
G

]
 8

 S
ep

 2
01

7

39:2 H. R. Bonab and F. Can

mostly due to the size and time-evolving nature of these data streams. The cost and
effort of storing and retrieving this type of data made the on-the-fly real-time analysis
of incoming data crucial [Gama 2010].

In such dynamically evolving and non-stationary environments, data distribution
can change over time, this is referred to as concept drift [Gama et al. 2014]. However,
some of these changes are not real concept drifts, and they do not need to be reacted
to by adaptive classifiers. Real concept drift is referred to as change in the conditional
distribution of the output, given the input features, while the distribution of the input
may stay unchanged [Gama 2010; Gama et al. 2014]. An example of evolving envi-
ronments is filtering spam emails, in which the definition of the spam class label may
change with time. Since users specify these class labels, and their preferences may
also change with time, the conditional distribution of labels for incoming emails can
change [Kuncheva 2004].

Designing a classifier for time-evolving data streams has some considerations to be
addressed, compared to traditional classifiers. Since data arrives continuously, any
proposed algorithm needs to process it under strict time constraints. Handling large
volumes of data in main memory is impractical, so the proposed algorithm must
use limited memory. Patterns of change in target concepts are categorized into sud-
den/abrupt, incremental, gradual, and reoccurring drifts [Bifet et al. 2009; Gama et al.
2014; Kuncheva 2008; Gomes et al. 2017; Krawczyk et al. 2017]. Effective classifiers
should be able to handle these concept drifts.

More recently, many drift-aware adaptive learning algorithms have been developed.
Among these algorithms, ensemble methods are naturally more consistent with the
needs of the problem, and they are proven to outperform single algorithms statisti-
cally and computationally [Bifet et al. 2009; Brzezinski and Stefanowski 2014b; Kolter
and Maloof 2005; Kuncheva 2004; Wang et al. 2003; Gomes et al. 2017; Krawczyk et al.
2017]. It is possible that a subset of classifiers in the ensemble outperforms others in a
time-varying fashion. However, optimum weight assignment for component classifiers
is a problem which is not yet fully addressed in online evolving environments [Zhu
et al. 2010]. We propose a novel data stream ensemble classifier which assigns opti-
mum weights to the component classifiers using a sliding window containing the most
recent data instances. Since ensemble methods use individual classifiers inside their
models, this does not decrease the importance of designing more adaptive individual
classifiers for evolving data streams. Improving the performance of individual classi-
fiers in terms of accuracy and resource usage can also increase the performance of an
ensemble.

In this article, we concentrate on designing a geometric framework for dynamic
weighting of component classifiers for ensemble methods. We model our ensemble in
a spatial environment and use the Euclidean distance as our measure of closeness.
We try to find an optimum weighting function based on LSQ, leading to a system of
linear equations which describes the ensemble more precisely. Based on this system of
linear equations, we design our algorithm called Geometrically Optimum and Online-
Weighted Ensemble (GOOWE)—pronounced gooey (/’gü-ē/). It is inspired from the ge-
ometry of voting, which is a well-known domain in the political and social sciences,
and economics. The geometric analysis of individual votes for aggregation is proven to
outperform existing solutions in these fields. In aggregation, various rules may have
conflicting votes, i.e., “the paradox of voting.” Finding classes of profiles, uncovering
paradoxes, and determining the likelihood of disagreements are among the problems
addressed by the geometry of voting [Saari 2008].

For evaluating the performance of an algorithm in a time-evolving data stream do-
main, it is necessary to use tens of millions of examples [Bifet et al. 2009]. However,
gathering this much real-world data, especially with substantial concept drifts, is not

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:3

Table I. Symbol Notation

Notation Definition
S Data stream
I = {I1, I2, ..., In} Instance window, Ii; (1 ≤ i ≤ n)
It = xt ∈ S Incoming data instance in time t
yt / y′t Vector of true/predicted class label
C = {C1, C2, ..., Cp} Set of p class labels, Ck; (1 ≤ k ≤ p)

ξ = {CS1, CS2, ..., CSm}
Ensemble of m individual classifiers,
CSj ; (1 ≤ j ≤ m)

sij =< S1
ij , S

2
ij , ..., S

p
ij > Score vector for Ii and CSj ,

Sk
ij ; (1 ≤ k ≤ p)

oi =< O1
i , O

2
i , · · · , O

p
i > Ideal-point for Ii, Ok

i ; (1 ≤ k ≤ p)
w =< W1,W2, · · · ,Wm > Weight vector for ξ, Wj ; (1 ≤ j ≤ m)

feasible. There is a shortage in trusted evolving real-world publicly available datasets
for testing stream classifiers [Krawczyk et al. 2017]. Moreover, we cannot verify con-
cept drift phases in the course of time for real-world data streams. Some popular real-
world data streams, used in the literature, questionably represent sufficiently real
concept drifts (e.g. discussions on electricity data [Zliobaite 2013]). Because of these
problems, like earlier studies in the literature, we use a combination of real-world and
synthetic data streams in our experiments.

We experimentally evaluate our algorithm using several real-world and synthetic
datasets representing gradual, incremental, sudden/abrupt, and reoccurring concept
drifts. We use the most popular real-world datasets, and for generating synthetic data
streams, we use the MOA libraries [Bifet et al. 2009]. For the sake of comparison, we
use 8 state-of-the-art ensemble methods as baselines in our experiments. We follow
the tradition and use classification accuracy, processing time, and memory costs as
our comparison measurements. For classification accuracy measurement, we use the
Interleaved Test-Then-Train approach [Bifet et al. 2009].

Contributions of our study. The summary of main contributions of this study are
the following. We

— Provide a spatial modeling for online ensembles and use the linear least squares
(LSQ) solution [Hansen et al. 2013] for optimizing the weights of components of an
ensemble classifier for evolving environments. While LSQ is used for batch mode
component weighting [Chan 1999; Friedman 2002], for the first time in the literature,
we adapt and use it for online environments, as a stacking algorithm,

— Introduce an ensemble algorithm, called GOOWE. We use data chunks for training,
and a sliding instance window containing the latest available data for testing; such
an approach provides more robust behavior, as shown by our experiments,

— Analyze the impact of GOOWE’s weighting system on component weighting strategy
and ensemble model management strategy,

— Conduct an extensive experimental evaluation on 16 synthetic and 4 real-world data
streams for comparing GOOWE with 8 state-of-the-art ensemble classifiers, and

— Carry out comprehensive statistical tests to show that GOOWE provides a statis-
tically significant improvement in terms of accuracy while using conservative re-
sources.

We present a brief chronological survey of the related work in Section 2; GOOWE
in Section 3; our experimental evaluation setup in Section 4; experimental analysis
in Section 5; comparative evaluation in Section 6; and statistical tests in Section 7.
Section 8 offers a conclusion and directions for future research. Table I presents the
notation of symbols that we use in the succeeding sections.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:4 H. R. Bonab and F. Can

Fig. 1. Four patterns of real concept drift over time (revised from [Gama et al. 2014]).

2. BACKGROUND AND RELATED WORK
In this section, we explain our assumptions and specifications for time-evolving data
streams. We distinguish different types of concept drifts based on the literature. We
discuss different approaches of adapting concept drifts in evolving environments, fo-
cusing on ensemble methods, since they are naturally more capable of handling con-
cept drift and they proved to outperform individual classifiers [Bifet et al. 2009; Gama
et al. 2014; Gomes et al. 2017; Krawczyk et al. 2017].

2.1. Basic Concepts and Notations
The traditional supervised classification problem aims to map a vector of attributes,
x, into a vector of class labels, y′, i.e. x 7→ y′. The domain of attribute values in x,
can be either numerical or nominal. However, for the domain of class labels in y′, we
assume binary values for each label indicating selection or not-selection of that specific
class label. We compare mapped class label vectors, y′, with true class label vectors, y.
Instances from our data stream, It = xt ∈ S, appear sequentially in temporal order,
and we must process the data in an online fashion. We map xt into y′t, and when the
true class labels, yt, are available, we can evaluate our predictions. Due to the size
of stream data, we are only able to store a limited number of instances in a window
to process, and we need to discard old instances. Based on the availability of true
class labels (data constraints) and our resources (solution/resource constraints), we can
determine the length of the window. Classifiers are supposed to use limited memory
and limited processing time per instance [Bifet et al. 2009; Gama et al. 2014; Kuncheva
2004].

In dynamically evolving environments, the conditional distribution of the output
(i.e. true class labels) given the input vector, may change with time, i.e. P (yt+1|xt+1) 6=
P (yt|xt), while the distribution of the input vector itself, P (xt), may remain the same
[Gama et al. 2014]. This is referred to as real concept drift and has raised several
challenges for detecting and reacting to these changes.

Zhang et al. [Zhang et al. 2008] categorized real concept drifts into two scenarios;
Loose Concept Drift (LCD) where only a change in P (yt|xt) causes the concept drift, and
Rigorous Concept Drift (RCD), where change in both P (yt|xt) and P (xt) cause the con-
cept drift. The general assumption in the concept drift setting is that the change hap-
pens unexpectedly and is unpredictable. We do not consider the situation for some real-
world problems where the change is predictable. We do not address concept-evolution,
the arrival of a novel class label, and time-constrained classification [Farid et al. 2013;

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:5

Han et al. 2015; Masud et al. 2011; Sun et al. 2016; Wang et al. 2015; Zamani et al.
2016]. The reader is referred to [Gama et al. 2014] for various settings of the problem.
We assume the most general setting of the evolving data stream classification problem.

There are several forms of change patterns over time for real concept drift, as shown
in Fig. 1. If we consider a non-changing conditional distribution of the output given the
input as one concept, a drift may happen suddenly/abruptly by replacing one concept
with another (e.g. C1 with New C1 in Fig. 1-(a)) at a moment in time t. Drift may hap-
pen incrementally between the first and last concepts (e.g. C1 and New C1 in Fig. 1-(b),
respectively), where there are many intermediate concepts which smoothly connect the
dots. Gradual drift happens when there are no intermediate concepts and both of the
first and last concepts are occurring for a period of time, Fig. 1-(c). Drifts may intro-
duce new concepts that were not seen before, or previously seen concepts may reoccur
after some time, Fig. 1-(d). Once-off random anomalies or blips are called outlier/noise
and there should not be any reaction, as we do not consider them to be concept drift.
Since most of the real-world problems are complex mixtures of these concept drifts,
we expect any classifier to react and adapt reasonably to different types of concept
drifts and remain robust to outliers, predicting with acceptable resource requirements
[Gama et al. 2014].

2.2. Ensemble Classifiers for Evolving Online Environments
A recently published survey on concept drift adaption [Gama et al. 2014], presents a
new taxonomy of adaptive classifiers using four existing modules of various learning
methods in time-evolving environments. They are memory management, change de-
tection, learning property, and loss estimation. In this study, we concentrate on model
management strategies, as a learning property, to present state-of-the-art ensemble
methods in chronological order. Model management strategies are techniques used
in maintaining ensemble components as new data become available in the course of
time. In addition, since we provide a novel stacking algorithm for online ensemble
classifiers, we cover vote combination techniques of these ensembles. The remaining
modules, other than learning property, are out of the scope of this paper.

Two more recently published surveys on ensemble learning for data stream analysis
[Gomes et al. 2017; Krawczyk et al. 2017] show the importance of ensemble learning
methods, especially on changing environments, and present ongoing research chal-
lenges. Gomes et al. cover existing data stream ensemble learning methods, propose a
consistent taxonomy among them, and compare them based on some important as-
pects like vote aggregation, diversity measurement, and dynamic updates [Gomes
et al. 2017]. Krawczyk et al. discuss more advanced topics such as imbalanced data
streams, novelty detection, active and semi-supervised learning, complex data repre-
sentations, and structured outputs with a focus on ensemble learning [Krawczyk et al.
2017].

Based on the model management categories of Kuncheva [Kuncheva 2004], there
are five possible strategies for adaptive online classifiers:

(1) Horse Racing: The dynamic combination ensemble strategy that aims to have the
most proper combination rule of existing individual components in an ensemble;

(2) Updated Data Feeding: Feeding individual classifiers with the most recent avail-
able data;

(3) Scheduled Feeding of Ensemble Members: Scheduling the update of individual clas-
sifiers, either by retraining in a batch mode, or incrementally in an online mode
with newly available data;

(4) Add/Drop Classifiers: Adding fresh classifiers to the ensemble or pruning the de-
teriorating classifiers; and

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:6 H. R. Bonab and F. Can

(5) Feature Regulation: Regulating the importance of features along with the life of an
ensemble.

Practically any combination of these strategies can be used together and they do not
need to be necessarily mutually exclusive.

Elwell and Polikar [Elwell and Polikar 2011] explain active versus passive ap-
proaches. Active approaches benefit from a drift detection mechanism, reacting only
when drift is detected. On the other hand, passive approaches continuously update
the model with each incoming data. Since training identical hypotheses with the same
data produces identical classifiers, we need some mechanisms to increase their diver-
sity. This is accomplished mostly by Kuncheva’s third and fourth strategies. In ad-
dition, there are some works to measure and maintain the diversity of component
classifiers [Minku et al. 2010; Minku and Yao 2012].

The WINNOW [Littlestone 1987], Weighted Majority (WM) [Littlestone and War-
muth 1994], and Hedge(β) [Freund and Schapire 1997] algorithms are the initial adap-
tive ensemble methods for large-scale changing environments. They mainly use the
horse racing strategy for developing better combination rules in an off-line setting.
They begin by creating a set of classifiers with an initial weight (usually 1). They
adapt the ensemble’s behavior using a reward-punishment system to keep track of the
most trustworthy expert in each time slot. In particular, WINNOW uses α > 1 (usually
α = 2) for its promotion (wi ← wi × α) and demotion (wi ← wi ÷ α) steps. WM excludes
the promotion step, and if an expert incorrectly classifies the instance, the algorithm
decreases its weight by a multiplicative constant, β ∈ [0, 1]. The Hedge(β) algorithm
operates in the same way, but instead of taking the weighted majority vote, chooses
one classifier’s decision as the ensemble decision. They provide a general framework
for weighting component classifiers. However, they do not suggest any mechanism for
dynamically adding or removing new components.

The Streaming Ensemble Algorithm (SEA) [Street and Kim 2001] provides a block-
based and fixed-size ensemble of classifiers, each trained on the incoming chunk of
instances—addressing Kuncheva’s fourth model management strategy. If the ensem-
ble has space, SEA adds the new classifier to the ensemble; otherwise, it puts the new
classifier in the place of a weaker classifier. SEA uses a majority vote for predictions
in an off-line setting. Due to batch mode component classifiers stopping learning after
being formed, replacing the worst performing classifier in an unweighted ensemble,
the learner is unable to properly track concept drifts in the stream data.

Oza [Oza 2001; Oza and Russell 2001] uses Kuncheva’s second and third model man-
agement strategies together with the traditional bagging and boosting algorithms in
online settings for designing OzaBagging and OzaBoosting. For stream data environ-
ments, as the number of training examples and component classifiers tend to go to
infinity, Oza uses the Poisson distribution with λ = 1 for approximating the bino-
mial distribution of sampling. A similar idea is used for the OzaBoosting algorithm.
It employs incremental values of λ, starting from 1, for the training and sampling of
classifiers.

The Dynamic Weighted Majority (DWM) [Kolter and Maloof 2003; 2007] introduced
an ensemble of incremental learning algorithms, each with an associated weight in
an online setting. Models are generated by the same learning algorithm on different
batches of data. DWM uses the WM approach for assigning weights and makes pre-
dictions using a weighted-majority vote of the components where weights are dynami-
cally changing. Pruning components with weights less than a threshold helps to avoid
creating an excessive number of components. An extension to DWM, additive expert
ensemble (AddExp) [Kolter and Maloof 2005], provides a general theoretical expert
analysis to prove mistakes and loss bounds for a discrete and a continuous ensemble.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:7

Table II. Summary of Related Ensemble Classifiers for Evolving Online Environments

Spec. Kuncheva’s Strategies

Ensemble Study Type St. 1 St. 2 St. 3 St. 4 St. 5

WINNOW [Littlestone 1987] Passive × × ×
WM [Littlestone and Warmuth 1994] Passive × × ×
Hedge(β) [Freund and Schapire 1997] Passive × × ×
SEA [Street and Kim 2001] Passive × × ×
OzaBag/OzaBoost [Oza 2001; Oza and Russell 2001] Passive × × ×
DWM [Kolter and Maloof 2003; 2007] Passive × ×
AWE [Wang et al. 2003] Passive × ×
ACE [Nishida et al. 2005] Active × ×
LevBag [Bifet et al. 2010a] Active ×
Learn++.NSE [Elwell and Polikar 2011] Passive × ×
AUE2 [Brzezinski and Stefanowski 2014b] Passive × ×
OAUE [Brzezinski and Stefanowski 2014a] Passive ×

GOOWE Current work Passive × ×

The Accuracy Weighted Ensemble (AWE) [Wang et al. 2003] alternatively suggests
a general framework for mining changing data streams using weighted ensemble clas-
sifiers by re-evaluating ensemble components with incoming data chunks. Inspired
by the framework of SEA, a new static learning algorithm is trained and the previ-
ous components of ensemble are evaluated on each incoming data chunk. However,
these evaluations are done with a special version of Mean Square Error (MSE) allow-
ing the algorithm to select the k best classifiers to create a new ensemble (MSEi =
1
|D|

∑
x∈D(1 −M i

c(x))
2; where D is the latest data chunk and M i

c(x) is the probability
score that x belongs to its true class label c, generated by a specific classifier system
indexed i). Briefly, it assigns weights to component classifiers based on their expected
classification accuracy—according to Bayes error optimization [Tumer and Ghosh
1996]. Moreover, the structure of the ensemble is pruned if errors of individual classi-
fiers are worse than the MSE of a random classifier (MSEr =

∑
c P (c) × (1 − P (c))2;

where P (c) is the probability of observing class label c). All in all, the weight of classi-
fier i is determined by a linear function (wi =MSEr −MSEi).

Since larger data chunks can provide a better distribution of data, they are more
capable of building more accurate classifiers but may contain more than one change.
Smaller chunks can separate drifting places better, but usually lead to poorer classi-
fiers. In particular, ensembles built on large data chunks may react too slowly to sud-
den drifts occurring inside the chunk [Bifet et al. 2009; Brzezinski and Stefanowski
2014b]. To overcome this problem, Adaptive Classifier Ensemble (ACE) [Nishida et al.
2005], proposed an algorithm which uses a hybrid of one online classifier and a collec-
tion of batch classifiers (a mixture of active and passive approaches) along with a drift
detection mechanism. ACE does not benefit from pruning strategies, and the possible
use of a drift detector leads to poor reactions for gradual drifts.

Bifet [Bifet et al. 2010a] introduced Leverage Bagging (LevBag) as an extended ver-
sion of OzaBagging, using the first four strategies of Kuncheva. It aims to increase
the resampling rate using a larger value of λ in the Poisson distribution. Addition-
ally, it adapts output detection codes [Dietterich and Bakiri 1995] for handling multi-
class problems using only binary classifiers and the ADWIN [Bifet and Gavaldà 2007]
change detector for dealing better with concept drifts in stream data.

Learn++.NSE (NSE) [Elwell and Polikar 2011] is a batch learning ensemble that
uses weighted majority voting. It updates weights dynamically with respect to the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:8 H. R. Bonab and F. Can

time-adjusted errors of the classifiers on current and past environments. Similar to
the AWE model management approach, evaluation of classifiers is considered by giv-
ing more credit to the ones capable of identifying previously unknown instances. On
the other hand, classifiers that misclassify previously known instances are penalized.
Moreover, NSE does not discard any component from the ensemble when its knowl-
edge is not relevant to the current chunk of data. Although temporarily forgetting
model management is particularly useful in cyclical environments, it causes some re-
source overuse. Ditzler and Polikar extended NSE for class imbalanced data stream
[Ditzler and Polikar 2013].

Brzezinski et al. [Brzezinski and Stefanowski 2014b] proposed the Accuracy Up-
dated Ensemble (AUE2), for combining the chunk-based algorithms with incremental
learning components. Its model management strategy is based on AWE, and suggests a
non-linear weighting function using the same MSE functions (wij = 1

(MSEr+MSEij+ε)
).

The online version of AUE2 [Brzezinski and Stefanowski 2014a], called Online Accu-
racy Updated Ensemble (OAUE), uses a sliding window for the last n instances of the
data stream.

A summary of these online ensemble classifiers is provided in Table II. Our ensem-
ble, GOOWE, that we present in the next section, is also included in the table for
comparison. As we can see, GOOWE’s model management strategies are the same as
AWE and AUE2.

Ensemble size. It is also called ensemble cardinality in some studies. Determining
the number of component classifiers for an ensemble, discussed briefly in [Gomes et al.
2017; Krawczyk et al. 2017], is an important problem since it has high impact on the
prediction ability of an ensemble, and resource consumptions, in terms of time and
memory. Our study [Bonab and Can 2016] shows that the intuition of adding more
classifiers will result in greater accuracy, is incorrect in practice. In the context of data
stream classification, the ensemble size can either be defined fixed, or dynamic, prior
to the execution. While there is a lack of studies for determining the size of an online
ensemble, most of the existing studies for batch ensembles use statistical tests for
determining the proper number of components [Latinne et al. 2001; Oshiro et al. 2012;
Hernández-Lobato et al. 2013]. Our geometric framework used for the weighting of
components of GOOWE, is also used for determining the ideal number of classifiers for
online ensembles, in a theoretical perspective. Increasing or decreasing the number
of classifiers from this ideal point deteriorates predictions. We called it “the law of
diminishing returns in ensemble construction.” Our theoretical study shows that using
the same number of independent component classifiers as class labels gives the highest
accuracy [Bonab and Can 2016].

3. GOOWE: GEOMETRICALLY OPTIMUM AND ONLINE-WEIGHTED ENSEMBLE
Concepts and Motivation. Unlike traditional batch learning, the assumption of inde-
pendent and identical distribution (i.i.d) of the whole stream data is not true for evolv-
ing online environments [Gama et al. 2013]. The possibilities of changes are; “feature
changes”, or evolving of p(x) with time stamp t, “conditional change”, or the changes of
class label y assignment to feature vector x, and “dual changes”, which includes both
[Gao et al. 2007]. Four recognized patterns of conditional change are given in Fig. 1.
The same patterns of change are possible for feature changes. As mentioned in Section
2.1, Zhang et al. [Zhang et al. 2008] categorized these change into LCD and RCD sce-
narios. An effective classification algorithm should be able to handle these continuous
changes.

The data stream is sliced into chunks, each representing a single distribution. Al-
most all state-of-the-art stream classifiers divide the data into fixed chunk sizes, as

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:9

D
is

tri
bu

tio
n

of
 in

st
an

ce
 X

Time Stamp

Instance Window

Data Chunk 1 Data Chunk 2 Data Chunk 3 Data Chunk 4 Data Chunk 5

Fig. 2. Data Chunk (DC) vs. Instance Window (I)—stream data is sliced into equal chunks with size of h
and sliding instance window takes the latest n instances with available labels; filled circles are instances
with available labels and unfilled circles are yet-to-come instances.

h [Mustafa et al. 2014]. There is a recent study for dynamic determination of chunk
size according to concept drift speed [Mustafa et al. 2014]. This problem is beyond the
scope of our study.

Depending on when the labeled training data becomes available, Gao et al. [Gao
et al. 2007] categorized stream classifiers into two groups: The first group updates the
training distribution as soon as the labeled instance becomes available, and the second
group receives labeled data in chunks and updates the model. Since updating classi-
fiers is a costly operation, the second group of classifiers can be more time efficient.
However, these methods perform well when the up-to-date data chunk has identical
or similar distributions to the yet-to-come data chunk, which is called a stationary as-
sumption in the data stream. This assumption ignores the instable nature of evolving
data streams when concept drift occurs frequently.

To make our ensemble more efficient, we update component classifiers when a new
chunk of labeled data is received. Although we do not address concept drift adaption
directly, our extensive experiments show that using a proper component weighting
system based on very recent instances would adapt existing component classifiers for
recent concept changes. Consequently, having an optimum weighting function would
be extremely beneficial for handling concept drift. For this purpose, we exploit a sliding
instance window with the latest n labeled instances. The size of the instance window
can vary with chunk size, h 6= n. The instance window size can be determined by the
performance and accuracy requirements of the problem. Fig. 2 shows this combination
usage of data chunk and instance window.

Inspired from the geometry of voting [Saari 2008] and using the least squares prob-
lem (LSQ) [Hansen et al. 2013], we designed a geometrically optimum and online-
weighted ensemble method for evolving environments, called GOOWE. While LSQ is
used for component weighting of ensemble classifiers in batch mode [Chan 1999; Fried-
man 2002], it is the first time that we provide a spatial modeling for online environ-
ments as a stacking algorithm.

The motivation of this study is to design an ensemble that assigns optimum weights
to component classifiers, in an on-line setting with different types of concept drifts. For
combining votes, as a stacking algorithm, we model scores of the ensemble’s individual
classifiers in a spatial environment as vectors, and try to establish a clear relationship
between a geometric feature of vectors, and their effectiveness. Its novelty is based on
a dynamically changing component optimum weight assignment approach for online
ensembles in evolving data streams.

Design. GOOWE’s model management approach is similar to AWE and AUE2, with
a passive approach for handling concept drift. Basically, a new incremental learning
algorithm is trained on each incoming data chunk, and the previous components of the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:10 H. R. Bonab and F. Can

score-polytope

ideal-point
C1

C2

C3

Fig. 3. General schema of GOOWE; each It ∈ S delivered to CSj(1 ≤ j ≤ m), produces relevance score
vector, stj . GOOWE maps these score vectors, as a score-polytope, and the true class label, as an ideal-
point, to a p-dimensional space. It assigns weights, Wj , using the linear least squares (LSQ) solution. The
predicted class label, y′t, is obtained using the weighted majority voting [Bonab and Can 2016].

ensemble are re-evaluated on the same data chunk. However, these evaluations are
done with a special function of mean square error (MSE), allowing the algorithm to
assign the weights of component classifiers dynamically, relative to each other, and in
an on-line setting.

In the training scenario, we use data chunks according to Fig. 2, as they become
available. When a new data chunk is received, we train a new component classifier us-
ing these instances and we add it to the ensemble. If there is no space for the new clas-
sifier, we substitute it with the worst-performing component. For testing the ensemble
and classifying a new instance, we use our LSQ-based stacking algorithm based on the
sliding instance window for getting the most updated weights for adapting existing
components. Briefly, GOOWE uses a combination of data chunks and instance win-
dows, as shown in Fig 2. A data chunk (DC) has h instances of a equally divided data
stream; an instance window (I) has the latest n instances of a data stream, with avail-
able true class labels. In our implementation, we build the instance window with the
length of max(n, h), and simply add a counter with the maximum value of h into the
instance window for providing the data chunk. If the length of the instance window is
less than the length of data chunk (i.e. n < h), we set the length of instance window to
h and use the latest n instances.

In our geometric framework, we use the Euclidean norm as the system’s loss func-
tion for optimization purposes. There are clear statistical, mathematical, and compu-
tational advantages of using the Euclidean norm [Hansen et al. 2013]. We calculate
weights based on the latest n instances in our window, and to make a prediction we
use a weighted majority voting approach.

As shown in Fig. 3, we have an ensemble of component classifiers ξ =
{CS1, CS2, · · · , CSm}. Each component classifier, CSj(1 ≤ j ≤ m), processes instance
It of an evolving data stream, S, and produces relevance scores, sj =< S1

j , S
2
j , · · · , S

p
j >,

for each of the class labels, C = {C1, C2, · · · , Cp}. Since each classifier produces rele-
vance scores in different ranges, we use Eq. 1 for normalizing the scores into the range
of [0, 1].

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:11

Skj ←
Skj∑p
a=1 S

a
j

(1 ≤ k ≤ p) (1)

Taking each class label as one dimension, enables us to map each component’s score
(sj ; 1 ≤ j ≤ m) into a point in a p-dimensional Euclidean space. Mapping all score
points of It in the same way, builds a polytope in a p-dimensional Euclidean space,
which we call the score-polytope of It. We define score-vector by using the origin point
as the starting point and score point as the terminal point in our spatial environment.
Using the vector of the true class label for It as yt, we can assume an ideal-point
in the p-dimensional space as o =< O1, O2, · · · , Op >. For example, if the number of
class labels is 4, and the true class label of It is C2, then the ideal-point would be
o =< 0, 1, 0, 0 >.

Optimum Weight Assignment. For making predictions, we use n latest instances
I = {I1, I2, · · · , In}, as an instance window, where In is the latest instance and all true
class labels are available. For each instance Ii(1 ≤ i ≤ n), each component classifier
CSj(1 ≤ j ≤ m) has a score-vector as sij =< S1

ij , S
2
ij , · · · , S

p
ij >. For the true class

label of Ii we have oi =< O1
i , O

2
i , · · · , O

p
i > as the ideal-point. We aim to find the

optimum weight vector w =< W1,W2, · · · ,Wm > to minimize the distance between
score-polytope and ideal-point. Using the squared Euclidean norm as our measure of
closeness for the linear least squares problem (LSQ) results in

min
w
||o− Sw||22 (2)

The corresponding residual vector is r = o− Sw, where for each instance Ii, S ∈ Rm×p
is the matrix with relevance scores sij in each row, w is the vector of weights to be
determined, and o is the vector of ideal-point [Hansen et al. 2013]. Since we have n
instances in our window, we use the following function for our optimization solution.

f(W1,W2, · · · ,Wm) =

n∑
i=1

p∑
k=1

(

m∑
j=1

(WjS
k
ij)−Oki)2 (3)

Taking a partial derivation over Wq(1 ≤ q ≤ m) and finding optimum points will give
us our weight vector. The gradient equations become

∂f

∂Wq
=

n∑
i=1

p∑
k=1

2(

m∑
j=1

(WjS
k
ij)−Oki)Skiq, (1 ≤ q ≤ m) (4)

Setting the gradient to zero, ∇f = 0
m∑
j=1

Wj(

n∑
i=1

p∑
k=1

SkiqS
k
ij) =

n∑
i=1

p∑
k=1

Oki S
k
iq, (1 ≤ q ≤ m) (5)

and assuming below summations as aqj and dq

aqj =

n∑
i=1

p∑
k=1

SkiqS
k
ij , (1 ≤ q, j ≤ m) (6)

dq =

n∑
i=1

p∑
k=1

Oki S
k
iq, (1 ≤ q ≤ m) (7)

lead tom linear equations withm variables (weights). The proper weights in the follow-
ing matrix equation are our intended optimum weight vector. We present the weight

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:12 H. R. Bonab and F. Can

assignment equation in matrix representation to make the later example easier to
follow.

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

×

W1

W2

...
Wm

 =

d1

d2
...
dm

 (8)

Briefly, Aw = d, where A is the coefficients matrix and d is the remainders vector.
According to Eq. 6, A is a symmetric square matrix. In the sense of the least squares
solution [Hansen et al. 2013], since it is probable that A is rank-deficient, we may not
have a unique solution and we denote the minimizer by w∗. According to Theorem 9 of
[Hansen et al. 2013], the normal equations for w∗ can be written as

ATAw = AT d (9)

In this equation, ATA, is also a symmetric square matrix. In addition, if A has full
rank, ATA is positive definite and our problem has a unique solution. In the rank-
deficient case, it is a non-negative definite, and we have a set of possible weight vectors.
The QR factorization suggests less expensive solutions for both full rank and rank-
deficient cases [Hansen et al. 2013]. In such cases, the weights are nearly optimal.

Since we predict scores for each incoming instance separately, we define Ai and
di(1 ≤ i ≤ n) according to Eq. 6 and Eq. 7. Matrix A and vector d can be calculated
simply by adding all Ai and di for all instances of a given window, respectively.

aiqj =

p∑
k=1

SkiqS
k
ij , (1 ≤ i ≤ n) (10)

diq =

p∑
k=1

Oki S
k
iq, (1 ≤ i ≤ n) (11)

Using the weighted majority vote approach gives the aggregated score vector. Since
we calculate scores in a spatial environment, it is possible that these score values
become negative. Using the following normalization before Eq. 1 gives the proper ag-
gregated score vector.

Sk ←
Sk −min(Sk)

max(Sk)−min(Sk)
, (1 ≤ k ≤ p) (12)

Example - Assigning Optimal Weights for Component Classifiers. Suppose
that we have 2 classifiers and 2 class labels, as shown in Fig. 4. Our instance window
has 2 instances as I1 and I2. We want to find the optimum weight vector for aggregating
scores for a newly arrived instance as It.

CS2

CS1

o1 =< 1, 0 >

 I1 ∈ C1

o2 =< 0, 1 >

 I2 ∈ C2 It ∈ ?

s11 =< 0.82, 0.18 >

s12 =< 0.65, 0.35 >

s21 =< 0.21, 0.79 >

s22 =< 0.47, 0.53 >

st1 =< 0.73, 0.27 >

st2 =< 0.59, 0.41 >

Fig. 4. An example of GOOWE component classifiers weighting.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C1

C
2

s11

s12

o1
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C1

C
2

s22

s21

o2

(a) I1 (b) I2

Fig. 5. Score vectors for instance window of example.

We have a 2-dimensional Euclidean space, as shown in Fig. 5. Score vectors and their
intended projections are illustrated with black and red lines, respectively. Putting the
values into Equation 6 and 7, gives the following matrix equation.[

1.37 1.11

1.11 1.05

]
×

[
W1

W2

]
=

[
1.61

1.18

]
Solving this equation gives the intended weight vector, w =< 1.88,−0.87 >. Multiply-

ing these weights with the score vectors of the components, results in the aggregated
score vector, s =< 0.86, 0.14 >. We have a much stronger vote compared to each indi-
vidual classifier.

Pseudocode of GOOWE Algorithm. It is given in Algorithm 1. In the training sce-
nario (lines 9-23), having the proper number of instances from each class label, as our
training data, is crucial for more accurate individual classifiers. On the other hand,
for the testing scenario (lines 3-8), static weighting component classifiers can result in
relatively poor aggregated predictions, especially with the existence of frequent con-
cept drifts in data stream. Using a combination of data chunk and instance window
enables us to think about training and testing of our algorithm separately. These two
values can be adjusted according to the drift rate of the data stream.

When the number of instances in the data chunk, DC, reaches its maximum value
(line 9), GOOWE trains a new incremental classifier (line 10). If the ensemble has its
maximum number of classifiers, m, then GOOWE calculates the weights of classifiers
using Eq. 8 and the instances in the data chunk (lines 12-16). The more the obtained
weight value is close to zero, the more we want to cancel its effectiveness in our aggre-
gated score vector. As a result, we take the absolute value of weight values and omit
the classifier with the least weight (line 17). We first incrementally update all the exist-
ing classifiers with DC (lines 19-21), and then add a fresh classifier into the ensemble
(line 22). Most of the incrementally updated classifiers need to be pruned after some
updates. Since we have memory constraints in our problem, we prune these classifiers
when the consumed memory exceeds the memory limit (lines 24-26). For example, in
our experiments we use the Hoeffding tree [Domingos and Hulten 2000], and prune
the least active leaves of the tree to satisfy the user-specified memory constraint.

For making the class label prediction for each incoming instance, GOOWE calculates
the weights of classifiers using Eq. 8 and the instances in the instance window (lines
3-7). It multiplies the resulting weights with score vectors, and using the weighted
majority voting approach, calculates the aggregated score vector. Adjusting the length
of the instance window and data chunk depends on the data stream and types of con-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:14 H. R. Bonab and F. Can

ALGORITHM 1: GOOWE (Geometrically Optimum and Online-Weighted Ensemble)
Require: S : data stream, I : window of n latest instances, DC : latest data chunk with length

of h, m : maximum number of classifiers, CS : single classifier system, p : number of class
labels, L : memory limit.

Ensure: ξ : set of weighted classifiers, sT : aggregated score vector.
1: ξ ← ∅;
2: while S has more instances do
3: for all instances Ii ∈ I do
4: A← A+Ai; {using Eq. 10}
5: d← d+ di; {using Eq. 11}
6: end for
7: w ← solve(Aw = d); {see Eq. 8}
8: sT ←

∑m
j=1(Wjsj); {weighted majority vote}

9: if DC has h instances then
10: CS′ ← new single classifier built on DC;
11: if ξ has m classifiers then
12: for all instances Ii ∈ DC do
13: A′ ← A′ +A′

i; {using Eq. 10}
14: d′ ← d′ + d′i; {using Eq. 11}
15: end for
16: w′ ← solve(A′w′ = d′); {see Eq. 8}
17: ξ ← ξ\{classifier with min(|W ′

j |); 1 ≤ j ≤ m};
18: end if
19: for all CSj ∈ ξ do
20: train CSj with DC;
21: end for
22: ξ ← ξ ∪ {CS′};
23: end if
24: if memory usage(ξ) ≥ L then
25: prune all component classifiers;
26: end if
27: end while

cept drift. There is no general solution to this problem. However, setting relatively
small values to the instance window, and relatively large values to the data chunk,
according to available resources, can result in better accuracy.

Experimental evaluations, presented in the following sections, illustrate that
GOOWE can react statistically significantly better compared to its state-of-the-art ri-
vals.

4. EXPERIMENTAL EVALUATION SETUP
The main concerns for evolving data stream classifiers are more accurate predictions
with less memory consumption, and less processing time. In addition, any proposed
method for an evolving data stream needs to be careful with concept drift, and re-
act accordingly. In the following sections, we present our experimental evaluation for
different simulation scenarios conducted to evaluate our proposed ensemble.

In summary, our experimental evaluation is presented as follows. We

— First, describe synthetic and real-world evolving data streams used in our experi-
ments. We explain each with the type of concept drift, the number of class labels,
and the number of instances used. While there is a shortage in trusted evolving real-
world streams [Krawczyk et al. 2017], we try to include all possible known/unknown
categories of concept drift in our experiments. We also specify our experimental

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:15

framework setup, implementation details, used libraries, and more for reproducibil-
ity purpose (current section).

— Second, provide an analysis conducted for examining two major differentiating ele-
ments of GOOWE, component weighting strategy and ensemble model management
strategy (Section 5). Our optimum and online weighting system shows its effective-
ness for both vote aggregation and ensemble maintenance.

— Last but not least, present our extensive and comparative experiments. We compare
GOOWE with state-of-the-art rival ensembles and extensively discuss the superi-
ority conditions. For the sake of comparison, we include 8 state-of-the-art adaptive
ensemble methods proposed for evolving data streams (Section 6).

4.1. Datasets as Data Streams
Selecting proper time-evolving data streams is one of the vital steps for comparing dif-
ferent algorithms. There are two types of data stream sets—synthetic and real-world
datasets. We generate the whole dataset before the experiment, and use the terms
dataset and data stream equivalently. Similarly to other domains of prediction algo-
rithms, real-world datasets are the best. However, their problem is that we do not know
when drift occurs, or if there is any drift at all. Some studies use real-world datasets
with artificial concept drifts, called real-world data with forced/synthetic concept drift
[Gama et al. 2014]. These datasets cannot be considered as real examples of drifts.
Synthetic data has several benefits like being easy to reproduce, having a low cost of
storage and transmission, but most importantly, it provides an advantage of knowing
where exactly drift has happened [Bifet et al. 2009; Gama et al. 2014].

A proposed algorithm should be capable of handling large data streams—with poten-
tially an infinite number of instances [Bifet et al. 2009]. As a result, for the comparison
of several algorithms, we need to have large datasets in the order of tens of millions
of instances. Similar to common approaches [Bifet et al. 2009; Brzezinski and Ste-
fanowski 2014b; 2014a; Street and Kim 2001], in order to cover all patterns of changes
over time; sudden/abrupt, incremental, gradual, and reoccurring as concept drifts in-
cluding blips or noise; we use synthetic data stream generators, implemented in the
MOA framework. Using these generators, we prepared 16 synthetic datasets. In addi-
tion, we have 4 widely used real-world data streams.

Following are a brief description of each dataset including their generation and
preparation. Table III summarizes the specifications of each dataset. We report the
average of accuracy, processing time, and maximum memory consumption for each
dataset in Table VI, VII, and VIII, respectively.

4.1.1. Synthetic Datasets . According to the concept drift scenarios of Zhang et al.
[Zhang et al. 2008], we have 8 Rigorous Concept Drifting (RCD) and 8 Loose Concept
Drifting (LCD) synthetic datasets. Bifet et al. [Bifet et al. 2009] specified Random RBF
generator as the RCD data stream, and the rest of synthetic data stream generators
as the LCD data stream.

Random RBF. It assigns a fixed number of random positioned centroids, with a ran-
dom standard deviation value, class label, and weight. For generating new instances,
we randomly select a center, considering weights, so that centroids with higher weights
are more likely to be chosen. A random direction is chosen for displacement, using
a Gaussian distribution, and drift is defined by moving the centroids, with constant
speed. Attributes are all numerical values. Using this generator we prepared 8 differ-
ent datasets, each containing 1 million instances, with 20 attributes, and 0 percent
noise. Here are 3 important alternate factors we changed among these 8 datasets. We
reflect these, respectively, in the naming of RBF datasets in Table III.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:16 H. R. Bonab and F. Can

Table III. Summary of Dataset Characteristics

Dataset #Instance #Att #CL %N Drift Spec.
RBF-G-4-S 1× 106 20 4 0 Gr., Bp., DS=0.0001
RBF-G-4-F 1× 106 20 4 0 Gr., Bp., DS=0.01
RBF-G-10-S 1× 106 20 10 0 Gr., Bp., DS=0.0001
RBF-G-10-F 1× 106 20 10 0 Gr., Bp., DS=0.01
RBF-A-4-S 1× 106 20 4 0 Abrupt, #D=10
RBF-A-4-F 1× 106 20 4 0 Abrupt, #D=100
RBF-A-10-S 1× 106 20 10 0 Abrupt, #D=10
RBF-A-10-F 1× 106 20 10 0 Abrupt, #D=100

SEA-S 1× 106 3 2 10 Abrupt, #D=3
SEA-F 2× 106 3 2 10 Abrupt, #D=9

HYP-S 1× 106 10 2 5 Incrm., DS=0.001
HYP-F 1× 106 10 2 5 Incrm., DS=0.1

TREE-S 1× 106 10 4 0 Reoc., #D=4
TREE-F 1× 105 10 6 0 Reoc., #D=15

LED-M 1× 106 24 10 10 Mixed, #D=3
LED-ND 1× 107 24 10 20 No drift

CoverType 581,012 54 7 - Unknown
PokerHand 1× 107 10 10 - Unknown
CovPokElec 1,455,525 72 10 - Unknown
Airlines 539,383 7 2 - Unknown

#CL: No. of Class Labels, %N: Percentage of Noise, DS: Drift Speed, #D: No.
of Drifts, Gr.: Gradual, Bp.: Blips.

— Concept Drift Type (Gradual: G and Abrupt: A). The way the generator moves cen-
troids make the data stream gradually changing. We add some outliers during gen-
erations of gradual changing datasets in order to have blips. We generate abruptly
changing data streams using the sigmoid join operator (c = a ⊕Wt0 b; t0: point of
change, W : length of change) [Bifet et al. 2009].

— Number of Classes (Four: 4 and Ten: 10). The ability to generate an arbitrary number
of classes is useful for evaluating an algorithm. We generate our datasets with either
four or ten class labels.

— Drift Frequency (Slow: S and Fast: F). For gradually changing datasets, we generate
instances with 0.01 (fast) and 0.0001 (slow) concept change speed (defined as moving
centroids in a random direction for a predefined distance of 0.01 or 0.001, within
each 500 instances). For abruptly changing datasets, we switch to a new random
stream generator that generates data stream with zero concept changing speed, 10
(slow) or 100 (fast), times evenly distributed over 1 million instances.

SEA Concepts. It involves 3 numerical attributes varying between 0 and 10 [Street
and Kim 2001]. In our experiment, we use this generator in 2 different settings, both
with 10 percent noise. First, 1 million instances, with drifts occurring every 250,000
examples (slow: SEA-S), and second, 2 million instances with drifts occurring every
200,000 examples (fast: SEA-F) are generated.

Rotating Hyperplane. It assigns points in a multi-dimensional hyperplane and
classifies them positively and negatively. Concept drift is defined by changing the ori-
entation and position of the hyperplane [Hulten et al. 2001]. We set the hyperplane
generator to create 2 datasets, each with 1 million instances described by 10 numeri-
cal features. We add 5 percent class noise to both of them. The modification weight of
slowly changing dataset (HYP-S) is set to wi = 0.001, and for the rapidly changing one
(HYP-F) to wi = 0.1.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:17

Random Tree. It produces nominal and numerical attributes using a randomly
constructed tree. Drift is defined by abruptly changing the tree after a given number of
examples [Bifet et al. 2010b]. For both slow and fast tree datasets, we set the generator
to have 5 nominal and 5 numerical attributes. The slowly changing dataset (TREE-S)
consists of 1 million instances, with 4 evenly distributed reoccurring drifts. The rapidly
changing dataset (TREE-F) contains 100,000 instances with 15 sudden drifts; it is the
fastest changing dataset in our experiments.

LED. It tries to predict the digit displayed on a seven-segment LED display. Each
instance has 24 binary attributes and each has a possibility of being inverted, which
is defined as noise. We have 2 LED datasets. The first dataset, LED-M, has 1 million
instances with 2 gradually drifting concepts abruptly switching after 0.5 million in-
stances, and 10 percent noise. The second, LED-ND, has 10 million instances without
any drift and 20 percent noise, making it the noisiest and largest dataset [Brzezinski
and Stefanowski 2014b].

4.1.2. Real-World Datasets. The noise values, number of drifts, and drift speeds are
unknown for these datasets. Access URL links are given in the footnote.

CoverType.1 It contains the forest cover type from the US Forest Service (USFS),
comprised of 581,012 instances and 54 attributes.

PokerHand.2 It consists of 1 million instances and 10 attributes. Each record is a
hand of 5 playing cards—with 2 attributes as suit and rank.

CovPokElec.3 It combines the normalized CoverType, normalized PokerHand, and
Electricity datasets using the sigmoid join operator. The Electricity dataset comes from
the Australian New South Wales Electricity Market. CovPokElec is obtained by merg-
ing all attributes, and assuming that each dataset corresponds to a different concept
[Bifet et al. 2009].

Airlines.4 It consists of 539,383 examples described by 7 attributes. The task is
to predict whether or not a given flight will be delayed, given the information of the
scheduled departure.

4.2. Experimental Framework: Detailed Design
Implementation details. In this paper, we use the Massive Online Analysis (MOA)5

framework [Bifet et al. 2010b]. MOA is an open-source software package to run data
streaming experiments and, to the best of our knowledge, is the most popular frame-
work for data stream mining. We use the JAva MAtrix (JAMA)6 package, a basic linear
algebra library, for matrix operations and to find least squares solutions in our imple-
mentation of GOOWE. We extended MOA for GOOWE implementation using the Java
programming language. Some of the other ensemble algorithms, we used as baselines;
they are implemented as part of the MOA framework. We used the MOA extensions
library for DWM and NSE. In addition, our implementation of GOOWE, and some de-
tailed information about experimental evaluation, such as standard deviations, and
dataset generations are available on our GitHub webpage7.

Experimental Analysis. We first study the impact of the proposed weighting sys-
tem on vote aggregation and ensemble maintenance using two scenarios. In both of
these scenarios, we use a fixed block-based ensemble, while different weighting sys-

1Access link: http://archive.ics.uci.edu/ml/datasets/Covertype
2Access link: http://archive.ics.uci.edu/ml/datasets/Poker+Hand
3Access link: http://www.openml.org/d/149
4Access link: http://moa.cms.waikato.ac.nz/datasets/
5MOA webpage: http://moa.cms.waikato.ac.nz/
6JAMA webpage: http://math.nist.gov/javanumerics/jama/
7GOOWE webpage: https://hamedrab.github.io/GOOWE/

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:18 H. R. Bonab and F. Can

tems are implemented in parallel to the original weighting system. In this way, we may
study a single impact factor, and cancel all other impact factors. Through this analy-
sis, GOOWE’s weighting system is compared to most similar block-based ensembles,
i.e. AUE2, AWE, and DWM, and some other baselines based on GOOWE’s weighting
system.

Comparative Study. For our comparative study, we evaluate GOOWE by comparing
it with 8 well-known ensemble classifiers for non-stationary environments using the
online block-based, bagging, and boosting methods as baselines. We select AWE, AUE2,
DWM, and NSE ensemble methods from block-based approaches. In addition to these,
we include OAUE, OzaBag, OzaBoost, and LevBag ensemble methods as popular on-
line ensembles proven to have reasonable performance in evolving environments.

Ensemble Size. As discussed in Section 2, ensemble size has an important impact
on performance of different algorithms. We suggest in [Bonab and Can 2016] to have
the same number of component classifiers as class labels. For our experimental analy-
ses, we use the same number of classifiers as the number of class labels for each data
stream. However, in order to ease the comparisons of time and memory consumption
values, and to follow the convention in the literature of using a fixed maximum number
of classifiers, we fixed ensemble size for our comparative study. We set the maximum
number of classifiers to 10. Studies based on a fixed number of classifiers are accept-
able, since in such cases all ensemble methods can be equally disadvantaged [Bonab
and Can 2016].

Base Classifier. We use the Hoeffding tree [Domingos and Hulten 2000] as the base
classifier component for all examined ensemble methods. We use the Hoeffding tree
enhanced with adaptive Naive Bayes leaf predictions, with a grace period nmin = 100,
split confidence δ = 0.01, and tie-threshold τ = 0.05 similar to experiments in [Brzezin-
ski and Stefanowski 2014b; 2014a; Domingos and Hulten 2000].

Chunk and Instance Window Size. In our experiments, according to the chunk size
analysis of [Wang et al. 2003] and similar to the experimental evaluations of [Brzezin-
ski and Stefanowski 2014b], the chunk size for block-based ensembles (namely DWM,
NSE, AWE, AUE2, and GOOWE) is set to 500 instances. OAUE and GOOWE use a
sliding window of recent data instances. To ensure a fair comparison, similar to block-
based ensembles, we set the instance window length to 500 instances. Although this
length can be smaller for most of the ensembles, to perform an equivalent comparison,
we choose this value based on the suggested minimum chunk length of AWE [Wang
et al. 2003]. The data chunk size and instance window size analysis is possible as a
future work.

Measurements. By considering the main requirements of data stream environments
[Bifet et al. 2009; Brzezinski and Stefanowski 2014b; Street and Kim 2001] in our ex-
perimental setup, we chose the interleaved Test-Then-Train procedure for measuring
prediction accuracy values. For time and memory measurements, we use CentiSecond
(CS) and MegaByte (MB), respectively. Our initial experiments showed that for syn-
thetic datasets with the exact same settings of data stream generators, accuracy, time,
and memory measurements showed variations. In order to have confident conclusions,
for each synthetic data stream, we generate 10 time-seeded random datasets. For ex-
ample, when we say that RBF-G-4-F dataset has 1 million of instances, we examine 10
such datasets (i.e. a total of 10 millions of instances) and report the mean value among
these 10.

Machine Specification. The experiments were performed on a machine equipped with
an Intel Xeon E3-1200 v3 @ 3.40 GHz processor and 32 GB of ECC RAM.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:19

Table IV. Classification Accuracy in Percentage (%) for Vote Aggregation Analysis on Data Streams with Concept Drift—Base1 ensemble
method with different weighting systems used for aggregating votes

Dataset MV DWM (β = 0.5) DWM (β = 0.2) AWE AUE2 GOOWE GOOWE-Min GOOWE-Max
RBF-G-4-S 31.854 31.983 31.989 30.834 31.214 33.853 29.692 33.627
RBF-G-4-F 91.746 85.888 85.666 90.868 91.668 91.626 72.478 87.066
RBF-G-10-S 15.444 14.857 14.867 14.674 15.036 17.395 13.444 15.733
RBF-G-10-F 80.794 80.956 80.929 80.939 80.864 84.062 77.054 78.378
RBF-A-4-S 93.040 90.476 89.851 90.099 93.037 92.983 71.727 90.768
RBF-A-4-F 93.737 90.110 90.498 93.794 93.699 93.627 70.295 91.008
RBF-A-10-S 90.460 90.017 90.011 90.980 90.675 93.869 80.094 85.469
RBF-A-10-F 89.402 88.474 87.950 86.842 89.572 92.622 80.934 84.916

SEA-S 85.636 86.927 86.921 85.289 85.847 84.510 82.364 83.670
SEA-F 89.433 89.302 89.288 89.520 89.230 89.409 86.289 89.310
HYP-S 83.140 87.461 87.462 86.811 84.587 82.429 80.351 82.134
HYP-F 90.742 90.955 90.953 90.981 90.382 91.189 88.434 91.007
TREE-S 94.632 94.452 94.452 94.750 94.599 94.796 58.737 94.470
TREE-F 82.280 81.993 81.963 81.445 82.199 82.560 54.021 82.255
LED-M 73.649 73.266 73.256 72.646 73.645 73.599 69.046 73.575

CoverType 86.516 87.841 87.881 85.655 83.306 88.139 75.597 87.609
PokerHand 66.851 68.707 68.441 66.451 66.826 71.823 60.204 63.281
CovPokElec 74.845 75.911 75.831 75.584 74.909 79.519 68.341 71.845
Airlines 62.136 62.663 62.689 62.041 62.293 62.368 60.957 62.116

5. EXPERIMENTAL ANALYSES: THE IMPACT OF WEIGHTING AND MODEL MANAGEMENT
STRATEGIES OF GOOWE

In this section, we mainly focus on answering the question: why should GOOWE work
better in terms of prediction accuracy, or to put it in other words, when/where in the
learning process does GOOWE get its advantage? To answer this question, we need
to study the impact of GOOWE’s weighting system on vote aggregation and ensemble
maintenance in evolving environments as two major features of GOOWE. These two
features differentiate GOOWE from other block-based ensembles, and we show the
superiority of GOOWE compared to other ensembles based on these two key features.

We designed two scenarios for studying the impact of the weighting system of
GOOWE on vote aggregation and ensemble maintenance. Detailed information regard-
ing each of these scenarios are given in the following. The main idea in both analyses
is that by isolating the examined feature the impact can be studied. We choose a ba-
sic and comparably good ensemble method, and fix all settings for training and test-
ing, except for the studied one (vote aggregation or ensemble maintenance). Here for
our analyses, we exploit AUE2 implementation from the MOA framework as the base
ensemble, since the weighting system of other block-based ensembles can be applied
easily; it is also one of the leading ensembles. For the following scenarios of analyses,
we created two versions as Base1 and Base2. Base1 includes every detail of the AUE2
ensemble, except its vote aggregation. Base2 includes every detail of the AUE2 ensem-
ble, except decisions on add/drop components. Further explanations are provided for
each of these in the following. Using these analyses, we can verify GOOWE’s weighting
system superiority without benefiting from other specifications of each ensemble.

5.1. Analysis of Vote Aggregation
For evaluating the impact of the weighting strategy proposed for GOOWE on vote
aggregation, as previously described, we use the AUE2 implementation from the MOA
framework, except for its vote aggregation, as the base ensemble method, called Base1.
We implement GOOWE’s weighting system for the Base1 ensemble classifier. As a
result, the only variant to this new ensemble, compared to the original AUE2 version,

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:20 H. R. Bonab and F. Can

5.421

4.973

4.553 4.421
4.842

6.789

4.000

1.000

Fig. 6. The Friedman statistical test average ranks for different vote aggregation rules. Higher average
rank means better prediction accuracy. The minimum required difference of average ranks for considering
a statistically significant difference is 1.197.

is our weighting system for vote aggregation. In this way, we are able to study the
impact of any weighting function in vote aggregation on the accuracy of predictions.

In order to have different vote aggregation rules as our baselines, we also imple-
ment Majority Voting (MV), DWM with punishment constant values of 0.5 and 0.2,
and also AWE’s weighting systems for Base1 ensemble. In addition, we include the
prediction accuracy of the component corresponding to the least/highest weight ob-
tained from GOOWE weighting system (in Table IV illustrated as GOOWE-Min and
GOOWE-Max). GOOWE-Min presents the worst-performing component and GOOWE-
Max presents the best performing component, according to GOOWE’s weights. We con-
duct our analysis using these as state-of-the-art baselines of weighting systems.

Table IV presents the accuracy values obtained from the mentioned vote aggregation
rules. Note that in all of these scenarios, the data stream has concept drift. In order to
compare these aggregation rules we conduct the non-parametric Friedman statistical
test with pairwise comparisons. The null-hypothesis states that all aggregation rules
are equal [Demšar 2006; Conover 1999]. Since we have 8 vote aggregation rule and
19 datasets in our experiment, FF is distributed according to the F distribution with
8 − 1 = 7 and (8 − 1) × (19 − 1) = 126 degrees of freedom. We run the statistical test
at the significance level of α = 0.05 and reject the null-hypothesis with a p-value of
< 0.00001.

The multiple comparisons average ranks are plotted in Figure 6. The Critical Dis-
tances (CD) for F (8, 152) = 14.802 is 1.197, meaning average ranks of aggregation rules
need to have at least this amount of difference to be considered statistically signifi-
cantly different, in a pairwise comparison. The weighting system of GOOWE is statis-
tically significantly better compared to all other baseline aggregation rules, as shown
in Figure 6. While MV acts very well among remaining aggregation rules in evolv-
ing environments, we are not able to claim a statistically significant difference among
them—excluding GOOWE-Max and GOOWE-Min.

Based on our preliminary tests, GOOWE’s weighting system shows its superiority
in evolving environments. For this purpose, we tested our analysis scenario on RBF
and LED data streams without any concept drift; there was no meaningful difference
between MV and GOOWE’s weighting systems. This is because when concept drift
happens, GOOWE reacts much faster. The same can be concluded when we compare
rapidly changing data streams with slowly changing ones, in Table IV. We will show
this with more details through our comparative experiments in the next section.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:21

Table V. Classification Accuracy in Percentage (%) for the
Model Management Analysis on Data Streams with Concept
Drift—Base2 ensemble method with different weighting sys-
tems used for the decision of components add/drop

Dataset DWM AWE AUE2 GOOWE
RBF-G-4-S 34.077 30.846 31.854 32.110
RBF-G-4-F 89.424 89.99 91.746 92.176
RBF-G-10-S 17.404 14.104 15.444 15.241
RBF-G-10-F 89.992 80.161 80.794 90.995
RBF-A-4-S 93.651 87.399 93.040 93.610
RBF-A-4-F 94.310 87.265 93.737 94.389
RBF-A-10-S 95.015 85.528 90.460 95.437
RBF-A-10-F 95.395 86.230 89.402 95.259

SEA-S 89.353 87.75 85.636 89.196
SEA-F 89.565 89.010 89.433 89.469
HYP-S 86.779 83.726 83.140 83.009
HYP-F 88.035 90.797 90.742 91.189
TREE-S 94.813 94.632 94.632 84.529
TREE-F 82.280 82.280 82.280 78.830
LED-M 73.644 73.619 73.649 73.596

CoverType 88.204 87.344 86.516 88.004
PokerHand 85.716 67.637 66.851 81.702
CovPokElec 88.935 74.818 74.845 81.849
Airlines 64.570 63.084 62.136 62.146

5.2. Analysis of Model Management Strategy
For examining the superiority of our model management strategy, similar to the previ-
ous analysis, we use the implementation of AUE2 from the MOA framework, as Base2.
In this analysis, we use GOOWE and other baseline weights in the process of making
decisions for add/drop components. We implement these baselines for the Base2 en-
semble. Note that, for aggregating the votes of components in this analysis, we use
majority voting to equally disadvantage all the ensembles. We use DWM with β = 0.5
and AWE as baselines of this analysis. DWM with β = 0.2 gave the exact same results
as DWM with β = 0.5. We construct and maintain the Base2 ensemble using these
weighting algorithms for each data stream. Table V presents the resulting accuracies.

In Table V we observe a similar superiority of the GOOWE weighting system for
rapidly changing data streams, compared to slowly changing data streams. The same
scenario is valid here; GOOWE gets its advantage when more concept drifts happen,
while reacting similarly in non-changing environments.

Similarly to previous analysis, we conduct the non-parametric Friedman statistical
test with pairwise comparisons. The null-hypothesis states that all model management
strategies are equal. Since we have 4 algorithms and 19 datasets in our experiment,
FF is distributed according to the F distribution with 4 − 1 = 3 and (4 − 1) × (19 −
1) = 54 degrees of freedom. We run the statistical test at the significance level of
α = 0.05, and get F (3, 54) = 8.3937. We are able to reject the null-hypothesis with
a p-value of 0.0001. Moreover, pairwise multiple comparisons indicate no statistically
significant superiority for GOOWE, in ensemble maintenance, compared to DWM and
its superiority compared to AUE2 and AWE.

Conclusion of the Experimental Analyses. Our first analysis shows the supe-
riority of GOOWE vote aggregation in evolving environments. The second analysis
shows GOOWE’s conservative behavior in ensemble maintenance. We can conclude
that GOOWE gets its advantage with vote aggregation, while reacting similarly as the
best block-based ensembles for model management.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:22 H. R. Bonab and F. Can

Table VI. Average Classification Accuracy in Percentage (%) —for each synthetic dataset a one-way ANOVA using
Scheffe multiple comparisons statistical test is conducted, and the top tier algorithms are underlined; for real-world
datasets the most accurate algorithms are underlined

Dataset DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost
RBF-G-4-S 75.157 72.355 75.329 91.174 92.014 91.817 87.084 85.779 88.353
RBF-G-4-F 74.102 72.041 73.837 94.250 94.590 93.322 87.213 85.947 87.995
RBF-G-10-S 79.549 77.365 81.326 83.102 92.298 83.059 80.901 80.671 76.951
RBF-G-10-F 79.669 78.455 80.875 83.055 92.189 82.726 80.748 80.256 76.459
RBF-A-4-S 76.628 73.308 78.046 96.543 96.901 96.267 95.618 95.676 97.367
RBF-A-4-F 75.452 72.519 77.591 96.779 97.019 95.867 95.461 95.988 96.258
RBF-A-10-S 81.297 79.446 84.832 91.943 96.477 85.771 95.017 94.901 95.136
RBF-A-10-F 82.338 80.471 85.657 92.592 96.730 88.473 95.504 95.480 95.923

SEA-S 86.030 86.847 87.897 89.718 89.031 89.749 89.628 89.633 89.360
SEA-F 86.084 86.849 87.923 89.812 89.637 89.831 89.739 89.742 89.551

HYP-S 86.819 87.175 90.483 88.486 88.891 89.044 83.467 89.222 86.306
HYP-F 90.734 88.714 90.994 92.564 92.567 92.748 82.032 92.148 89.495

TREE-S 32.921 24.638 33.926 35.222 35.932 36.286 37.135 37.124 24.639
TREE-F 28.870 09.512 30.154 31.858 33.827 32.024 32.217 32.217 9.518

LED-M 65.880 70.354 74.002 73.975 73.989 73.973 73.984 74.008 73.778
LED-ND 43.336 46.849 51.210 51.196 51.191 51.208 51.194 51.212 51.034

CoverType 86.266 79.437 80.600 84.951 89.779 88.205 84.264 84.080 90.570
PokerHand 47.591 49.550 49.470 50.217 54.604 50.031 52.995 52.995 53.681
CovPokElec 85.377 65.249 66.330 73.668 88.718 86.390 82.265 77.647 87.154
Airlines 61.206 60.797 60.650 61.395 61.834 62.516 61.404 62.164 61.015

6. COMPARATIVE EVALUATION
In this section we examine GOOWE as an ensemble algorithm, as described in Al-
gorithm 1, and compare it with the 8 most state-of-the-art ensemble methods. We
measure class label prediction accuracy (in percentage), maximum memory usage (in
MegaByte), and total processing time of every one thousand instances (in CentiSecond)
for each of the ensemble algorithms—average values for synthetic datasets and exact
values for real-world datasets reported in Table VI, VII, and VIII, respectively. For
each synthetic dataset, a one-way analysis of variance (ANOVA) using Scheffe mul-
tiple comparisons [Scheffe 1959] are conducted, and the best-performing algorithms
are underlined. It is not possible to conduct the Scheffe statistical test for real-world
datasets, since they only have a single value. For each of them, we underline the most
accurate and least resource consuming algorithm.

We draw scatter diagrams of the algorithms on the arrival of new chunks of data
streams, as in [Bifet et al. 2009; Elwell and Polikar 2011; Brzezinski and Stefanowski
2014b]. We provide one plot of accuracy and memory behavior for each category of RCD,
LCD, and real-world datasets. For better understanding the behavior of ensembles in
these situations, we present accuracy and memory plots for gradual changing RCD,
and abrupt changing RCD datasets, separately. We provide these plots in Fig. 7, 8, 9,
and 10—note that the plots are in different scales.

6.1. RCD Data Streams with Gradual/Abrupt Drift Patterns
Table VI for Random RBF data streams (the first 8 rows) shows the superiority of
GOOWE over other algorithms, in terms of accuracy. Its superiority is more significant
for the gradually changing data streams, with respect to the abruptly changing data
streams. Comparing the number of class labels suggests that GOOWE performs better
for RCD datasets with 10 class-labels, rather than 4. The preliminary experiments
show that this relationship changes with the number of component classifiers of the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:23

Table VII. Average Processing Time in CentiSecond (CS), for processing every one thousand instances—for each syn-
thetic dataset a one-way ANOVA using Scheffe multiple comparisons statistical test is conducted, and the top tier algo-
rithms are underlined; for real-world datasets the least time-consuming algorithms are underlined

Dataset DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost
RBF-G-4-S 6.718 439.071 18.458 20.563 14.887 17.482 8.299 17.825 7.231
RBF-G-4-F 6.628 444.261 21.930 21.039 14.400 17.986 11.234 18.801 14.403
RBF-G-10-S 31.854 1085.484 41.223 45.602 31.569 37.233 17.146 38.402 14.871
RBF-G-10-F 30.501 1124.648 49.549 47.105 31.294 37.599 23.036 38.789 28.333
RBF-A-4-S 6.598 443.676 21.900 17.218 13.784 15.367 9.901 16.425 12.124
RBF-A-4-F 6.621 445.520 21.913 17.037 13.806 15.376 10.007 16.381 11.921
RBF-A-10-S 30.027 1125.125 49.025 44.556 31.202 36.867 21.545 36.214 27.433
RBF-A-10-F 29.693 1119.683 48.678 43.537 30.718 36.231 20.482 35.397 26.59

SEA-S 0.615 43.714 2.752 2.772 2.428 2.760 1.509 2.840 1.808
SEA-F 0.616 94.267 2.740 3.065 2.452 2.958 1.684 3.102 1.963

HYP-S 1.504 115.595 7.390 6.617 6.321 6.547 3.955 5.103 4.241
HYP-F 1.443 79.532 7.534 5.680 5.707 5.877 3.580 4.290 3.873

TREE-S 6.337 85.346 11.468 9.479 9.333 9.528 7.217 8.777 7.009
TREE-F 8.193 14.276 13.639 11.026 10.518 11.036 7.641 9.478 7.295

LED-M 35.260 1288.899 57.355 54.824 45.966 40.135 13.874 25.615 14.764
LED-ND 38.603 1280.011 58.002 54.971 45.615 42.924 16.068 23.699 17.102

CoverType 11.526 335.569 28.269 24.409 21.858 21.952 11.721 18.868 14.359
PokerHand 8.578 68.910 5.184 7.123 6.842 8.816 5.634 8.012 6.148
CovPokElec 15.483 546.412 25.803 24.005 24.076 24.832 13.786 18.814 17.804
Airlines 0.982 11.304 2.692 2.710 3.338 3.146 2.086 2.673 2.676

Table VIII. Maximum Memory Usage in MegaByte (MB) —for each synthetic dataset a one-way ANOVA using Scheffe
multiple comparisons statistical test is conducted, and the top tier algorithms are underlined; for real-world datasets
the least memory-consuming algorithms are underlined

Dataset DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost
RBF-G-4-S 0.261 116.193 0.320 0.483 1.632 0.467 13.379 15.221 13.232
RBF-G-4-F 0.294 116.193 0.319 2.885 9.750 2.711 35.258 39.568 24.517
RBF-G-10-S 0.333 116.201 0.394 3.470 11.066 3.358 18.063 20.293 8.085
RBF-G-10-F 0.691 116.200 0.394 5.451 11.837 5.408 16.877 17.382 13.343
RBF-A-4-S 0.931 116.192 0.319 4.535 15.657 4.687 27.618 42.854 30.531
RBF-A-4-F 0.553 116.192 0.319 5.004 12.107 5.026 26.646 40.845 28.919
RBF-A-10-S 0.569 116.200 0.395 4.453 11.320 4.194 19.184 35.068 16.292
RBF-A-10-F 0.842 116.200 0.394 4.682 13.784 5.334 17.168 34.660 15.368

SEA-S 0.181 116.109 0.229 18.974 3.975 21.146 7.046 9.009 6.861
SEA-F 0.204 464.351 0.230 36.584 6.332 42.023 13.826 15.858 13.629

HYP-S 0.384 116.145 0.614 2.376 4.849 2.636 22.918 25.218 21.19
HYP-F 0.505 116.147 0.643 1.063 2.999 1.863 20.912 22.882 21.097

TREE-S 0.172 116.137 0.210 1.426 5.931 7.343 6.288 9.265 6.343
TREE-F 0.181 1.251 0.224 0.681 3.118 0.762 0.538 0.564 0.606

LED-M 0.788 116.222 0.453 0.453 1.052 0.415 13.707 18.715 13.927
LED-ND 0.581 116.221 0.453 0.453 2.871 0.454 12.891 20.912 12.863

CoverType 1.252 39.376 0.437 0.736 1.128 1.079 55.631 71.475 62.185
PokerHand 0.186 116.146 0.224 0.254 0.924 0.229 3.460 4.390 3.524
CovPokElec 4.534 246.144 0.576 11.543 54.435 36.529 132.399 162.592 153.337
Airlines 0.131 33.825 0.157 0.300 2.507 0.535 7.592 10.322 7.773

ensemble. For example, having 4 component classifiers can benefit more from a data
stream with 4 class labels.

As shown in Table VI, in most of the cases, GOOWE has higher average accuracy for
the fast-changing datasets, compared to the slow changing ones. We can intuitively un-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:24 H. R. Bonab and F. Can

(a) accuracy

(b) memory

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1000 k
60

65

70

75

80

85

90

95

100

Processed instances

A
cc

ur
ac

y
(%

)

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1000 k
0

5

10

15

20

25

30

35

40

Processed instances

M
e

m
o

ry
 (

M
B

)

Fig. 7. RCD example with a gradually changing data stream: Classification accuracy and memory con-
sumption for RBF-G-4-F dataset.

derstand the reason in accuracy plots of Fig. 7-(a) and 8-(a). They present behaviors of
different ensemble methods with the arrival of new data chunks of gradually/abruptly
changing RBF data streams. The place of abrupt drifts is clear in the classification ac-
curacy plots, consistent with what we know from the generation step of these synthetic
datasets. In most abruptly changing points, it is obvious that GOOWE has significantly
faster adaptive reactions than the others. While OzaBoost, LevBag and OzaBag per-
form similarly to GOOWE in stationary phases of the data stream, they react slowly
in changing phases. As a result, when more changes exist in stream data, GOOWE
provides better performance. DWM, NSE and AWE are among the poorly performing
algorithms.

Table VII and VIII for the RBF datasets (the first 8 rows) show the conservative
resource consumption of GOOWE, in terms of time and memory. We present mem-
ory usage behavior for the algorithms in RBF-G-4-F and RBF-A-10-S datasets in Fig.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:25

(a) accuracy

(b) memory

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1000 k
60

65

70

75

80

85

90

95

100

Processed instances

A
cc

u
ra

cy
 (

%
)

0 100 k 200 k 300 k 400 k 500 k 600 k 700 k 800 k 900 k 1000 k
0

5

10

15

20

25

30

35

40

Processed instances

M
e

m
o

ry
 (

M
B

)

Fig. 8. RCD example with abruptly changing data stream: Classification accuracy and memory consump-
tion for RBF-A-10-S dataset.

7-(b) and 8-(b). They show that most ensemble methods drop one of the most memory-
hungry component classifiers with drift occurrence. Among these algorithms, the mem-
ory consumption of GOOWE is less than those of NSE, LevBag, OzaBag, and Oza-
Boost. Although it uses more memory than DWM, AWE, AUE2, and OAUE, it does not
grow exponentially. As Brzezinski explained in [Brzezinski and Stefanowski 2014b],
no pruning was used to limit the number of components for NSE, and it requires much
more time and memory than the other algorithms. As a result, memory usage of NSE
does not react to concept drifts and grows exponentially with the arrival of new in-
stances.

6.2. LCD Data Streams with Miscellaneous Drift Patterns
Table VI for the LCD generators (the second 8 rows) shows that GOOWE is among the
top-tier algorithms in the Rotating Hyperplane, TREE-F, and LED datasets, in terms

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:26 H. R. Bonab and F. Can

(a) accuracy

(b) memory

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

0 10 k 20 k 30 k 40 k 50 k 60 k 70 k 80 k 90 k 100 k
0

5

10

15

20

25

30

35

40

Processed instances

A
cc

u
ra

cy
 (

%
)

0 10 k 20 k 30 k 40 k 50 k 60 k 70 k 80 k 90 k 100 k
0

0.5

1

1.5

2

2.5

3

3.5

4

Processed instances

M
e

m
o

ry
 (

M
B

)

Fig. 9. LCD example with reoccurring data stream: Classification accuracy and memory consumption for
TREE-F dataset.

of accuracy. Similarly, to the gradually changing RBF datasets, the Rotating Hyper-
plane dataset has incremental drifts. TREE-F is the smallest and fastest changing
dataset with reoccurring drift patterns. These characteristics show the superiority of
GOOWE. Generally, for the LCD datasets, we can say that GOOWE acts better for
the fast-changing datasets, compared to the slow ones. For the LED datasets there is
no significant difference among various algorithms, and most of them reacting simi-
larly, since there are no clear concept drifts. For the SEA datasets, although GOOWE
is not among the top tier algorithms, the differences among accuracy values are small.
Moreover, Table VII and VIII for LCD data streams (second 8 rows) show comparable
resource consumption of GOOWE, in terms of time and memory, similar to the RCD
data streams.

We can see the behavior of the algorithms for the TREE-F dataset, in terms of ac-
curacy (Fig. 9-(a)) and memory usage (Fig. 9-(b)). Similarly to other accuracy plots,

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:27

(a) accuracy

(b) memory

0 150 k 300 k 450 k 600 k 750 k 900 k 1050 k 1200 k 1350 k 1500 k
20

30

40

50

60

70

80

90

100

Processed instances

A
cc

u
ra

cy
 (

%
)

0 150 k 300 k 450 k 600 k 750 k 900 k 1050 k 1200 k 1350 k 1500 k
0

30

60

90

120

150

180

210

240

Processed instances

M
e

m
o

ry
 (

M
B

)

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

DWM

NSE

AWE

AUE2

GOOWE

OAUE

OzaBag

LevBag

OzaBoost

Fig. 10. Real-world example data stream: Classification accuracy and memory consumption for CovPokElec
dataset.

GOOWE reacts robustly to concept drifts. The memory usage plot suggests that
GOOWE is the worst memory consumer algorithm. However, its memory growth rate
is slow and its maximum memory usage is under 4 MB. In other words, it uses a lim-
ited amount of memory. In contrast to other plots, in Fig. 9-(b), NSE shows a small
consumption of memory. In general, for NSE on small datasets, when only a few com-
ponents are created, memory usage is reasonable.

6.3. Real-World Data Streams with Unknown Drift Patterns
Table VI, for real-world datasets (the last 4 rows), shows the superiority of GOOWE
over other algorithms in PokerHand and CovPokElec datasets, in terms of accuracy.
For CoverType and Airlines datasets, although GOOWE is not the best performing
algorithm, still the difference with the best performing algorithms are less than 1

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:28 H. R. Bonab and F. Can

percent. In addition, Table VII and VIII for real-world datasets (the last 4 rows) show
reasonable resource consumption of GOOWE, in terms of time and memory.

Fig. 10 shows classification accuracy and memory usage behaviors for the CovPok-
Elec real-world dataset with the arrival of new data chunks. The accuracy plot (Fig.
10-(a)) shows that GOOWE, OzaBoost, OAUE and DWM are among the best perform-
ing ensemble methods. By tracking the behavior of different algorithms, in different
situations, it is obvious that there are diverse types of concept drift in the CovPok-
Elec dataset. For example, comparing the behavior of the algorithms around 350k and
400k demonstrates that, although all of the algorithms prove the existence of concept
drift, for the first evolving point OzaBoost reacts best, in contrast to the second point,
where DWM shows the best reaction. By looking at 750k or 1050k points, we can say
that, in some situations, different algorithms are not synchronous; while some of them
(DWM, OzaBag, LevBag) show a decrease in performance, the others (NSE, AWE,
AUE2, GOOWE, OAUE, OzaBoost) show an increase. Considering the first 500k of in-
stances, belonging to the normalized CoverType dataset, DWM and OAUE outperform
the others and react faster to unknown drift types. For the second 500k of instances,
belonging to the normalized PokerHand dataset, we see more robust behavior from
GOOWE and OAUE. However, for the last 500k of instances, belonging to the Electric-
ity dataset, except one evolving point around 1250k, the best performing algorithm is
GOOWE.

The memory plot (Fig. 10-(b)) suggests that while AWE, DWM and AUE2 are the
least memory consumers, OAUE and GOOWE algorithms are far better than NSE,
OzaBag, LevBag and OzaBoost which grow exponentially.

7. STATISTICAL ANALYSIS AND FURTHER DISCUSSION
In order to assure the significant difference of average values for classification accura-
cies, processing time, and memory usage, we carried out statistical tests. First, a one-
way analysis of variance (ANOVA) test using Scheffe multiple comparisons [Scheffe
1959] were conducted on the results of different algorithms for each dataset. The null-
hypothesis for each dataset when considered individually is: There is no significant
difference between the algorithms.

We conducted the Scheffe test at the significance level of α = 0.05. The most ac-
curate, least consumer of processing time, and least consumer of memory algorithms
are underlined for each row of Table VI, VII, and VIII. We underlined the top tier
group of the Scheffe’s comparison results for each synthetic dataset [Scheffe 1959]. As
we mentioned earlier, it is not possible to conduct the Scheffe statistical test for real-
world datasets, since they only have a single value. For each of them, we underline
the most accurate and least resource consuming algorithm. As shown in Table VI, for
15 out of 20 datasets, GOOWE is consistently among the most accurate algorithms.
OAUE is placed in the second rank of the most accurate algorithms, with 11 out of 20
datasets. For the cases of time and memory usage, Table VII and VIII, we can see that
GOOWE is among the conservative consumers of resources. Despite this fact, when
we compare resource usage with the worst ones, we can see that the costs are much
less, and are affordable. In addition, comparing the resource usage of OAUE and Lev-
Bag with GOOWE shows that our algorithm is in the same range of memory and time
consumption.

To extend the analysis, we carried out the non-parametric Friedman statistical
test for comparing multiple classifiers over multiple datasets [Demšar 2006; Conover
1999]. The null-hypothesis for this test states that all the algorithms are equivalent
on all datasets when considered together. Since we have 9 algorithms and 20 datasets
in our experiment, FF is distributed according to the F distribution with 9− 1 = 8 and
(9−1)×(20−1) = 152 degrees of freedom. We run the statistical tests at the significance

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:29

DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
g

e
 R

a
n

k

Memory
Time

DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
g

e
 R

a
n

k

Accuracy

(a) classification accuracy

(b) resource consumption

Fig. 11. The Friedman statistical test average rank plots; for classification accuracy plot (a) higher aver-
age rank means better prediction, and for resource consumption plot (b) lower average ranks mean better
performance.

level of α = 0.05; and the Critical Distances (CD) for F (8, 152), and average ranks of
algorithms are given in Table IX. If the Friedman test results in a p-value less than
α, the null-hypothesis is rejected and we can conclude that at least 2 of the algorithms
are significantly different from each other. The tests for accuracy, memory, and time
results in p-values less than 0.00001, and the null-hypotheses are rejected for all cases.
We plot these average ranks in Fig. 11. Note that for classification accuracy, Fig. 11-
(a), higher average rank means better prediction; and for resource consumption, Fig.
11-(b), lower ranks mean better performance.

Table IX shows that, according to the Friedman test, GOOWE outperforms DWM,
NSE, AWE, AUE2, OzaBag, LevBag, and OzaBoost, but not OAUE. The CD value is
1.238, and their rank difference is less than this value (7.650 − 6.650 = 1.000). Since
the difference of average ranks between GOOWE and OAUE is close to the CD, we
performed the Wilcoxon signed-rank test to further analyze this pair of algorithms
[Demšar 2006]. It ranks the absolute values of the differences between paired samples,
and calculates a statistic on the number of negative and positive differences. For our
case, the positive differences are 13, and the negative differences are 7. The two-tailed

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:30 H. R. Bonab and F. Can

Table IX. Summary of the Friedman Statistical Test for Accuracy, Memory and Time; The underlined values are GOOWE and its
rivals that are in the same range of rank with no significant difference

Test Results Average Algorithm Ranks

Test FF CD DWM NSE AWE AUE2 GOOWE OAUE OzaBag LevBag OzaBoost

Accuracy 19.153 1.238 2.650 1.650 4.000 6.150 7.650 6.650 5.250 6.100 4.900
Memory 76.198 0.784 1.800 8.800 1.650 3.700 4.950 4.150 6.150 7.650 6.150
Time 77.692 0.778 2.200 9.000 7.100 6.650 4.700 5.950 1.800 5.050 2.550

probability value, P = 0.014, is less than α = 0.05; Therefore, it can be accepted that
GOOWE is significantly better than OAUE, in terms of accuracy.

Similar to the accuracy test, we performed time and memory statistical comparisons
using the Friedman test, summarized in Table IX. For the memory test, we reject the
null-hypothesis. The average ranks show that GOOWE uses more memory compared
to DWM, AWE, AUE2, and OAUE. On the other hand, it uses less memory compared
to NSE, OzaBag, LevBag, and OzaBoost. The CD value shows that, GOOWE is in the
middle of the baselines as a singleton, with a significant difference from the upper
and lower range algorithms. For the processing time test, we again reject the null-
hypothesis; the average ranks show that GOOWE is faster than NSE, AWE, AUE2,
and OAUE. It is significantly slower than DWM, OzaBag,and OzaBoost, somehow
equivalent to LevBag.

In summary, we can say that there is a trade-off between prediction accuracy and
resource consumption. In this trade-off, GOOWE can predict statistically significantly
better compared to the most accurate algorithms. Furthermore, it uses affordable re-
sources compared to the most memory and time-efficient ensembles.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we provide a geometrically optimum and online-weighted ensemble clas-
sifier, called GOOWE, for non-stationary environments. The main contribution of the
proposed algorithm is providing a spatial modeling for using the linear least squares
(LSQ) solution for dynamically optimizing the weights of components of an ensemble
classifier for evolving environments. Our algorithm, different from the use of LSQ in
batch mode ensembles, has dynamically changing optimum weight assignment to com-
ponent classifiers and continuous training and testing. We use data chunks for training
and a sliding instance window containing the latest available data for testing; such an
approach provides more robust behavior as shown in our experiments. We use the Eu-
clidean norm as the measure of closeness in LSQ. The LSQ proved to react well in
noisy situations [Hansen et al. 2013], as it did in our algorithm for data streams with
concept drifts.

First, we conduct an analysis for examining two major differentiating elements of
GOOWE, the component weighting strategy and ensemble model management strat-
egy. Our optimum and online weighting system shows its effectiveness for both vote
aggregation and ensemble maintenance in evolving environments. Second, we exper-
imentally compare GOOWE with 8 state-of-the-art ensemble classifiers, as our base-
lines, on 20 datasets as data streams with tens of millions of instances, where 16 of
them are synthetic and 4 of them are real-world datasets. For the synthetic streams,
we use two categories of data stream generators: Rigorous Concept Drift (RCD) and
Loose Concept Drift (LCD), each with 8 datasets. We include all possible patterns of
change (sudden/abrupt, incremental, gradual, and reoccurring as concept drifts, in-
cluding blips and noise) in our datasets. The statistical tests prove the superiority and
robustness of GOOWE in reacting to different types of concept drift, in terms of ac-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:31

curacy. Furthermore, we show that it requires conservative resource consumption, in
terms of memory and processing time.

In future work, the impact of the length of data chunk size on the performance in the
presence of different concept drifts and its dynamic determination are possible stud-
ies. Effects of instance window size on performance can also be analyzed. In addition,
GOOWE can be used in various sub-problem domains, such as semi-supervised and
multi-label classification. It can be applied to unbalanced datasets and streams with
concept-evolution.

ACKNOWLEDGMENTS

We would like to thank Manouchehr Takrimi from Bilkent University, Jon M. Patton from Miami University
of OH, and Alper Can for their valuable comments and pointers on this paper.

REFERENCES
Albert Bifet and Ricard Gavaldà. 2007. Learning from time-changing data with adaptive windowing. In Pro-

ceedings of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis,
Minnesota, USA. 443–448.

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010b. MOA: Massive Online Anal-
ysis. Journal of Machine Learning Research 11 (2010), 1601–1604.

Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. 2010a. Leveraging bagging for evolving data
streams. In Machine Learning and Knowledge Discovery in Databases, European Conference, ECML
PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part I. 135–150.

Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. 2009. New en-
semble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009. 139–148.

Hamed R. Bonab and Fazli Can. 2016. A theoretical framework on the ideal number of classifiers for online
ensembles in data streams. In Proceedings of the 25th ACM International Conference on Information
and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016. 2053–2056.

Dariusz Brzezinski and Jerzy Stefanowski. 2014a. Combining block-based and online methods in learning
ensembles from concept drifting data streams. Information Sciences 265 (2014), 50–67.

Dariusz Brzezinski and Jerzy Stefanowski. 2014b. Reacting to different types of concept drift: The accu-
racy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems 25, 1
(2014), 81–94.

Lai-Wan Chan. 1999. Weighted least square ensemble networks. In International Joint Conference on Neural
Networks (IJCNN 1999), Vol. 2. IEEE, 1393–1396.

W. Conover. 1999. Practical Nonparametric Statistics. John Wiley & Sons, New York.
Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine

Learning Research 7 (2006), 1–30.
Thomas G. Dietterich and Ghulum Bakiri. 1995. Solving multiclass learning problems via error-correcting

output codes. Journal of Artificial Intelligence Research (JAIR) 2 (1995), 263–286.
Gregory Ditzler and Robi Polikar. 2013. Incremental learning of concept drift from streaming imbalanced

data. IEEE Transactions on Knowledge and Data Engineering 25, 10 (2013), 2283–2301.
Pedro M. Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In Sixth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, August 20-23, 2000.
71–80.

Ryan Elwell and Robi Polikar. 2011. Incremental learning of concept drift in nonstationary environments.
IEEE Transactions on Neural Networks and Learning Systems 22, 10 (2011), 1517–1531.

Dewan Md Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman, Rebecca Strachan, Graham
Sexton, and Keshav Dahal. 2013. An adaptive ensemble classifier for mining concept drifting data
streams. Expert Systems with Applications 40, 15 (2013), 5895–5906.

Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. System Sci. 55, 1 (1997), 119–139.

Jerome H Friedman. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38, 4
(2002), 367–378.

Joao Gama. 2010. Knowledge discovery from data streams. CRC Press.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

39:32 H. R. Bonab and F. Can

João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating stream learning algo-
rithms. Machine Learning 90, 3 (2013), 317–346.

João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey
on concept drift adaptation. Comput. Surveys 46, 4 (2014), 44:1–44:37.

Jing Gao, Wei Fan, and Jiawei Han. 2007. On appropriate assumptions to mine data streams: Analysis and
practice. In Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 143–152.

Heitor Murilo Gomes, Jean Paul Barddal, Fabrı́cio Enembreck, and Albert Bifet. 2017. A survey on ensemble
learning for data stream classification. Comput. Surveys 50, 2, Article 23 (March 2017), 36 pages.

Dong-Hong Han, Xin Zhang, and Guo-Ren Wang. 2015. Classifying uncertain and evolving data streams
with distributed extreme learning machine. Journal of Computer Science and Technology 30, 4 (2015),
874–887.

Per Christian Hansen, Vı́ctor Pereyra, and Godela Scherer. 2013. Least squares data fitting with applica-
tions. Johns Hopkins University Press, Baltimore, Md.

Daniel Hernández-Lobato, Gonzalo Martı́Nez-MuñOz, and Alberto Suárez. 2013. How large should ensem-
bles of classifiers be? Pattern Recognition 46, 5 (2013), 1323–1336.

Geoff Hulten, Laurie Spencer, and Pedro M. Domingos. 2001. Mining time-changing data streams. In Sev-
enth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 26-29, 2001. 97–106.

Jeremy Z Kolter and Marcus A Maloof. 2003. Dynamic weighted majority: A new ensemble method for
tracking concept drift. In Third IEEE International Conference on Data Mining (ICDM 2003). IEEE,
123–130.

Jeremy Z. Kolter and Marcus A. Maloof. 2005. Using additive expert ensembles to cope with concept drift.
In Proceedings of 22nd International Conference on Machine Learning, (ICML 2005), Bonn, Germany,
August 7-11, 2005. 449–456.

J Zico Kolter and Marcus A Maloof. 2007. Dynamic weighted majority: An ensemble method for drifting
concepts. Journal of Machine Learning Research 8 (2007), 2755–2790.

Bartosz Krawczyk, Leandro L Minku, João Gama, Jerzy Stefanowski, and Michał Woźniak. 2017. Ensemble
learning for data stream analysis: A survey. Information Fusion 37 (2017), 132–156.

Ludmila I. Kuncheva. 2004. Classifier ensembles for changing environments. In Proceedings of the 5th Inter-
national Workshop on Multiple Classifier Systems, (MCS 2004), Cagliari, Italy, June 9-11, 2004. 1–15.

Ludmila I Kuncheva. 2008. Classifier ensembles for detecting concept change in streaming data: Overview
and perspectives. In 2nd Workshop SUEMA, Vol. 2008. 5–10.

Patrice Latinne, Olivier Debeir, and Christine Decaestecker. 2001. Limiting the number of trees in random
forests. In International Workshop on Multiple Classifier Systems. Springer, 178–187.

Nick Littlestone. 1987. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning 2, 4 (1987), 285–318.

Nick Littlestone and Manfred K. Warmuth. 1994. The weighted majority algorithm. Information and Com-
putation 108, 2 (1994), 212–261.

Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M. Thuraisingham. 2011. Classi-
fication and novel class detection in concept-drifting data streams under time constraints. IEEE Trans-
actions on Knowledge and Data Engineering 23, 6 (2011), 859–874.

Leandro L. Minku, Allan P. White, and Xin Yao. 2010. The impact of diversity on online ensemble eearning
in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering 22, 5 (2010),
730–742.

Leandro L. Minku and Xin Yao. 2012. DDD: A new ensemble approach for dealing with concept drift. IEEE
Transactions on Knowledge and Data Engineering 24, 4 (2012), 619–633.

Ahmad Mustafa, Ahsanul Haque, Latifur Khan, Michael Baron, and Bhavani Thuraisingham. 2014. Evolv-
ing stream classification using change detection. In International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing (CollaborateCom 2014). IEEE, 154–162.

Kyosuke Nishida, Koichiro Yamauchi, and Takashi Omori. 2005. ACE: Adaptive classifiers-ensemble system
for concept-drifting environments. In Multiple Classifier Systems. Springer, 176–185.

Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. 2012. How many trees in a ran-
dom forest?. In International Workshop on Machine Learning and Data Mining in Pattern Recognition.
Springer, 154–168.

Nikunj C. Oza. 2001. Online Ensemble Learning. Ph.D. Dissertation. Computer Science Division, Univ. Cal-
ifornia, Berkeley, CA, USA.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier 39:33

Nikunj C Oza and Stuart Russell. 2001. Experimental comparisons of online and batch versions of bag-
ging and boosting. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 26-29, 2001. ACM, 359–364.

Donald G. Saari. 2008. Complexity and the geometry of voting. Mathematical and Computer Modelling 48,
9-10 (2008), 1335–1356.

Henry Scheffe. 1959. The Analysis of Variance. John Wiley, New York.
W. Nick Street and YongSeog Kim. 2001. A streaming ensemble algorithm (SEA) for large-scale classifica-

tion. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 26-29, 2001. 377–382.

Yu Sun, Ke Tang, Leandro L Minku, Shuo Wang, and Xin Yao. 2016. Online ensemble learning of data
streams with gradually evolved classes. IEEE Transactions on Knowledge and Data Engineering 28, 6
(2016), 1532–1545.

Kagan Tumer and Joydeep Ghosh. 1996. Analysis of decision boundaries in linearly combined neural clas-
sifiers. Pattern Recognition 29, 2 (1996), 341–348.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. 2003. Mining concept-drifting data streams using
ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003. 226–235.

Shuo Wang, Leandro L Minku, and Xin Yao. 2015. Resampling-based ensemble methods for online class
imbalance learning. IEEE Transactions on Knowledge and Data Engineering 27, 5 (2015), 1356–1368.

Mohammadzaman Zamani, Hamid Beigy, and Amirreza Shaban. 2016. Cascading randomized weighted
majority: a new online ensemble learning algorithm. Intelligent Data Analysis 20, 4 (2016), 877–889.

Peng Zhang, Xingquan Zhu, and Yong Shi. 2008. Categorizing and mining concept drifting data streams.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008. 812–820.

Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. 2010. Active learning from stream data using
optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B 40, 6
(2010), 1607–1621.

Indre Zliobaite. 2013. How good is the electricity benchmark for evaluating concept drift adaptation. CoRR
abs/1301.3524 (2013).

Received July 2016; revised May 2017; accepted August 2017

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: August 2017.

