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1 | INTRODUCTION

Summary

Mobile network operators run Operations Support Systems that produce vast
amounts of alarm events. These events can have different significance levels and
domains and also can trigger other ones. Network operators face the challenge to
identify the significance and root causes of these system problems in real time and
to keep the number of remedial actions at an optimal level, so that customer satisfac-
tion rates can be guaranteed at a reasonable cost. In this paper, we propose a scalable
streaming alarm management system, referred to as Alarm Collector and Analyzer,
that includes complex event processing and root cause analysis. We describe a rule
mining and root cause analysis solution for alarm event correlation and analyses.
The solution includes a dynamic index for matching active alarms, an algorithm for
generating candidate alarm rules, a sliding window—based approach to save system
resources, and a graph-based solution to identify root causes. Alarm Collector and
Analyzer is used in the network operation center of a major mobile telecom provider.
It helps operators to enhance the design of their alarm management systems by allow-
ing continuous analysis of data and event streams and predict network behavior with
respect to potential failures by using the results of root cause analysis. We present
experimental results that provide insights on performance of real-time alarm data

analytics systems.
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tion management system needs to identify and evaluate what
is occurring in the system, to find plausible root causes for

In a large-scale network operations center, millions of alarm
events are generated typically each day. Many of the alarms
in the system may have no significance and need to be filtered
out at the source level. The important ones need to be iden-
tified and resolved immediately. All nodes in the system and
their status update information need to be gathered and ana-
lyzed in real time on a regular basis. Therefore, scalable and
intelligent alarm management is becoming a necessity for any
network operation and data center.'* An ideal alarm informa-

alarms and to take appropriate actions effectively and effi-
ciently. As the underlying systems are growing both in size
and complexity, the alarm management itself is becoming a
central bottleneck to enable a seamless operation.
Traditionally, network operators have back-office teams to
determine significance of alarms using their domain exper-
tise. However, the telecommunication field has many subdo-
mains, such as transmission (microwave, Synchronous Digital
Hierarchy, etc), radio access (Base Transceiver Station,
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nodeB. eNodeB), and core (Mobile Switching Center, [P Mul-
timedia Subsystem, Gateway GPRS Support Node, Serving
GPRS Support Node, etc.) networks. Moreover, additional
management, service, and security layers bring extra ele-
ments on top of these domains. Gaining experience on each
subdomain requires many work hours over years. Moreover,
the total reliance on human operators for discovering signifi-
cance of alarms, as well as the correlations between them, has
proved to be difficult and inconsistent. Hence, there is a clear
need for developing autonomous analytic solutions to support
operators in providing quick response and fusion of accumu-
lated alarm information. Most of the time, network faults are
generally handled or cleared using trouble ticket management
systems (eg, HP TEMIP?), which works together, typically,
with an asset management system (eg, IBM Maximo*). How-
ever, lack of intelligent network alarm management systems
exploiting rules derived through data mining causes prob-
lems in performance of traditional trouble ticket management
systems of mobile operators, thus resulting in unsolicited
site visits.

In this paper, we propose a platform solution to analyze mil-
lions of alarms in real time, produce alerts, and analyze the
root causes for a large-scale network operation data center.
Our system includes methods for complex event process-
ing (CEP) and root cause analysis, where millions of alarms
are captured, correlated, and mined for root causes in real
time. We have developed our system inside a major mobile
operator with 16 million subscribers to analyze the root
causes of alarms in the network operation center. As a major
mobile telecom provider, it is running a nationwide network
of Global System for Mobile Communications/Universal
Mobile Telecommunications System/Long Term Evolution
(LTE) infrastructure, consisting of different types of nodes.
The most common system types are the following.

1. Base Station Subsystem: the base stations and their con-
trollers

2. Network and Switching Subsystem: the part of the network
most similar to a fixed network, sometimes just called the
“core network”

3. Packet Core Network: the part which allows packet-based
Internet connections

4. Operations Support System (OSS): network maintenance

In the presence of alarms arriving from multiple hetero-
geneous sources, it is a major challenge to identify the root
causes of problems in real time that can keep the number
of actions (in terms of ticket generation, site visits, etc) low.
To adapt to changes in the network system, the methodolo-
gies for building new rules need to be revised in an adaptive
manner. The proposed platform targets at processing net-
work alarm information in real time and includes novel data
analytics approaches to add more capability to traditional
alarm management systems. Thus, mobile operators can make

highly accurate and on-time decisions in the presence of over-
whelming number of alarms. Benefits of this work to mobile
operators and data centers include a new ranking of alarm sig-
nificance, recognizing inherent correlation between alarms,
and root cause analysis for fast and accurate decisions result-
ing in less site visits and ticket generations. Our solution can
also be used for trend analysis of alarms on a seasonal scale
to realize efficient, highly available network infrastructure
investments and enhance operational processes resulting in
long-term cost savings.

In summary, the main contributions of this paper are
as follows:

1. A streaming big data infrastructure is used for high avail-
ability and scalability, while managing and analyzing vast
amount of alarm data.

2. A rule mining algorithm with probabilistic candidate rule
filtering is proposed to create alarm rules, saving system
resources.

3. A root cause algorithm is proposed to find influential
alarms in the system.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 defines our methodology.
Section 4 presents our infrastructure and solution. Section
5 presents our experience with the rule mining algorithm.
Section 6 contains concluding remarks.

2 | RELATED WORK

Alarm correlation for alarm flow analysis inside telecommu-
nication networks is discussed in a few earlier works®>!! (see
also Meira!? for an overview). There are also works that study
temporal data mining (see Laxman and Sastry'® for a sur-
vey). Some of these papers consider sequential data mining
techniques that find the most frequent event sequences in a
sequence database.®'* GSP'* and WINEPI® are among the
first algorithms to apply Apriori algorithm'3 to find sequen-
tial association rules temporally. These algorithms usually
require a user-defined sliding-time window duration to tra-
verse the data. Most of the sequential data mining methods
proposed so far are based on discovering temporal relations
between events in discrete time series."* These methods are
based on finding the frequencies of sequences of events and
generating the rule candidates against the database.'® Oth-
ers concentrate on prediction problems for sequential rule
mining on several different application domains. Some of
these approaches are based on rule correlation, fuzzy logic,
coding correlation, Bayesian networks, and artificial neural
networks. %1619

Each of the aforementioned approaches, ranging from gen-
erating an alarm correlation engine to alarm modeling and
validation, have their own advantages and disadvantages.
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Alarm modeling approaches that provide explanations for the
monitored resources and the associated alarms are studied
in Frohlich et al and Yemini et al.** Mannila et al pro-
pose an algorithm for finding sequential rules in a single
sequence of alarm events using frequent episode discovery.®
Klemettinen et al use a semiautomatic approach to find a
complementary alarm management solution.” In Wietgrefe
et al,'° the authors consider finding the root cause alarm
using neural networks. Wallin et al aim to establish a general
state machine for the alarms and propose various interpreta-
tions of the alarm state based on the context information in
Wallin® and focus on validating the alarm model based on
the static analysis in Wallin.?? Duarte et al propose an SNMP
focused specific language called ANEMONA that focuses on
alarm monitoring solutions.” Li et al propose a neural network
and FP-tree approach to perform weighted association rule
mining in the alarm domain.!" The authors in Celebi et al*
propose a new alarm correlation, rule discovery, and sig-
nificant rule selection method based on applying sequential
rule mining algorithm for alarm sequences based on analy-
sis of real data collected from a mobile telecom operator with
an additional parameter called time-confidence. The paper
in Sozuer et al** investigates a new clustering approach by
applying 2 new metrics borrowed from document classifi-
cation approaches to increase the accuracy of the sequential
alarm rules. In our recent demo paper,” we have demon-
strated a real-time data analytics platform where alarm/event
data analyses are performed by capturing, processing,
and visualizing alarms via appropriate notifications in
real time.

Klaus Julisch proposed to cluster intrusion detection
alarms to support root cause analysis in Julisch.?® They
develop a novel alarm-clustering method, which groups sim-
ilar alarms together, assuming these alarms also share the
same root cause called generalized alarm. They focused

WILEY— |21

on alarm-clustering problem more than defining root cause.
Zong et al study root cause analysis within the context of
alarms.”” They propose algorithms that use effective pruning
and sampling methods for fast critical alert mining. They mine
k critical alerts from alert graphs on demand. Man et al use a
big data infrastructure to analyze network alarms.?® They use
FP-growth algorithm for alarm correlation analysis and data
mining. They show that correlation mining for 8000 network
elements on a 143 node PC server cluster takes 20 minutes.
In contrast to FP-growth algorithm, we propose an algorithm
to identify root causes using less memory. The authors in
Bellec?” study the problem of analyzing, interpreting, and
reducing the number of these alarms before trying to local-
ize the faults leveraging clustering approaches. The authors
in Makanju et al*® propose a hybrid framework by allowing
High Performance Clusters for alert detection in system logs.

Compared to the mentioned works, our main contribution
is to create alarm rules to identify root causes by developing
a system that combines a streaming big data infrastructure,
a dynamic index for matching active alarms, an algorithm
for generating candidate alarms, and a sliding window—based
approach to save system resources. Table 1 gives main alarm
correlation models for the considered problem, highlighting
some of the most relevant works for each problem, while
situating the contributions of this work.

3 I METHODOLOGY

A large mobile telecommunications provider needs an intel-
ligent alarm management platform. Such a platform would
collect event data related to alarms and perform alarm analy-
sis on this data to mine alarm rules and determine influential
alarms. In this paper, we present the Alarm Collector and
Analyzer (ALACA) platform, which is designed to handle

TABLE 1 A comparison of various alarm correlation techniques applied for mobile operator networks

Traditional approaches Proposed approach
Characteristics Limitations Advantages Differences
Sequential data mining WINEPI for discovery User-defined Cost-effective Real-time  Root cause analysis
sliding-time Uses less memory Rule formation

Root cause analysis

Cluster-based techniques

Proprietary vendor-
specific solutions

GSP'* using Apriori
FP-growth and

and big data”®
Critical alert mining?’

TFE.IIF clustered®*

High performance clusters

Generalized alarms?¢

IBM Maximo*
HP TEMIP?

Window duration
High memory for large
number of nodes

Finds fixed k

critical alarms
Focuses on pruning
and sampling

Focuses on clustering rather

than defining fault diagnosis

Vendor lock-in New service

initiation New feature support

Not fixed k

root causes

Uses all data

Cost-effective
Open-source Scalable

Alert notification
rather than
on-demand critical
rule mining

Rule formation
Nonclustered

Rule formation
Root cause analysis
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these tasks. The ALACA platform relies on a big data archi-
tecture to store alarm event data, a stream processing module
for complex event analysis, a root cause analysis module to
mine alarm rules and detect influential alarms, and finally a
Web client for end-user interaction. We present the ALACA
platform's architecture later in Section 4.

In this section, we formally describe the alarms and rules
used in this work. We formalize the semantics of our rules
by formulating the matching between a rule and an alarm
sequence. We give the support and confidence requirements
of our rules. Finally, we describe our rule mining algorithm,
including a probabilistic filtering technique that significantly
reduces the algorithm's memory requirement and improves its
running time performance.

We use the following conventions throughout the paper
with respect to notation: Symbols in regular font represent
scalars, whereas those in boldface font represent vectors. Sets
are denoted by uppercase calligraphic symbols.

3.1 | Formalization

Each alarm has a kind and a time interval during which
it was active. For example, an alarm can be specified as
A = (X, [to,11]). Here, X is the alarm kind and [z, #1] is the
time interval during which the alarm was active. The start
time sorted list of all alarms is denoted as D. The alarm kind
for an alarm A is denoted as A.k and the set of all alarm kinds
as £ = {A.k : A € D}. The alarm interval is denoted as
A.i. The start time of the alarm interval is denoted as A.f,
and the end time as A.z,. Sorted alarms of kind k are denoted
as L.

Alarm rules are defined as logical implications, where the
antecedent is an ordered set of alarm kinds and the conse-
quent is a single alarm kind. Each alarm rule is also associated
with a time duration. For instance, a rule can be specified as
R = [X,Y] - Z : t. Here, there are 2 alarm kinds, namely,
X and Y, appearing as an ordered set on the antecedent, and
there is a single alarm kind Z appearing as the consequent.
Time duration, ¢, is given as the rule duration.

The meaning of an alarm rule is as follows: When the
alarms specified on the antecedent occur in order, then the
alarm specified on the consequent is expected to occur within
¢ time units. As an additional requirement, the intervals of all
the alarms involved in a rule should intersect. For instance,
in the running example, first, X should start. Then Y should
start before X ends. Then the rule predicts that, after Y starts,
Z is expected to start within ¢ time units, before X and Y end.
For a rule R, we denote the antecedent as R.a and the con-
sequent as R.c. The duration of the rule is denoted by R.d.
The consequent cannot be contained in the antecedent, that is
R.c € R.a. Figure 1 illustrates a sequence of events matching
arule.

+

XI

Y|
| Zl |

Ri[X,Y] > Z:t

FIGURE 1 An example sequence of events that match a given rule

Formally, a set of events ordered by their start time, denoted
as U, match a rule R, based on the following definition of a
Boolean match function:

match(R,U") = AnyA.i 0 A
€

[Ak:AeU]=RaU[Rc] A (D
m_1].ts — 1/‘[_2].15 < R.d

In Equation 1, there are 3 conditions: First condition requires
that the intersection of the alarm intervals in U" cannot be an
empty set. Second condition requires that the set of all alarm
kinds in U should be equal to the union of the alarm kind set
of the rule's antecedent alarm kinds set and the consequent
alarm kind. We use [;; notation to index the time ordered event
set, where an index j = —1 represents the last item and -2 the
penultimate one. Final condition requires that the difference
between the last item's start time in U and the penultimate
item's start time should be less than or equal to the rule R's
duration. Therefore, for a rule match, these 3 conditions of
Equation 1 should be true.

3.2 | Mining alarm rules

To mine alarm rules from a data set of alarms, we develop a
scalable rule mining algorithm. The algorithm can mine rules
in the format outlined so far, which additionally satisfy given
confidence and support requirements. The algorithm can also
be trivially adapted to mine rules where the antecedent is an
unordered set. We denote the support threshold as 7, € N*t
and the confidence threshold as 7. € (0, 1]. To satisfy the
support requirement, there must be at least 7, distinct event
subsequences in the data set that match the rule. To support
the confidence requirement, at least 7, fraction of the event
sequences that match the antecedent part of the rule must
be followed by an addition event that results in the extended
sequence matching the entire rule.

We formally define the support of a rule as follows, recall-
ing that D is the time ordered set of all events:

support(R,D) = [{U" C D : match(R,U")}]|. 2)
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We formally define the confidence of a rule as follows:

confidence(R, D) = support(R,D) [

HUCD: NnAi#0 A[Ak:A€e U] =Ra}|.
AU

3

Before we apply the rule mining algorithm, the alarm data set
is taken through a preprocessing, which we detail next.

WILEY—|- 5ot

first partition alarms based on their kinds. Then for each
alarm kind, we find a set of candidate rules whose con-
sequent is the given alarm kind (line 4). This is done via
the MINEALARMRULESFORKIND procedure. The set of
candidate rules found this way satisfy the support require-
ment but may not satisfy the confidence requirement. Thus,
the candidate rules go through a filtering process (line 5).
This is done via the ENFORCECONFIDENCES algorithm.

Algorithm 1: Alarm pre-processing.

Input: D, Sorted alarms; /C, Alarm kinds

Output: C, Pre-processed alarms; Z, Interval index

> in start time order

1t M+—{u—L:ueCANL={AeD: Ak=u}}
2 forur— L € M do

3 n <+ 0

4 for i e [1..|£]) do

5 if ﬁ[i].ts < £[7L].te then

6 if ﬁ[i].te > ﬁ[n].te then

7 ’ | ‘C[n]7 = [ﬁ[n]-tmﬁ[i]-te]
8 else

9 n<+<n+1

10 ’ Lin ¢ Ly

11 L+ ['[O..n]

12 C < sort(Uyesceml, - — _ts)
13 7 « build_interval _index(C)

3.2.1 | Alarm preprocessing

The preprocessing phase is used to cleanse the alarm data
set and to index the alarms. The cleansing involves merging
alarms of same kind whose time intervals intersect and order-
ing the resulting alarm data set based on start time. Indexing
involves creating an interval tree using the alarm intervals.
The interval tree®' enables querying the alarm data set using
a query time point. In particular, it can retrieve the alarms
whose time intervals contain the query time point in O(log(n))
time, where 7 is the number of alarms. An interval index can
be constructed in O(n - log(n)) time. Algorithm 1 describes
the preprocessing step.

The filtering process removes the candidate rules that do not
meet the confidence criteria. Merging rules generated for
different alarm kinds produce the final set of rules.
MINEALARMRULESFORKIND  procedure, given in
Algorithm 3, describes how we detect alarm rules for a given
alarm kind. We first do a quick check to see if the number
of alarms of the given kind is at least equal to the support
threshold. If not, we cannot have enough occurrences for a
rule whose consequent is of the given kind. Thus, we simply
return in this case. Otherwise, to determine the candidate
rules, we iterate over the alarms of the given kind. This time
ordered alarm list is already computed earlier and is the

Algorithm 2: MINEALARMRULES algorithm

Input: C, Pre-processed alarms; Z, Interval index; 7, Support threshold; 7., Confidence

threshold
Output: R, Mined alarm rules
R+ O

foru— L € M do

N A W N -

M+—{u—L:ueKANL={AcC: Ak=u}}

V + MINEALARMRULESFORKIND(L,Z, 75)
R <+ R U ENFORCECONFIDENCES(V,C,Z, 7,)

3.2.2 | Rule detection

MINEALARMRULESFORKIND  procedure, given in
Algorithm 2, describes how we detect alarm rules. We

parameter £ to the algorithm in the pseudocode. For each
alarm in this list, referred to as an anchor alarm, we gen-
erate a number of candidate rules (line 5). These candidate
rules have the important property that for each one, there
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Algorithm 3: MINEALARMRULESFORKIND algorithm

Input: £, Sorted alarms of kind w; Z, Interval index; 75, Support threshold

Output: R, Candidate alarm rules
R+ @

if |£| < 7, then return

M+~ o

for A € L do

if R.a € M then
Let M[R.a] = (R, s)
R.d + max(R.d, R'.d)
MJ[R.a) + (R,s+1)
else
| M[R.d] « (R,1)
for K — (R,s) € M do
if s > 7, then
| R« RUR

N-T-CIEN 7 I N SR S

—
[l

—
s W N

for R € GETCANDIDATERULES(A,7Z) do

> map of candidate rules

is a matching alarm subsequence terminating at the
anchor alarm. The candidate rules are found via the
GETCANDIDATERULES procedure. As we iterate through
the anchor alarms and generate candidate rules, we use a
map, M in the pseudocode, to keep a count of the number of
times each candidate rule has appeared. Two candidate rules
returned by different calls to GETCANDIDATERULES are
considered the same if their antecedents are the same (their
consequent are the same by construction). They may differ in
their duration. We take the maximum duration as the duration
of the candidate rule kept in the map for counting the occur-
rences. Alternatively, a statistical choice could be made, such
as maintaining a running mean and average duration and at
the end determining the duration value that corresponds to
the 95% percentile assuming a normal distribution. At the
end of the process, we only keep the candidate rules whose
occurrence counts are greater than or equal to the support
threshold.

Algorithm 4: GETCANDIDATERULES algorithm
Input: A, Alarm; Z, Interval index
Output: R, Candidate alarm rules

1 R+ O

2 V<O

3 for A’ € T.lookup(A.ts) do

4

5

if A't, # Aitsand A't, # A.t, then
| V+—VU{A}

For time ordered subsets of the antecedents
fort/ C Vdo
if [U/| = 0 then continue
t+ Ats — U[,l].ts
R+ [AEk:Aecl]— Ac:t
10 R+ RU{R}

v

N=T-REEN -

GETCANDIDATERULES procedure, given in Algorithm 4,
describes how we generate the list of candidate rules for a

particular anchor event. These candidate rules are the ones
for which there exists a matching alarm subsequence termi-
nating at the anchor event. For this purpose, we query the
interval tree with the start time of the anchor event and find
all other events that are active at that time. The result is a
subset of events ordered based on their start time. Any start
time ordered subset of these rules can serve as the antecedent
of a candidate rule. Thus, we generate one candidate rule for
each such subset, with the duration set to the time difference
between the start times of the last event in the subset and the
anchor event.

Finally, ENFORCECONIDENCES procedure, given in
Algorithm 5, describes how we filter the short list of candi-
date alarms to retain only the ones that satisfy the confidence
requirement. For this purpose, we compute the confidence of
each rule. The last element of the rule’s antecedent is used to
iterate over all the events of that kind. Each one of these events
represent a possible point of match for the rule’s antecedent.
Let us call these events vantage events. We use a vantage
event’s start time to query the interval index and find all
other events that were active during that time. We iterate over
the results from querying the interval tree in start time order
and check if we can find a sequence of events whose kinds
match the rule's antecedent up to and excluding its last item.
If so, then we have an antecedent match at this vantage event
and we increment the corresponding counter, 7, in the pseu-
docode. An antecedent match may correspond to a rule match
or not. To check that, we simply find out if there is an event
whose kind matches that of the rule consequent. We limit our
search to events that start after the leverage event within the
rule's duration. Also, it should start before any of the events
matching the antecedent finish. If we find a rule match, then
we increment the corresponding counter, n, in the pseu-
docode. Accordingly, n,/ng gives us the confidence, which
is compared against the confidence threshold, z., to perform
the filtering.
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Algorithm 5: ENFORCECONFIDENCES algorithm

Input: V, Candidate rules; C, Pre-processed alarms; Z, Interval index; 7., Confidence threshold

Output: R, Alarm rules

1 R+—J

2 for R €V do

3 ng < 0; ng < 0

4 for i € [0..|C|) do

5 if C;).k # R.aj_,) then continue
> check antecedent alarms

6 705 t+ C[i].te

7 for A € Z.lookup(Cp;).ts) do

8 if RCLM = A.k then

9 jg+1

10 t < min(t, A.t.)

1 if j # |R.a| — 1 then continue

12 Ng < ng+ 1
> check consequent alarm

13 fori e [i+1.|C|) do

14 if C[l].ts > C[L] ts+ R.dor C[l].ts >=t then

15 | break

16 if C[l]k = R.c then

17 Ng <— N¢ + 1

18 break

19 if n;/ns > 7. then

20 | R+ RU{R}

The alarm rules identified as above are then transformed
into a directed graph (V, E), where vertexes V are the alerts
and the edges E are the rule relationships between them.
For example, if 2 rules are calculated for a network equip-
ment, such as [A,B] — C and [D, E] — B, then the vertex
set becomes V = {A,B,C,D, E} and the edge set becomes
E = {(A,0),(B,0),(D,B),(E,B)}. Graphs for unique net-
work equipment types or the entire system can be generated.
Based on the graph representation, root cause alarms are iden-
tified by a scoring mechanism. After calculating the scores
of all alarms, most influential alarms are detected as the ones
with the top influence scores.

each vertex, and thus each unique alarm kind that appears in
the graph, accumulates some number of points. To compute
the global influence of an alarm, we sum up all the points it
has accumulated across all composite graphs.

3.3 | Probabilistic candidate rule filtering

A downside of our rule mining algorithm is that the mem-
ory usage can go up significantly, since we maintain many
candidate rules in Algorithm 3 with very low occurrence
counts that are eventually discarded because of failing the
support requirement. This may prevent the algorithm scaling

Algorithm 6: SCORE algorithm calculates each alarm’s influence score

Input: A directed graph, G(V,E)
1 foreach V; in G do
if V; is a lea f node then

| Vis+ 0

2
3
4 else
5

| Vi.s < 1+sum (V;.s | Vi; is an out neighbor of V;) /2

The alarm influence score calculation is performed as fol-
lows: First, for each network equipment (ie, Node Name in
Table 2) that generates alarms, a composite graph is created
by combining the rules mined for that equipment. Then this
composite graph is topologically sorted. Next, vertexes of the
graph are processed in reverse topological order and scored
by Algorithm 6. When a composite graph is fully processed,

TABLE 2 Alarm Event data format
Field
Node Name

Alarm Name

Explanation

Network equipment producing the alarm
Name identifying the alarm kind
Event Time Time duration of the alarm

Severity Priority state of the alarm
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to large alarm data sets. To solve this problem, we have
developed a probabilistic filtering algorithm. The fundamen-
tal idea behind the filtering algorithm is that, if the cur-
rent occurrence count of a rule is very low compared to
the expected occurrence count to eventually pass the sup-
port threshold assuming a uniform distribution of occur-
rences over the alarm set, then that candidate rule can
be discarded right away. We mathematically formalize this
filtering concept.

Let S, be a random variable representing the number of
occurrences of a candidate rule after observing n anchor
events. We assume that occurrence of a rule for the ith event
is a Bernoulli random variable, denoted as X;. To have enough
support in the average case, we need to have E[X;] > /N, Vi,
where N is the total number of anchor events (|£| in the pseu-
docode). We have S, = Zflzl X; and E[S,] = n - 75/N. The
probabilistic candidate rule filtering works by discarding a
candidate rule if after observing n anchor events, S, is less
than k and Pr(S,, < k) < 1 — ¢, where ¢ € [0, 1] is a configu-
ration parameter called the filtering confidence. ¢ is typically
close to 1.

Based on the Chernoff-Hoeffding bound,* we have

Pr(S, < (1= 8) - E[S,]) < e FIS/2, 4)

Matching this formula with our filtering condition of
Pr(S, <k) <1-—¢, we get

k=n-7,/N—+/=2-n-z,/N-log(l — ¢). (5)

To implement probabilistic candidate rule filtering, we
replace the map from Algorithm 3 with an ordered tree using
the occurrence count for ordering the candidate rules. Then
after processing each anchor event, we iterate over this tree
and remove any candidate rules whose occurrence count is
less than or equal to k. Note that k is updated after processing
each candidate rule.

In this section, we have defined our terminology, Alarms,
Rules, and Rule Mining and given our methodology. First,
we have formally defined what an alarm and a rule mean, as
well as what the components and requirements of an alarm
and a rule are. Second, we formally defined our rule min-
ing algorithm, in a step-by-step manner. Third, we described
the Score algorithm, which calculates each alarm'’s influence
score. Finally, a probabilistic filtering technique for reducing
the system resources used for mining rules was proposed, to
make the mining algorithm fast.

4 | ALACA: SCALABLE AND
REAL-TIME ALARM DATA
ANALYSIS

Alarm Collector and Analyzer is a platform to process vast
amounts of alarms that arrive from multiple heterogeneous

sources in real time and identify the root causes of prob-
lems where a demo version is demonstrated in our recent
paper of Zeydan et al.”® It is composed of 3 main modules:
(1) Data Collection, Pre-prosessing, and Storage; (2) Root
Cause Analysis; and (3) Real-time Alarm Data Processing
that includes Apache Kafka and Storm for CEP. The imple-
mentation integrates the proposed solutions in this paper with
open-source big data analytics software. Figure 2 demon-
strates the general architecture of our solution.

The Data Collection, Pre-prosessing, and Storage mod-
ule of Figure 2 collects data from heterogeneous sources and
transforms them into a suitable format for further analysis.
It also persists these data into historical storage. The Root
Cause Analysis module executes the proposed scalable rule
and graph mining algorithm for root cause analysis on alarm
events. The Data Collection module feeds the Root Cause
Analysis module with the required alarm data. The rules dis-
covered by the Root Cause Analysis module are registered
into the Real-time Alarm Data Processing module. This latter
module processes the real-time alarm events within a window
to check for possible matches with the previously registered
rules. By matching the alarm sequences against rules, we can
predict future important alarms in the sequence. The system
can also visualize the highly ranked alarms and their rela-
tionships via the ALACA Web client. While the first module
involves more technical and engineering challenges, the other
2 modules (ie, Root Cause Analysis and Real-Time Event
Processing modules) include several contributions in scalable
alarm and rule analytics and visualization.

4.1 | Data Collection, Pre-Processing,
and Storage

For representing real-time alarms, we use Event Data Type. It
includes the fields such as Node Name, Alarm Name, Event
Time, and Severity as shown in Table 2. For alarm data pro-
cessing, Alert Data Type models the alarm warnings sent back
into user in real time. This alert type includes alarm informa-
tion that can happen in the future. Its contents are listed in
Table 3. Rule Data Type includes rules that are precalculated
and preregistered into the ALACA's CEP module. Using this
rule model, warnings or alarm alerts are sent back to the users.
The details are in Table 4.

The alarm information is collected and stored in the net-
work operations center. The kind of network status informa-
tion stored and its format depends on many factors, such as
configuration, type, and vendor of the nodes and network
equipment. As depicted in Figure 2, the Data Collection,
Pre-Processing and Storage module is composed of the fol-
lowing 3 components:

o Alarm Event Loader: Loads raw alarm events into Hadoop
Distributed File System (HDFS).
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TABLE 3 Alarm Alert data format
Field
Node Name

Explanation

Network equipment

producing the alarm

List of possible alarms that can occur
Calculated time interval

Alarm Names
Time Difference
between the occurring alarms
Required time for the alert data
model to be formed in the system
The information about alarms
generation time

Captured Time

Estimated Occurrence Time

e Pre-processor: Retrieves raw alarm events from HDFS and
performs filtering, cleaning, and parsing.

o Database Inserter: Stores the cleansed data for permanent
storage.

4.2 | Root Cause Analysis

The frequently occurring alarm rules are transformed into a
graph representation, which is further used in the system for
root cause analysis and visualization. These rules are identi-
fied by a 4-phase algorithm: alarm cleansing, alarm indexing,
(ie, Algorithm 1), rule generation, and rule elimination (ie,
Algorithm 2). In summary, in the cleansing phase, alarms

Root Cause Analysis Module

TABLE 4 Alarm Rule data format.

Field Explanation

Node Name Network equipment owning the rule
Antecedent Ordered set of alarms on the Left-Hand Side
Consequent Alarm on the Right-Hand Side

Time Duration  Time duration of the rule

Confidence Confidence value of the rule

Support Support value of the rule

with matching kinds whose time intervals overlap are merged.
In the indexing phase, an interval index is built over the
alarms, such that the list of alarms that are active at a given
time can be found quickly (in logarithmic time). In the rule
generation phase, candidate alarm rules are generated for
each possible consequent alarm. For this purpose, for each
alarm X found in the alarm sequence, the set of active alarms
when X has started is found using the interval index. Then,
candidate rules are created with X on the consequent and
subsets of the found alarms on the antecedent. Occurrence
counters are maintained for these candidate rules across all X
appearances. After all Xs are processed, the elimination phase
starts. The candidate rules with low support or confidence val-
ues are eliminated. Here, the support value is the minimum
occurrence count for a rule to be retained. And the confidence
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value is the prediction accuracy the rule has (how frequent the
consequent holds when the precedent does).

4.3 | Real-Time Alarm Data Processing

The Real-time Alarm Data Processing module consists of the
following components:

e Alarm Event Listener, which reads real-time alarm data
from the source and prepares the alarm data for Log Pro-
ducer's usage.

e Alarm Event Producer, which writes alarm data into a
Kafka cluster as a producer, by transferring alarm informa-
tion through a predetermined topic called Alarm Event.

o Kafka Cluster, which is responsible for retention and alarm
log data distribution.

o Alarm Event Splitter, which reads alarm data from the
Kafka cluster using a specialized adapter, enabling data
flow from Kafka into Storm. It also cleans the raw data to
prepare it for later analysis and builds the Event data format
from alarm data.

e Redis Loader, which writes the alarm data received from
AlarmLog Splitter in Event data format, into the Redis
database. The goal is to assist the users in seeing the
real-time alarm flow with low-latency.

o Alarm Catcher, which runs preregistered rules over alarm
data coming from AlarmLog Splitter in Event data format.
Registered rules are modeled using the Rule data format.
This module performs the calculation based on a window
of size = with a slice of a. This means that last 7 time units
worth of alarm data is processed against the rules every «
time units. If after processing the alarms, a future alarm is
predicted to occur based on the rules, these warnings are
sent in the Alert data format to the Alert Sender module for
further processing.

o Alert Sender, which writes Alert data coming from Alert
Catcher module into the database. Alert Sender will not
write into the database if an alert is already available in the
database or if its estimated occurrence time has passed.

ALACA uses Apache Storm* for data stream processing
and Redis** for in-memory key-value-based data manage-
ment. Apache Storm guarantees to process incoming data
on-the-fly. It is also fault-tolerant. Redis is an in-memory
key-value store and provides high availability. We derive
the alarm rules in the Root Cause Analysis module and
process the real-time alarms in the CEP Engine mod-
ule. Apache Kafka is an integral part of our implemen-
tation, used to handle real-time data feeds.*> Kafka pro-
vides a fault-tolerant publish/subscribe mechanism with
high-throughput and low-latency distribution of data. There
are 3 important components within Kafka: producer, con-
sumer, and topic. Producer produces its messages over a topic
and sends them to the Kafka cluster. The latter is responsi-

ble for holding these messages and distributing them. The
consumer receives messages from the topics it is subscribed
to and consumes them. Kafka cluster is made up of bro-
kers, responsible for proper distribution of messages into
relevant consumers.

4.4 | Benefits of ALACA for scalable
stream analytics

The benefits of using the ALACA platform has different
dimensions. First, the ALACA platform is a highly available
and scalable solution for streaming big data. It can collect
vast amounts of data with any format and can response to
complex queries in an online manner. Second, ALACA is
built upon open source frameworks and can work integrated
with a mobile operator's Operations Support Systems. Com-
pared to traditional and more proprietary fault management
solutions of vendors (such as IBM Maximo, HP TEMIP, etc)
that are used for alarm monitoring inside mobile operators,
ALACA is built on top of an open-source platform that is
maturing constantly, thanks to its evolving community, which
makes it cost-effective as well. Additionally, ALACA has
independent modules, which make the platform more reli-
able. These modules can be updated when a new technology
is applicable.

We presented the details of the ALACA platform with its
3 main modules: Data Collection, Pre-Processing and Stor-
age, Root Cause Analysis, and Real-Time Event Processing.
Data Collection, Pre-Processing and Storage module collects
alarm events and loads them into HDFS while performing
filtering, cleaning, and parsing of raw data from HDFS and
stores the cleansed data. Root Cause Analysis module cre-
ates alarm rules, transforms them into a graph representation,
calculates influence scores from graphs, and visualizes those
graphs. Real-Time Event Processing module reads real-time
alarm data from the sources and prepares the alarm data for
the Data Collection, Pre-Processing and Storage module,
CEP, and the ALACA Web client.

S | EXPERIMENTS

In this section, we describe our data set, the experiments, and
the performance results of the proposed solution. We firstly
compare the proposed solution with a traditional sequence
mining algorithm. After this, we use 3 main parameters for
our evaluation. The first one is the confidence (z.) as given
in Equation 3. The second is the support (z,) as given in
Equation 2. The third is the filter confidence (k), as given in
Equation 5. We aim to see the impact of these parameter val-
ues on rule counts, running time, and memory usage. We run
all the experiments 3 times and report the average values as
results. Finally, we show the root cause analysis results.
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5.1 | Experimental setup

Our data set is obtained from a major telecom provider in
2012. The data have a total of 2 054 296 preprocessed alarm
events, which are produced by 80 027 different nodes. For our
experiments, we split the data set into 250K, 500K, 750K, 1M,
1.25M, 1.5M, 1.75M, and 2M instances by ordering them by
event time. We run our experiments on a workstation, which
has 128 GB of memory and 2 X 2.80 GHz Intel Xeon pro-
cessor containing 20 cores. We use Java 7 SE to process data.
First, we attempted to measure memory usage for each exper-
iment in terms of the number of bytes. However, because of
the garbage collection of the JVM, memory measurements did
not produce healthy results. Instead, we used the maximum
candidate rule map size as given in Algorithm 3 for cap-
turing the memory usage. For each experiment, we reported
the running time as maximum, minimum, and average over
different nodes.

WI LEY 11 of 18

5.2 | Comparison of proposed and
RuleGrowth—sequential rule
mining algorithm

Before presenting our experiments on the impact of major
workload and system parameters, we compare our pro-
posed algorithm with a traditional sequential data mining
algorithm, RuleGrowth.*® For this evaluation, we imple-
mented a prediction-occurrence model with the alarm rules
as we define the formation in Section 3. This model is based
on the rule occurrences on the transactions. If the antecedent
alarms of the sequential rule of a node occurs in a trans-
action, then the prediction “the consequent alarm of this
rule will also occur in this transaction” is made. If this con-
sequent one also occurs, the prediction is correct. Then,
the correctness of the prediction is calculated as accuracy.
We mine rules from our data set (alarm count: 369 345),
which are dated from 10/08/2012 to 23/08/2012 based on the

TABLE 5 Results of prediction-rule model for sequential rules and the proposed Algorithm 3

Algorithm Prediction count  Rule occurrence count Accuracy Recall
RuleGrowth 2702 864 32.0% 69.8%
Proposed method 366 266 72.7% 86.4%
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Nokias radio access network logs with support value of 10
and confidence value of 0.9. We create prediction accuracy
from these logs (alarm count: 27 855) on 24/08/2012. As
shown in Table 5, in our experiments, RuleGrowth algorithm
makes 2702 predictions, and 864 rule occurrences take
place based on these predictions. Therefore, its accuracy is
around 32.0%. Our algorithm makes 366 predictions where
266 of them has occurred. Hence, the accuracy becomes
72.7%. In our experiments, the RuleGrowth algorithm made
many predictions while it consumes a lot of resources
and time. These results indicate that the proposed method
makes more accurate predictions by using less resources
and time.

The results for the current experiment are given in Table 5.
Prediction Count is the number of the antecedent alarms of
a sequential rule occurrences on the transactions, and Rule
Occurrence Count is the number of the consequent alarms of
the rule following the antecedents occurrences on the trans-
actions. Accuracy is defined as the rule occurrence counts
over prediction counts for transactions to measure how correct
is the prediction. Recall value is defined as the ratio of rule
occurrence counts, which are calculated by considering only
training data and both training and test data, respectively. The

proposed solution makes 2.27 times better predictions than
RuleGrowth algorithm.

5.3 | Impact of confidence

We make first parameter experiment on confidence value as
it changes between 0.1 and 1.0. We use fixed support value of
10 and fixed filter confidence value of 0.9. We measure rule
counts, maximum candidate rule size, time max., min.,avg.
over data set size. Since the rules are mined as node based,
maximum candidate rule map size as given in Algorithm 3
is used for memory usage and time is observed as maximum,
minimum, and average. Figure 3 shows the results of differ-
ent confidence values over data set size. Data set size is on the
x-axis of all plots. Time usage in milliseconds is on the y-axis
of Figure 3A and Figure 3B. Maximum candidate rule map
size is given on the y-axis of Figure 3C and rule counts are
given on the y-axis of Figure 3D. Different confidence values
are the lines on the plots as given on the legend.

There is a linear relation between data set size and time
usage in Figure 3A and Figure 3B for this experiment. How-
ever, there is no relation between confidence value and mem-
ory in Figure 3C. It is because we first create candidate
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rules and calculate the confidence values then finally control rule counts created for each data set and each confidence level.
if they hold the threshold value. That is the same reason of It shows how the confidence value works on the each data
time usages are almost the same of all confidence levels. In set size. If the confidence value is maximum level, 1.0, the
all data sets, the minimum time usage is almost 0, so we did rule counts are minimum for all data sets, and vice versa. For
not give the minimum time usage plot. Figure 3D shows the  instance, the rule count is 6041 when the confidence level is
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1.0 for using all data, although the rule count is 24 817 when
the confidence level is 0.1.

5.4 | Impact of support

Our next experiment is on support value as it changes between
10 to 100. We use fixed confidence and filter confidence val-
ues of 0.9. We measure rule counts, maximum candidate rule
size, time max., min., avg. as well. Figure 4 shows the results
of different confidence values over data set size. Data set size
is on the x-axis of all plots again. Time usage in milliseconds
is on the y-axis of Figure 4A and Figure 4B. Maximum can-
didate rule map size is given on the y-axis of Figure 4C and
rule counts are given on the y-axis of Figure 4D. Different
support values are the lines on the plots as given on the legend.

We see that there is a linear relation between data set
size and time usage in Figure 4A and Figure 4B as well
as previous experiment. Additionally, Figure 4C shows that
there is a opposite relation between support value and mem-
ory usage. While the support value increases, the memory
usage decreases. We see the dramatic change on the memory
between support values 10 and 20. For the data set size 1.25M,
the candidate rule map size is 1899 for the support value 10
and 956 for the support value 20. For huger data sets, this
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TABLE 6 Influence score of alarms in the node DI2146.

Alarm Name Score
BCF OPERATION DEGRADED 1.00
BCF FAULTY 1.50
ACDC FAULT 0.00
DC POWER MAJOR 1.00
DC POWER MINOR 1.50
HIGH TEMPERATURE 1.75

change is getting bigger. For the data set size 2M, the candi-
date rule map size is 4564 for the support value 10 and 1277
for the support value 20. We see the rule counts in Figure 4D.
There is a reverse parabolic relation between rule counts and
support values. When the support value increases, the rule
counts dramatically decreases. Although there are 9418 rules
created for all instances with the support value 10, there are
3375 rules created with the support value 20.

5.5 | Impact of filter confidence

Our next experiment is on filter confidence as it changes
between 0.0 to 1.0. We use fixed confidence value of 0.9
and fixed support value of 10. Filter confidence 0.0 assumes

FIGURE 7 The alarm rules of Node Name DI2146's node, which corresponds to a BTS of RAN of MO
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that the data set is perfectly uniform, and 1.0 assumes that
the data is not uniform at any point. We measure maximum
candidate rule size, time max., min., avg. as previous experi-
ments. Data set size is on the x-axis of all plots of Figure 5.
Time usage in milliseconds is on the y-axis of Figure 5A and
Figure 5B. Maximum candidate rule map size is given on the
y-axis of Figure 5C and rule counts are given on the y-axis of
Figure 5D. Different filter confidence values are the lines on
the plots as given on the legend.

There is linear relation between data set size and time usage,
which can be seen in Figure SA and Figure 5B as expected.
We can also see the filter confidence effect on the time usage
by dramatic change between 0.8 and 1.0 in these figures. The
maximum time is 16 945 ms when the all data processed with
the filter confidence level 0.8. However, the maximum time
is 29 488 ms when all the data processed with the filter con-
fidence level 1.0. We can see the same effect on the memory
in Figure 5C. While the maximum candidate rule map size
is 4564 with filter confidence level 0.9, it is 7392 with filter
confidence level 1.0 for all the data. The rule counts over data
size for each filter confidence levels are given in Figure 5D.
In small data sets, the rule counts can be acceptable at any
filter confidence levels. On the other hand, the rule counts
are reasonable at filter confidence levels 0.8 and 0.9 for big
data sets.

Figure 6 shows precision and recall values of rules. On the
x-axis, there are filter confidence level values. Data set sizes
are the lines for these plots as given on the legend. Precision
value is given on the y-axis of Figure 6A and recall value is
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given on the y-axis of Figure 6B. Filter confidence levels 0.8
and 0.9 give reasonable precision values for each data set. For
instance, when the data set size is 250K, the precision value
is 0.944 for the filter confidence level 0.8. For the same filter
confidence level, the precision value is 0.821 when all the data
are used. Because no different rules are created when filter
confidence values change, all recall values are 1.0, which is
given in Figure 6B. So the f-values are the same with precision
values that is why the f-measure plot is not given.

5.6 | Alarm impact

To compute the impact score of each alarm, first, we cre-
ate the alarm rules using our experimental data set described
in Section 5.1. For alarm rule generation, we use fixed con-
fidence value of 0.9, fixed support value of 10 and fixed
filter confidence value of 0.9. At the end of the process,
there are 9418 rules obtained from the data set. Then, based
on the constructed rules, we create rule graphs and calcu-
late the corresponding influence scores for each node. For
instance, from Node Name DI2146, which corresponds to
a BTS inside Radio Access Network (RAN), 8 alarm rules
are created as shown in Figure 7. The consequent alarm is
represented as the blue vertex on an edge originating from
a red vertex. To indicate the alert order in the rule, small
labels are used to number the antecedent alarms. As a result,
the rules can be easily read from the graphs. There are 6
unique alarms used in these rules. The influence scores that
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FIGURE 8 The 15 most influential alarms impact scores
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are calculated by using Algorithm 6 for these are also listed in
Table 6.

We calculate the influence scores of alarms for root cause
analyses by using Algorithm 6 for all nodes to identify alarm
impact. Because we create our rule graphs node based, the
maximum influence score is 1.875 for the alarm DC Power
Minor. We aggregate the scores to see root causes in Figure 8
as given 15 most influential alarm scores. There are alarm
names on the x-axis and the aggregated scores on the y-axis.
The most influential alarms are the alarm DC Power Minor
with score of 835.125 and the alarm DC Power Major with
score of 519.500.

To sum up, we run experiments on a real data set col-
lected from a mobile network operator’s infrastructure to see
the effects of our parameters and observe the most effective
alarms that can be the root cause of the subsequent alarms.
Although the confidence value does not affect the system
resources, it affects the rule counts as expected. The support
value has noticeable impact on the system resources used.
The rule counts decrease dramatically when the support value
increases. We made a final experiment on the filter confi-
dence parameter to see the effect of our sliding window—based
approach. When the filter confidence level is 0.8, the sys-
tem resources are saved and the precision level is higher than
0.80 for all data sets, which is quite reasonable. We see the
alarm DC Power Minor is more influential than the alarm DC
Power Major and ACDC Fault, which coincides with the fact
that before a major power shut down occurs at a given BTS,
minor warnings arrive into network operation center of the
mobile operator.

6 | CONCLUSION

This paper introduced a real-time alarm data analytics plat-
form developed for a major mobile service provider. The most
critical modules of the platform are the real-time alarm cap-
ture and the root cause analysis modules. We provided both
practical and theoretical insights on large-scale alarm man-
agement and mining. Our experiments show that the sliding
window-based approach saves system resources by using a
filter confidence level of 0.8 or 0.9, while maintaining the
high precision of the alarm rules. The developed system is
in active use within the network operation center of a major
mobile telecom provider. It has started to ease the network
operators' job. Therefore, we plan to measure the ticket reduc-
tions and the long-term cost savings for the network operator
as future work.

This work can be extended in several directions. The cur-
rent system is developed as node based. As a future work,
the system performance can be improved by using clustered
nodes and rules can be constructed using these clustered rules.
This can result in detecting more influential alarm rules due to

the addition of new rules. One can also extend the root cause
analysis to be used for trend analysis of arriving alarms at a
seasonal scale.
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