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A B S T R A C T

This study proposes a robust similarity score-based time series feature extraction method that is termed as
Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results
and involves significantly low computational complexity thereby rendering itself useful for densely sampled and
populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series
dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG)
dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with
shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet trans-
form). The results indicate that WTC achieves a slightly higher classification performance with significantly lower
execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC
has a potential to enable medical experts to explore definitive common trends in novel datasets.
1. Introduction

In the medical domain, biophysical signals in the form of time series
are frequently used for diagnostic and prognostic purposes and are spe-
cifically relevant to documenting the history [1] and clinical course of a
disease [2,3]. Many decisive traits emerge from biophysical signals as
rules of thumb suggested by health professionals based on a visual in-
spection [4]. Conversely, computer-aided methods extract common
patterns among time series and establish a more objective data assess-
ment framework. Thus, they are of immense practical value in inter-
preting data with respect to diagnostic, prognostic, and therapeutic
perspectives [5].

Computerized analysis of medical data is an active research area. In
the computational geometry domain, it is assumed that “B-spline” con-
stitutes one of the most efficient surface representation methods [6,7].
Significant curve reconstruction efforts focused on using various spline
paradigms [8], [9] especially in the cardiac domain [10]. However, using
spline-based methods on biophysical signals is not very helpful to pro-
fessionals in diagnosis or assessment of indicators for diseased condi-
tions; because splines do not produce human-readable summarizing
models. Previous studies examined the construction of local and
piece-wise polynomial models to represent time series [11,12]. Recently,
the use of Gaussian Process modeling is considered as an attractive option
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for analyzing time series data, especially in the medical domain. Within a
Bayesian framework, [13] conducted an analysis by solving a regression
problem by assuming that a dataset consisted of observations and
outcome variables. This approach is suitable for predicting missing
outcome values of biological time series that typically suffer from ir-
regularities in sampling and missing observations [13,14]. Another
feature extraction method was recently been developed to discover sig-
nificant subsequences termed as “shapelets” within a dataset [15,16]. A
shapelet is a time series subsequence identified as representative of a
certain dataset. The discovery of shapelets requires brute-force traversal
of all overlapping subsequences wherein the task of determining the
individual length and number of these subsequences is left in an un-
guided manner to the algorithm users. A shapelet transformation pro-
duces human readable outputs, and therefore they are used for
benchmarking purposes in the present study.

This study addresses the problem of extracting definitive time-
domain features from a given time series dataset to be used in data
mining applications with the ultimate goal of devising a computationally
efficient algorithm. A time series feature extraction method is designed to
summarize class-dependent behavior within consecutive time windows
and to derive an overall similarity score for this behavior. Specifically,
the proposed method involves identifying temporal features that define
the behavior of instances in a certain target class that are later used to
niversity Heart Centre, 79110 Freiburg, Germany.
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Table 1
Symbols in alphabetical order.

Symbol Explanation

αj The trajectory-based weight of SCBj based on Ij;k
βj The distance-based weight of SCBj

c The PMF resolution
dj;k The Euclidean distance of Tk to TA within SCBj

δ DCT energy threshold
D PMF of the deterministic distribution with atom at zero
D ð:; :Þ Distance between two PMFs
DTA One-dimensional DCT of TA

fN Nyquist rate of TA

fs Sampling rate of S
γj The weight of the distance-based component of the similarity score for SCBj

H The maximum amplitude of the time series instances in T
Ij;k The indicator of inclusion for Tk within SCBj

J Time window index
J Number of shape confidence bands
k Time series instance index
K Number of time series instances
l⋆ Cut-off index in DCT domain
L Shapelet length for the brute-force and fast shapelet transform
M Number of perceptually important time points (PIPs) in TA

n Sample point index of a registered time series instance
N Number of sample points in a registered time series instance
p Confidence level for the confidence interval
ℙj Distance PMF for SCBj

r PIP oversampling ratio
S Time series dataset
Sk kth time series instance in the dataset S
SCBj jth shape confidence band
Zj The ensemble average similarity score for SCBj

Zj;k The individual similarity score of Tk for SCBj

ZðdÞ
j;k

Distance-based component of the similarity score of Tk for SCBj

ZðtÞ
j;k

Trajectory-based component of the similarity score of Tk for SCBj

T Registered time series dataset
TA Class representative average time series
Tk kth time series instance in the registered dataset T
TL Lower bound of the confidence interval with the level p around TA

TU Upper bound of the confidence interval with the level p around TA

U PMF of the uniform distribution
ϕj;k The reward associated with the proximity of Tk to TA for Wj

W Number of sample points in an Wj where j≠J
Wj jth time window
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discriminate between instances among other classes. In order to
demonstrate the effectiveness of the proposed method, a human cardiac
action potential (AP) dataset and an ECG dataset consisting of recordings
from three different leads are employed.

Cardiac APs are bioelectrical signals that are recorded in cardiac tis-
sues obtained during heart surgery from patients with defined heart
rhythms. Based on a patient's heart rhythm at the time of surgery, APs
may either exhibit a “spike-and-dome” shape for physiological sinus
rhythm (SR) or a triangular shape for atrial fibrillation (AF) [17]. Spe-
cifically, AF is considered as the most common arrhythmia in clinical
practice with an approximate prevalence of 0:4� 1% in the general
population and is usually associated with stroke, heart failure, and a
significant increase in all-cause mortality [18]. Patients with AF are
diagnosed based on thorough clinical examinations and ECG recordings.
However, the resulting AP signals may exhibit SR characteristics based
on the stage of the disease. Cardiac AP is a highly informative signal that
attracts significant attention from researchers with a key focus of
revealing dynamics in cardiac ion channels that govern electrical activity
within the heart. An understanding of ion channels is essential in iden-
tifying the effects of certain agents in related drug studies [17]. Addi-
tionally, AP signal acquisition is a labor-intensive task, and this is
considered as a limiting factor for widespread studies especially in the
area of statistical time series analysis. Extant studies produced desired AP
properties by fitting empirical models, [8], to simulate the real-life
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behavior of AP. The AP dataset used in the present study in addition to
validating the proposed model also serves the purpose of stress testing
the proposed method for a dataset consisting of crowded and densely
sampled time series. To the best of the authors' knowledge, this is the first
study in which a data mining analysis is conducted on a cardiac AP time
series dataset.

Conversely, the ECG dataset, consisting of patients with acute
myocardial infarction and control subjects, is specifically selected to
present a clinical application of the proposed method. Myocardial
infarction (MI) constitutes a fatal cardiac disease that corresponds to
irreversible loss of heart muscle due to ischemia caused by blood flow
interruption [19]. Prominent guidelines recommend the use of ECGs
especially for emergency cases in addition to certain cardiac biomarkers
with their superior sensitivity to MI [20]. Additionally, ECG is an effec-
tive and non-invasive technique to confirmMI diagnosis during an initial
evaluation. With respect to ST elevation myocardial infarction (STEMI),
12-lead ECGs exhibit certain morphological changes in the expected
waveform such as ST-segment elevations or depressions and wave in-
versions or losses in different leads depending on the localization of MI
[21]. Public repositories publish anonymized digital datasets in the form
of time series. Examples include “PhysioNet” that is a repository con-
sisting of a large and balanced amount of MI and control subjects [22].
The present study examines a specific selection of a PTB Diagnostic ECG
Database available in the PhysioNet repository [23].

The rest of the paper is organized as follows: Section 2 describes the
proposed method, WTC. Section 3 presents the performance evaluation
results for the WTCmethod in conjunction with two other shapelet-based
benchmark methods that use the cardiac AP and the three leads of the
ECG time series datasets. The medical and technical aspects of these re-
sults are discussed in Section 4, and this is followed by the final section
that presents the conclusions of the study.

2. WTC method

In this section, the proposed Window-based Time Series Feature
Extraction (WTC) method is explained in a stepwise manner. Initially,
Section 2.1 describes the necessity of the pre-processing performed on
the time series instances and how important this preliminary step is to the
proposed method. Following that, Section 2.2 entails the proposed
method by elucidating its components that constitute a basis for it. The
mathematical expressions for the major components are also predicated
with a pseudocode for a further grasp of the computational complexity
calculated at the end of this section. Table 1 summarizes the notation
presumed throughout this section.
2.1. Dataset pre-processing

The proposed method requires processing local features in the time
series of interest. Thus, time series instances are registered both in time
and signal amplitudes. Registration in time refers to aligning time series
to a fixed and known position such as a time instant at which a certain
event is expected to occur for a single-cycle phenomenon (e.g., ex-vivo
action potential recordings) or the epoch of a cycle for a cyclic phe-
nomenon (e.g., ECG and phonocardiogram recordings). In contrast,
registration in signal amplitude facilitates performing time series analysis
irrespective of the offset and scale of the recorded signal that may well
depend on an experimental setup. In this study, each instance in a time
series dataset S is denoted by Sk where k 2 ½1;K� and K denotes the total
number of instances available. For the rest of this section, it is assumed
that the whole dataset S is registered to obtain the dataset T in which
instances are denoted by Tk. Registration constitutes a data-dependent
step, and thus, the method to obtain T from S is described in Section 3
that introduces AP and ECG time series datasets used to validate the
proposed method.
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2.2. Proposed analysis

For the purpose of notational simplicity, the proposed WTCmethod is
described with respect to a single class label throughout this section. It is
noted that it is possible to independently run WTC for each class for a
multiple class scenario as shown in Section 3 in which datasets with two
class labels are examined.

2.2.1. Determining the local time window
Time series instances continue to exhibit a certain degree of inter-

subject variation even after registration. The averaging of registered
time series instances makes the proposed method robust against noise
and distortions that stem from trajectory variability and possible artifacts
[24]. In this aspect, the registered time series instances, Tk, are averaged
out to obtain a class representative average time series that is denoted by
TA as follows:

TAðnÞ ¼ 1
K

XK
k¼1

TkðnÞ (1)

where n denotes the sample point index of the time series. Restrictions on
the averaging step to time series instances bearing the same class label
emphasize local dynamics and their significance in defining
class behavior.

The resulting representative trajectory constitutes a base time series
from which the local features of the time series are extracted. The
determination of suitable time windows, preferably extracted from the
time series itself, is necessary to obtain local features. The domain of
locality is defined as non-overlapping and contiguous time windows
denoted by Wj with a fixed length w where j 2 f1;2;…; Jg and J corre-
sponds to the total number windows along TA. J is equal to ⌈N=w⌉ where
N denotes the total number of sample points in TA. It is noted that these
time windows span the entire time series, and the length of the last time
window, WJ , may be lesser than w.

In order to choose w, this study considers “Perceptually Important
Points” (PIPs) [25,26] and well-known Discrete Cosine Transform (DCT)
as heuristic tools. This is followed by briefly reviewing the concept of PIP
and subsequently describing the manner in which it is complemented by
DCT to select w. Specifically, PIPs are defined as observational points in a
time series that exert a relatively high influence on human vision [27].
The PIP approach is useful in reducing dimensionality while indicating
the hierarchy among data points based on their visual importance. The
identification of PIPs is as follows [26]: The first and the last data points
in the time series are identified as the first two important points in the
importance hierarchy, and thus the next PIP is determined as the data
point with the largest distance to the points. Recursively, each candidate
PIP at a specific iteration corresponds to the data point with the largest
distance to its two adjacent PIPs that is determined so far. The PIP se-
lection process continues until all data points in the time series are
exhausted. The original study, [26], proposes that the distance between
PIPs is measured by using any of the following metrics: Euclidean, ver-
tical, or perpendicular distances. The present study employs
Euclidean distance.

In the context of the present study, determination of PIPs in a time
series fits closely with the aim of extracting class-representative patterns
from a time series dataset. Essentially, the PIP algorithm sorts the data
points of a given time series of total length N based on their perceptual
importance. Next, the “most important” M data points are selected from
the N points. For this purpose, it is assumed that M ¼ ⌊N=r⌋, where r
denotes the oversampling ratio of the signal that is defined as follows:

r ¼ fs=fN (2)

The terms fs and fN in Eq. (2) denote sampling and Nyquist rates,
respectively, of the signal of interest. The widely known one-dimensional
DCT is employed to calculate r ¼ N=l⋆ where r 2 ½1;N� and
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l⋆ 2 f1;2;…;Ng. The term l⋆ denotes the lowest frequency index in the
DCT domain representation of the signal below in which δ percentage of
its total energy is contained. It is assumed that DTA denotes the one-
dimensional DCT of the time series TA, and then l⋆ is determined based
on the following expression:

arg min
l⋆

Pl⋆

l¼1

��DTA
l j2PN

l¼1

��DTA
l j2

� δ (3)

The best choice for the threshold parameter δ is explored in Section 3
in conjunction with the remaining parameters of the proposed method.

This is followed by extracting M number of PIPs from the time series
to finally set w to the maximum horizontal length between the consec-
utive PIPs such that it is guaranteed that at least one PIP appears inWj for
all j.

2.2.2. Distance-based similarity
Local time windows Wj are determined to calculate a distance-based

similarity score for each time series instance, Tk. The Euclidean distance
of a specific time series instance Tk to TA within the support of Wj is
denoted by dj;k ¼

����TAðnÞ � TkðnÞ
���� where n 2 Wj and dj;k 2 ½0; ffiffiffiffi

w
p

H�. H
indicates the maximum amplitude value of the time series instances in T.
The distance-based weight βj corresponding toWj is expressed as follows:

βj ¼
PK

k¼1ϕj;kPJ
j¼1

PK
k¼1ϕj;k

(4)

where,

ϕj;k ¼
ffiffiffiffi
w

p
H � dj;k (5)

The term ϕj;k in Eq. (5) that falls in the interval ½0; ffiffiffiffi
w

p
H� corresponds

to the reward associated with the proximity of the time series instance Tk

to TA for the implied time window Wj. The term ϕj;k provides a stan-
dardized scale for all local time windows that span the time series. Thus,
they are weighted against each other as shown in Eq. (4). It is noted that
an increase in the proximity of the time series instances to TA for a
particular Wj increases the associated weight. The distance-based simi-

larity score denoted by ZðdÞ
j;k for time series instance Tk and time window

Wj is calculated based on ϕj;k as follows:

ZðdÞ
j;k ¼ βj

ϕj;kffiffiffiffi
w

p
H

(6)

2.2.3. Trajectory-based similarity
Distance-based similarity is complemented and reinforced with

trajectory-based similarity. The average class representative time series,
TA, is used to obtain a similarity band as a class representative trajectory.
It is assumed that each sample point in the registered time series follows a
Gaussian distribution as shown in Ref. [28], and an upper (lower) time
series denoted by TU (TL) is formed in which sample points are higher
(lower) than those in TA dictated by a confidence level, p. Consequently,
the aforementioned similarity band is defined as a band bounded by TU

and TL that is subsequently partitioned into time localized bandlets
termed as Shape Confidence Bands (SCBs). Each SCB denoted by SCBj is
related to the corresponding Wj as follows:

SCBj :¼
�ðn; yÞ��n 2 Wj∧y 2 ℝ∧TLðnÞ< y<TUðnÞ:� (7)

Specifically, the SCBj is essential in determining as to whether the
temporally coinciding part of a time series of interest aligns with the class
representative average time series within Wj. The rationale of SCBs in-
volves quantifying the similarity of a trajectory by restricting the orien-
tation of an instance such that it is aligned with that of TA allowing for a
certain margin of error. For this purpose, each subsequence of a time



Fig. 1. An example of a case with two time series instances Tk1 and Tk2 with similar
Euclidean distances from the representative average time series TA albeit following
different trajectories.
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series is tested as to whether it completely resides within the boundaries
of the corresponding SCBj. It is assumed that Ij;k denotes the indicator of
inclusion for a time series instance Tk within SCBj, which is defined
as follows:

Ij;k ¼
�
1; TkðnÞ 2 SCBj∀n 2 Wj;
0; otherwise:

(8)

Finally, the trajectory-based similarity score denoted by ZðtÞ
j;k for each

time series instance Tk and SCBj is expressed as follows:

ZðtÞ
j;k ¼ Ij;kαj (9)

where,

αj ¼
PK

k¼1Ij;kPJ
j¼1

PK
k¼1Ij;k

(10)

The term αj in Eq. (10) is defined as the trajectory-based weight of
SCBj calculated over all the time series instances that reside within SCBj.
It is noted that an increase in the number of time series instances that
follow the trajectory of SCBj increases the associated weight. Fig. 1 shows
an example of a scenario that emphasizes the difference between the
previously discussed distance and trajectory metrics. Time series in-
stances Tk1 and Tk2 involve similar distances to TA. However, the tra-
jectory of Tk1 falls out of the band SCBj, and this is in contrast to Tk2 .

2.2.4. Overall similarity
The trajectory-based and the distance-based similarity scores ZðtÞ

j;k and

ZðdÞ
j;k , respectively, are linearly combined to devise a single similarity score

of time series Tk for each SCBj that is denoted by Zj;k as follows:

Zj;k ¼
�
1� γj

�
ZðtÞ
j;k þ γjZ

ðdÞ
j;k ; (11)

where (1� γj) and γj correspond to the associated weights of the
trajectory-based and distance-based components, respectively. Thus, the
average similarity score for each SCBj is defined as follows:

Zj ¼
XK
k¼1

Zj;k: (12)

It is proposed to calculate γj based on the probability mass function
(PMF) of time series distances within SCBj denoted by ℙj as follows:
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γj ¼
D

�
D; ℙj

�
D

�
D; ℙj

�þD
�
U; ℙj

�; (13)

The terms U and D in Eq. (13) denote PMFs corresponding to the
uniform and deterministic distance distributions, respectively. Addi-
tionally,D denotes an operator that computes the distance between two
PMFs based on Algorithm 1 presented in Ref. [29]. The aforementioned
PMFs are constructed with a signal level resolution denoted by c.
Throughout this study, c is set to 0.001. Furthermore, PMF U is defined
over the support ½0; ffiffiffiffi

w
p

H�, and D corresponds to an impulse at zero. A
random variable associated with the PMF U (D) possesses maximum
(minimum) entropy for its support. The rationale of Eq. (13) involves
assigning a weight to the distance-based (trajectory-based) similarity
score of SCBj inversely proportional to the distance of ℙj to U (D).
Trajectory-based similarity scores are calculated over time series in-
stances residing within each SCBj. Conversely, distance-based similarity
scores are calculated over the entire set of time series instances that are
more dispersed with respect to the confidence band of interest. With
respect to extreme cases where ℙj tends to U (D), distance-based (tra-
jectory-based) similarity scores dominate the overall similarity score.

The overall algorithm is outlined in Algorithm 1, and the related
source codes are accessible online via [30].

Algorithm 1 WTC (T , p )
1: ½TA ;TU ;TL�←RepresentativeTimeSeriesðT ; pÞ
 Eq. (1)

2: r←PIPCompressionRatioðTAÞ
 Eq. (2)

3: PIPs←PIPIndicesðTAÞ
 [26]

4: Wj←LocalTimeWindowsðPIPs; rÞ
 Section 2.2.1

5: SCBj←extractSCBsðTU ;TL;WjÞ
 Eq. (7)

6: αj←SCBWeightsAlphaðT ; SCBj;WjÞ
 Eq. (10)

7: βj←SCBWeightsBetaðT ;TA;WjÞ
 Eq. (4)
8: γj←SCBWeightsGammaðT ; SCBj;WjÞ
 Eq. (13)

9: Zj←SimilarityScoresðT ; αj; βj; γj;WjÞ
 Eq. (12)

10: return [SCBj; Zj]

A prominent advantage of Algorithm 1 corresponds to its relatively
lower complexity, which is analyzed next. Step 1 of Algorithm 1 involves
point-wise mean and confidence level computations that involve OðKNÞ
complexity. Steps 2 and 3 require the computation of DCT and the
execution of the PIP algorithm, respectively, over a single times series TA,
which corresponds to OðNlogNÞ when N corresponds to a power of 2
(OðN2Þ otherwise) [31] and OðN2Þ [26]. Evidently, steps 4 and 5 involve
OðNÞ complexity. As suggested by the corresponding equations, Steps 6,
7, 8, and 9 correspond to OðKNÞ complexity. It is concluded that Algo-
rithm 1 possesses OðKN þ N2Þ quadratic complexity, thereby summing
up the individual complexities of its constituent steps. It is noted that it is
possible to improve the efficiency of Step 3 that constitutes the most
computationally intensive part of the overall algorithm by abandoning
the related iterations immediately after determining the 100=r percent-
age of PIPs.

This section is concluded by stating that WTC generates Zj which
corresponds to the intra-class average similarity score for each SCBj for a
given time series dataset. Specifically, Zj denotes an efficient represen-
tation of the dataset that it pertains to and is therefore expected to in-
crease the interpretability of the dataset by domain experts.

3. Results

In this section, results of the proposed WTC method are presented for
AP and ECG time series datasets. First, in Section 3.1, time series features
are extracted from these datasets with WTC and two other benchmark
methods, namely, the shapelet transform [16] (hereafter referred to as
“brute-force shapelet transform”) and one of its variants that is termed as
“fast shapelet transform” [32]. Fast shapelet transform is proposed to



Fig. 2. (a) Schematic of a human cardiac AP in five phases, namely phase 0: rapid depolarization; phase 1: early rapid repolarization; phase 2: “plateau” phase; phase 3: final repolar-
ization; and phase 4: resting membrane potential. (b) Schematic of human cardiac APs (upper row), ion channels (middle row), and major ion current flows (lower row). Nav1.5, cardiac
Naþ channel conducting Naþ current (INa); Kv4.3, Kþ channel conducting transient outward current (Ito); Cav1.2, L-type Ca2þ channel conducting L-type Ca2þ current (ICa,L); Kv11.1, Kþ

channel conducting rapidly activating, delayed outward rectifier Kþ current (IKr); Kv7.1, slowly activating outward rectifier Kþ current (IKs); Kir2.1, Kir2.3, inward rectifier Kþ cur-
rent (IK1).
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reduce the computational complexity of the legacy brute-force shapelet
transform without sacrificing much from accuracy. The details for the
shapelet-based methods are given in Section 3.1.1 before moving on to
the feature extraction results provided in Sections 3.1.2 and 3.1.3. Next,
the extracted features are evaluated with a series of classifiers and the
corresponding results of WTC are compared with those of the brute-force
and fast shapelet transforms in Section 3.2. Finally, statistical results
regarding the ranking of WTC among the benchmark methods and the
robustness aspect of WTC are presented in Section 3.3.
3.1. Feature extraction

3.1.1. Benchmark methods for feature extraction
Brute-force shapelet transform is a feature extraction method to

discover the so-called shapelets [16] from a given time series dataset.
Shapelets are essentially subsequences that are extracted from the time
series instances themselves through an exhaustive sliding window-based
search operation. It is assumed that L denotes a desired shapelet length
specified by a user of the brute-force shapelet transform. For a given K
number of time series instances of length N, there exist ðN � Lþ 1Þ
subsequences, i.e., shapelet candidates, from each time series that result
in a total of ðN � Lþ 1ÞK candidates. The distance between each sub-
sequence - time series pair is computed. It is noted that a single distance
computation requires sliding the subsequence across the time series of
interest in all possible ways to determine the closest possible match.
Next, a distance vector to all time series instances (with mixed class la-
bels) is obtained for each subsequence. A distance threshold is then
determined for each subsequence to yield the most homogenous sepa-
ration of instances, i.e., the highest information gain, in terms of class
labels. Finally, a user specified number of subsequences (with the highest
information gain) is designated as shapelets. The corresponding distance
vectors of the shapelets then correspond to transformed feature vectors
that are generated by the brute-force shapelet transform. It is stated that
the computational complexity of the shapelet extraction routine corre-
sponds to OðK2N4Þ [16,15]. The current state-of-the-art shapelet dis-
covery method [33] reflects an improvement with respect to the
brute-force method as it reduces the worst-case running time to
OðK2N3Þ, which is still deemed as inconvenient for large datasets. More
importantly, the temporal location of a shapelet is disregarded by the
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very nature of the shapelet extraction process, and this could be of sig-
nificant importance for biological interpretations.

A part of the latest efforts to improve shapelet extraction includes the
fast shapelet transform [32]. In this approach, a complete dataset is
projected to a lower-dimensional representation that is referred to as SAX
[28] such that the entire shapelet discovery is completed in OðKN2Þ time
at the expense of a degradation in performance in terms of accuracy.
Although the fast shapelet transform avoids exhaustive distance com-
putations, it does not guarantee that the same set of shapelets is reached
as that reached by its brute-force counterpart. The proposedWTCmethod
with OðKN þ N2Þ complexity clearly outperforms the family of shapelet
methods in the aforementioned aspect. In the present study, an
open-source Java solution [15] is employed to obtain results for the
brute-force shapelet transform, and a proprietary Cþþ based imple-
mentation [32] is used for fast shapelet transform.

3.1.2. Cardiac action potential (AP) dataset
As an application of the proposed method to a real-life dataset, AP

recordings obtained from human right atrial biopsies are used [34].
Within the scope of a project entitled “The European Network for
Translational Research in Atrial Fibrillation (EUTRAF)” [35] that is
funded by the European Community's Seventh Framework Programme,
the AP dataset was collected in the period from January 2006 to February
2014. Each patient's written informed consent was obtained, and thus the
study conforms to the Declaration of Helsinki and was approved by the
ethics committee of Dresden University of Technology (No. EK790799).

3.1.2.1. AP dataset description. The time series instances of the AP
dataset are clinically attributed to the class label AF if it is considered that
the corresponding patient is in chronic atrial fibrillation (ICD-10 code
I48.2) and to the class label SR with respect to control patients with a
normal sinus rhythm. Patients with paroxysmal or intermittent AF are
excluded. The presence of AF was confirmed with pre-operative ECGs
throughout the data collection. Eligible AP recordings were obtained
from a total of 341 unique patients that comprise 142 AF (aged from 47
years to 85 years with a mean of 72.29 years and 37.68% female, 62.32%
male) and 199 SR (aged 22 years–86 years with a mean of 67.12 years
and 23.98% female, 76.02% male) patients with a temporal sampling
rate of 10 kHz. In some cases, where an additional trabecula could be



Fig. 3. (a) Registered AP time series instances of AF (202 instances) and SR (219 instances) with 4303 sample points each. (b) Typical “spike-and-dome” shaped AP from right atrial tissue
of an SR patient (top) and triangular shaped AP from an AF patient (bottom).
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dissected for a separate experiment, more than one AP sequence per
patient were recorded. For multiple recordings from the same patient,
experiments were conducted either in parallel (but on different set-ups)
or one after the other, where the remaining preparations were stored
in oxygenated Tyrode solution until use. With respect to the class AF, 86
patients have a single recording, 52 patients have 2 recordings and 4
patients have 3 recordings each, making a total of 202 time series in-
stances. For the class SR, 179 patients have a single recording and 20
patients have 2 recordings each, making a total of 219 time series in-
stances. Therefore, K ¼ 202 AF time series instances were obtained from
142 AF patients and K ¼ 219 SR time series instances were obtained from
199 SR patients.

In order to pump blood, it is necessary for all parts of the heart to
contract in concert. Additionally, electrical excitation of the car-
diomyocytes is a prerequisite for coordinated contraction. From the
pacemaker cells in which electrical activity is generated, APs propagate
throughout the heart and trigger contraction [36].

Each AP exhibits the following distinct phases (as shown in Fig. 2a):
the resting membrane potential (phase 4), the rapid depolarization
Fig. 4. Identified PIPs from the class representative average time series of AF and
SR classes.
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(“upstroke”, phase 0), early rapid repolarization (phase 1), the “plateau”
(phase 2); final repolarization (phase 3), and return to resting membrane
potential (phase 4). Excitable cells possess an inside-negative resting
membrane potential that is maintained by electrochemical gradients for
the cations Naþ and Kþ across the cell membrane due to ion pumps as
well as voltage-dependent ion channels that open and close in a voltage-
dependent and time-dependent manner (see Fig. 2b).

When the threshold for activation is reached by a small depolarization
of the cell membrane, Naþ channels open rapidly and allow Naþ to enter
the cell. The influx of positive charge further depolarizes the cell mem-
brane. Repolarization is caused by an efflux of Kþ through various Kþ

channels of different kinetics. An influx of Ca2þ via L-type Ca2þ channels
triggers the release of further Ca2þ from intracellular stores, and this is
necessary for the activation of contractile machinery. Thus, the shape of
an AP is governed by the sum of all membrane currents listed along the
lower row of Fig. 2b that flow through various ion channels.

Atrial APs from SR patients have a characteristic “spike-and-dome”
shape. During AF, electrical activity becomes very fast and uncoordi-
nated, leading to remodeling processes that change - amongst others - the
expression of ion channels in the atrial cardiomyocytes and giving rise to
the typical triangular-shaped AP (see Fig. 3b; [17,37]).

3.1.2.2. AP dataset registration. AP time series instances are single event-
triggered and acyclic, and therefore do not require segmentation for
registration. All AF and SR instances are registered in time based on the
instant at which membrane potential of each time series peak occurs, i.e.,
end of phase 0. The time window length of a time series from its peak
membrane potential to the resting membrane potential actually consti-
tutes a differentiating factor between AF and SR classes due to ion
channel activities under investigation. Thus, in the study, AP registration
is done with respect to the time course of the acquired signal by avoiding
techniques such as re-sampling and dynamic time warping. Time domain
alignment provides human-readability and brings localized time win-
dows into prominence, thereby easing decision making in real-life
practice. First, the peak membrane potentials of all time series in-
stances are aligned in time. Then, the largest leftward and rightward
supports are found for which each time series instance is guaranteed to
have all corresponding sample points. For this particular AP dataset, the
leftward and rightward supports turn out to be 24 and 4278 sample
points, respectively. Adding the single sample point of the peak mem-
brane potential, this amounts to an AP time series length of N ¼ 4303



Fig. 5. The weights αj, βj and γj for SCBs in (a) AF and (b) SR.
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sample points for both classes.
The next step comprises of registering signal amplitudes. With respect

to the AP dataset, a single cycle begins with the voltage level that in-
dicates a resting membrane potential and ends with almost the same
ground value after an AP is triggered. Given this fact, the peak membrane
potential occurring at the end of the rapid depolarization phase, i.e.,
phase 0, and the resting membrane potential phase, i.e., phase 4, of the
experiment are considered as reference points for signal amplitude
registration. Specifically, the registered time series Tk is obtained
as follows:

TkðnÞ ¼ SkðnÞ � SkðNÞ
maxfSkðnÞg � SkðNÞ (14)

In Fig. 3a, all registered instances of AF (blue) and SR (red) classes
are shown.

Time series instances in Fig. 3a manifest substantial intra-class vari-
ability for both classes that corresponds to a coherent observation with
Fig. 6. Color map plots for the average values of Zj for the classification set. (For interpretation
this article.)
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the study in Ref. [38].

3.1.2.3. WTC on AP dataset. An arbitrarily chosen set of 50 AF and 50 SR
time series instances are used to extract features with WTC method. The
same set is also used for the brute-force and fast shapelet transform
methods in the following section. A complementary set with 152 AF and
169 SR instances is spared to evaluate the classification performances of
all three methods in Section 3.2.1.

The proposed WTC method is executed for the energy threshold
parameter δ 2 f0:9900; 0:9990;0:9999g and confidence level parameter
p 2 f0:95; 0:99g. However, only the results corresponding to δ ¼ 0:9990
and p ¼ 0:95 are presented in this section. For these values of δ and p,
WTC is shown in Section 3.2.1.1 to have peak performance in terms of
classification accuracy. This selection of δ results in an oversampling ratio
r corresponding to 27.0629 and 21.4078 for AF and SR, respectively.
Fig. 4 shows selected PIPs from the class-representative average time
series based on these values of r for both AF and SR classes.
of the references to colour in this figure legend, the reader is referred to the web version of



Fig. 7. Top 100 brute-force shapelets extracted from AF and SR instances with (a, b) L ¼ 50, (d, e) L ¼ 300, (g, h) L ¼ 400 and fast shapelets with (c) L ¼ 50 from AF instances, (f) L ¼ 300
and (i) L ¼ 400 from SR instances that are overlaid with the associated class representative average time series TA.
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The values of the localized timewindow length,w, which corresponds
to the maximum horizontal separation between the adjacent PIPs,
involve 329 and 169 sample points corresponding to 32.9 ms and 16.9ms
for AF and SR, respectively. The window length determination step is
immediately followed by constructing confidence bands with a chosen
confidence level corresponding to p ¼ 0:95.

This is followed by segmenting the confidence bands as suggested by
the localized time windows Wj into SCBs for each class. The calculated
weights, namely αj, βj, and γj, for the corresponding Wj are depicted in
Fig. 5a and b for AF and SR, respectively.

With respect to both classes, the results indicate that the distance-
based weights βj are close to each other, and this implies that the
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rewards given based on the proximity to the class average for the cor-
responding SCBj exhibit a similar trend. Conversely, trajectory-based
weights αj exhibit a more significant variation with respect to the vari-
ations in the SCBj and even decrease to zero for higher indexed SCBs for
both classes. This behavior indicates the failure of all time series in-
stances to be completely encapsulated by the corresponding SCBs. The
calculated weights γj are much closer to 0 than to 1, thereby indicating
that they favor the trajectory-based component of the similarity score for
both classes.

In order to visualize the predictive power of WTC in terms of Zj, color
map plots are presented in Fig. 6a and b for AF and SR, respectively.



Fig. 8. Registered and annotated ECG lead v2 time series instances of (a) MI (40 instances) and (b) NR (40 instances) that each include 1308 sample points.
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These figures constitute the most interpretable output of WTC and show
the similarity scores Zj calculated by averaging Zj;k over all AF and SR
time series instances in the classification set. The more reddish tones
imply regions with higher similarity, and thereby SCBs with higher
predictive power. This observation coincides with the expected change in
morphology for phases 2 and 3 of the AP signal (Fig. 2a) in the case of AF
[39]. These figures also depict the double-sided confidence bands of the
class representative average time series and the extracted SCBj.

3.1.2.4. Benchmark methods on AP dataset. The following feature
extraction results are obtained by shapelet-based methods for the
aforementioned subsets of AP dataset (refer to Section 3.1.2.3). In order
to achieve ameaningful level of parameter exploration for the brute-force
shapelet transform in a reasonable time, a range for the shapelet length L
(in units of sample points) is quantized as
L 2 f50;100;150;200;250;300;350;400g. It is noted that the chosen
values for L span a wider range when compared to the values reached by
the proposed WTC method for its time localized window length, w, with
the aid of DCT domain analysis. The default value of the Java imple-
mentation [15] that corresponds to 100 is used for the number of
shapelets to be extracted. A set of extracted brute-force shapelets are
shown in Fig. 7a, b, d, e, g and h along with the class average time series,
TA, for both AF and SR.

This is followed by the execution of the fast shapelet transform. The
fast shapelet procedure acts as an extension to the brute-force shapelet
transform method and builds an internal decision tree termed as a “fast
shapelet tree” with nodes that are ordered based on the information gain
that they individually offer. It is assumed that L possesses the same range
of values as those for the brute-force shapelet transform for the purpose
of fairness. A set of extracted fast shapelets are depicted in Fig. 7c, f and i
along with the class average time series, TA.

3.1.3. ECG dataset
In this section, three chest leads of an ECG dataset are examined to

demonstrate the potential of the proposed WTC method from a clinical
perspective. The ECG is highly clinically relevant, and therefore consti-
tutes one of the most studied biophysical signal types.

3.1.3.1. ECG dataset description. The instances of the ECG dataset used in
this study are compiled from Physikalisch-Technische Bundesanstalt
DataBase (PTBDB), which is a publicly available repository of physio-
logical signals in PhysioNet [23]. The PTBDB contains 549 12-lead ECG
time series recordings from 290 unique patients. Each time series is
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digitized with a 1 kHz sampling rate and 16-bit resolution over a signal
amplitude range of ± 16.384 mV. The PTBDB contains instances with a
wide variety of labels including myocardial infarctions, car-
diomyopathy/heart failures, dysrhythmia, myocardial hypertrophy, and
myocarditis. The largest subset of PTBDB is comprised of time series
instances belonging to patients diagnosed with acute myocardial
infarction. There are identified differences in the expression of P-QRS-T
sequences of the ECG signal recorded from precordial leads during
myocardial infarction [40]. Furthermore, it is known that ECG contains
noise originating from different sources [41–43]. Thus, this dataset is
considered as suitable to test the robustness of the proposedWTCmethod
with respect to noise. Hereafter, the time series instances of this dataset is
referred to as “MI” and “NR” corresponding to patients diagnosed with
acute myocardial infarction and control patients with normal heart
rhythms, respectively. In the present study, out of 148 instances of MI
patients, a sub-group of 40 unique patients (aged from 37 years to 85
years with a mean age of 61.03 years and 22.50% female, 77.50% male)
are randomly selected to obtain a balanced set relative to 40 available NR
patients (aged from 17 years to 81 years with a mean age corresponding
to 45.59 years and 25.00% female, 75.00% male).

3.1.3.2. ECG dataset registration. All MI and NR time series instances are
registered for the proposed method. Each cyclic ECG time series instance
is first segmented into multiple single-cycle P-QRS-T sequences begin-
ning from an S point to a subsequent point. In contrast to the acyclic
recordings in the AP dataset, ECG recordings are self-repeating and their
periodicities are determined by the heart rate of the patients. However, it
is the signal variation among the P-QRS-T sequences as opposed to the
heart rate variability that differentiates MI patients from NR patients.
Hence, heart rate variability (i.e., length of the time series from an S point
to a subsequent point) is compensated by incorporating a signal pro-
cessing technique termed as re-sampling. Re-sampling essentially warps
the specified time series, which constitutes a single-cycle ECG signal in
this specific case. Each single-cycle P-QRS-T time series is re-sampled in
order to extend its length to that of the longest one. It is assumed that
SkðnÞ denotes the re-sampled single-cycle P-QRS-T time series, and the
registered time series TkðnÞ is obtained by normalizing their amplitude
as follows:

TkðnÞ ¼ SkðnÞ �minfSkðnÞg
maxfSkðnÞg �minfSkðnÞg: (15)

The three precordial leads of v2, v3, and v4 are separately examined.
Fig. 8a and b shows TkðnÞ of MI and NR classes, respectively, for lead v2.



Fig. 9. Identified PIPs from the MI and NR class representative average time series from (a) v2 (b) v3, and (c) v4 leads of the ECG dataset.
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3.1.3.3. WTC on ECG dataset. Out of 40 MI (NR) unique patients, 25 are
reserved for the feature extraction phase, and this leaves 15 patients to
evaluate the classification performance in Section 3.2.2. With respect to
the feature extraction set, a single P-QRS-T sequence is allowed from
each patient resulting in 25 time series instances. However, for the
classification set, multiple (either 3 or 4) sequences are collected from
each patient to reach a total of 50 time series instances.

For all leads of the ECG dataset, the same set of parameter values δ 2
f0:9900;0:9990; 0:9999g and confidence level parameter p 2
f0:95;0:99g as those of the AP dataset in Section 3.1.2.3 are used. In a
similar manner, the presented results in this section are limited to those
of δ ¼ 0:9990 and p ¼ 0:95, which are shown to yield the best classifi-
cation accuracy results in Section 3.2.2.1. Accordingly, Fig. 9a, b, and c
show selected PIPs in conjunction with the class-representative average
time series for both MI (red) and NR (blue) classes for leads v2, v3, and
v4, respectively.

The resulting similarity scores, Zj, are shown in the form of color map
plots for both MI and NR and for the three studied leads in Fig. 10a
through f. These figures depict the degree of descriptiveness of the WTC
method within each time window as discussed in Section 3.1.2.3. The
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obvious difference in the thickness of the confidence bands when
compared to those of the AP dataset indicates a higher variability of
amplitude among the ECG instances.

Thus, WTC forms intra-class similarity along the temporal dimension
for each SCB and points out morphological differences between the time
series classes of interest. Prevalent cardiological literature indicates that
the earliest signs of acute MI include increased T-wave amplitude
(defined as “hyper-acute”) over the affected area. These are termed as
hyper-acute T-waves and are most evident in the anterior precordial
chest leads [44] (as shown in Fig. 11a with respect to the fore-mentioned
MI behavior in leads v2, v3, and v4). Additionally, MI SCBs around the
T-wave (Fig. 10a, c and e) possess a relatively deeper red color. This
observation aligns with a characteristic hyper-acute T-wave pattern that
is expected to appear in the early phases of MI and is accompanied by a
loss of the R-wave amplitude in the anterior chest leading to v2, v3, and
v4 [21,45].

3.1.3.4. Benchmark methods on ECG dataset. The following shapelet-
based executions are performed by using the aforementioned feature
extraction set comprising of 25 MI and 25 NR time series instances of



Fig. 10. Color map plots for the average values of Zj of leads v2, v3 and v4 for (a,c,e) MI and (b,d,f) NR. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 11. (a) Typical “hyper acute” T-waves in ECG recordings collected from precordial leads v2, v3, and v4 indicating the condition of MI during early stages (record id:
patient036 s0111lre) and (b) waveforms from corresponding leads of a control patient (record id: patient116 s0302lre). Each unit cell represents 0.2 s in time and 0.5 mV in amplitude.
(Source: PhysioBank ATM).
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leads v2, v3, and v4 separately. The desired shapelet length is sampled in
the same manner with Section 3.1.2.4, while obtaining results for the
brute-force and fast shapelet transform and limiting the number of
shapelets to be extracted to 100. For the purpose of compactness, a
limited set of extracted brute-force and fast shapelets from lead v2 is
shown in Fig. 12.
3.2. Performance evaluation

A series of classifiers are used to facilitate a comparison of the pro-
posed WTC and the benchmark shapelet-based methods for AP and ECG
datasets, in Sections 3.2.1 and 3.2.2, respectively. The following methods
within WEKA framework [46] are selected to maintain a broad coverage
among the available classifiers: the well-known Naive Bayes classifier,
J48 pruned tree (an implementation of the well-known C4.5 algorithm),
random decision forest [47], adaptive boosting (AdaBoost.M1) [48],
classification via regression (employing a type of decision tree with linear
regression functions at the leaves [49]), bagging [50], multi-boosting
(MultiBoostAB) [51], locally weighted learning (LWL) [52], partial de-
cision tree classifier (PART) [53], ensemble of nested dichotomies (END)
[54], decision stump [55], simple classification and regression tree
(CART) [56], a proprietary algorithm termed as “ranking instances by
maximizing the area under the ROC curve (RIMARC)” [57], Bayesian
network learning, dagging [58], random subspace method [59], decision
table majority classifier, ripple-down rule learner (RIDOR) [60], alter-
nating decision tree (ADTree) [61], and random tree construction and
multi-class alternating decision tree with a logit-boost strategy (LAD-
Tree). The similarity scores Zj;k and the shapelet distances to time series
instances constitute transformed feature vectors for WTC and the
benchmark methods, respectively. The classification accuracy results are
obtained with a 10-fold cross validation.

3.2.1. AP dataset

3.2.1.1. Classification performance of WTC on AP dataset. In order to
assess its performance, the proposed WTC method is executed for the
Cartesian product of the parameter sets δ 2 f0:9900;0:9990; 0:9999g,
and p 2 f0:95;0:99g. The resulting classification accuracies based on the
feature extraction of WTC are tabulated in Table 2 for the spared clas-
sification set of 152 AF and 169 SR instances and for various classifiers
offered by WEKA. With the exception of a few entries in Table 2, WTC
yields accuracies within 5% vicinity of each other, and this underlines the
relative insensitivity of WTC to its parameters. The success rate of WTC
exceeds 94% for a majority of the cases. The highest average classifica-
tion accuracy is achieved by the parameter pair δ ¼ 0:9990 and p ¼ 0:95.
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The proposed WTC method is self-sufficient in predicting a time
localized window length, w. However, classification results are also ob-
tained by artificially enforcing a window length. With respect the specific
case, SCB extraction is performed by “by-passing” the prediction part for
w. Table 3 lists the accuracies for variations in the enforced SCB lengths
and for the selected classifiers.

A comparison of Tables 2 and 3 for the columns corresponding to
(δ ¼ 0:9990, p ¼ 0:95) and w ¼ 200 (also for w ¼ 150), respectively,
reveals the success of the PIP and DCT-based heuristics pursued by the
proposed WTC method to determine the value of time localized window
length w.

3.2.1.2. Classification performances of benchmark methods on AP data-
set. The individual and average classification accuracies of the brute-
force shapelet transform for varying values of shapelet length L and the
selected classifiers are given in Table 4. The brute-force shapelet trans-
form is shown to yield varying classification accuracies for variations in L
irrespective of the deployed classification method. Shapelet length L ¼
400 yields the most favorable ensemble average accuracy level
(93:057%) and the corresponding first 100 brute-force shapelets are
already shown in Fig. 7g and h along with the class average time series,
TA, for both AF and SR. The figures reveal that the selected shapelets
from different instances substantially overlap with each other for both
classes. This observation is also interpreted as a redundancy in the
computations since majority of subsequences correspond to a narrow
time interval.

The resulting classification accuracies of the fast shapelet transform
are presented in Table 5. The distance values obtained from the “fast
shapelet tree” are considered as inputs for the listed classifiers of WEKA.

As shown in Table 5, the ensemble average classification accuracy
(90:269%) peaks at L ¼ 300 for which the single discovered shapelet
among the instances of SR is shown in Fig. 7f.

Based on the results in Tables 2, 3 and 5 the classification accuracies
calculated for WTC approximately exceed those of the fast shapelet
transform by 4%. Conversely, despite the exhaustive search with an
impractical computational complexity, the peak ensemble average clas-
sification accuracy of the brute-force shapelet transform (93:057%) for
L ¼ 400 (shown in Table 4) is slightly lower than that of WTC for the
enforced case with w ¼ 200 (also for w ¼ 150) (94:125%) as well as for
the non-enforced, i.e., the original case (94:333%).

3.2.2. ECG dataset

3.2.2.1. Classification performance of WTC on ECG dataset. The energy
threshold δ and the confidence level p parameters are explored within the



Fig. 12. Top 100 brute-force shapelets extracted from MI and NR instances with (a, b) L ¼ 50, (d, e) L ¼ 150, (g, h) L ¼ 300 and fast shapelets selected only among MI instances with (c)
L ¼ 50, (f) L ¼ 150 and (i) L ¼ 300 that are overlaid with the associated class representative average time series TA of lead v2.
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same range of values as those in Section 3.2.1.1, to determine the pair
that yields the highest average classification with respect to the afore-
mentioned 21 classifiers within WEKA. Due to space limitations, only
classification accuracies for the lead v2 are presented in Table 6 for
variations in δ and p.

Table 6 reveals that the average accuracy for lead v2 of ECG dataset
peaks (98.095%) at the same set of parameter values as those of the AP
dataset in Section 3.2.1. Therefore, δ ¼ 0:9990 and p ¼ 0:95 are also
fixed for the leads v3 and v4. For the purpose of completeness, the cor-
responding classification results are listed in Table 7 for both of the leads.
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3.2.2.2. Classification performances of benchmark methods on ECG data-
set. The individual accuracies achieved by the chosen set of WEKA
classifiers on lead v2 by using features extracted by the brute-force and
fast shapelet transformmethods are listed in Tables 8 and 9, respectively.

As shown in Tables 8 and 9, the classification success of both brute-
force and fast shapelet transforms are highly sensitive to L. Shapelet
length L ¼ 300 yields the highest ensemble average accuracy (94:381%)
for the brute-force shapelet transform. The first 100 shapelets with L ¼
300 on lead v2 are already depicted in Fig. 12g and h overlaid with the
class average time series, TA, for MI and NR, respectively. Fig. 12f also



Table 2
Individual and ensemble average classification accuracies of the proposed WTC method that is applied to the AP dataset for different values of the energy threshold δ, the confidence level p,
and for the selected classifiers. The highest average classification accuracy is shown in boldface.

δ ¼ 0:9900 δ ¼ 0:9990 δ ¼ 0:9999

p ¼ 0:95 p ¼ 0:99 p ¼ 0:95 p ¼ 0:99 p ¼ 0:95 p ¼ 0:99

Naive Bayes 74.766% 81.620% 92.212% 92.212% 89.720% 90.031%
J48 91.589% 92.212% 93.770% 93.458% 93.458% 94.081%
Random forest 93.770% 93.770% 94.704% 94.704% 93.146% 94.081%
AdaBoost.M1 93.146% 93.146% 95.639% 95.639% 95.639% 95.950%
Classif. via regr. 95.327% 95.327% 95.327% 95.016% 93.458% 93.146%
Bagging 94.393% 94.393% 94.704% 94.704% 94.704% 94.704%
MultiBoostAB 93.458% 93.458% 94.704% 94.704% 94.704% 94.704%
LWL 90.654% 90.654% 94.081% 94.704% 94.393% 94.704%
PART 94.081% 94.081% 95.639% 95.639% 94.081% 93.770%
END 91.900% 92.212% 93.458% 93.146% 92.835% 93.458%
Decision stump 90.654% 90.654% 95.016% 95.016% 95.016% 95.016%
Simple CART 92.835% 92.835% 94.704% 94.704% 94.393% 94.704%
RIMARC 94.081% 94.081% 95.016% 95.016% 94.704% 94.704%
Bayes NET 92.835% 92.835% 93.458% 93.458% 94.081% 94.081%
Dagging 94.393% 93.770% 94.704% 94.081% 92.835% 94.704%
Random SubSpace 93.770% 93.458% 93.146% 94.081% 94.081% 93.458%
Decision Table 92.523% 93.770% 92.523% 92.212% 93.146% 93.458%
Ridor 92.523% 92.523% 94.704% 94.393% 93.770% 94.081%
ADTree 94.393% 94.081% 94.393% 94.393% 95.016% 95.016%
LAD Tree 93.146% 93.458% 94.393% 94.393% 95.016% 95.327%
Random Tree 90.343% 91.277% 94.704% 92.523% 93.146% 90.966%
AVERAGE 92.123% 92.553% 94.333% 94.200% 93.873% 94.007%
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shows the fast shapelets with L ¼ 150 resulting in the highest ensemble
average accuracy level (95:143%). For the purpose of completeness, the
resulting classification accuracies obtained for lead v3 and v4 are pre-
sented in Table 10 through 13 for the benchmark methods by noting that
similar observations with lead v2 are made.

As the classification accuracies of the proposed WTC method pre-
sented in Section 3.2.2.1 are considered, it is apparent that the brute-
force and fast shapelet transforms yield relatively lower accuracies for
all three leads of the ECG dataset. The brute-force and fast shapelet
transform methods attain accuracies of (94:381%, 95:190%, 95:190%)
and (95:143%, 94:667%, 88:286%) for leads (v2, v3, v4), respectively,
and these are exceeded by those of the proposed WTC method that
correspond to (98:095%, 98:429%, 96:095%).

3.3. Statistical evaluation

Evaluation of the classification performance of the proposed WTC
Table 3
Individual and ensemble average classification accuracies of the proposed WTC method applied t
The highest average classification accuracy is shown in boldface.

w ¼ 50 w ¼ 100 w ¼ 150 w

Naive Bayes 91.277% 90.966% 92.212% 91
J48 93.770% 90.654% 93.458% 93
Random forest 94.081% 94.704% 94.393% 94
AdaBoost.M1 94.704% 95.016% 95.950% 94
Classif. via regr. 94.393% 95.016% 95.950% 96
Bagging 94.704% 95.016% 95.016% 94
MultiBoostAB 95.016% 95.016% 94.704% 95
LWL 93.770% 94.704% 93.770% 94
PART 93.146% 92.212% 91.589% 91
END 93.458% 90.031% 93.458% 93
Decision stump 94.393% 95.016% 93.770% 95
Simple CART 95.327% 95.016% 94.081% 93
RIMARC 95.327% 95.327% 95.327% 95
Bayes NET 94.081% 93.770% 94.393% 94
Dagging 93.458% 92.212% 94.393% 94
Random SubSpace 93.770% 93.770% 94.393% 94
Decision Table 94.081% 91.277% 90.343% 92
Ridor 94.081% 91.900% 95.016% 94
ADTree 93.146% 95.016% 96.573% 95
LAD Tree 94.704% 94.704% 95.639% 94
Random Tree 92.835% 90.654% 92.212% 92
AVERAGE 93.977% 93.428% 94.125% 94
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method is concluded by presenting a critical difference (CD) diagram
[62]. The CD diagram is a representation that enables statistical evalu-
ation of multiple methods over multiple datasets. Briefly, methods of
interest are ranked for each dataset to obtain corresponding rank vectors
that are subsequently averaged to determine average ranks. Methods
whose rank differences exceed the value of CD are termed as “critically
different”. The CD is calculated as follows:

CD ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðF þ 1Þ

6R

r
; (16)

where F, R, and qα denote the number of methods, number of datasets,
and “critical value”, respectively. In the present study, F ¼ 3 methods,
R ¼ 4 datasets, and q0:1, which is equal to 2.052 is used for a two-tailed
Nemenyi test. Further details on the CD diagram are available in
Ref. [62]. The analysis in the present study involves ranking methods
based on their average classification accuracies considered over 21
o the AP dataset given variations in the enforced SCB length, w, and the selected classifiers.

¼ 200 w ¼ 250 w ¼ 300 w ¼ 350 w ¼ 400

.589% 91.277% 90.654% 90.654% 90.031%

.770% 94.081% 94.393% 93.458% 93.146%

.393% 94.081% 93.770% 94.081% 93.458%

.393% 95.639% 94.393% 96.262% 95.327%

.885% 95.327% 95.327% 95.950% 95.639%

.704% 94.393% 94.704% 94.393% 94.393%

.016% 94.704% 94.704% 93.770% 93.458%

.393% 92.835% 94.081% 91.589% 91.900%

.900% 94.081% 92.835% 94.704% 94.704%

.458% 94.081% 94.704% 93.146% 93.146%

.016% 94.081% 95.016% 91.900% 91.900%

.770% 93.458% 96.262% 93.146% 94.704%

.327% 95.327% 95.327% 95.327% 95.327%

.081% 94.081% 94.081% 94.393% 94.081%

.081% 91.900% 93.146% 92.835% 92.835%

.081% 93.770% 93.458% 94.393% 94.081%

.212% 93.146% 93.770% 92.523% 94.393%

.704% 94.393% 94.081% 94.081% 94.393%

.327% 94.704% 94.393% 94.393% 94.393%

.704% 93.770% 94.704% 95.016% 94.393%

.835% 94.704% 92.212% 92.835% 92.835%

.125% 93.992% 94.096% 93.755% 93.740%



Table 4
Individual and ensemble average classification accuracies of the brute-force shapelet transform applied to the AP dataset for variations in the shapelet length, L, and the selected classifiers.
The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 74.766% 86.293% 89.408% 90.654% 91.900% 92.835% 93.146% 93.458%
J48 85.358% 87.851% 90.966% 89.408% 94.393% 93.770% 92.835% 92.523%
Random forest 86.293% 90.654% 93.458% 92.835% 94.393% 95.639% 94.393% 94.704%
AdaBoost.M1 81.308% 88.785% 90.966% 91.277% 94.081% 94.081% 94.704% 95.016%
Classif. via regr. 83.489% 90.654% 90.966% 92.835% 95.327% 94.704% 94.081% 95.327%
Bagging 87.851% 90.654% 92.212% 92.212% 94.393% 92.835% 93.146% 93.770%
MultiBoostAB 84.424% 88.474% 91.589% 92.212% 94.393% 94.081% 95.016% 94.704%
LWL 81.620% 81.932% 88.474% 87.851% 91.277% 87.227% 87.227% 90.031%
PART 81.308% 90.031% 90.654% 89.408% 94.081% 92.212% 93.458% 93.770%
END 85.358% 87.851% 90.966% 89.408% 94.393% 93.770% 92.835% 92.523%
Decision stump 81.620% 81.620% 88.785% 88.162% 88.785% 89.097% 90.654% 89.097%
Simple CART 84.112% 86.916% 91.277% 89.097% 94.081% 91.900% 92.835% 92.835%
RIMARC 83.801% 90.654% 92.523% 91.900% 91.900% 93.458% 94.393% 94.393%
Bayes NET 82.866% 89.097% 90.966% 90.654% 90.031% 91.900% 91.589% 93.146%
Dagging 83.489% 92.212% 93.146% 92.523% 95.016% 95.950% 94.393% 95.950%
Random SubSpace 80.685% 88.785% 91.589% 90.966% 90.343% 91.589% 91.589% 93.458%
Decision Table 67.601% 72.586% 79.128% 78.505% 83.801% 77.882% 80.685% 83.178%
Ridor 84.424% 92.523% 90.966% 89.097% 94.393% 92.212% 94.704% 92.835%
ADTree 83.489% 89.720% 91.589% 91.277% 94.081% 95.016% 95.327% 96.573%
LAD Tree 87.851% 87.851% 90.966% 91.277% 94.393% 93.770% 94.704% 93.146%
Random Tree 80.685% 88.474% 88.785% 89.408% 90.031% 90.654% 92.835% 93.770%
AVERAGE 82.495% 87.791% 90.447% 90.046% 92.642% 92.123% 92.598% 93.057%

Table 5
Individual and ensemble average classification accuracies of the fast shapelet transform that is applied to the AP dataset for variations in shapelet length, L, and the selected classifiers. The
highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 80.062% 81.308% 85.358% 86.604% 88.474% 90.654% 92.523% 88.474%
J48 78.193% 82.555% 86.293% 87.851% 88.474% 90.031% 90.966% 87.227%
Random forest 72.274% 82.866% 79.751% 81.620% 82.866% 87.227% 90.031% 78.816%
AdaBoost.M1 77.882% 80.997% 86.916% 87.851% 88.785% 90.654% 90.031% 86.604%
Classif. via regr. 79.439% 79.751% 85.358% 85.981% 89.720% 90.031% 90.966% 88.474%
Bagging 78.193% 84.112% 86.293% 87.227% 89.097% 91.277% 89.720% 87.851%
MultiBoostAB 77.570% 82.555% 87.851% 88.474% 88.785% 90.654% 89.720% 86.916%
LWL 78.816% 80.997% 85.047% 87.851% 88.785% 90.031% 89.408% 87.227%
PART 77.259% 82.555% 85.981% 87.851% 88.474% 90.343% 91.589% 87.227%
END 78.193% 82.555% 86.293% 87.851% 88.474% 90.654% 90.966% 87.227%
Decision Stump 78.816% 78.505% 87.227% 87.851% 88.785% 90.654% 90.343% 86.293%
Simple CART 78.505% 81.620% 86.604% 84.424% 89.097% 90.031% 90.343% 87.227%
RIMARC 80.062% 85.981% 87.227% 88.162% 90.654% 91.589% 93.458% 89.720%
Bayes NET 76.324% 82.866% 86.916% 87.851% 88.785% 90.654% 89.408% 86.604%
Dagging 78.505% 78.816% 78.193% 86.604% 89.408% 90.031% 90.654% 86.293%
Random SubSpace 77.570% 71.651% 86.916% 87.851% 88.785% 90.654% 84.735% 86.604%
Decision Table 78.816% 81.932% 86.916% 87.851% 88.785% 90.654% 88.474% 86.604%
Ridor 77.570% 82.243% 83.489% 85.358% 87.227% 90.031% 88.162% 85.670%
ADTree 77.259% 82.866% 84.735% 87.227% 88.474% 91.277% 90.654% 87.539%
LAD Tree 75.389% 82.243% 85.047% 85.981% 87.227% 91.277% 90.654% 87.851%
Random Tree 71.963% 80.685% 78.505% 81.620% 82.555% 87.227% 89.097% 79.128%
AVERAGE 77.555% 81.412% 85.091% 86.664% 88.177% 90.269% 90.090% 86.456%
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classification algorithms. The shapelet-based benchmark methods are
favored by selecting their “best” L that yields the highest average clas-
sification accuracy for each dataset as tabulated in Table 14.

The resulting CD diagram is shown in Fig. 13. The horizontal axis in
the diagram represents the average ranks of each feature extraction
method. The average rank based on classification accuracy improves
from left to right. The CD is marked above the axis and corresponds to an
indicator in rank magnitude that is required for the compared methods to
differ such that they are termed as “critically different”. The connecting
blue lines in the diagram depict the groups of methods that are not
critically different. With respect to the datasets of the present study, the
performance of the proposed WTC method significantly exceeds that of
the fast shapelet transform. The average rank of WTC exceeds that of the
brute-force shapelet transform. However, the difference is not criti-
cally different.

Finally, the robustness aspect of WTC is demonstrated in a statistical
sense. Robustness of WTC is attributed to the averaging step taken in
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obtaining TA. TA is the class representative average time series from
which the local time window length w is extracted. Making the compu-
tation of w robust against intra-class subject variability and noise is vital
to the success of WTC.

In order to evaluate robustness of WTC, random subsets are generated
to obtain the corresponding w for each class of each dataset presented in
this study, following the very procedure described in Section 2.2.1. Size
of the random subsets are chosen to be the same with those used in
Section 3.1, which are 50 and 25 for AP and ECG datasets, respectively. A
total of 100 random subsets are generated for each class of each dataset.
As a measure of robustness, Coefficient of Variation (CoV) of the random
variable w denoted by Vw is chosen. Vw is defined as follows:

Vw ¼ σw
μw

; (17)

where σw and μw are the standard deviation and mean of w, respectively.
The resulting values of Vw are compared with those of a similar



Table 6
Individual and ensemble average classification accuracies of the proposedWTCmethod applied to lead v2 of the ECG dataset for different values of the energy threshold δ, confidence level p,
and selected classifiers. The highest average classification accuracy is shown in boldface.

δ ¼ 0:9900 δ ¼ 0:9990 δ ¼ 0:9999

p ¼ 0:95 p ¼ 0:99 p ¼ 0:95 p ¼ 0:99 p ¼ 0:95 p ¼ 0:99

Naive Bayes 95.000% 99.000% 96.000% 95.000% 96.000% 94.000%
J48 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
Random forest 100.000% 100.000% 100.000% 99.000% 100.000% 99.000%
AdaBoost.M1 98.000% 98.000% 98.000% 98.000% 100.000% 100.000%
Classif. via regr. 99.000% 99.000% 100.000% 100.000% 94.000% 93.000%
Bagging 100.000% 99.000% 97.000% 97.000% 97.000% 97.000%
MultiBoostAB 100.000% 99.000% 98.000% 98.000% 98.000% 98.000%
LWL 93.000% 95.000% 97.000% 96.000% 99.000% 99.000%
PART 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
END 97.000% 97.000% 98.000% 98.000% 98.000% 98.000%
Decision stump 93.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Simple CART 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
RIMARC 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%
Bayes NET 100.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Dagging 91.000% 94.000% 94.000% 94.000% 96.000% 90.000%
Random SubSpace 96.000% 96.000% 99.000% 98.000% 98.000% 98.000%
Decision Table 98.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Ridor 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
ADTree 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
LAD Tree 99.000% 99.000% 100.000% 100.000% 100.000% 100.000%
Random Tree 98.000% 96.000% 98.000% 86.000% 92.000% 95.000%
AVERAGE 97.524% 97.810% 98.095% 97.286% 97.810% 97.476%

Table 7
Individual and ensemble average classification accuracies of the WTC method applied to
leads v3 and v4 of the ECG dataset for the selected classifiers. The highest average clas-
sification accuracy is shown in boldface.

LeadV3 LeadV4

Naive Bayes 92.000% 96.000%
J48 98.000% 97.000%
Random forest 99.000% 99.000%
AdaBoost.M1 99.000% 97.000%
Classif. via regr. 99.000% 94.000%
Bagging 99.000% 95.000%
MultiBoostAB 99.000% 94.000%
LWL 99.000% 97.000%
PART 98.000% 97.000%
END 98.000% 97.000%
Decision stump 99.000% 94.000%
Simple CART 99.000% 95.000%
RIMARC 99.000% 99.000%
Bayes NET 99.000% 94.000%
Dagging 93.000% 94.000%
Random SubSpace 99.000% 93.000%
Decision Table 99.000% 97.000%
Ridor 100.000% 98.000%
ADTree 100.000% 99.000%
LAD Tree 100.000% 99.000%
Random Tree 100.000% 93.000%
AVERAGE 98.429% 96.095%
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experiment in which w is extracted directly from the time series in-
stances, omitting the averaging step. The number of values for w is equal
to the number of instances. It is noted that, there exist a total 202 AF and
219 SR instances for the AP dataset and 75 instances each for MI and NR
classes of the studied ECG dataset. As evident in Eq. (17), CoV normalizes
standard deviation with mean, and thus is a suitable candidate for
comparing standard deviation of two different random variables with
different mean values. As seen from Table 15, the averaging step
considerably decreases CoV of w which implies an improved level of
robustness for WTC.

4. Discussion

In the study, a method termed as WTC is proposed to extract features
from the signals in the form of time series. WTC is applied to a cardiac AP
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dataset with labeled SR and AF patients and three precordial leads of an
ECG dataset that consist of control subjects and patients diagnosed with
acute MI. Extracted feature vectors from these datasets are then exam-
ined for their classification accuracies that yield favorable results. Sub-
sequently, the brute-force and fast shapelet transforms are used to
compare the performance of WTC in terms of predictive accuracy and
computational complexity. Critical Difference (CD) analysis is performed
on the datasets to reveal that WTC is “critically better” than fast shapelet
transform. Although WTC and brute-force shapelet transforms are not
“critically different”, the performance of the former is slightly better.

Analog signal acquisition and digitization involve thermal and
quantization noise and biophysical signals that are not exceptions in this
aspect. Noise caused by motion artifacts resulting from electrode, probe,
sensor, equipment, and even from patient movements constitutes dis-
turbances in the desired signal in addition to thermal noise. Furthermore,
almost all biophysical signals exhibit individualized polymorphism
among instances to a certain extent as mentioned by Ref. [63] for ECGs,
and this may hamper interpretation. WTC constructs the class represen-
tative time series as an ensemble average of all instances sharing a
common class label and devises a mean trajectory that the population
statistically follows within a confidence bound to mitigate the noise
originated effects and variability among individual instances. Hence, as
opposed to directly extracting features from the instances themselves,
WTC uses a class representative trajectory for this purpose. The study
findings indicate that this approach yields favorable results for AP and
ECG datasets, and the latter is recognized as a signal that is usually
contaminated with high levels of noise [41–43].

The DCT representation of the time series in conjunction with the
extraction of perceptually important points (PIPs) constitutes a central
part of the proposed WTC method since it allows the determination of a
proper window length for local features. Briefly, DCT is utilized as a
robust heuristic to feed a cut-off percentage to select the PIPs from the
class representative average time series. Additionally, DCT is a widely
used digital processing technique [64] that serves the purpose of elimi-
nating redundancy in the processed data. It is noted that WTC determines
the time windows and also assigns scores to indicating an order based on
their descriptive power.

The presented results from completely different datasets reveal that
the values of the energy threshold (δ) and the confidence level (p) pa-
rameters that yield favorable results for the WTC method are almost the



Table 8
Individual and ensemble average classification accuracies of the brute-force shapelet transform applied to lead v2 of ECG dataset for the variations in the shapelet length, L, and the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 92.000% 95.000% 94.000% 90.000% 92.000% 90.000% 90.000% 90.000%
J48 91.000% 93.000% 94.000% 93.000% 93.000% 96.000% 93.000% 94.000%
Random forest 92.000% 96.000% 97.000% 97.000% 98.000% 99.000% 98.000% 97.000%
AdaBoost.M1 91.000% 96.000% 97.000% 96.000% 98.000% 97.000% 95.000% 97.000%
Classif. via regr. 92.000% 95.000% 95.000% 91.000% 94.000% 95.000% 93.000% 94.000%
Bagging 92.000% 93.000% 91.000% 93.000% 94.000% 93.000% 93.000% 92.000%
MultiBoostAB 92.000% 93.000% 91.000% 93.000% 93.000% 93.000% 93.000% 93.000%
LWL 87.000% 94.000% 98.000% 95.000% 96.000% 90.000% 95.000% 94.000%
PART 92.000% 93.000% 94.000% 93.000% 94.000% 96.000% 93.000% 94.000%
END 91.000% 93.000% 94.000% 93.000% 93.000% 96.000% 93.000% 94.000%
Decision stump 85.000% 93.000% 95.000% 90.000% 94.000% 93.000% 92.000% 93.000%
Simple CART 90.000% 93.000% 95.000% 91.000% 96.000% 96.000% 92.000% 95.000%
RIMARC 95.000% 94.000% 94.000% 93.000% 94.000% 93.000% 93.000% 93.000%
Bayes NET 92.000% 93.000% 92.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Dagging 91.000% 93.000% 93.000% 93.000% 93.000% 92.000% 89.000% 92.000%
Random SubSpace 92.000% 93.000% 93.000% 94.000% 93.000% 93.000% 92.000% 92.000%
Decision Table 83.000% 88.000% 84.000% 86.000% 86.000% 87.000% 87.000% 85.000%
Ridor 86.000% 93.000% 95.000% 92.000% 91.000% 96.000% 96.000% 95.000%
ADTree 91.000% 96.000% 97.000% 98.000% 98.000% 97.000% 98.000% 97.000%
LAD Tree 90.000% 97.000% 97.000% 96.000% 97.000% 98.000% 97.000% 98.000%
Random Tree 87.000% 90.000% 91.000% 94.000% 93.000% 99.000% 98.000% 96.000%
AVERAGE 90.190% 93.524% 93.857% 93.048% 93.952% 94.381% 93.476% 93.714%

Table 9
Individual and ensemble average classification accuracies of the fast shapelet transform applied to lead v2 in the ECG dataset for variations in the fast shapelet lengths, L, and for the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 81.000% 90.000% 96.000% 91.000% 90.000% 86.000% 86.000% 93.000%
J48 82.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
Random forest 80.000% 85.000% 98.000% 92.000% 92.000% 93.000% 88.000% 87.000%
AdaBoost.M1 85.000% 89.000% 98.000% 91.000% 93.000% 92.000% 92.000% 93.000%
Classif. via regr. 81.000% 90.000% 92.000% 93.000% 93.000% 93.000% 93.000% 93.000%
Bagging 85.000% 90.000% 90.000% 93.000% 93.000% 93.000% 93.000% 94.000%
MultiBoostAB 85.000% 91.000% 93.000% 93.000% 93.000% 93.000% 93.000% 94.000%
LWL 80.000% 90.000% 98.000% 93.000% 93.000% 93.000% 92.000% 94.000%
PART 80.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
END 82.000% 88.000% 95.000% 92.000% 92.000% 92.000% 92.000% 93.000%
Decision stump 85.000% 90.000% 98.000% 93.000% 93.000% 93.000% 92.000% 94.000%
Simple CART 82.000% 90.000% 98.000% 91.000% 93.000% 94.000% 88.000% 94.000%
RIMARC 85.000% 92.000% 99.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Bayes NET 85.000% 91.000% 91.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Dagging 80.000% 88.000% 93.000% 93.000% 86.000% 83.000% 89.000% 91.000%
Random SubSpace 76.000% 87.000% 84.000% 84.000% 81.000% 93.000% 75.000% 84.000%
Decision Table 85.000% 90.000% 98.000% 93.000% 93.000% 93.000% 93.000% 94.000%
Ridor 83.000% 90.000% 98.000% 91.000% 90.000% 92.000% 91.000% 89.000%
ADTree 84.000% 85.000% 96.000% 92.000% 93.000% 95.000% 89.000% 88.000%
LAD Tree 81.000% 85.000% 97.000% 92.000% 93.000% 94.000% 90.000% 89.000%
Random Tree 83.000% 83.000% 96.000% 92.000% 92.000% 94.000% 88.000% 87.000%
AVERAGE 82.381% 88.571% 95.143% 91.857% 91.571% 92.190% 90.190% 91.667%
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same, thereby demonstrating its consistency. In contrast to the length
parameter (L) of the shapelet-based methods, the parameters of the WTC
method are unitless and relatively less sensitive to the dataset of interest.
Additionally, the accuracy cost of deviation from the values is relatively
less when compared to those involved in the benchmark methods. The
results of the study indicate that it is possible for prospective users of the
WTC method to use the recommended values of the parameters
(δ ¼ 0:9990 and p ¼ 0:95) for different datasets without engaging in the
parameter exploration step.

Execution time is an important criterion for online applications and
especially for those involving big datasets. The OðKN þ N2Þ complexity
of the proposed WTC method outperforms the benchmark methods of
brute-force, [16] and fast shapelet, [32] transforms in terms of compu-
tational complexity. In addition to the time-consuming feature extraction
phase of shapelet-based transforms, [16], the discovered shapelets may
not belong to the time windows associated with the expected morphol-
ogies of the class label of interest. Unconstrained selection of
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subsequences based solely on their minimum distance to other sub-
sequences from arbitrary time intervals may hinder the accurate assess-
ment of the underlying dynamics. Moreover, the temporal location of a
subsequence is typically associated with a specific importance for clinical
interpretation that may be disregarded by the very nature of time series
shapelets. Additionally, the necessity of providing the shapelet length
and total number of shapelets requires preliminary knowledge as well as
forming assumptions about the dataset of interest.

The study indicates that time windows of WTC that coincide with
phases 2 and 3 of the AP signal (Fig. 2a) are most predictive for both
classes. The plateau of AP (phase 2) is governed by the balance between
calcium influx through L-type Ca2þ channels and potassium efflux via a
plethora of Kþ channels. Conversely, late repolarization (phase 3) is
dominated by Kþ current (IK1) through inward rectifier channels (when
compared to Fig. 2b). The more positive potentials during early repo-
larization and the rapid final repolarization in AF correspond to reduced
transient outward current and enhanced IK1, respectively as induced by



Table 10
Individual and ensemble average classification accuracies of the brute-force shapelet transform applied to lead v3 in ECG dataset for variations in the shapelet length, L, and the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 95.000% 95.000% 96.000% 95.000% 96.000% 100.000% 100.000% 100.000%
J48 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Random forest 96.000% 94.000% 97.000% 99.000% 100.000% 100.000% 100.000% 100.000%
AdaBoost.M1 97.000% 95.000% 96.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Classif. via regr. 97.000% 93.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Bagging 95.000% 95.000% 94.000% 96.000% 96.000% 100.000% 100.000% 100.000%
MultiBoostAB 95.000% 95.000% 94.000% 96.000% 97.000% 100.000% 100.000% 100.000%
LWL 93.000% 90.000% 93.000% 100.000% 97.000% 100.000% 99.000% 99.000%
PART 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
END 95.000% 90.000% 94.000% 99.000% 98.000% 97.000% 99.000% 99.000%
Decision stump 96.000% 92.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Simple CART 96.000% 92.000% 93.000% 100.000% 98.000% 98.000% 98.000% 98.000%
RIMARC 98.000% 96.000% 96.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Bayes NET 95.000% 95.000% 94.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Dagging 90.000% 91.000% 84.000% 90.000% 90.000% 92.000% 89.000% 90.000%
Random SubSpace 95.000% 95.000% 96.000% 96.000% 97.000% 100.000% 100.000% 100.000%
Decision Table 85.000% 77.000% 85.000% 79.000% 71.000% 79.000% 83.000% 85.000%
Ridor 97.000% 91.000% 94.000% 99.000% 97.000% 98.000% 98.000% 98.000%
ADTree 97.000% 95.000% 94.000% 100.000% 98.000% 98.000% 98.000% 98.000%
LAD Tree 96.000% 92.000% 94.000% 100.000% 98.000% 98.000% 98.000% 98.000%
Random Tree 91.000% 91.000% 90.000% 94.000% 95.000% 99.000% 99.000% 98.000%
AVERAGE 94.714% 92.095% 93.238% 96.809% 95.809% 97.476% 97.762% 97.857%

Table 11
Individual and ensemble average classification accuracies of the fast shapelet transform applied to lead v3 in ECG dataset for variations in the fast shapelet length, L, and the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 95.000% 92.000% 84.000% 81.000% 69.000% 81.000% 74.000% 76.000%
J48 94.000% 89.000% 82.000% 87.000% 77.000% 74.000% 74.000% 77.000%
Random forest 94.000% 87.000% 82.000% 91.000% 73.000% 68.000% 67.000% 72.000%
AdaBoost.M1 96.000% 91.000% 86.000% 87.000% 75.000% 80.000% 71.000% 78.000%
Classif. via regr. 95.000% 88.000% 81.000% 88.000% 76.000% 65.000% 73.000% 76.000%
Bagging 96.000% 88.000% 83.000% 87.000% 69.000% 78.000% 69.000% 71.000%
MultiBoostAB 97.000% 89.000% 82.000% 88.000% 73.000% 71.000% 70.000% 74.000%
LWL 97.000% 89.000% 82.000% 88.000% 72.000% 70.000% 74.000% 73.000%
PART 94.000% 89.000% 83.000% 86.000% 72.000% 74.000% 73.000% 77.000%
END 94.000% 89.000% 82.000% 87.000% 77.000% 74.000% 74.000% 77.000%
Decision stump 97.000% 89.000% 84.000% 88.000% 66.000% 69.000% 73.000% 76.000%
Simple CART 96.000% 91.000% 83.000% 88.000% 69.000% 76.000% 75.000% 76.000%
RIMARC 98.000% 94.000% 85.000% 93.000% 87.000% 86.000% 81.000% 81.000%
Bayes NET 97.000% 89.000% 83.000% 88.000% 71.000% 71.000% 73.000% 77.000%
Dagging 74.000% 73.000% 67.000% 73.000% 62.000% 60.000% 59.000% 67.000%
Random SubSpace 97.000% 71.000% 73.000% 86.000% 65.000% 71.000% 72.000% 73.000%
Decision Table 97.000% 89.000% 83.000% 88.000% 75.000% 80.000% 73.000% 78.000%
Ridor 94.000% 88.000% 83.000% 83.000% 71.000% 76.000% 72.000% 72.000%
ADTree 96.000% 89.000% 84.000% 88.000% 80.000% 75.000% 74.000% 71.000%
LAD Tree 96.000% 90.000% 83.000% 88.000% 71.000% 79.000% 76.000% 72.000%
Random Tree 94.000% 89.000% 85.000% 87.000% 76.000% 75.000% 70.000% 70.000%
AVERAGE 94.667% 87.762% 81.905% 86.667% 72.667% 73.952% 72.238% 74.476%
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remodeling in chronic AF [17]. The high predictive power of phases 2
and 3 as shown in the present study (with reference to color maps in
Fig. 6a and b) is in good agreement with a previous study on human atrial
APs that introduced the analysis parameter “plateau potential” (PLT20)
that is defined as the average membrane potential of a time window
between 20% and 30% of the AP duration at 90% of repolarization
(APD90) [39]. Specifically, PLT20 (mV) and APD90 (ms) were ranked 5th

and 1st , respectively, out of 62 features in classifying an instance as
positive for AF [34]. The ability to classify an AP as AF or SR allows the
formation of conclusions with respect to the underlying changes in ion
channel properties and is of significance to predict antiarrhythmic drug
action [65]. The findings on AP dataset do not point to a clinical
outcome, but they hold an experimental relevance. Thus, it provides good
real-life biophysical data to test the discriminative power of the WTC
method aided by the preserved locality of the extracted features.

In addition to the AP dataset, the analysis of the three chest leads of an
ECG dataset is suitable for demonstrating the usability of the proposed
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method for clinical applications. With respect to the MI that corresponds
to the condition of interest, certain leads in ECG recordings are expected
to undergo predictable morphological and temporal changes including
an elevation of the ST-segment (during STEMI) [44] and is usually pre-
ceded by subtle changes in the T-wave shape and size [66] and succeeded
by a loss of the R-wave amplitude [21]. The distribution of similarity
scores across the time windows as shown in Fig. 10a, c, and e is consistent
with the aforementioned morphologies that are expected to be observed
in anterior chest leads of v2, v3, and v4, respectively. In contrast, the
resulting shapelets of the brute-force shapelet transform for lead v2 of MI
time series instances (Fig. 12) do not particularly highlight any clinically
relevant time windows. In a manner similar to the AP dataset, the
resulting classification accuracies of the brute-force shapelet transform
for the ECG dataset (Tables 8, 10 and 12) show considerable variation
with respect to the input parameter of shapelet length.

It is conjectured that WTC has potential clinical benefits including its
integration with emergency, ambulatory, inpatient, and home care



Table 12
Individual and ensemble average classification accuracies of the brute-force shapelet transform applied to lead v4 in ECG dataset for variations in the shapelet length, L, and the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 84.000% 74.000% 70.000% 80.000% 77.000% 89.000% 95.000% 95.000%
J48 97.000% 92.000% 88.000% 87.000% 94.000% 96.000% 99.000% 96.000%
Random forest 89.000% 92.000% 88.000% 90.000% 96.000% 99.000% 99.000% 99.000%
AdaBoost.M1 96.000% 94.000% 82.000% 84.000% 87.000% 99.000% 99.000% 97.000%
Classif. via regr. 94.000% 93.000% 83.000% 85.000% 88.000% 93.000% 99.000% 96.000%
Bagging 73.000% 72.000% 81.000% 79.000% 82.000% 84.000% 90.000% 90.000%
MultiBoostAB 89.000% 74.000% 78.000% 78.000% 80.000% 86.000% 91.000% 91.000%
LWL 98.000% 91.000% 85.000% 84.000% 90.000% 94.000% 100.000% 95.000%
PART 97.000% 92.000% 87.000% 89.000% 92.000% 96.000% 99.000% 96.000%
END 97.000% 92.000% 88.000% 87.000% 94.000% 96.000% 99.000% 96.000%
Decision stump 98.000% 91.000% 83.000% 84.000% 89.000% 93.000% 99.000% 96.000%
Simple CART 98.000% 94.000% 83.000% 84.000% 89.000% 97.000% 99.000% 96.000%
RIMARC 91.000% 94.000% 86.000% 84.000% 85.000% 87.000% 95.000% 95.000%
Bayes NET 78.000% 74.000% 80.000% 78.000% 81.000% 86.000% 92.000% 91.000%
Dagging 72.000% 74.000% 76.000% 81.000% 80.000% 83.000% 85.000% 86.000%
Random SubSpace 77.000% 74.000% 79.000% 77.000% 81.000% 85.000% 89.000% 91.000%
Decision Table 91.000% 67.000% 72.000% 72.000% 74.000% 76.000% 83.000% 81.000%
Ridor 96.000% 93.000% 84.000% 88.000% 89.000% 92.000% 99.000% 94.000%
ADTree 96.000% 92.000% 88.000% 90.000% 93.000% 97.000% 99.000% 97.000%
LAD Tree 95.000% 91.000% 86.000% 87.000% 95.000% 97.000% 99.000% 98.000%
Random Tree 79.000% 71.000% 73.000% 77.000% 70.000% 91.000% 90.000% 95.000%
AVERAGE 89.762% 84.810% 81.905% 83.095% 86.000% 91.238% 95.190% 93.857%

Table 13
Individual and ensemble average classification accuracies of the fast shapelet transform applied to lead v4 in ECG dataset for variations in the fast shapelet length, L, and the selected
classifiers. The highest average classification accuracy is shown in boldface.

L ¼ 50 L ¼ 100 L ¼ 150 L ¼ 200 L ¼ 250 L ¼ 300 L ¼ 350 L ¼ 400

Naive Bayes 58.000% 71.000% 88.000% 81.000% 85.000% 77.000% 77.000% 77.000%
J48 58.000% 75.000% 90.000% 79.000% 84.000% 74.000% 81.000% 82.000%
Random forest 59.000% 70.000% 91.000% 71.000% 81.000% 65.000% 64.000% 70.000%
AdaBoost.M1 64.000% 70.000% 87.000% 81.000% 86.000% 74.000% 77.000% 83.000%
Classif. via regr. 57.000% 72.000% 90.000% 81.000% 81.000% 75.000% 80.000% 83.000%
Bagging 53.000% 70.000% 88.000% 76.000% 83.000% 70.000% 79.000% 83.000%
MultiBoostAB 49.000% 70.000% 88.000% 77.000% 82.000% 74.000% 80.000% 83.000%
LWL 60.000% 74.000% 90.000% 76.000% 87.000% 73.000% 80.000% 83.000%
PART 58.000% 75.000% 90.000% 78.000% 83.000% 74.000% 81.000% 82.000%
END 58.000% 75.000% 90.000% 79.000% 84.000% 74.000% 81.000% 82.000%
Decision stump 55.000% 74.000% 90.000% 78.000% 87.000% 75.000% 80.000% 83.000%
Simple CART 61.000% 74.000% 88.000% 79.000% 82.000% 72.000% 80.000% 83.000%
RIMARC 77.000% 78.000% 97.000% 86.000% 89.000% 80.000% 83.000% 85.000%
Bayes NET 49.000% 68.000% 87.000% 78.000% 84.000% 75.000% 80.000% 83.000%
Dagging 57.000% 68.000% 82.000% 80.000% 80.000% 74.000% 77.000% 75.000%
Random SubSpace 49.000% 67.000% 78.000% 74.000% 76.000% 75.000% 80.000% 83.000%
Decision Table 58.000% 74.000% 87.000% 79.000% 87.000% 75.000% 80.000% 83.000%
Ridor 58.000% 71.000% 81.000% 77.000% 87.000% 72.000% 71.000% 81.000%
ADTree 68.000% 73.000% 93.000% 85.000% 77.000% 71.000% 77.000% 82.000%
LAD Tree 64.000% 73.000% 93.000% 82.000% 82.000% 72.000% 75.000% 81.000%
Random Tree 50.000% 70.000% 86.000% 70.000% 69.000% 72.000% 70.000% 67.000%
AVERAGE 58.095% 72.000% 88.286% 78.429% 82.667% 73.476% 77.762% 80.667%

Table 14
Values of the shapelet length, L, which are used for the critical difference diagram for the
brute-force and fast shapelet transforms.

Brute-force shapelet Fast shapelet

AP 400 300
ECG lead v2 300 150
ECG lead v3 400 50
ECG lead v4 350 150
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expert systems that commonly suffer from the misinterpretation of
different symptoms [67]. Cases demanding urgent decision making, such
as MI, require a digital assessment of the available measurements and
decision support for triage. Early diagnosis and determining the severity
of MI is vital for patients, [68]. Prior to in-hospital interventions, it is
advantageous to perform a preliminary analysis of the prehospital ECGs
through mobile expert systems to alert patients, caregivers, or primary
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healthcare professionals [45]. Recently, ECG devices are equipped with
various diagnostic detection mechanisms such as ST-segment monitoring
to detect silent ischemia. The importance of automatic detection of acute
MI and its place in clinical decision-making are discussed in Refs. [69]
and [70] along with different types of implementations. Specifically for
the case of ischemia, it is possible for the course of the disease to change
rapidly and therefore a single randomly performed ECG may be insuffi-
cient to describe its extent. In order to form a reasonable plan for treat-
ment, extant studies such as [71] indicate that a continuum of ECGs
should be assessed, so that unnecessary cath-lab activation is avoided
[72]. All these studies emphasize the need for fast and lightweight al-
gorithms that produce accurate results.

In addition to pointing out the incidence of a disorder, WTC is also
suitable for distinguishing the various types of morphologies. For
example, it is necessary to differentiate tall and symmetrical T waves that
are observed during hyperkalemia from broad and rather skewed hyper-
acute T waves that typically occur in the early stages (within the first



Fig. 13. Critical difference diagram based on the average classification accuracies achieved by WTC, brute-force and fast shapelet transforms.

Table 15
CoV values of w, Vw , with and without averaging for each dataset.

Dataset Class Label with Averaging without Averaging

AP AF 0.187 1.019
SR 0.120 0.486

ECG lead v2 MI 0.186 0.378
NR 0.153 0.381

ECG lead v3 MI 0.121 0.380
NR 0.168 0.457

ECG lead v4 MI 0.164 0.433
NR 0.143 0.460
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30 min) of STEMI [73]. Furthermore, WTC could contribute to the edu-
cation of medical professionals in the course of their training. The
“human readability” aspect of the algorithm allows practitioners to
recognize patterns more easily and study underlying dynamics and
possible “cause-and-effect” relations. Moreover, its modest computa-
tional complexity is such that it can be integrated with any kind of mobile
or centralized online framework as well as stand-alone offline units that
require the rapid examination of densely sampled time series data.

5. Conclusion

The findings of this study indicate that WTC emerges a robust, fast,
interpretable, and accurate time series feature extraction method based
on the results presented for the atrial AP and ECG time series datasets. In
addition to achieving relatively higher classification accuracies and
lower execution times, the proposed method highlights the underlying
dynamics that are typical of the inspected class label. WTC yields results
in accordance with extant studies concerning atrial AP and ECG. In
conclusion, WTC emerges as a promising analysis tool with an unbiased
parameter determination for biomedical researchers to conduct objective
data mining analysis. Future studies will focus on the application of WTC
to other biophysical time series such as heart auscultation, electromyo-
gram and electroneurogram recordings, event-related brain potentials,
and regular measurements of blood pressure and blood sugar (for
detecting hypo/hyper-glycemic periods).
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