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Abstract Behavioral plausibility is one of the major aims of crowd simulation research. We
present a novel approach that simulates communication between the agents and assess its
influence on overall crowd behavior. Our formulation uses a communicationmodel that tends
to simulate human-like communication capability. The underlying formulation is based on a
message structure that corresponds to a simplified version of Foundation for Intelligent Physi-
cal Agents Agent Communication LanguageMessage Structure Specification. Our algorithm
distinguishes between low- and high-level communication tasks so that ACMICS can be eas-
ily extended and employed in new simulation scenarios. We highlight the performance of our
communication model on different crowd simulation scenarios. We also extend our approach
to model evacuation behavior in unknown environments. Overall, our communication model
has a small runtime overhead and can be used for interactive simulation with tens or hundreds
of agents.
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B Uğur Güdükbay
gudukbay@cs.bilkent.edu.tr

Kurtulus Kullu
kullu@cs.bilkent.edu.tr

Dinesh Manocha
dm@cs.unc.edu

1 Department of Computer Engineering, Bilkent University, Ankara, Turkey

2 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA

3 Department of Computer Engineering, Ankara University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-017-9366-8&domain=pdf
http://orcid.org/0000-0003-2462-6959
http://dx.doi.org/10.1007/s10458-017-9366-8


1404 Auton Agent Multi-Agent Syst (2017) 31:1403–1423

1 Introduction

Virtually simulating crowds (of people or other agents) is an active area of research in
computer graphics, virtual environments, and artificial intelligence (AI). Crowd simulation
algorithms are widely used to generate plausible effects in computer animation and games.
At the same time, they are used to predict the pedestrian flow in architectural models and
urban environments [14].

One of the major goals in the field is to automate the simulation of behaviorally plausible
crowds. Crowd heterogeneity and emergent agent behaviors are two important components
that are often targeted to achieve this goal [13,34]. These problems have been extensively
studied and techniques have been proposed that make use of cognitive, behavioral, and
psychological models [9,11,13,19,51].

Our work is motivated by the fact that communication in general is inherent in real-world
crowds. Consider any crowd that is formed naturally, such as concert or sports spectators or
people evacuating a building. In these scenarios, the behavior andmovement of the crowd can
be influenced by the information shared between the individuals. However, communication
between the agents has not received much attention in the crowd simulation literature. In
this paper, we mainly address the problem of modeling the effects of deliberate inter-agent
communication as part of interactive crowd simulation.

Limiting ourselves to deliberate communication is a key issue in this problem. If a broader
communication definition such as “transfer of information” is used, then almost everything
can be included as part of “communication”. For example, an agent’s entire perception can be
thought of as information being transferred from the environment to the agent [50] or internal
cognitive processes can be thought of as communicating components (intra-communication).
Our communicationmodel focuses on deliberate inter-agent communication. Following other
agents, which could be regarded as a form of non-intentional communication, is taken into
account as part of the navigation logic.

Main results We present ACMICS, a novel approach to simulate communication between
agents in a crowd simulation system, andweevaluate its impact on simulated crowdbehaviors.
ACMICS makes use of a simplified version of a message structure specification from the
multi-agent systems community known as Foundation for Intelligent Physical Agents (FIPA)
Agent Communication Language (ACL) Message Structure Specification [35]. FIPA is a
standards organization operating under IEEE, which aims to produce software standards
specifications for agent-based and multi-agent systems. ACMICS is capable of handling
message sending/receiving between the agents of a crowd in a human-like manner. Our
approach makes no assumptions about local or global navigation schemes and can be easily
combined with them. Some of the novel components of our work include:

1. A novel approach to facilitate inter-agent communication in a crowd simulation system
that

(a) is designed as a separate module in the agent architecture,
(b) requires some form of perception capability,
(c) separates low- and high-level tasks in a modular manner, and
(d) can be easily extended and used in arbitrary scenarios and/or can support different

forms of communication.

2. A high-level planning algorithm to simulate the evacuation behavior in new or unknown
environments where the agents do not have a priori knowledge about their environment.
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We demonstrate that, based on ACMICS, the agents autonomously communicate to
navigate more effectively in such scenarios.

We highlight the application of ACMICS in different scenarios to facilitate deliberate
inter-agent communication. Initially, we use it to enable hollow communications, i.e. com-
munications that do not involve important information transfer. Pedestrian flow is measured
with and without communication and compared with the results from other simulators. Next,
ACMICS is combinedwith the high-level evacuation navigation logic to highlight its applica-
tion in facilitating meaningful agent interactions. The effects on pedestrian evacuation times
and trajectories are analyzed. Lastly, simulated agent trajectories with/without communica-
tion are compared with those extracted from a real crowd video using the vfractal metric [26].
Our approach can be combined with any multi-agent crowd simulation algorithm and has a
small runtime overhead. In practice, we can simulate crowds with tens or hundreds of agents
at interactive rates on current desktop systems.

The rest of the paper is organized as follows. Section 2 provides a summary of related
literature on crowd simulation, the vfractal metric, communication models, and communi-
cation between virtual agents. In Sect. 3, we introduce the notation and describe ACMICS,
our agent communication approach. We describe various scenarios in Sect. 4 that are used
to evaluate our model and highlight the performance.

2 Related work

Ali et al. [1] and Thalmann and Musse [47] provide an overview of crowd simulation algo-
rithms. In [34], a survey of common methods, existing crowd simulation algorithms and
systems is provided. At a broad level, these methods can be classified into two categories:
macroscopic and microscopic. Macroscopic methods focus on the crowd as a whole rather
than individuals in it. On the other hand, microscopic models concentrate on the behaviors
and decisions of individuals as well as their interaction with each other. Further categoriza-
tions into groups such as fluid-dynamic or gas-kinetic models [16], social force models [15],
cellular automata models [4], velocity-basedmethods [2], and biomechanic models [12] have
also been proposed.

State-of-the-art techniques that populate virtual environments with multiple human-like
agents or crowds are used to generate special effects in movies and animation. In the last
decade, the challenge has become the real-time generation or simulation of autonomous
crowds [46]. These are necessary for games and virtual or augmented reality systems. Auton-
omy is needed for agents to react to events in real-time.

Some of the approaches for crowd simulation [23,24] focus on the visual plausibility of
the simulation while others [10,13,32,33] focus on behavioral plausibility. Many researchers
have borrowed concepts from psychology or cognitive literature and applied them to crowd
simulation. For example, Durupinar et al. [9] incorporate three elements, namely, personality,
emotion, andmood, to an agent model. Kim et al. [19] present an efficient algorithm to model
dynamic behaviors in crowd simulation using General Adaptation Syndrome. Silverman
et al. [41,42] use different performance moderator functions from behavioral psychology
literature to improve the realism of virtual agents.

Menge [8] and ADAPT [40] are two recent extensible modular frameworks aimed at
simulating virtual agents. Menge primarily focuses on crowd movement. The crowd simula-
tion problem is decomposed into four subproblems, each of which is to be solved for every
agent in the crowd: goal determination, planning, facilitating reactive behavior, and agent
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motion. The ADAPT framework includes capabilities for character animation, navigation,
and behavior. Its primary focus is on animation, in particular, on seamless integration of
multiple character animation controllers. It couples a system for blending arbitrary anima-
tions with static and dynamic navigation capabilities for human characters. It is possible to
combine our communication model with these approaches.

The term vfractal [26] is used to refer to a group of methods to estimate fractal dimen-
sion [22] for animal movement trajectories. The estimation is an indication of trajectories’
straightness/crookedness. The values theoretically range between one for a straight tra-
jectory and two for a trajectory so tortuous that covers a plane. Vfractal estimators are
commonly used in biology-related literature for animal movement paths. They have also
been used to evaluate agent-based simulation methods [48] and pedestrian egress behav-
ior [27]. The estimations involve dividing a trajectory into pairs of fixed size steps. The
same measurements for randomly selected steps are averaged to acquire estimation results
at that step size. Estimations are carried out in the same manner for different step sizes.
An advantage of vfractal estimators is that confidence values in the estimations can also be
calculated.

2.1 Communication

Communication is often studied from the perspectives of other disciplines. Craig [7] argued
that an identifiable field of communication theory did not exist despite extensive literature and
investigation. Nevertheless, existing theories provide us various models of communication.
One of the earliest models of communication was developed by Shannon and Weaver [39]
in order to mirror the functioning of radio and telephone technologies. Others, such as
Berlo [3], extended their initial model. There are often eight common components considered
in such models, which are generally referred to as transmission models. These are source,
message, transmitter, signal, channel (carrier), noise, receiver, and destination. Transmis-
sion models are simple, general, and quantifiable. On the other hand, these transmission
models are considered as inadequate in terms of modeling real-world human communica-
tions [6].

Schramm’s [37] works, which are mainly on mass communication and its effects, provide
a different view of communication and particularly indicate that the impact of messages
(desired or undesired) on the target should be examined. There are two important concepts in
hismodel: feedback andfield of experience (FoE). FoE is a representation of a communicator’s
beliefs, experiences, and so on. An individual can only encode and decode messages with
respect to her/his own FoE. Individual FoEs of communicators must have an intersection for
successful communication. In our approach, we name the higher-level communication layer
after this concept of FoE, making a connection with Schramm’s model.

2.2 Communication and virtual agents

A research area that brings communication and virtual agents together is Embodied Conver-
sational Agents (ECAs) [5]. The primary aim in this field is to develop autonomous agents
that can converse with real people. Some efforts take the content and form of conversation
(e.g. what the agent is saying) as their central issues, whereas others’ main concerns are
facial expressions and gestures. The works in this category are not directly related to our
work because they focus on agents communicating with real people through specific forms
such as speech, whereas our focus is on inter-agent communication through an abstract form
of communication.
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Table 1 Parameters in FIPA
ACL message structure
specification [35]

Parameter Description

Performative Type of the communicative act

Sender Agent sending the message

Receiver Agent to receive the message

Reply-to Agent that the replies should be sent to

content Content of the message

Language Language of the content

Encoding Encoding of the content expression

Ontology Ontology(s) required to understand content

Protocol Interaction protocol sender is employing

Conversation-id Conversation identifier

Reply-with Identifier that should be used in replies

In-reply-to The message this one responds to

Reply-by Time by which replies should be received

The message structure in our
approach uses the parameter
subset indicated by the parameter
names in italic. The message
structure defines what is actually
exchanged between the agents
and it can be extended as needed

Sun et al. [45] present a framework to distribute dialogs among agents in a virtual crowd. In
their simulations, the environmental context and agent attributes initiate, guide, and affect the
evolution of (unscripted) conversations in a virtual crowd. An important difference between
this and our work is that the dialogs in their work are only for visual improvement and they
do not include information sharing that could affect behavior.

In another work by Park et al. [31], small groups are formed in a larger crowd in order
to improve the realism. These small groups maintain their cohesiveness through communi-
cation between its members. Through user studies, they showed that the believability of the
animation is improved by communicative and social interactions among virtual characters in
their common ground theory-based simulation.

FIPA aims to produce software standards specifications for agent-based and multi-agent
systems. Although related, the usage of the term “agent” in these areas and in crowd simula-
tion can be slightly different (cf. [29] for a discussion on this). ACL [35] specification is one
of the most widely adopted standards of FIPA. It is a standard language for software agent
communications based on speech act theory [38]. FIPAACLMessage Structure Specification
standardizes the message form. Table 1 shows the list of message parameters in the specifi-
cation that can be extended by specific implementations according to the requirements of the
application. The parameters that are included in a message are application dependent. The
only mandatory parameter is performative but most messages are expected to also contain
sender, receiver, and content parameters.

A preliminary version of our communication model was presented at CASA’14 as a
short paper [20]. This short paper contained a different layered design. The aim at the time
was for the communication model to be as human-like as possible and to couple it with
a more complex agent design. Aiming for a human-like communication capability (e.g.
psychology influencing communication) introduces complexity, but the subtle benefits are
not significantly observable in a crowd. As a result, our aim has evolved into developing a
less complex and generic communication model (i.e. a model that is easy to combine with
other agent architectures and use in new scenarios). Moreover, current work employs the
model in a more realistic environment, presents improved (3D) visualization, and provides a
more formal evaluation.
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Fig. 1 The agent architecture with three major components (communication, navigation, and perception),
their internal structure, and their relationships. The perception subcomponents, sight and hearing, track which
other agents are in sight and hearing range. The sight subcomponent also tracks important objects in the
environment such as doors. These data are provided to the other components when requested. Navigation
includes a local collision avoidance solution (Reciprocal Velocity Obstacles; RVO) and a global path planning
solution (navigation mesh) as well as a higher-level, scenario-dependent planning part. Planning can be as
simple as deciding a single target position at the beginning or it can be a complex algorithm to simulate
decision-making during evacuation (cf. Fig. 7). Navigation does not require the communication component
but cooperates with it when it is enabled. Communication separates message/scenario-dependent (high-level,
FoE) tasks from those that are independent (low-level, AV, cf. Figs. 3–4). The green color indicates the novel
components of our approach (Color figure online)

3 Agent AI and communication model

We model an agent with three major components: perception, communication (ACMICS),
and navigation (Fig. 1). The communication component of the architecture is our main
contribution. The rest is mainly what is needed in order to apply ACMICS to example
scenarios. Navigation is necessary for the agents to move around and perception is needed
by the other two components.

Perception consists of hearing and sight subcomponents. Hearing is modeled with a
spherical volume around the agent that represents the hearing range and sight is represented
using a pyramid shape in front of the agent (cf. Fig. 2). These subcomponents continuously
keep track of important objects such as other agents, doors, or signs that are in hearing and/or
sight range.Their primary function is to provide this data to the navigation and communication
components on request. This relationship is shown in Fig. 1 by the arrows from the perception
components to the other components.

Navigation makes use of well-known existing methods: (i) a precomputed navigation
mesh [43] to calculate static obstacle avoiding paths and (ii) Reciprocal Velocity Obstacles
(RVO) [2] for avoiding dynamic obstacles (i.e. other agents). This two-layer navigation
capability is controlled by a third and higher planning layer. The third layer is scenario
dependent. In some examples, its control is simple and straightforward and only involves
specifying the final destination. In other examples, however, it can be more complex. For
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Fig. 2 Visualization of hearing and sight volumes

instance, when we want to simulate an agent’s lack of knowledge, instead of calculating the
path between the target and current position, intermediate targets can be used to simulate
exploration.

3.1 Communication model

Our focus is on deliberate (i.e. intentional) communication. The reason for this focus is that it
is easy to be overinclusive when considering whether or not an interaction is communication.
The Oxford dictionary [44] defines communication as:

“the imparting or exchanging of information by speaking, writing, or using some other
medium.”

On the surface this definition is clear, but these concepts can become confusing very quickly.
Consider the following example. Persons A and B are sitting in the same room and A sees
B getting up and turning towards the door to exit. At some point, A has the new information
that B is leaving the room but this information was not explicitly communicated from B to
A. We can say that this is not communication. However, it could actually be the case that B
intends to send a message to A by his/her actions. This example serves to show that real-
world communication is a complex phenomenon and it can become difficult to draw a line
around what it includes. Also, terms like direct/indirect or implicit/explicit communication
are easily used to mean different things. It is not our intention (nor have we the expertise)
to argue about what communication is, but for our purposes we draw a line by focusing on
deliberate (i.e. intentional) communication. Terms like communication and information are
not used to refer to a specific form such as speech. They are considered at an abstract level
(communicative intents and meanings in our heads).

We simplify the communication process by making a distinction between low-level and
high-level tasks. The low-level tasks, which we call audiovisual (AV) tasks, are independent
of the message type. Examples of AV tasks are turning towards the recipient, moving closer if
the agent is not close enough, signaling from a distance to catch attention, and so on. In real-
world scenarios, actual creation and reception of signals (e.g. sound) are regarded as low-level
tasks. However, we are not simulating the signal creation and reception phenomena; these are
simplymodeled as twoAV tasks (transmit and receive) among others. High-level tasks
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actually dependonwhat themessage is andwe refer to themasFoE tasks,making a connection
with the FoE concept in Schramm’s communication model [37]. An example FoE task is
responding to a direction request. The separation of AV and FoE layers abstracts away the
high-level communication intentions from the low-levelmodules facilitating communication.
As a result of this abstraction, our communication model becomes more generic in the
sense that it can be coupled with other agent architectures and used in new scenarios easily.
Introducing new types ofmessages will require additions to FoE layer. Similarly, if a different
perception implementation is to be used, the required modifications will be mostly limited
to AV tasks.

Another distinction we sometimes make is between meaningful and hollow com-
munications. We call information exchange that can influence behavior as meaningful
communication. For example, in an evacuation scenario, exchanging information about exit
routes is an example meaningful communication. On the other hand, we use the term hollow
communication to indicate communication in which there is no actual information exchange
to influence behavior. For instance, in a scenario such as pedestrians in a street, we may want
agents to talk to each other but this talk may not contain any information to affect behavior.
The separation of FoE and AV layers allows us to use the same low-level routines for both
meaningful and hollow communications. The difference between them will be local to the
FoE layer.

The message structure specifies the form of exchanged information. FIPA ACL (cf.
Table 1) was adopted partially as needed. Our message types correspond to options for
the performative parameter. In addition to type (i.e. performative), we use source,
destination, and content parameters. We created message types as needed in our
example scenarios. The current, extensible list of message types used in our formulation
includes:

– Wave: used to catch recipient’s attention when the sender is in sight but not in hearing
range;

– Chat: a message type without any important information content (to simulate hollow
communication);

– Direction_Req: used to ask about the direction, optionally, by providing a target loca-
tion;

– Path: used to reply to a Direction_Req by providing a full path if it can be calculated;
– Final_and_Near_Target: another reply to a Direction_Req providing a final target

and a nearby intermediate one;
– Exit_Through: directs to a specific door or staircase;
– Failure: the agent is unable to answer with useful information.

This list can be extended as necessary when the communication model is to be applied in
new scenarios.

The low-levelmessage sending routine in theAV layer can be summarizedwith a flowchart
(Fig. 3). In this flowchart, Start represents the situation in which the agent has a message to
be sent to a particular receiver. The first decision requires information from the sender’s own
perception component. If the receiver is not in sight (i.e. there is no line-of-sight), exploration
tofind the receiver is required.When the receiver is in sight, newdecisions require information
from the receiver’s perception component. If the sender iswithin hearing range of the receiver,
then the message can be sent directly. Otherwise, the sender has to move before sending the
message. In this case, there are two possible situations: If the sender is in sight of the receiver
but not in hearing range, the receiver’s attention is caught (with a Wave message) and the
sender moves towards the receiver until the receiver is in hearing range. On the other hand,
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Fig. 3 Message sending routine in the AV layer of ACMICS. Being at Startmeans there is a message to be
sent by this agent. Message/scenario type is irrelevant. The agent follows this routine to one of two possible
outcomes: sending the message or failure to do so

if the sender is completely outside the receiver’s perception, the sender moves towards the
receiver until one of the other cases is met.

ACMICS is implemented as a push-down automaton (PDA) [17]. PDA is chosen for
two main reasons. First of all, representing a communicative situation for an agent in terms
of communication states is natural and easy. Secondly, backtracking is required in certain
situations (e.g. agent needs to roll back to sending the original message after waving to
catch the receiver’s attention). The stack in the PDA allows us to keep track of state changes
so that rolling back is possible when necessary. The states of the PDA for the AV layer
are:

– Not_Communicating,
– Wants_to_Communicate,
– Found_Comm_Target,
– In_Hearing_Range_of_Target,
– Waiting_for_Transmission,
– Waiting_for_Transmission_Moving_Closer,
– In_Sight_of_Target,
– Moving_Closer,
– Not_in_Sight_or_Hearing_Range,
– Received_a_Message, and
– Attention_Caught.

The state names are mostly self-explanatory. The two Waiting_for_Transmission*

states represent the situations where the receiver is busy. Fig. 4 shows the state diagram for
theAV layer.AnyState is a placeholder to represent all other states.A transition fromAnyState
to another state S means that there is a transition from all states to state S. For example, the
transition from Any State to Received_a_Message enables the agent to receive a message
while in any other state. The transitions are often conditions that would be naturally expected.
For instance, the transition from Wants_to_Communicate state to Found_Comm_Tar-
get state occurs when the agent sees the target agent with whom it wants to communicate.

The statemachine is extendedwith the FoE layer tasks according to the needs of a scenario.
We make use of two FoE layer states, namely Direction_Requested and In_Chat, which
are specific to the message type and scenario.
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Fig. 4 The state diagram for the AV layer part of ACMICS. Transition labels are omitted for clarity. Any State
is a placeholder to represent all other states. The states related to message reception are on the left side and
those related to message sending (cf. Fig. 3) are on the right

4 Multi-agent simulation and validation

We highlight the application of ACMICS by using four example scenarios (cf. Fig. 5) and
present our results. The first two scenarios are simpler in the sense that there is only hollow
communication. The third scenario is an evacuation scenario using a realistic environment.
In the third scenario, ACMICS is employed to simulate meaningful communications such as
asking and answering about exit routes. The last scenario is used to compare simulated trajec-
tories with pedestrian trajectories extracted from a video. All simulations were implemented
and generated using the Unity® Game Engine [49].

The two lower parts in the navigation component in Fig. 1 are scenario independent. In
other words, once high-level planning produces a destination to reach, it doesn’t make a
difference whether this destination is an intermediate target or a final one. Any movement
between twopositions is achieved byquerying the global static navigationmesh and following
the returned path with local collision avoidance. These components are implemented using
the built-in tools of the game engine. The only agent attribute related to these parts is a
preferred speed value for path following and local collision avoidance.

ACMICS, the communication component in our agent model, contains both scenario-
dependent and scenario-independent parts. The AV layer tasks are general and low-level
routines, but the FoE layer uses them in a scenario-dependent fashion. In fact, specifying
the scenario-dependent parts is the main task required to use ACMICS in a new scenario.
In a new scenario, a user of ACMICS needs to determine the new message types and the
high-level behavior associated with each message type.

4.1 Bidirectional flow and passageway scenarios

The high-level planning part of the navigation component is one of the parts that includes
scenario-specific implementations. In the first two scenarios, this part is straightforward in
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Fig. 5 Screenshots from simulations corresponding to the four example scenarios. Bidirectional flow, pas-
sageway, and chat scenarios include only hollow communications (i.e. communications without important
information sharing). The evacuation scenario includesmeaningful communicationswhere agents share knowl-
edge about the environment. a Bidirectional flow. b Passageway. c Evacuation. d Chat

the sense that planning involves only calculating a single destination. In the bidirectional
flow scenario, (cf. Fig. 5a) an agent at one end of the street calculates a destination at the
other end, and in passageway one (cf. Fig. 5b), all agents calculate a destination at the other
side of the passageway down a short corridor.

In both of these scenarios, there is only hollow communication. Hence, the only FoE
layer message type is Chat. Using ACMICS in these scenarios requires determining when
and how an agent will send a Chat message and what to do when it is received. Two
parameters, communication probability (pc) and walk and talk ratio (pr ), control when and
how to send a Chat message. The parameter pc is the probability that an agent will engage
in communication when the following four conditions are met.

i) the agent is not already communicating,
ii) there is another agent within the hearing range,
iii) this agent has not communicated with the other agent previously, and
iv) the other agent is not already communicating.

If these conditions aremet and the agent decides to engage in communicationwith probability
pc, another probabilistic decision is made using the second parameter, pr . The parameter
pr represents the likelihood that the agent will prefer walking and talking to stopping and
talking. If the agent decides to do so and the other agent is walking in approximately the
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Fig. 6 Comparison of flow rates in the passageway scenario. Note that the flow is calculated as the number
of persons per second and per unit width. Because it is ‘per unit width,’ it does not increase as the passageway
width increases but rather converges to a value that depends on the preferred speeds. No Comm and Comm
represent our results, whereas Simulex andMASSEggress represent the results from [30]

same direction, a Chat message is formed, the preferred speed is adjusted according to the
receiver’s speed, and the control is passed down to theAV layer with an indicator for thewalk-
and-talk type of communication. In the event that the second decision using pr is negative, the
message is formed and the control is passed down without the walk-and-talk indicator. The
result is that agents engage in communication by stopping and turning towards each other.

The passageway scenario is used to collect flow data, which is compared to the similar
existing data [30]. In his dissertation, Pan takes a psychological and sociological view of
human behavior in emergencies to develop a system called MASSEgress. For validation, he
repeats a passageway scenario from a previous work that uses Simulex [18]. There are 100
agents in a 5m × 5m area and a single passageway in this scenario. He compares the flow
rates for different passageway widths with results from Simulex. We calculate the flow rates
in the same way. We ran the simulation twice, first the communication is disabled, and then
it is enabled. A summary of the results is given in Fig. 6.

Since the flow rate is calculated as the number of people per second and per unit width,
when the passageway becomes larger and allows easier movement, this rate converges to a
value that depends on the average walking speed. This pattern is observed in the results for
all simulations (the right side of the chart in Fig. 6). When the passageway width is small
(the left side of the chart), the results differ more. A narrow passageway causes congestion
to worsen and the effect of having different collision avoidance methods becomes amplified.
Nevertheless, our results are overall similar to MASSEgress and Simulex results and it is
important to note that enabling communication does not affect the flow rate significantly.

4.2 Evacuation scenario

The evacuation scenario (cf. Fig. 5c) differs from the other two scenarios in a fewways. First,
the high-level planning in the evacuation scenario is more complex. It includes an algorithm
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Fig. 7 Our high-level planning algorithm used in the evacuation scenario. The knowledge of the environment
is a boolean agent attribute. Direction signs’ effects can be turned on/off. This process does not require the
communication component. On its own, it can produce plausible evacuation behavior for agents without a
priori knowledge about the environment. However, it can also cooperate with the communication component
to simulate meaningful communication

we developed to model the evacuation behavior of agents without a priori knowledge about
the environment. The overall navigation routine in this scenario is summarized in Fig. 7. A
boolean agent attribute represents whether or not an agent knows the environment. If the
agent knows the environment, it chooses the emergency gathering area to which it has the
shortest path as its destination. In this case, the agent can be communicated with but it does
not ask others about how to exit. On the other hand, when the agent does not know about
the environment, targeting an exit in sight or following direction signs are the first set of
appropriate behaviors for an agent. It is possible to turn off the effect of direction signs for
testing purposes. When there are no active signs in sight, the agent wants to communicate
with another agent, i.e. ask for direction, when possible. However, navigation continues to
run until communication is possible. At this point, the next possible behavior is following
others. In the most extreme case that the agent cannot do any of these actions, it displays
exploratory behavior.

This process is in control while the agent is in Not_Communicating or Wants_

to_Communicate states. When the agent is being communicated with, or when it finds a
target for communication, the navigation is paused and the communication component takes
control. Eventually, a communication instance may cause a change in the agent’s knowledge
about a path or other agents and the navigation is resumed under these new conditions.

A realistic and complex 3D school building model is used as the 3Dmodel to be evacuated
(cf. Fig. 8). A given number of agents can be randomly generated on the navigable areas. We
ran simulations with six different settings listed below:

– Only Nav (Know=0): In this setting, communication and direction signs are disabled.
Agents rely only on their navigation capabilities. In addition, none of the agents know
the building. In a way, this setting represents the worst case.
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Fig. 8 The building model used in evacuation simulations

– Only Nav (Know=0.5): Similar to the previous one. The difference is that an agent has
0.5 probability of knowing the building; i.e. stochastically, about 50% of agents know
the building.

– Comm: Communication is enabled but direction signs are still disabled. The building
knowledge probability is again 0.5.

– Sign: Communication is disabled but use of direction signs is enabled. The building
knowledge probability is again 0.5.

– Comm&Sign: Both communication and direction sign usage are enabled. The building
knowledge probability is again 0.5.

– Only Nav (Know=1): Similar to the first two settings, but this time agents know the
building with probability 1. In other words, all agents can directly calculate their paths.
Therefore, this represents the best case in terms of fast evacuation.

Figure 9 gives a summary of measurements for agents’ evacuation times. In these charts,
the bluemarks show the evacuation time averaged over all agents after running the simulation
five times. The orange ones are the average of the largest (i.e. worst) five evacuation times.
The leftmost and rightmost values in both graphs show what is meant by the worst and best
cases, respectively. Remember that when there is no transfer of information and none of the
agents know the layout of the building (Only Nav (Know=0)), they rely on seeing an exit,
following others, and exploration. Hence, the average evacuation times (blue) are relatively
high, i.e. agents take longer to evacuate, in both first columns as expected. So are the averages
of the five largest time values (orange). On the other hand, the rightmost values are measured
when everyone knows the ideal path to exit the building (Only Nav (Know=1)). As a result,
it is clearly observed that both averages are relatively small in these cases.

In the remaining cases, a subset of agents knows the building and, naturally, the values are
mostly in between the two cases on each side. The differences resulting fromdifferent settings
are overall consistent with our expectations. First of all, in general, the more agents there
are, the larger the evacuation times become. This increase is normal because of the increased
congestion. Also, we see relatively smaller values in Sign cases. The use of direction signs
naturally reduces the evacuation times. A third notable difference is that the inter-agent
communication (Comm) seems to cause an increase in evacuation times, especially the large
(orange) ones. This increase is also expected and can be explained by the fact that inter-agent
communication requires agents to occasionally stop and talk.

If stopping and talking is truly the reason for longer evacuation times, travel distances
with inter-agent communication should not be greater than without it. To prove this, we
measure the ten longest trajectories in each case. Figure 10 shows the averages for these
measurements. It is clear that values in both Comm and Comm&Sign cases are smaller
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Fig. 9 Average evacuation times measured in the evacuation scenario for 50, 100, and 200 agents placed
randomly. There are six different simulation settings: Only Nav (Know=0), Only Nav (Know=0.5), Comm,
Sign, Comm&Sign, and Only Nav (Know=1). The simulation is carried out five times for each setting.
Avg. evac. time (blue) is the average of all agents’ evacuation times over all five executions. Avg. of worst 5
(orange) is the average of the five largest (i.e. worst) evacuation times. The setting names are explained in the
text in more detail. Briefly, ‘Only Nav’ means both communication and direction signs are disabled. ‘Comm’
means communication is enabled and ‘Sign’ means direction signs are enabled. ‘Know=X’ means that at the
beginning of the simulation, the probability that an agent has prior knowledge of the environment is X. When
omitted, Know=0.5. a 50 agents. b 100 agents. c 200 agents (Color figure online)

Fig. 10 The average lengths for the ten longest trajectories in each case. ‘Only Nav’ means both communi-
cation and direction signs are disabled. ‘Comm’ means communication is enabled and ‘Sign’ means direction
signs are enabled. The values in parentheses represent the probability for an agent to have prior environment
knowledge. This value is 0.5 when not given

compared to corresponding no communication (Only Nav (0.5) and Sign) ones. Together
with the average evacuation times, these average lengths show that agents travel less but their
evacuation times get worse when the communication is enabled.
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Table 2 Some performance measurements with different number of agents in the evacuation scenario to show
the computational cost of agent architecture (navigation, perception, and communication together)

#agents Min frame time (sec) Max frame time (sec)* Avg. frame rate (fps)

0 .016558 .325687 27.42

50 .016566 .333333 25.12

100 .016559 .333333 21.61

200 .026999 .333333 13.53

The first row with no agents is given as a baseline and to emphasize the rendering cost of the environment.
The communication is enabled but direction signs are disabled (Comm setting) in these simulations. (*) There
is a maximum frame (delta) time limit employed in Unity game engine to prevent freezing and put a bound
for frame rate. 0.333333 values correspond to this limit which ensures 3 fps. In between frame calculations
are sometimes automatically interrupted and delayed to the next frame to achieve this rate

Table 2 summarizes some performance measurements in the evacuation scenario for
different number of agents. These simulations were carried out on a PC with an Intel
Xeon E5-2643 3.3GHz processor, 48GB RAM, and a Nvidia Quadro 4000 graphics pro-
cessor. Minimum and maximum frame times are the smallest and largest values for the
time between two consecutive frames. The last column shows the number of frames per
second (fps) averaged over the simulation run. An important observation is that render-
ing (drawing) is often responsible for over 50% of all the computation (the exact value
depends on what is in the camera view). The data for a simulation with no agents is
given in the table so as to show the contribution of the rendering cost. Without any agents
(i.e. no perception, navigation, or communication calculations), the average frame rate is
27.42 fps. The rest of the values in the table should be judged with respect to this baseline
value.

4.3 Chat scenario

This final scenario is used to compare the trajectories and behaviors generated by our algo-
rithm with those generated from a real-world scenario. We used a chat video (Fig. 11a) from
crowd video data collected by theMovement Research Lab at Seoul National University [21].
Movement trajectories of the individualswere extracted from the video. Furthermore,we gen-
erated a 3D environment model in Unity that is similar to the environment observed in the
video (Fig. 11b). Agents were placed at positions corresponding to the initial positions in the
video. Simulations were run both with and without communication capability. Agents choose
a random target as the goal position. Once they reach their target, they choose a new ran-
dom target and this random selection continues until the simulation comes to an end. Agent
movement trajectories from the simulations were extracted by recording agents’ positions
every second.

Vfractal estimation [26] is used to compare the real and simulated trajectories. 100different
step sizes are used varying from 0.1 to 10 with 0.1 increments. The length unit here is the size
of a video pixel. All simulation coordinates, and thus, lengths, are scaled to match the unit.
The scaling parameters (for both coordinates) are calculated by comparing the coordinates
of corresponding positions on the floor geometry.

We applied the same vfractal calculations to (1) the trajectories extracted from the real
video (blue), (2) the simulated trajectorieswithout communication (red), and (3) the simulated
trajectories where communication is enabled (green). The results of the calculations are
summarized in Fig. 12. In these results, we observe that for both the estimations (solid
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Fig. 11 Screenshots from the real video (a) and virtual simulation scene (b)

Fig. 12 Vfractal estimations and confidence bounds for trajectories from real video (blue), simulated trajec-
tories without communication (red), and simulated trajectories with communication (green). Vertical axis
is the estimated d value (fractal dimension) and horizontal axis is the scale (step size) used in estima-
tion. Solid linesare the estimations and dashed lineswith the same color are the confidence bounds in that
estimation (Color figure online)

Table 3 Mean vfractal
estimations and confidences
calculated by averaging values in
Fig. 12 over the range of different
step sizes

Trajectory Avg. Vfractal Confidence

Real 1.0209 ±0.0871

Simulated (Comm) 1.0178 ±0.0521

Simulated (NoComm) 1.0150 ±0.0421

lines) and the confidence in these estimations (dashed lines), the green values are closer to
the blue values than the red values are to the blue values. The direct interpretation of this
observation is that when communication is enabled, straightness/crookedness of simulated
agent movement trajectories better match that of real trajectories. To further summarize the
results, we calculate the averages of vfractal values and confidences over different step sizes.
These averages are given in Table 3.
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4.4 Analysis

It is possible to pinpoint some plausible autonomous behaviors when watching the sim-
ulation outputs (cf. the accompanying video). First of all, observed behavioral variety is
improved as agents not only walk around but also autonomously engage in conversation.
Even though our model only considers communication between two agents at a time, mul-
tiple instances of such communications occasionally happen at the same time, which can
sometimes look like autonomous formation of standing-and-talking groups. This is consis-
tent with the recent understanding that people in a crowd mostly move as a group rather than
as individuals [25]. The measurements from the evacuation simulation, where ACMICS is
applied to enable meaningful autonomous inter-agent communication, show that the change
in behavior is consistent with obvious expectations about the effects on evacuation times
and trajectories. The vfractal results in the last scenario show that when communication is
enabled, the straightness/crookedness of the simulated trajectories are more in line with the
real trajectories.

The components of the communication model other than the perception component are
simple enough that they contribute little to the computational cost. The perception sub-
components function like collision detection methods and have observable effects on the
computation time. We believe that by improving and optimizing the perception implemen-
tation (e.g. instead of continuous tracking, perceived objects can only be checked when
necessary) and by applying techniques such as space partitioning or level-of-detail, interac-
tive rates can be achieved for higher number of agents.

5 Limitations, conclusions, and future work

Plausible autonomous behavior is amajor aim in virtual crowd simulation research and it can-
not be denied that communication takes place and affects behavior in the real-world crowds.
We present a model for deliberate inter-agent information exchange in virtual crowds and
investigate its effects on virtual crowd behavior. Our approach does not take into account sub-
tleties of human behaviors and languages. Also, concepts of communication and information
are considered at an abstract level, not in specific forms such as speech or sentences.

Our communication model, ACMICS, which uses a message structure based on the FIPA
ACL message structure, is implemented as a PDA. Combined with the perception and nav-
igation components, it was employed in four example scenarios. The accompanying video
provides anoverview, shows example visual outputs fromsimulations, and emphasizes impor-
tant issues.

It should be noted that an important aim in our work was to develop a communica-
tion mechanism that can be easily employed in new scenarios. The low-level message type
and scenario-independent tasks (AV layer) are separated from those that are high-level and
scenario-dependent (FoE Layer). Using ACMICS in a new scenario only requires defining
scenario-specific message types and high-level behavior related to sending and receiving
specific messages.

Apart from visual simulation outputs, somemeasurements on flow rates, evacuation times,
trajectory lengths, and trajectory shapes were presented and discussed. Visual analysis shows
that observed behavioral variety is improved and examples of plausible behaviors such as
autonomous grouping occur. The flow rates from the passageway scenario lead to two con-
clusions: (i) navigation mechanisms used behave similarly to the existing systems and (ii)
communication does not cause a significant change in the passageway flow.

123



Auton Agent Multi-Agent Syst (2017) 31:1403–1423 1421

In order to simulate communication that influences behavior, we used an evacuation sce-
nario. In this scenario, a separate algorithm was developed to model the evacuation behavior
for an agent that does not have a priori knowledge about the environment. The average evac-
uation times acquired from simulating this scenario are consistent with the expectations.
The use of direction signs improves average evacuation times but inter-agent communication
increases them. When we looked at the lengths of the longest trajectories, however, there
was a decrease with inter-agent communication. In other words, agents traveled less but took
more time to evacuate when asking for and answering about direction was simulated through
ACMICS.

The vfractal estimations in the last scenario were used to compare simulated trajectories
with real trajectories extracted from a video. The results show that when agents communicate,
simulation trajectories are closer to real trajectories in terms of straightness/crookedness.

The additional cost of simulating communication is a minor addition to the overall cost
of multi-agent simulation. Further, most of this cost originates from the model of perception
used, which can be improved. As it is a separate component in our architecture, changes
made will not affect the communication model. There is also room for improvement through
space partitioning and/or level-of-detail techniques.

It would be possible to better judge the realism of video outputs by performing user
studies or quantitatively by developing similarity metrics for comparing crowd behavior. A
more efficient perception model, an intermediate level of communication tasks regarding
management of dialogs, combining the communication model with more sophisticated agent
AI and applying it in new scenarios, including full-body crowd simulation and other inter-
actions such as gaze [28] and face-to-face interactions [36], are other possibilities for future
extensions, some of which we plan to investigate.
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