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Abstract—We are witnessing an enormous growth in the volume of data generated by various online services. An important portion of
this data contains geographic references, since many of these services are location-enhanced and thus produce spatio-temporal
records of their usage. We postulate that the spatio-temporal usage records belonging to the same real-world entity can be matched
across records from different location-enhanced services. Linking spatio-temporal records enables data analysts and service providers
to obtain information that they cannot derive by analyzing only one set of usage records. In this paper, we develop a new linkage model
that can be used to match entities from two sets of spatio-temporal usage records belonging to two different location-enhanced
services. This linkage model is based on the concept of k-l diversity — that we developed to capture both spatial and temporal aspects
of the linkage. To realize this linkage model in practice, we develop a scalable linking algorithm called ST-Link, which makes use of
effective spatial and temporal filtering mechanisms that significantly reduce the search space for matching users. Furthermore, ST-Link
utilizes sequential scan procedures to avoid random disk access and thus scales to large datasets. We evaluated our work with respect
to accuracy and performance using several datasets. Experiments show that ST-Link is effective in practice for performing
spatio-temporal linkage and can scale to large datasets.

F

1 INTRODUCTION

The size of the digital footprint left behind by users inter-
acting with online services is increasing at a rapid pace,
due to the popularity of location based services, social
networks and related online services. An important portion
of this footprint contains spatio-temporal references and is a
fertile resource for applications for social good and business
intelligence [35]. We refer to the services that create spatio-
temporal records of their usage as Location Enhanced Services
(LES). For instance, Foursquare/Swarm1 — a popular social
networking service, records the locations of users when they
check-in at a point-of-interest (POI) registered in the system.

We consider two varieties of LES based on a user’s level
of involvement in the production of spatio-temporal usage
records. Users of explicit LES actively participate in sharing
their spatio-temporal information. Location- based social
network services, like Foursquare/Swarm, are well-known
examples of such services, where the user explicitly checks-
in to a particular POI at a particular time. On the other hand,
implicit LES produce spatio- temporal records of usage as a
byproduct of a different activity, whose focus is not sharing
the location. For instance, when a user makes a payment
with her credit card, a record is produced containing time
of the payment and location of the store. Same applies for
the cell phone calls, since originating cell tower location is
known to the service provider.

We postulate that the spatial-temporal usage records
belonging to the same real-world entities can be matched
across records from two different LESs. Linking spatio-
temporal records enables data scientists and service

1. www.foursquare.com / www.swarmapp.com

providers to obtain information that they cannot derive by
analyzing only one set of usage records. For example, a LES
provider can combine user segmentation results derived
from its own usage records with social segmentation results
derived from the publicly available Foursquare/Swarm
records, assuming that the linking of users across these two
datasets can be performed effectively. Data from multiple
LES providers can be combined using common spatio-
temporal information to identify general patterns and im-
prove urban life. While possible, there are a number of chal-
lenges associated with performing such linkage of entities
across two spatio-temporal usage record datasets.

First, unlike in traditional record linkage [8], [13], [22],
where it is easier to formulate linkage based on a traditional
similarity measure defined over records (such as Minkowski
distance or Jaccard similarity), in spatio-temporal linkage
similarity needs to be defined based on time, location, and
the relationship between the two. For a pair of entities from
two different datasets to be considered similar, their usage
history must contain records that are close both in space
and time. Equally importantly there must not be negative
matches, such as records that are close in time, but far in
distance. We call such negative matches, alibis. To address
these challenges, in this paper, we introduce a novel linkage
model based on k-l diversity — a concept we developed
to capture both spatial and temporal diversity aspects of
the linkage. Informally, a pair of entities, one from each
dataset, is called k-l diverse if they have at least k co-
occurring records (both temporally and spatially) in at least
l different locations. However, as we will detail later not
all co-occurring records contribute fully and equally to the
overall aggregation. Furthermore, number of alibi events of
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such pairs should not exceed a predefined threshold.
Second, naı̈ve record linkage algorithms that compare

every pair of records take O(n2) time [17], where n is the
number of records. However, such a computation would not
scale to large dataset sizes that are typically involved in LES.
Considering that location-based social networks get millions
of updates every day, processing of hundreds of days of data
for the purpose of linkage would take impractically long
amount of time. In order to link entities in a reasonable time,
the ST-Link algorithm we have developed uses two filtering
steps before pairwise comparisons of candidate entities are
performed to compute the final linkage. Taking advantage
of the spatio-temporal structure of the data, ST-Link first
distributes entities over coarse-grained geographical regions
that we call dominating grid cells. Such grid cells contain
most of the activities of their corresponding entities. For
two entities to link, they must have a common dominating
grid. Once this step is over, the linkage is independently
performed over each dominating grid cell. During the tem-
poral filtering step, ST-Link uses a sliding window based
scan to build candidate entity pairs, while also pruning
this list as alibis are encountered for the current candidate
pairs. It then performs a reverse scan to further prune the
candidate pair set by finding and applying alibis that were
not known during the forward scan. Finally, our complete
linkage model is evaluated over candidate pairs of entities
that remain following the spatial and temporal filtering
steps. Pairs of entities that satisfy k-l diversity are linked
to each other.

This paper makes the following contributions:
•Model. We introduce a novel spatio-temporal linkage

model based on the concept of k-l diversity for matching.
•Algorithm. To realize the linkage model in practice,

we develop the ST-Link algorithm. ST-Link applies spatial
and temporal filtering techniques to effectively prune the
candidate entity pairs in order to scale to large datasets.
It also performs mostly sequential I/O to further improve
performance.
• Evaluation. We provide an experimental study using

several datasets to showcase the effectiveness of the k-l
diversity based linkage model and the efficiency of the ST-
Link algorithm.
The rest of this paper is organized as follows. Section 2 gives
the formalization of the k-l diversity based linkage model.
Section 3 explains the ST-Link algorithm for an effective
realization of our linkage model. Section 4 presents the
experimental evaluation. Section 5 gives the related work
and Section 6 concludes the paper.

2 SPATIO-TEMPORAL LINKAGE

In this section, we introduce our k-l diversity based spatio-
temporal linkage model. We first present the preliminaries,
including the notation used, and then present the detailed
formalization of the linkage model.

2.1 Notation and Preliminaries
Datasets. We denote the two spatio-temporal usage record
datasets from the two LES across which the linkage is to be

performed as I and E .

Entities and events. Entities, or users, are real-world systems
or people who use LES. Throughout this paper, the terms
user and entity will be used interchangeably. They are repre-
sented in the datasets with their ids, which are different for
the two LES. Events correspond to usage records generated
by a LES as a result of users interacting with the service. For
an event e ∈ E (or i ∈ I), e.u (or i.u) represents the user
associated with the event. We use UE and UI to denote the
set of user ids in the datasets E and I , respectively. We have
UE = {e.u : e ∈ E} and UI = {i.u : i ∈ I}.

Location and time. Each event in the dataset contains
location and time information. The location information is
in the form of a region, denoted as e.r for event e. We do
not use a point for location, as for most LES the location
information is in the form of a region (e.g., POI in check-
ins, cell towers in calls). The time information is a point
in time, denoted as e.t for event e. Although an event
might contain a time period as well (e.g., call start time and
duration), frequently those records contain only the start
location (e.g., originating cell tower), and thus it would be
incorrect to assume the same location for the entire duration.
However, if the time information of an event is a period,
and the associated locations are known, this event could be
represented as multiple events, each with its own location
information and time point (details given in Section 3.3.3).

Linkage. Our goal is to come up with a linkage function L,
where L(E , I) ⊆ UE × UI . Each pair in the result, that is
(u1, u2) ∈ L(E , I), represents a potential linkage. We only
consider user pairs (u1, u2) for which there is no ambiguity
in the linkage, that is @u 6= u1 s.t. (u, u2) ∈ L(E , I) ∧ @u 6=
u2 s.t. (u1, u) ∈ L(E , I).

2.2 k-l Diversity based Linkage
The core idea behind our linkage model is to locate pairs of
users whose events satisfy k-l diversity. Stated informally, a
pair of users is called k-l diverse if they have at least k co-
occurring events (both temporally and spatially) in at least
l different locations. Furthermore, number of alibi events
of such pairs should not exceed a predefined threshold. In
what follows we provide a number of definitions that help
us formalize the proposed k-l diversity.

Co-occurrence. Two events from different datasets are called
co-occurring if they are close in space and time. Eq. 1 defines
the P relationship to capture the closeness in space. For two
records i ∈ I and e ∈ E , P is defined as:

P (i, e) ≡ (i.r ∩ e.r) 6= ∅, (1)

where i.r and e.r are the regions of the two events. While
we defined the closeness in terms of intersection of re-
gions, other approaches are possible, such as the frac-
tion of the intersection being above a threshold: |i.r ∩
e.r|/min(|i.r|, |e.r|) ≥ ε. Our methods are equally appli-
cable to such measures.

Eq. 2 defines the T relationship to capture the closeness
of events in time:

T (i, e) ≡ |i.t− e.t| ≤ α. (2)
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Here, we use the α parameter to restrict the matching events
to be within a window of α time units of each other. Using
Eq. 1 and Eq. 2, we define the co-occurrence function C as:

C(i, e) ≡ T (i, e) ∧ P (i, e) (3)

Alibi. While a definition of similarity is necessary to link
events from two different datasets, a definition of dissimi-
larity is also required to rule out pairs of users as potential
matches in our linkage. Such negative matches enable us to
rule out incorrect matches and also reduce the space of
possible matches throughout the linkage process. We refer
to these negative matches as alibis.

By definition alibi means “A claim or piece of evidence
that one was elsewhere when an act is alleged to have taken
place”. In this paper we use alibi to define events from two
different datasets that happened around the same time but
at different locations, such that it is not possible for a user
to move from one of these locations to the other within the
duration defined by the difference of the timestamps of the
events. To formalize this, we define a runaway function R,
which indicates whether locations of two events are close
enough to be from the same user based on their timestamps.
We define R as follows:

R(i, e) ≡ d(i.r, e.r) ≤ λ · |i.t− e.t| (4)

Here, λ is the maximum speed constant and d is a function
that gives the shortest distance between two regions. If the
distance between the regions of two events is less than or
equal to the distance one can travel at the maximum speed,
then we cannot rule out linkage of users associated with
these two events. Otherwise, and more importantly, these
two events form an alibi, which proves that they cannot
belong to the same user. Based on this, we define an alibi
function, denoted by A, as follows:

A(i, e) ≡ T (i, e) ∧ ¬P (i, e) ∧ ¬R(i, e) (5)

User linkage. The definitions we have outlined so far are on
pairs of events, and with these definitions at hand, we can
now move on to definitions on pairs of users. Let x ∈ UI
and y ∈ UE be two users. We use Ix to denote the events
of user x and Ey to denote the events of user y. In order to
be able to decide whether two users are the same person or
not, we need to define a matching between their events.

Initially, let us define the set of all co-occurring events of
users x and y, represented by the function F . We have:

F (x, y) = {(i, e) ∈ Ix × Ey : C(i, e)} (6)

F is our focus set and contains pairs of co-occurring events of
the two users. However, in this set, some of the events may
be involved in more than one co-occurring pairs. We restrict
the matching between the events of two users by disallow-
ing multiple co-occurring event pairs containing the same
events. Accordingly, we define S as the set containing all
possible subsets of F satisfying this restriction. We call each
such subset an event linkage set. Formally, we have:

S(x, y) = {S ⊆ F (x, y) :

@{(i1, e1), (i2, e2)} ⊆ S s.t. i1 = i2 ∨ e1 = e2}
(7)

We say that the user pair (x, y) satisfy k-l diversity if
there is at least one event linkage set S ∈ S(x, y) that
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1

Fig. 1: Sample event linkage set (solid lines) for users x and
y. The co-occurring event pairs are shown using dashed
lines. Events from a given user are shown within circles.
Users a, b, c, and y are from one LES, and the users d, e, f ,
and x are from the other LES.

contains k co-occurring event pairs and at least l of them
are at different locations. However, each co-occurring event
pair does not count as 1, since there could be many other
co-occurring event pairs outside of S or even F that involve
the same events. As such, we weight these co-occurring
event pairs (detailed below). Figure 1 shows a sample event
linkage set with weights for the co-occurring event pairs.

k co-occurring event pairs. Let S be an event linkage set
in S(x, y) and let C be a function that determines whether
the co-occurring event pairs in S satisfy the co-occurrence
condition of k-l diversity. We have:

C(S) ≡
∑

(i,e)∈S

w(i, e) ≥ k (8)

The weight of a co-occurring event pair is defined as:

w(i, e) =|{i1.u : C(i1, e) ∧ i1 ∈ I}|−1·
|{e1.u : C(i, e1) ∧ e1 ∈ E}|−1 (9)

Here, given a co-occurring event pair between two
users, we check how many possible users’ events could
be matched to the these events. For instance, in the figure,
consider the solid line at the top with the weight 1/6. The
event on its left could be matched to events of 2 different
users, and the event on its right could be matched to events
of 3 different users. To compute the weight of a co-occurring
pair, we multiply the inverse of these user counts, assuming
the possibility of matching from both sides are independent.
As such, in the figure, we get 1/2 · 1/3 = 1/6.

l diverse event pairs. For S ∈ S(x, y) to be l-diverse, there
needs to be at least l unique locations for the co-occurring
event pairs in it. However, for a location to be counted
towards these l locations, the weights of the co-occurring
event pairs for that location must be at least 1. Let D denote
the function that determines whether the co-occurring event
pairs in S satisfy the diversity condition of k-l diversity. We
have:

D(S) ≡ |{p ∈ P :
∑

(i,e)∈S s.t.
p∩ i.r∩ e.r 6=∅

w(i, e) ≥ 1}| ≥ l (10)
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Here, one subtle issue is defining a unique location. In
Eq. 10 we use P as the set of all unique locations. This
could simply be a grid-based division of the space. In our
experiments, we use the regions of the Voronoi diagram
formed by cell towers as our set of unique locations.

Before we can formally state the k-l diversity based
linkage, we have to define the alibi relation for user pairs.
Let A denote a function that determines whether there are
more than a alibi events for a given pair of users. Intuitively,
having a single alibi is enough to decide that user x and
y are not the same person, but when there is inaccurate
information, disregarding candidate pairs with a single alibi
event might lead to false negatives. We have:

A(x, y) ≡ |i, e ∈ Ix × Ey, s.t.A(i, e)| ≤ a (11)

With these definitions at hand, we can define the spatio-
temporal linkage functionM that determines whether users
x and y satisfy k-l diversity as follows:

M(x, y) ≡ ¬A(x, y) ∧ S ∈ S(x, y) s.t. (C(S)∧D(S)) (12)

Finally, the linkage function L from the original problem
formulation from Section 2.1 can be defined to contain only
matching pairs of users based on M, such that there is no
ambiguity. Formally:

L(E , I) = {(x, y) ∈ E × I :M(x, y)∧
@z 6= x s.t.M(z, y) ∧ @z 6= y s.t.M(x, z)}

(13)

2.3 Example Scenario
Consider three colleagues Alice, Bob, and Carl who are
working in the same office. Assume that they all use two
LESs: les1 and les2. Both services generate spatio-temporal
records only when they are used. The service provider
would like to link the profiles of users common in both
services. However, Bob uses the services only when he is at
the office. On the other hand, Alice and Carl use the services
frequently while at work, at home, and during vacations. Let
us also assume that Alice and Carl live on the same block,
but they take vacations at different locations.

When records of Alice from les1 are processed against
records of Carl from les2, we will encounter co-occurrences
with some amount of diversity, as they will have matching
events from work and home locations. However, we will
encounter alibi events during vacation time. In this case,
alibi checks will help us rule out the match.

When records of Alice from les1 are processed against
records of Bob from les2, the number of co-occurrences will
be high, as they are working in the same office. Yet, diversity
will be low, as Bob does not use the services outside of the
office. This also means we will not encounter any alibi events
with Alice. In this case, diversity will help us rule out the
match.

In contrast to these cases, when Alice’s own usage
records from les1 and les2 are processed, the resulting co-
occurrences will contain high diversity since Alice uses the
services at work, home, and during vacations, and will
contain no alibis.

In this example scenario, high number of co-occurrences
helped us distinguish between mere coincidences and po-
tential candidate pairs. The alibi definition helped us to elim-
inate a false link between Alice and Carl. Finally, diversity

helped us to eliminate a false link between Alice and Bob,
even in the absence of alibi events.

3 ST-LINK

In this section, we describe how the ST-Link algorithm
implements k-l diversity based spatio-temporal linkage in
practice. At a high-level, ST-Link algorithm performs filter-
ing to reduce the space of possible entity matches, before it
performs a more costly pairwise comparison of entities ac-
cording to the formalization given in Section 2. The filtering
phase is divided into two steps: temporal filtering and spatial
filtering. The final phase of pairwise comparisons is called
linkage.

3.1 Overview
Naı̈ve algorithms for linkage repeatedly compare pairwise
records, and thus take O(n2) [17] time, where n is the num-
ber of records. Such algorithms do not scale to large datasets.
To address this issue, many linkage algorithms introduce
some form of pruning, typically based on blocking [28],
[20], [37] or indexing [19], [9]. Identifying the candidate
user pairs on which the full linkage algorithm is to be
run can significantly reduce the complexity of the end-to-
end algorithm. Accordingly, ST-Link algorithm incorporates
pruning strategies, which are integrated into the spatial
filtering and temporal filtering steps.

Figure 2 shows the pipelined processing of the ST-Link
algorithm. Given two sources of data for location-enhanced
services (DS1 and DS2 in the figure), spatial filtering step
maps users to coarse-grained geographical grid cells that we
call dominating grid cells. Such cells contain most activities
of the corresponding entities. Once this step is over, the
remaining steps are independently performed for each grid.

The temporal filtering step slides a window over the
time ordered events to build a set of candidate entity pairs.
During this processing, it also prunes as many entity pairs
as possible based on alibi events. As we will detail later in
this section, a reverse window based scan is also performed
to make sure that all relevant alibis are taken into account.

Following the spatial and temporal filtering steps, the
complete linkage is performed over the set of candidate
entity pairs. With a significantly reduced entity pair set,
the number of compared events decreases significantly as
well. Given two datasets I and E , the linkage step calculates
L(E , I) as given in Eq. 13 without considering all possible
entity pairs.

3.2 Spatial Filtering
By their nature, spatio-temporal data are distributed geo-
graphically. Spatial filtering step takes advantage of this,
by partitioning the geographical region of the datasets into
coarse-grained grid cells using a modified version of quad
trees [14]. Each entity is assigned to one (an in rare cases
to a few) of the grid cells, which becomes that entity’s
dominating grid. The dominating grid of an entity is the cell
that contains the most events from the entity. Entities that
do not share their dominating grid cells are not considered
for linkage. The intuition behind this filtering step is that,
if entity x from dataset E and entity y from dataset I have
differing dominating grids, then they cannot be the same
entity.



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2711027, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 2017 5

Fig. 2: Data processing pipeline of ST-Link.

3.2.1 Coarse Partitioning
For quad-tree generation in the ST-Link algorithm, we con-
tinue splitting the space until the grid cells size hits a given
minimum. For our experiments, we make sure that the area
of the grid cells is at least 100 km squares. For users, the grid
cells should be big enough to cover a typical user’s mobility
range around his home and work location. If the minimum
grid cell size is too small, then the spatial filtering can
incorrectly eliminate potential matches, as the dominating
grids from different datasets may end up being different. A
concrete example is a user that checks in to coffee shops and
restaurants around his work location, but uses a location-
based match-making application only when he is at home.

(a) Grid cells. (b) Most popular venues.
Fig. 3: Grids cells and top 1K venues

We also do not split grid cells that do not contain any
events. As a result, not all grid cells are the same size.
Figure 3 shows the grid cells for two selected areas in Turkey
and the top 1K venues in those areas in terms of check-in
counts, based on Foursquare check-in data.

3.2.2 Determining Dominating Grids
The determination of the dominating grid for an entity is
simply done by counting the entity’s events for different
cells and picking the cell with the highest count. A subtle
issue here is about entities whose events end up being close
to the border areas of the grid cells. As a specific example,
consider a user who lives in one cell and works in another.
In this case, it is quite possible that a majority of the user’s
check-ins happen in one cell and the majority of the calls in
another cell. This will result in missing some of the potential
matches. To avoid this situation, we make two adjustments:
• If an event is close to the border, then it is counted

towards the sums for the neighboring cell(s)2 as well. We
use a strip around the border of the cell to determine
the notion of ‘close to the border’. The width of the strip
is taken as the 1/8th of the minimum cell’s edge width.
This means that around 43% of a grid overlaps with one
or more neighboring grids. This adjustment resembles the
loose quad trees [33].
• An entity can potentially have multiple dominating

2. An event can count towards at most 3 neighbors, in case it is at the
corner of the grid.

grid cells. We have found this to be rare for users in practice.

Figure 3b shows the resulting grids over selected areas in
Turkey, and the most popular venues from our dataset. Red
pins are showing the venues and the blue ones are showing
the ones that count towards neighboring grids.

3.2.3 Forming Partitioned Datasets
Once the dominating grid cells of users are determined,
we create grid cell specific datasets. For a given grid cell
c, we take only the events of the entities who has c as
a dominating grid cell. These events may or may not be
in the grid cell c. Determination of the dominating grid
cells of entities requires a single scan over the time sorted
events from entities. The forming of the partitioned datasets
requires a second scan.

3.3 Temporal Filtering
Temporal filtering aims at creating a small set of candi-
date user pairs on which the full linkage algorithm can
be executed. To create this set, temporal filtering looks
for user pairs that have co-occurring events, as expressed
by Eq. 3. Importantly, temporal filtering also detects alibi
events, based on Eq. 5, and prevents user pairs that have
such alibi events from taking part in the candidate pair set.

Temporal filtering is based on two main ideas. First,
a temporal window is slided over the events from two
different datasets to detect user pairs with co-occurring
events. Since co-occurring events must appear within a
given time duration, the window approach captures all co-
occurring events. Second, as the window slides, alibi events
are tracked to prune the candidate user pair set. However,
since the number of alibis is potentially very large, alibis
are only tracked for the user pairs that are currently in the
candidate set. This means that some relevant alibis can be
missed if the user pair was added into the candidate set
after an alibi event occurred. To process such alibis properly,
a reverse window scan is performed, during which no new
candidate pairs are added, but only alibis are processed.
Algorithm 1 gives the pseudo-code of temporal filtering.

3.3.1 Data Structures
A window of size α (see Eq. 2) is slided jointly over both
time sorted datasets. Figure 4a depicts this visually. Each
time the window slides, some events from both datasets
may enter and exit the window. We utilize two types of
data structures to index the events that are currently in the
window. The first type of index we keep is called the user
index, denoted by UIx, where x ∈ {I, E}. In other words,
we keep separate user indexes for the two datasets. UIx is
a hash map indexed by the user. UIx[u] keeps all the events
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(a) Sliding window algorithm.
(b) Calculation of the candidate set.

Fig. 4: Temporal Filtering

(from dataset x) of user u in the window. As we will see,
this index is useful for quickly checking alibis.

The second type of index we keep is called the spatial
index, denoted by LSx, where x ∈ {I, E}. Again, we keep
separate indexes for the two datasets. LSx could be any
spatial data structure like R-trees. LSx.query(r) gives all
events whose region intersect with region r. As we will see,
this index is useful for quickly locating co-occurring events.

In addition to these indexes, we maintain a global can-
didate set CS and a global alibi set AS. For a user u (from
either dataset, assuming user ids are unique), CS[u] keeps
the current set of candidate pair users for u; andAS[u] keeps
the current known alibis users for u. It is important to note
thatAS is not designed to be exhaustive. For a user u,AS[u]
only keeps alibi users that have co-occurring events with u
in the dataset.

3.3.2 Processing Window Events
The algorithm operates by reacting to events being inserted
and removed from the window as the window slides over
the dataset. As a result, an outermost while loop that ad-
vances the window until the entire dataset is processed.
At each iteration, we get a list of events inserted (N+

I and
N+
E ) and removed (N−I and N−E ) from the window. We first

process the removed events, which consists of removing
them from the spatial and user indexes. We then process
the inserted events. We first process N+

I against UIE and
LSE , then insert the events in N+

I into UII and LSI ,
then process N+

E against UII and LSI , and finally insert
the events in N+

E into UIE and LSE . This ensures that all
the events are compared, and no repeated comparisons are
made. Figure 4b depicts the order of events visually.

To compare a new event i from dataset x against the
events from dataset x̄ that are already indexed in the win-
dow (where {x, x̄} = {E , I}), we use the indexes UIx̄
and LSx̄. First, we find events that co-occur with i by
considering events e in LSx̄.query(i.r). These are events
whose regions intersect with that of i. If the user of such
an event e is not already a known alibi of the user of i
(not in AS[i.u]) and if the co-occurrence condition C(i, e)
is satisfied, then the user e.u and user i.u are added as
candidate pairs of each other. Second, and after all the co-
occurrences are processed, we consider all candidate users
of the event i’s user, that is CS[i.u], for alibi processing. For
each user u in this set, we check if any of its events result

in an alibi. To do this, we iterate over user u’s events with
the help of the index UIx̄. In particular, for each event e in
UIx̄[u], we check if i and e are alibis, using the condition
A(i, e). If they are alibis, then we remove u and i’s user (i.u)
from each other’s candidate sets, and add them to their alibi
sets.

This completes the description of the forward scan of
the window. An important point to note is that, during the
forward window scan, we only check alibis for user pairs
that are in the set of candidate pairs. It is possible that there
exists an alibi event pair for users x and y, that appears
before the first co-occurring event pair for these users. In
such a case, during the processing of the alibi events we
won’t have this pair of users in our candidate set and thus
their alibi will be missed. To fix this problem, we perform
a reverse scan. During the reverse scan, we only process
alibis, as no new candidate pairs can appear. Furthermore,
we need to process alibi events for a user pair only if the
events happened before the time this pair was added into
the candidate set. For brevity, we do not show this detail
in Algorithm 1. At the end of the reverse scan, the set CS
contains our final candidate user pairs, which are sent to
the linkage step. Temporal filtering is highly effective in
reducing the number of pairs for which complete linkage
procedure is executed. The experimental results show the
effectiveness of this filtering.

When there is inaccurate information in the datasets,
disregarding candidate pairs due to only a single alibi event
might lead to false negatives. However, the algorithm is
easily modifiable to use a threshold for alibi values. In this
modified version, we update the structure of the alibi set
AS to keep the number of alibi events of a pair as well.
Now AS[u] keeps the current known alibi users of user u
with alibi event counts for each. Just like in the original
algorithm, when two events i and e are compared we first
check if the number of alibi events of users i.u and e.u
exceeds the threshold. To avoid double counting, we reset
the counters before the reverse scan. Since all alibi events
of current candidate pairs will be counted in reverse scan,
candidates whose count of alibi events exceed threshold will
not be included in the resulting candidate set CS.

So far we have operated on time sorted event data
and our algorithms used only sequential I/O. However,
during the linkage step, when we finally decide whether
a candidate user pair can be linked, we will need the time
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Alg. 1: Candidate Set Calculation
Data: SRI , SRE : Time sorted datasets of events
Result: CS: A set of candidate user pairs
CS ← ∅ . Candidates, CS[u] is the list of pair users of u
AS ← ∅ . Alibis, AS[u] is the list of alibi users of u
UIx ← ∅, x ∈ {I, E} . User index over window
. UIx[u]: events from x in window belonging to user u
LSx ← ∅, x ∈ {I, E} . Spatial index over window
. LSx.query(e.r): events from x in window intersecting

event e
W ← window(SRI , SRE , α) . Window over the datasets
. Forward scan phase
while W.hasNext() do . While more events after window

. Get events inserted into and removed from the window
(N+
I , N

+
E , N

−
I , N

−
E )←W.next()

for x ∈ {I, E} do . In both directions
for i ∈ N−x do . For each removed event

LSx.remove(i.r, i) . Remove from spatial index
UIx[i.u]← UIx[i.u] \ i . Remove from user index

for (x, x̄) ∈ {(I, E), (E , I)} do . In both directions
for i ∈ N+

x do . For each inserted event
. Query spatially close elements
for e ∈ LSx̄.query(i.r) do

if e.u 6∈ AS[i.u] then . If users are not alibi
if C(i, e) then . If events co-occur

. Add to the candidate set
CS[i.u]← CS[i.u] ∪ {e.u}
CS[e.u]← CS[e.u] ∪ {i.u}

for u ∈ CS[i.u] do . For each candidate user
. For each event of the user in the window
for e ∈ UIx̄[u] do

if A(i, e) then . If i and e is an alibi
. Add to the alibi set
AS[i.u]← AS[i.u] ∪ {u}
AS[u]← AS[u] ∪ {i.u}
. Remove from the candidate set
CS[i.u]← CS[i.u] \ {u}
CS[u]← CS[u] \ {i.u}

LSx.insert(i.r, i) . Add to spatial index
UIx[i.u]← UIx[i.u] ∪ {i} . Add to user index

. Reverse scan phase
W ← reverse window(SRI , SRE , α) . Reverse sliding
window
while W.hasNext() do . While more events after window

(N+
I , N

+
E , N

−
I , N

−
E )←W.next()

for x ∈ {I, E} do . In both directions
for i ∈ N−x do . For each removed event

UIx[i.u]← UIx[i.u] \ i . Remove from user index
for (x, x̄) ∈ {(I, E), (E , I)} do . In both directions

for i ∈ N+
x do . For each inserted event

for u ∈ CS[i.u] do . For each candidate user
if A(i, e) then . If i and e is an alibi

. Add to the alibi set
AS[i.u]← AS[i.u] ∪ {u}
AS[u]← AS[u] ∪ {i.u}
. Remove from the candidate set
CS[i.u]← CS[i.u] \ {u}
CS[u]← CS[u] \ {i.u}

UIx[i.u]← UIx[i.u] ∪ {i} . Add to user index
return CS . Return the candidate set

sorted events of the users at hand. For that purpose, during
the forward scan, we also create a disk-based index sorted
by the user id and event time. This index enables us to
quickly iterate over the events of a given user in timestamp
order, which is an operation used by the linkage step. For

this purpose, we use LevelDB [18] as an index, which is a
log-structured merge-tree supporting fast insertions.

While writing the event to the disk-based index, we also
include information about the number of unique users the
event has matched throughout its stay in the forward scan
window. This information is used as part of the weight
calculation (recall Eq. 9) in the linkage step.

3.3.3 Handling Time Period in Events
The temporal filtering step scans time-ordered events by
sliding a window of size α over them. This operation as-
sumes that the time information is a point in time. Yet, there
could be scenarios where the time information is a period
(e.g., a start time and a duration). However, frequently,
these records contain only start location of the event. For
example, although Call Detail Records (CDR) have the start
time of the call and the duration, they usually contain only
the originating cell tower information. Considering mobility
of the users, assuming a fixed location during this period
would lead to location ambiguity.

If we have events with time periods and accurate loca-
tion information is present during this period, we can adapt
our approach to handle this. In particular, we need to avoid
false negative candidate pairs when the event contains a
time period. Since events are processed via windowing,
making sure that the event with the time period information
stays in the window as long as its time period is valid would
guarantee that all co-occurrences will be processed. This
requires creating multiple events out of the original event,
with time information converted into a point in time and
the correct location information attached to it. The number
of such events is bounded by the time duration divided by
the window size, α.

3.4 Linkage
The last step of the ST-Link algorithm is the linkage of the
entities that are determined as possible pairs as a result of
spatial and temporal filtering. This linkage is a realization
of the k-l diversity based linkage model introduced in
Section 2. Given two entities from two datasets, the linkage
step uses the events of them to determine whether they can
be linked according to Eq. 12. Thanks to efficient filtering
steps applied on the data beforehand, the number of entity
pairs for which this linkage computation is to be performed
is significantly reduced.

For each entity pair, their events are retrieved from
the disk-based index created as part of the forward scan
during the temporal filtering. These events are compared
for detecting co-occurring events. Co-occurring events are
used to compute the k value, via simple accumulation of
the co-occurrence weights. They are also used to accumulate
weights for the places where co-occurring events occur. This
helps us compute the l value, that is diversity. After all
events of a pair of entities are compared, we check if they
satisfy the k-l diversity requirement. Note that, it is not
possible to see an alibi pair event at this step, as they are
eliminated by the temporal filtering step.

There are a number of challenges in applying the k-l-
diversity based linkage. The first is to minimize the num-
ber of queries made to the disk-based index to decrease
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the I/O cost. Events from the same entity are stored in
a timestamped order within the index, which makes this
access more efficient. Also, if one of the datasets is more
sparse than the other, then the linkage can be performed by
iterating over the entities of the dense datasets first, making
sure their events are loaded only once. This is akin to the
classical join ordering heuristic in databases.

Another challenge is the definition of the place ids to
keep track of diversity. A place id might be a venue id
for a Foursquare dataset, store id for credit card payment
records, cell tower id for Call Detail Records, or a geo-
graphic location represented as latitude and longitude. An
important difference is the area of coverage for these places.
Consider two datasets of Foursquare check-ins and Call
Detail Records, and places based on venues. If a user visits
several nearby coffee shops and makes check-ins and calls,
these will be considered as diverse even though they are not
geographically diverse. The use of cell tower coverage areas
is a more practical choice for determining places.

The last challenge is about matching events. Recall from
Figure 1 that events of two entities can be matched in
multiple different ways, resulting in different weights for
the co-occurrences. Ideally, we want to maximize the overall
total weight of the matching, however this would be quite
costly to compute, as the problem is a variation of the
bipartite graph assignment problem. As a result, we use a
greedy heuristic. We process events in a timestamped order
and match them to the co-occurring event from the other
entity that provides the highest weight. Once a match is
made, event pairs are removed from the dataset so that they
are not re-used.

Different k-l value pairs may perform significantly dif-
ferent in terms of precision and recall, depending on the
frequencies of the events in the datasets. An ad-hoc ap-
proach is to decide the k and l values based on observation
of results from multiple experimental runs. A more robust
technique we used is to detect the best trade-off point (a.k.a
elbow point) on a curve. Given the co-occurrence and diversity
distributions, we independently detect the elbow point of
each, and set the k and l values accordingly. Although there
is no unambiguous solution for detecting an elbow point,
the maximum absolute second derivative is an approxima-
tion. Let A be an array of co-occurrence (or diversity) values
with size n. Second derivative, SD, of point at index i can
be approximated with a central difference as follows:

SD[i] = A[i+ 1] +A[i− 1]− 2 ∗A[i] (14)

The value at index A[i], such that i has the maximum
absolute SD[i] value, is selected as the elbow point and k (or
l) value is set accordingly.

4 EXPERIMENTAL EVALUATION

In this section, we present an evaluation of the proposed k-l
diversity based linkage method and the ST-Link algorithm.
We implemented the ST-Link algorithm using Java 1.7. All
experiments were executed on a Linux server with 2 Intel
Xeon E5520 2.27GHz CPUs and 64GB of RAM.

We present two sets of experiments. In the first set of ex-
periments, we measure the performance and the scalability
of the ST-Link algorithm. By increasing the size of the input

data, we test the change in the running time, number of
event comparisons, and the number of candidate user pairs,
for different window sizes. In the second set of experiments,
we analyze the quality of the k-l diversity based linkage.
To measure quality, we use two metrics. The first is the
precision, which measures the fraction of correctly linked
pairs in the list of user pairs produced by ST-Link. The
second is the number of true positives, which is the number
of user pairs correctly linked by the ST-Link algorithm.

4.1 Datasets Used
For the performance, scalability, and accuracy evaluations
we used three datasets. The first is a Foursquare dataset
of check-ins. The second is anonymized call detail records
in a telecommunication provider. For privacy concerns, we
did not perform any linkage across these two datasets. As
a result, we were not able to compute accuracy results
when using these two datasets. However, they are used
for the evaluation of running time performance. To evalu-
ate accuracy, linkage is performed between a third dataset
belonging to a hypothetical LES and the call dataset. This
dataset was synthetically derived to protect privacy, from
the call dataset by (i) picking a predefined fraction f of
the callers at random as active users of the second LES, (ii)
generating usage records for the selected users by assuming
that they generate such a record with probability p, within a
15 minute time window of a call, inside a location within the
same cell tower of the call. We change the parameters p and
f to experiment with different scenarios. Lower values for p
result in a sparser usage record dataset for the second LES.
We call the parameter p, the check-in probability. As not all
users have the same check-in probability in practice, we pick
the value of the check-in probability for a given user from
a Gaussian distribution with mean p. We call the parameter
f , the usage ratio.

Datasets ⇒ Foursquare Call
# of activities 1,903,674 1,890,107,057

# of venues/cell towers 300,685 109,780
# of users 284,856 3,357,069

TABLE 1: Dataset statistics

The Foursquare dataset consists of check-ins that were
shared publicly on Twitter, collected via the Twitter stream-
ing API3 and the Foursquare API4. This dataset spans 40
days and only contains check-ins from Country X. Each
row contains the acting user’s Foursquare id, venue id,
geographical location (lat/lon) of the venue, and the time
of the check-in. The call dataset spans the same 40 days in
Country X. Each row contains an anonymized id, time of
the call, and geographical location (lat/lon) of the handling
cell tower. The anonymized id is the same across all usage
of the same user. Table 1 shows the statistics about both the
Foursquare and the call datasets. For the runtime perfor-
mance and filtering effectiveness experiments, we used the
two real datasets. However, since it is not possible to verify
the accuracy of the results using these two datasets, we used
the synthetic dataset which is derived from the anonymous
call data for the evaluation of ST-Link’s accuracy.

3. www.dev.twitter.com
4. www.developer.foursquare.com
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dataset size.

Fig. 5: Performance Results

4.2 Running Time Performance
We observe the running time, the number of candidate pairs,
and the number of event comparisons as a function of the
dataset size. The dataset size is increased by increasing the
number of days of data included in the linkage analysis.
Furthermore, for these experiments we also change the
window size. Recall that the window size is used during
the temporal filtering step to locate co-occurring events.

Figure 5 presents our running time related results. In all
the figures, the x-axis represents the dataset size in days and
the y-axis represents a performance metric. Different series
represent varying window sizes.

One of the main challenges is the scalability of the link-
age solution. Processing many days of data should complete
in reasonable amount of time for the resulting analysis to be
valuable. Figure 5a plots the running time as a function of
the dataset size. We make two observations from the figure.
First, the running time of ST-Link is linear in the dataset
size. For 5 days of data, the running time is around 1 hour
and for 40 days of data it is around 7 hours, all for 30
minute windows. Second, the running time increases with
increasing window size, yet the running time is linear in the
dataset size for all window sizes.

Figure 5b plots the number of event-to-event compar-
isons as a function of the dataset size. In our experimental
evaluation, every time we compare two location based
events for either co-location or alibi check, the number of
event comparisons is increased by one. We observe that up
to 15 days of data, the number of comparisons grows at an
increasing rate. Yet, after 15 days the rate starts to go down
and eventually the growth of the number of operations
happens at a relatively low fixed rate. This can be explained
by the alibi checks performed by ST-Link. Recall that when
a user pair is marked as an alibi, their records are not
compared with each other anymore. Also, if two users are
marked as a candidate pair, their future records are only
compared to see if they are an alibi or not. Considering this,
we can say that within 15 days most of the candidate pairs
and alibi pairs are identified. As an important difference
from the running time experiment, the gaps between the
series corresponding to the three window sizes are consid-
erably larger. This is because larger windows require more
event to event comparisons. Since event comparisons are
not necessarily the only cost of the algorithm (there is I/O,

window processing, window index maintenance, etc.), the
running time experiment has narrower gaps between the
running times for different window sizes. The impact of
these extra costs can be seen in Figure 5a as well; although
the number of comparisons stabilize after 15 days, the linear
increase in the runtime continues.

Figure 5c plots the number of candidate user pairs as
a function of the dataset size. Just like for the number
of comparisons experiment, up to 15 days, the number of
candidate pairs grows with an increasing rate and after 15
days the rate starts to decrease and eventually stabilizes at a
low value. For the case of candidate pairs, the eventual rate
of increase is very low, suggesting that observing additional
data brings diminishing returns in terms of being able to
find new candidate pairs. However, this does not imply
that we are unable to perform additional linkages, because
the number of linked pairs within the candidate set can
still grow (we will observe such growth in the quality
experiments).

Figure 6 shows the number of candidate user pairs after
each filtering step. It illustrates the effectiveness of the spa-
tial and temporal filtering steps of ST-Link. If no filtering was
applied on the data, every user pair from the two datasets
would have constituted a candidate user pair. By applying
only spatial filtering, the number of candidate user pairs
decreases by 43 times compared to the no filtering case. It
is possible to say that spatial filtering is an effective step.
Intuitively, if data was spread over a wider geographical
area, this step would be have been even more effective (our
datasets are limited to the geographic area of Country X).
After applying temporal filtering, the candidate user set
decreases by an additional 1, 836 times after spatial filtering.
Cumulatively, the number of candidate user pairs without
any filtering is 78, 948 times of the number of pruned can-
didate user pairs, which gets close to 5 orders of magnitude
reduction in the number of pairs.

4.3 Quality of Linkage
We observe the precision and the number of true positives
as a function of the usage ratio, check-in probability, and
window size. We also observe the precision and recall values
for a variation of the ST-Link algorithm that does not use
weights, thus trades off precision for better recall.



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2711027, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 2017 10

No Filtering Spatial
Filtering Only

After Temporal 
Filtering

106

107

108

109

1010

1011

1012

1013

N
u
m

b
e
r 

O
f 

C
a
n
d
id

a
te

 P
a
ir

s

÷43

÷1836

Fig. 6: Reduction in the number of
possible pairs.
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check-in probability.

0.01 0.10 0.20 0.30 0.40
Check-in Probability

100

101

102

103

104

105

106

T
ru

e
 P

o
si

ti
v
e
s

k-l values

1-1

2-2

3-2

3-3

4-3

4-4

5-4

5-5

Fig. 8: Number of true positives as a
function of check-in probability.
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Fig. 10: Number of true positives as
a function of usage ratio.
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Fig. 14: k-l values distribution

4.3.1 Impact of Check-in Probability
Figures 7 and 8 plot the precision and number of true pos-
itives, respectively, for the results produced by the ST-Link
algorithm as a function of the mean check-in probability.
Different series in the figure represent different k-l settings.
We set k ≥ l, as the co-occurrence counts has to be greater
than the diversity counts. For these experiments the usage
ratio is set to 50%, which means only half of the call users
are performing check-ins.

Figure 7 shows that precision is very close to 1 for all
k-l settings but for 1-1. We see that using 1-1 diversity
results in very poor precision for low values of the check-
in probability. As the check-in probability increases, then
the precision of 1-1 diversity increases as well, but never
reaches 1. The increase is understandable, as more events on
the check-in side will help rule out incorrect candidate pairs
via alibis. Surprisingly, the precision for higher k-l values
are all close to 1. This is due the impact of alibi detection,
and strong weight constraint. As we will see shortly, not

using weights trades off precision for better recall. Even if
two users have events that are only 2-2 diverse, they can be
correctly linked if they have no alibis.

Figure 8 shows that the number of true positives in the
linkage increases with the increasing check-in probability.
This is expected, as more events help in increasing the co-
occurrence and diversity counts. We also observe that higher
k-l values result in reduced number of linkages. Given that
2-2 diversity has very good precision, and has the second
highest true positive count (after 1-1 diversity, which has
unacceptable precision), it can be considered a good setting
for getting the best out of the linkage. We see that for
a check-in probability as low as 0.01, it can match many
hundreds of users, and for probability 0.1, it can match up
to 10 thousand users. As we will see shortly, these numbers
can be further increased by trading off some accuracy.



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2711027, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 2017 11

4.3.2 Impact of Usage Ratio
Figures 9 and 10 plot the precision and the number of true
positives, respectively, for the results produced by the ST-
Link algorithm as a function of the usage ratio. Different
series in the figure represent different k-l settings, as before.
For these experiments check-in probability is taken as 0.01.

Figure 10 shows that the precision of all k-l settings is
close to 1 throughout the entire range of the usage ratio,
except for 1-1. The 2-2 setting has precision values that are
slightly lower than 1, but not lower than 0.95. Figure 8
shows the true positive counts for the same settings. As we
can see clearly from the figure, increased usage ratio results
in increased number of successful linkages. Again, this
could be attributed to increasing weights for co-occurrence
and diversity, as well as increased effectiveness of alibi
detection.

Interestingly, even when only 1 percent of the call users
are synthetically set to making check-ins, and when the
check-in probability around a call is set as low as 1 in 100,
one can still match some users (around 10). This could also
be looked at from a privacy standpoint. In other words,
being able to perform spatio-temporal linkage across two
datasets successfully even for only 10 users may be consid-
ered a privacy breach. We plan to investigate the privacy
protection mechanisms against this kind of linkage in our
future work.

4.3.3 Unweighted Linkage
The results so far have demonstrated high precision, but the
number of users one could match is relatively low compared
to the number of total users. In order to show the trade-off
between precision and accuracy, we have also performed
experiments where the linkage model is slightly modified to
use weights that are equal to 1. That is, we count each event
co-occurrence between two users as 1, without considering
other possible co-occurrences these events may have with
events of other users. In other words, the weight function
from Eq. 9 is taken as 1. As it was discussed before, there
are two different approaches for deciding the values of
the k-l parameters. The first one is deciding after multiple
experimental runs, and the second one is by detecting the
elbow point of distributions of co-occurrence and diversity
values.

In this experiment we applied both to show the effective-
ness of the elbow point detection technique as well. Accord-
ing to maximum absolute second derivative test results, the
values of k-l parameters based on elbow detection are 3-3.

Table 11 shows the precision and recall results for the
unweighted linkage. The recall values here represent the
fraction of users from the check-in dataset that were success-
fully linked. It is important to note that we only considered
users that have enough number of events. A user is said
to have enough number of events only when she has at
least l diverse events, for each k-l setting. The table shows
an interesting result: With unweighted linkage we see a
clear tradeoff, where with increasing k-l values the precision
improves, but the recall drops. With the 3-3 setting, we
get a precision of 0.89 and can link 61% of the users that
have enough number of events. Considering all users from
the check-in dataset this value is 23 %. Recall that 3-3

Runtime (m) Precision Recall Cand. Count
1 30 0.78 0.68 1,998,491
2 34 0.75 0.74 2,651,746
4 39 0.71 0.82 3,511,090
8 45 0.68 0.88 4,446,937

16 58 0.65 0.91 5,311,043
∞ 122 0.62 0.99 6,765,345

Fig. 15: Alibi threshold experiment results.

setting was identified using the elbow points. Increasing the
diversity setting to 5-5, one gets almost perfect accuracy
(0.99), but the recall drops to 50% of the users. When abso-
lute accuracy is not required, such as for machine learning
to extract overall patterns, the unweighted linkage model
could be more effective in practice.

4.3.4 Impact of Alibi
Alibis are used to improve both the running time perfor-
mance and the accuracy. For these experiments the check-in
probability is taken as 0.5 and the usage ratio is taken as
50%. Only one grid is considered, which contains 15,268
users and 1,956,734 events in total. As it was discussed
before, a threshold value on the number of alibi events
can be used before disregarding a candidate pair. In this
experiment we evaluate the impact of alibi in terms of per-
formance and accuracy as a function of the alibi threshold.

Performance. Table 15 shows the running time, precision,
recall, and the number of candidate pairs for the alibi thresh-
old experiment. When the threshold is set to ∞, effectively
disabling alibi detection, we observed that the algorithm
took 122 minutes to complete. At the end of the temporal
filtering step, there were 6,765,345 possible pairs. On the
other hand, when alibi is used and the threshold is set to
1, the running time decreased down to 30 minutes and the
number of possible pairs were 1,998,491. Almost 70 % of the
possible pairs were pruned with the help of alibi detection
and further processing is avoided. When larger threshold
values are used, we observe slight increase in the running
time. For the threshold values of 2 and 16, the processing
time is 34 and 58 minutes, respectively.

Accuracy. Precision of the k-l diversity based linkage can
be increased by setting sufficiently large k and l values.
Larger k and l values decrease the probability of different
users satisfying the linkage requirements. However when
at least one of the datasets is sparse, setting larger k and l
values will result in low recall, as many true positive pairs
will be missed. In such datasets, alibi definition prevents
many false positive pairs that satisfy the co-occurrence and
diversity requirements. Our experiments showed that when
alibi is not used (threshold value ∞), 99% recall can be
reached, yet with 62% precision. In contrast, setting alibi
threshold to 1, increases the precision to 78%, with recall
decreased to 68%. The reason behind this decrease has to
do with the lack of precise location information in our
datasets. For example, when two temporally close events
of a user are from two neighboring cell towers, their lo-
cations end up being the centers of the cell towers, as the
location information is not sufficiently fine grained. This
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results in incorrectly identifying a pair of events as alibis, as
the distance between the event locations is relatively high
when considering their close timestamps. This is when the
alibi threshold becomes crucial. We observe that the recall
increases to 0.74% when alibi threshold set to 2. Increasing
threshold further increases the recall values with a cost of
sacrificed precision. For alibi threshold 4 recall is 0.82% and
precision is 71%.

4.3.5 Window Size
Figures 12 and 13 plot the precision and the number of true
positives, respectively, as a function of the window size.
Different series in the figure represent different k-l settings,
as before. For these experiments the check-in probability is
taken as 0.01 and the usage ratio is taken as 50%. Window
sizes start from 15 minutes and increases up to 75 minutes
in increments of 15 minutes.

Figure 12 shows that the precision stays at 1 is not
effected by the window size except for lines corresponding
to lower k-l values. In particular 2-2 and 3-2 are impacted
negatively from larger window sizes. 1-1 is not shown in
this experiment, as it already has a very low precision.
Note that the window size does not impact only the size
the temporal window we slide over the events, but also
the definition of co-occurrence (recall the α parameter from
Eq. 2). Increasing the window size makes it possible to
match potentially unrelated events from different real-world
users and the results reflect that. However, due to the alibi
processing, the negative impact of increasing window size
on the precision is milder that it would otherwise be.

Figure 13 shows that the number of true positives drops
with increasing window sizes. Again this can be attributed
to the increasing number of unrelated event matches due to
the larger window. Recall that if the same user is matched to
more than one user from the other dataset, we remove such
users from the linkage results. The increased window size
results in ambiguity in the results. Assuming users x and y
are linked for a given window size, increasing the window
size does not change the fact that x and y are matched, but
it may result in additional matches, such as between user
x and some other user z, and thus eliminating the correct
linkage between x and y from the results.

4.3.6 k-l value Distribution
Figure 14 shows the k-l value distribution of user pairs after
spatial and temporal linkage. The usage ratio is taken as
50% and the check-in probability is 0.01 for this experiment.
For a given pair in the results, we find the highest k-l diver-
sity values it supports and maintain these counts. In the
figure, the areas of the circles are proportional to number of
pairs with the given k-l diversity. Since the number of pairs
for k-l lower than 2-2 is too high (and precision very low as
we have seen earlier), we do not present them in the results.
As expected, the number of linked pairs is decreasing as the
k-l values are increasing. It is interesting to note that for
extreme values such as 11-7 diversity, it is still possible to
find user pairs. We also observe that increasing diversity has
a higher filtering power than increasing occurrence.

4.4 Integration with SERF
In addition to evaluating our approach under different
settings, we also attempted to integrate our linkage model
with the Stanford Entity Resolution Framework (SERF).
SERF implements the R-Swoosh [4] algorithm. For this
integration, users are arranged as entities and their events
are considered as attributes. Given two entities, if they have
enough number of co-occurring attributes satisfying the k-l
diversity model, they are marked as a match.

Starting with pairwise comparison of entities, R-Swoosh
algorithm gradually decreases the number of entities by
merging the matching records, and deleting the dominated
ones. While this is an effective method to decrease the num-
ber of comparisons on match heavy datasets, for datasets
that contain few matching entities, the run-time is still
O(N2). Merging of two records is valid only when there
is merge associativity between records. Given three records,
r1, r2, and r3, comparisons of 〈r1, 〈r2, r3〉〉 and 〈〈r1, r2〉, r3〉
may result in different linkage decisions [3]. To alleviate this
problem, the SERF framework also implements the Koosh
algorithm [3]. Different than the R-Swoosh algorithm, when
the Koosh algorithm finds a matching pair of entities, it does
not merge them immediately, unless confidence is above
a threshold. However, defining the confidence to use our
spatio-temporal linkage model in SERF is not straightfor-
ward and requires further research, which we leave as future
work.

Applying Koosh algorithm without using merges is al-
most brute force and using a small subset our dataset (15,268
users, 1,956,734 events, in total), SERF takes more than 50
hours of processing time in the same setting. In comparison,
our algorithm finds the matching users in the same dataset
in 30 minutes.

Summary
In this experimental study, we evaluated various aspects
of the k-l diversity based linkage model and the ST-Link
algorithm. We studied the scalability of the algorithm and
showed that it scales linearly with the dataset size. We
also studied the effectiveness of the linkage and showed
that high precisions can be achieved. Using the unweighted
version of our model, some of that precision can be traded
off in order to achieve better recall values as well.

5 RELATED WORK

Record Linkage. One of the earliest appearances of the
term record linkage is by Newcombe et al. [28], [29]. Several
surveys exist on the topic [8], [13], [22]. Most of the work in
this area focus on a single type of databases and define the
linked records with respect to a similarity metric. The input
to such a record linkage algorithm is a set of records and
the output from it is a clustering of records. In contrast, our
problem involves linking users from two datasets, where
each user can have multiple spatio-temporal records. A
theoretical approach, and its validation, on linking users
across domains is studied recently [31]. The first phase this
work is computing a score for every candidate pair. In
a second phase they construct a bipartite graph of users
and reduce the problem into bipartite assignment problem.
Their experiments validate the accuracy of this two phase
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computation. While many works on record linkage focus
on accuracy [12], [5], [31] and a few on scalability [36], our
work must consider both. In our case, successful linkage
does not rely solely on the similarity of records and as such
ST-Link algorithm searches multiple diverse matches, aka k-
l diversity, and also makes sure that there are no negative
matches, aka alibis. To the best of our knowledge, this is a
novel approach for record linkage, specifically targeted at
spatio-temporal datasets.
Temporal Record Linkage and Entity Evolution. Temporal
record linkage differs from traditional record linkage in
that it takes entity evolution into account (e.g., a person
can change her phone number). The time decay model
captures the probability of an entity changing its attribute
value within a given time interval [24]. The mutation model
learns the probability of an attribute value re-appearing
over time [7]. The transition model learns the probability
of complex value transitions over time [23]. Furthermore,
declarative rules can be used to link records temporally [6].
Transition model can also capture complex declarative rules.
Temporal record linkage algorithms are able to capture the
entity evolution and determine if an entity has changed the
value of one or more of its attributes. Our problem has some
resemblance to entity evolution, since the location attributes
of the users change over time. However, this change can
be better described as entity mobility, rather than entity
evolution. Application of aforementioned models to spatio-
temporal datasets might be effective in predicting a user’s
next stop or calculating the probability of whether a user
will return back to a given location. Yet, they would fell
short of linking spatio-temporal records of users.
Spatial Record Linkage and Spatial Joins. Many join and
self-join algorithms are proposed in the literature for spatial
data [21]. Sehgal et al. [34] proposes a method to link the
spatial records by integrating spatial and non-spatial (e.g.
location name) features. However, spatial record linkage
and spatial join algorithms are not extensible to spatio-
temporal data as they are based on intersection of minimum
bounding boxes, one-sided nearest join, or string similarity.
Spatio-temporal joins are more complex with constrains on
both spatial and temporal domains [2]. Yet our problem
involves more than spatio-temporal records, it involves
matching spatio-temporal record series from two datasets.
Trajectory Join. Bakalov et al. [1] define the trajectory joins
as the identification of all pairs of similar trajectories given
two datasets. They represent an object trajectory as a se-
quence of symbols. Based on the symbol similarity, they
prune the pairwise trajectory comparisons. Effective eval-
uation of symbol similarity is supported by a tree-like index
scheme. In [2], the authors extend the problem to continu-
ous queries over streaming spatio-temporal trajectories. An
important difference between trajectory join algorithms and
our work is that trajectory similarity is not necessarily an
indication of a linkage and vice verse. If one of the datasets
is denser than the other, trajectories would be dissimilar,
yet we still can have matching user pairs based on k-l
linkage. However, some indexing structures of trajectory
join algorithms are closely related to our approach. There are
multiple indexing schemes for spatio-temporal data. In [15],
[27], [30], [26] various grid based structures are used for
indexing. Our spatial filtering approach is similar in its use

of a grid-based index, but instead of associating objects with
grid cells, we associate users with grid cells based on the
frequency of their events residing in these cells. There are
also tree-like spatio-temporal indexing structures, surveyed
in [25]. A common theme of these works is the reduction of
the update cost, which is not a concern in our work.
User Identification. Our work has commonalities with the
work done in the area of user identification. For instance,
de Montjoye et al. [10] has shown that, given a spatio-
temporal dataset of call detail records, one can uniquely
identify the 95 % of the population by using 4 randomly
selected spatio-temporal points. Similar to our discussion,
the authors mention that spatio-temporal points do not
contribute to information gain equally. In our work, we
cover this by introducing a weight function. Unlike our
work, [10] does not consider the linkage problem, instead,
they study how users can be uniquely identified within a
single dataset using a small subset of their records. Another
related work is [11], in which authors show that using the
credit card metadata, they can identify unique users and
group the transactions with respect to users. In addition
to spatio-temporal reference data, they use the transaction
price and gender as auxiliary information. Another related
work is from Rossi et al. [32], in which user identification
techniques for GPS mobility data is presented. They use a
classification based algorithm rather than pairwise compar-
ison of records. Importantly, our algorithm does not use any
auxiliary information but only spatio-temporal data, and it
aims to match entities across datasets.

6 CONCLUSION

In this paper, we studied the problem of matching real-
world entities using spatial-temporal usage records from
two different LESs. By introducing the k-l–diversity model,
a novel concept that captures both spatial and temporal
diversity aspects of the linkage, we study the challenge of
defining similarity between usage records of entities from
different datasets. As part of this model, we introduced
the concept of an alibi, which effectively filters out negative
matches and significantly improves the linkage quality.

To realize the k-l–diversity model, we developed the
scalable ST-Link algorithm that makes use of effective fil-
tering steps. Taking advantage of the spatial nature of the
data, users are associated with dominating grids — grids
that contain most activities of their entities. This enables
processing each grid independently, improving scalability.
Taking advantage of the temporal nature of the data, we
slide a window over both datasets jointly and maintain
set of candidate users that have co-occurring events but
no alibis. The set of candidate entities are pruned as the
window is slided.

Our experimental evaluation, conducted with several
data sets showed that the running time of the ST-Link
algorithm scales linearly with the dataset size. Moreover,
precision of the linkage results is practically 1 for most
k-l settings. We also observed that using an unweighted
version of our linkage model, the precision can be sacrificed
to achieve higher recall values.

Spatio-temporal linkage can enable gathering large dy-
namic data sets for many social good applications, such
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as smart cities and environmental monitoring. We are also
investigating privacy preserving methodologies, those are
needed to prevent information leakage while analyzing and
sharing location based information [16], [38].
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