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a b s t r a c t

Energy management is key in prolonging the lifetime of an energy harvesting Internet of
Things (IoT) device with rechargeable batteries. Such an IoT device is required to fulfill
its main functionalities, i.e., information sensing and dissemination at an acceptable rate,
while keeping the probability that the node first becomes non-operational, i.e., the battery
level hits zero the first timewithin a given finite timehorizon, belowadesired level. Assum-
ing a finite-state Continuous-Time Markov Chain (CTMC) model for the Energy Harvesting
Process (EHP), we propose a risk-theoretic Markov fluid queue model for the computation
of first battery outage probabilities in a given finite time horizon. The proposed model
enables the performance evaluation of a wide spectrum of energy management policies
including those with sensing rates depending on the instantaneous battery level and/or
the state of the energy harvesting process. Moreover, an engineering methodology is
proposed by which optimal threshold-based adaptive sensing policies are obtained that
maximize the information sensing rate of the IoT device while meeting a Quality of Service
(QoS) constraint given in terms of first battery outage probabilities. Numerical results are
presented for the validation of the analytical model and also the proposed engineering
methodology, using a two-state CTMC-based EHP.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSNs) refer to an interconnection of a number of Sensor Nodes (SN) each ofwhich is deployed
for the purpose of gathering the sensory information regarding the located environment and disseminating this information
across the WSN [1,2]. WSNs target a wide spectrum of applications including indoor/outdoor environment monitoring,
target tracking, logistics support, robotics, etc. [3]. WSNs are typically battery-operated and energy management of WSNs
is therefore of utmost importance. Most WSNs explored in the literature are short-range multi-hop (mesh) networks where
most of the existing research is directed towards networking, routing, and energy efficiency aspects of WSNs [1,2,4]. For
relatively longer ranges, mesh architectures are not battery efficient since the nodes need to continuously receive, repeat,
and route their neighbors’ Radio Frequency (RF) signals which makes it quite difficult to efficiently manage the energy
consumption of SNs [5].

An alternative long-range technology is Low-Power Wide Area Networks (LPWANs) with star topologies, i.e., single-hop
connectivity. LPWANs employ sub-GHz unlicensed frequency bands for long-range and low-power communications [6].
LPWANs are promising for IoT (Internet of Things) environments which refer to a network of interconnected things or
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Fig. 1. Illustration of an energy harvesting IoT device.

devices equipped with sensors and/or actuators with wireless communication interfaces [6]. In LPWANs, the IoT devices
are one hop away from a unique sink node, named as the gateway, which provides bridging to the IP-based Internet [6].
We refer the reader to [5–8] for various LPWAN technologies including IEEE 802.11ah, LoRa, SigFox, Ingenu, etc. Although
there are similarities between WSNs and IoTs, the Internet connectivity requirements of IoTs, strict energy consumption
requirements on IoTs, and additionally the size of the population (far larger in IoTs than typical WSNs) appear to be the
key differences between them. Although bi-directional communication is possible in most IoT technologies, the mandatory
scenario is uplink communications via which end devices occasionally send data to the gateway; this latter scenario being
the focus of this paper.

One of the main concerns regarding WSNs has been energy efficiency using various methods aiming at prolonging
the lifetime of the individual SNs of the WSN [4,9]. Similarly, there has been recent interest in energy efficiency for IoTs;
see [10,11] and the references therein. Deployment of energy harvesting sources on end devices including solar, thermal,
electromagnetic, kinetic, or indoor lighting-based sources, has been proposed to address this concern [12–14]. The focus
of this paper will be on the energy management of energy harvesting end systems in the LPWAN setting with the end
system having direct uplink connectivity to the gateway. The end system in IoTs will be called an IoT device or simply device
throughout the paper.

In the current paper, we consider an energy harvesting IoT device illustrated in Fig. 1 with its rechargeable battery
modeled by a single buffer for energy storage. The energy harvesting process Z(t) dictates the instantaneous rate at time
t at which the battery is charged/discharged. Positive (negative) values for this rate are representative of energy harvesting
(leakage). We assume that Z(t) is governed by a general finite-state CTMC with initial probability vector α at time zero. In
the device model of Fig. 1, the battery energy process X(t) ∈ [0, B] denotes the stored energy at the battery at time t and the
capacity limit B represents themaximumamount of energy that the battery can hold. The initial battery level is denoted by u,
i.e., X(0) = u. Similar to the systemmodel envisioned in [15] and [16], when the IoT device decides to sense the environment,
it samples the physical quantities of interest, processes this information, forms a data packet, and immediately transmits
towards the gateway using the IoT environment. Since the sensing, processing, packetization, and transmission sub-steps
are combined into one single step in this model, the system we envision does not need to possess a data buffer to store data
packets. For convenience, we call this combined step as sensing. The count process related to the sensing epochs (or the data
packet arrival process) is modeled by a non-homogeneous Poisson process with rate λ(X(t), Z(t)), also called the adaptive
sensing rate, which is allowed to depend on the instantaneous battery level and the state of the harvester process. For the
purpose of analytical tractability, we ignore transmission errors and MAC (Medium Access Control) layer retransmissions,
or equivalently, we assume that when a data packet is transmitted, it is successfully received by the gateway. The impact
of the MAC layer and transmission errors are left for future research. In our model, the energy dissipated for one single
data packet transmission (denoted by S) is assumed to be exponentially distributed with mean E[S]. We assume that this
quantity captures the energy dissipated for all the four sub-steps. Since the time scales of operation for the slower EHP and
the relatively rapid packet transmission process are quite different, we assume without loss of generality that the packet
transmission takes place instantaneously resulting in an abrupt energy drop by an amount of S each time a data packet gets
to be transmitted. Temporary battery outage is said to occur at time t when the buffer is first depleted, i.e, X(t) = 0, after
which the device would not be able to fulfill its functionalities, i.e., temporary IoT service interruption, until the device finds
a chance again to harvest energy. As the QoS constraint, we propose in this paper to use the finite-horizon outage probability
which is defined as the probability of first battery outage within a given time horizon H .

The main goal of this paper is to first analytically obtain the finite-horizon battery outage probability as a function of
all system model parameters. Note that this probability depends on the initial buffer level u, initial probability vector α of
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the EHP, and the time horizon H . For this purpose, we propose to construct a Multi-Regime Markov Fluid Queue (MRMFQ)
model for the energy harvesting IoT device; see [17] and [18] for a detailed study of MRMFQs. We note that numerically
stable and computationally efficient algorithms are available in the literature for the steady-state solution of MRMFQs [18].
The reference [19] proposes a method to compute the finite-horizon ruin probabilities for a risk problem with surplus-
dependent premiums, claim arrivals modeled by a Markovian arrival process, and PH-type claim sizes with a matrix-
analytical algorithm. Such ruin probabilities are given in terms of the steady-state probability mass accumulations of an
associated MRMFQ at certain levels [19]. Similar to the findings of [19], we express in this paper the finite-horizon battery
outage probabilities as the ratio of certain steady-state probability mass accumulations of our proposed MRMFQ model.
The second goal of this paper is to use this analytical method as an instrument to find the optimum transmission policies
regarding the choice of the sensing rate function λ(X(t), Z(t)) meeting the QoS constraint with the purpose of maximizing
the average long-term sensing rate. Towards the second goal and for tractability purposes, we focus our attention to the
commonly used two-state CTMC model for the EHP and threshold-based transmission policies in which the instantaneous
sensing rate λ(X(t), Z(t)) is either λmin or λmax > λmin, depending on whether X(t) is above or below a given threshold
which is allowed to depend on the current state of the EHP. This generality in analysis allows us to compare various non-
adaptive/adaptive sensing policies.MRMFQs have already been used tomodel the energy process of a rechargeable battery in
a few studies. In themost relatedwork of [20] and [21], a two-regime two-stateMarkov fluid queuemodel for a rechargeable
battery is studied with a single battery level threshold. Below the threshold, a power-save mode is entered and the rate of
discharge is decreased in [20,21]. The main contributions of the current paper are:

• The power discharge is modeled more explicitly in our work (than the model presented in [20] and [21]) by abrupt
drops stemming from sensing events which is more realistic in IoT environments.

• A threshold is defined for each state of the EHP, i.e., state-dependent threshold policy, enabling the model to be more
general than the one studied in [20] and [21]. This generalization will be shown to be advantageous especially for
short time horizons or slower EHPs through numerical examples.

• The mathematical formulation developed in this paper allows the EHP to be modeled with a CTMC with arbitrary
number of states and with arbitrary number of thresholds.

• In [20,21], an expression for the Laplace transform of the battery life’s probability density function is first obtained
which is then inverted numerically for particular instances. However, obtaining this Laplace transform as in [20]
requires symbolic mathematical operations (the equations were implemented in the symbolic math package Math-
ematica in [20]), which does not scale well to large systems. In the current paper, we provide a matrix-analytical
approach that saves one from obtaining Laplace transforms and their inversion altogether. This allows one to very
rapidly obtain battery outage probabilities for a given set of design parameters and subsequently repeat the analysis
as a function of these parameters for the purpose of parameter optimization.

• In terms of the numerical method to solve the arising MRMFQ, we use the method described in [18] but the proposed
MRMFQ model for energy harvesting is unique to the current paper but has commonalities with the MRMFQ model
described in [19] for computing ruin probabilities. In our work, the inter-event times are exponentially distributed
with parameter dynamically adjusted on the battery level whereas the premiums collected by an insurance company
is dynamically adjusted in [19] according to the instantaneous surplus. Moreover, we propose an expression for the
average sensing rate in the current paper, the counterpart of which is not studied in [19].

The paper is organized as follows. In Section 2, related work on energy management of energy harvesting SNs and IoTs
are given as well as a brief introduction to MRMFQs and their applications to modeling energy harvesting devices. The
computational procedure for finding the battery outage probabilities for the system of Fig. 1 is presented in Section 3.
In Section 4, the proposed analytical technique is validated using simulations and moreover the proposed engineering
methodology to find the optimum sensing rate function is presented for a wide range of system parameters. Finally, we
conclude.

2. Related work

Wenowpresent the relatedwork on energymanagement of energy harvesting devices. Then,we provide a brief overview
of fluid queues and MRMFQs as well as the related work on their applications to modeling energy harvesting devices.

2.1. Energy management in energy harvesting devices

There have been quite a few recent studies on the energymanagement problem in energy harvesting devices; see [22] for
a recent review. A subset of these studies concentrate on an optimization problem on the basis of the availability of the off-
line knowledge of energy and data arrivals at the device, which is most commonly referred to as the off-line problem in the
literature. As a representative example, the reference [23] studies the offline problem in a SN with one data queue storing
data arrivals, and another queue storing energy harvested from the environment, and obtains a globally optimal offline
scheduling policy with the purpose of minimizing transmission completion time for several data packet arrival scenarios.
On the other hand, problems involving systemswith both data and energy arrivalsmodeled by a randomprocess are referred
to as on-line problems. On-line problems aremore realistic since it is not appropriate to have a deterministic a-priori known
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model for the EnergyHarvesting Process (EHP) inmost IoT settings. For the particular example of solar sources, the amount of
harvested solar energymay vary depending on daily conditions such as temperature, amount and size of clouds, etc. The EHP
is often characterizedwith stationary discrete-timeMarkovianmodels stemming from their amenability to analysis [24–26].
The reference [27] investigates howwell six types of discrete distributions, namely discrete uniform, geometric, transformed
geometric, Poisson, transformed Poisson, and two-state discreteMarkovian, fit to the real-world solar data. Alternative CTMC
models of EHPs are proposed in [28] and [29]. We focus in this paper on the on-line problem and in particular CTMC-based
EHP models due to the natural asynchronous operation of the IoT devices.

The existing work related to the on-line problem involves the development of energy management policies for SNs or
IoT devices so as to improve the performance of the device in a certain statistical sense. In [15], the authors model the
ambient energy supply as a two-state discrete-time Markov chain comprising a good and a bad state, and assume a finite
capacity constraint on the basis of which they propose near-optimal transmission policies in terms of the average long-
term importance of the reported data. The reference [30] seeks to maximize the long-term average transmission rate while
considering an additional data queue and the entire system is modeled with a two-dimensional discrete-timeMarkov chain
whose states correspond to the joint energy and data queue levels. The work in [31] formulates an optimization problem
to obtain sensing and transmission policies with the problem constraints being the probabilities that the data buffer gets
full or the battery depletes. A related work [32] obtains energy management policies which minimize a linear combination
of the mean queue length and the mean data loss rate. In [33], a two-dimensional random walk is proposed for modeling a
device for which the data and energy arrivals aremodeled by randomprocesses. In particular, when the device stores a given
number of energy packets, then it can send a data packet [33]. Adapting the sensing rate (the rate at which the IoT device
gathers data from the environment), also known as adaptive duty cycling, is one of the on-line strategies to enhance the
throughput performance and the lifetime of an IoT device [34]. The reference [35] studies a model-free approach to adaptive
duty cycling using techniques from adaptive control theory whereas [34] presents amethod in which the statistical model is
available. In [36], the authors formulate an optimization problem to obtain the optimal duty cycle by taking into account the
harvested energy with the constraints being the latency and loss probability of the packets that are queued in a finite buffer
before being transmitted. The work in [37] compares two policies that adjust sensing epochs and make sensing decisions in
order to increase the long term average sensing performance. In the first policy, sensing events are periodic and take place if
there is enough energy in the battery or otherwise skipped, which is the optimal policy for an infinite-size battery whereas
in the second policy, time between two consecutive sensing events also depends on the battery level and is adjustable. The
scope of the current paper is the on-line problem, and in particular the adaptive sensing mechanism using a CTMC-based
stochastic model for the EHP.

2.2. Multi-regime Markov fluid queues

In fluid queuemodels, a fluid acts as the input to and output of a buffer. In particular, Markov Fluid Queues (MFQ) of first-
order are described by a joint Markovian process (X(t), Z(t)) where X(t) represents the buffer level and Z(t) is an underlying
finite state-space continuous-time Markov chain that determines the drift, i.e., the rate at which the buffer content X(t)
changes. The process Z(t) is called the background (or modulating) process of the MFQ. The reference [38] studies MFQs
with infinite queue sizes using a spectral expansion approach whereas [39] extends this analysis to finite queue sizes.
Second-order MFQs (also known as Markov modulated diffusion processes) generalize first-order MFQs by using Brownian
motion modulated by a CTMC [40]. In the absence of modulation, this process is called a diffusion process which has many
applications in the analysis of computer systems [41].

MRMFQs are generalizations of MFQs by partitioning the buffer space into a finite number of non-overlapping intervals
called the regimes (or layers) of theMRMFQ [17,18,42,43]. MRMFQs are also calledmulti-threshold, level-dependent, multi-
layer, or feedback MFQs, in the literature. In MRMFQs, the infinitesimal generator of the background CTMC as well as the
drift into the buffer depend on the regime at which the buffer level resides. The material below for the brief description
of MRMFQs and their notation is based on [18]. For an MRMFQ, a buffer with finite size B < ∞ is partitioned into K > 1
regimes with the boundaries 0 = T (0) < T (1) < · · · < T (K−1) < T (K )

= B. If T (k−1) < X(t) < T (k), the system is said to be
in regime k at time t . Let X(t) ∈ [0, B] and Z(t) ∈ {0, 1, . . . ,N − 1} denote the buffer content and the background process,
respectively, at time t as in ordinary MFQs. We denote the infinitesimal generator and drift matrices associated with regime
k by Q (k) and R(k), respectively, for 1 ≤ k ≤ K . The regime-k drift matrix R(k) is the diagonal matrix

R(k)
= diag(r (k)0 , r

(k)
1 , . . . , r

(k)
N−1),

where r (k)i is the net drift of the buffer at state i and regime k. Note that Q (k) and R(k) are fixed within a given regime. Similar
to Q (k) and R(k), we define Q̃ (k) and R̃(k) as the infinitesimal generator and drift matrices associated with the boundary T (k) for
0 ≤ k ≤ K , where the drift of state i at the boundary T (k) is denoted by r̃ (k)i . We define the joint probability density function
(pdf) vector f (k)(x) for regime kwhen T (k−1) < x < T (k) as follows:

f (k)i (x) = lim
t→∞

d
dx

Pr{X(t) ≤ x, Z(t) = i}, (1)

f (k)(x) =
[
f (k)0 (x) f (k)1 (x) . . . f (k)N−1(x)

]
. (2)
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Similarly, the steady-state probability mass accumulation vector c(k) is defined for each boundary point T (k) as follows:

c(k)i = lim
t→∞

Pr{X(t) = T (k), Z(t) = i}, (3)

c(k) =
[
c(k)0 c(k)1 . . . c(k)N−1

]
. (4)

Based on [18], the following set of differential equations holds for the joint pdf vector:
d
dx

f (k)(x)R(k)
= f (k)(x)Q (k), (5)

with a set of boundary conditions to be satisfied also given in [18]whichproposes a numerically stable and efficient algorithm
to find the per-regime joint pdf vector f (k)(x) and the per-boundarymass accumulation vector c(k). This algorithm requires an
ordered Schur decomposition and a pair of Sylvester equations for each regime, and the solution of a linear matrix equation
of at most size N(2K + 1). The computational complexity of the proposed algorithm can be reduced to O(N3K ) on the basis
of the observation that the linear matrix equation is in block tridiagonal form [44].

There have been a number of studies that use diffusion and/or MFQ-based queuing models for energy harvesting sensor
nodes. A two-regime two-state Markov fluid queue model for a rechargeable battery with a power save mode is studied
in [20,21]. The reference [45] investigates a wireless node powered by multiple batteries each of which is modeled by a
MRMFQ but the focus has been on the mean node lifetime rather than the battery outage probability. The reference [46]
presents a diffusion model for a battery-operated SN to take into account the fluctuations in the amount of energy extracted
from the environment. In [47], the energy buffer of a node is modeled as a G/G/1 queue which is then analyzed by the
diffusion approximation for the time-dependent behavior of the buffer. An MFQ model is proposed in [48] which captures
data transmission together with energy expenditure/replenishment processes in the context of a home gateway system
serving a number of IoT devices using Bluetooth low energy with wireless energy transfer capability.

3. Risk-theoretic MRMFQmodel

Formathematical analysis, a connection is established in this section between ruin probabilities in risk theory and battery
outage probabilities in energy harvesting IoT devices. In risk theory, the ruin problem is described through an insurance
company which is exposed to an incoming cash flow in the form of premiums and an outgoing cash flow in the form of
claims, the arrival epochs and sizes of claims beingmodeled by various stochastic processes in the literature; see [49] and the
references therein. For an insurerwith initial surplus, the ultimate ruin probability is the probability that the insurer’s surplus
level eventually falls below zero, i.e., the insurance company goes bankrupt [49]. In most practical scenarios, it is crucial
to know about the probability of the surplus level falling below zero within a given finite time horizon, called the finite-
horizon ruin probability [50]. The role of premiums (claims) in risk theory will be shown in this paper to be played by energy
harvesting (sensing) in energy harvesting IoT devices. Consequently, the counterpart of ruin probabilities turns out to be
battery outage probabilities, both within a given time horizon. Recently, [19] proposed a Multi-Regime Markov Fluid Queue
(MRMFQ) model to find the finite-horizon ruin probabilities for an insurance company with surplus-dependent premiums,
claim arrivals modeled by aMarkovian arrival process, and PH-type claim sizes with amatrix-analytical algorithm.With the
proposed technique of [19], one can express the finite-horizon ruin probability in terms of the steady-state probability mass
accumulations of the associated MRMFQ at certain levels. On the other hand, steady-state distribution of an MRMFQ can
be obtained using computationally efficient and numerically stable matrix-analytical algorithms proposed in [18]. In this
section, we extend the method proposed in [19] to compute the finite-horizon battery outage probabilities of the system
depicted in Fig. 1 for a specific choice of the sensing rate functionλ(X(t), Z(t)). Subsequently, an expressionwill be derived for
the average sensing rate which will be essential in the engineering methodology we introduce so as to obtain the optimum
sensing rate functionmeeting the QoS requirement detailed in Section 1. For notation, In, 1n×m, and 0n×m denote an identity
matrix of size n, a matrix of ones of size n × m, and a matrix of zeros of size n × m, respectively.

3.1. System model

The Energy Harvesting Process (EHP) Z(t) ∈ {0, 1, . . . ,N − 1} is governed by an N-state CTMC with infinitesimal
generator denoted by Q . We refer to the states of the energy harvesting process as the harvester states. When the EHP
resides in state i, the harvester output power level is denoted by pi, for 0 ≤ i ≤ N − 1. Accordingly, we define the matrix
P = diag(p0, p1, . . . , pN−1). A fixed leakage rate from the battery is assumed and denoted by lb. Subsequently, we define the
net power matrix D = P − lbIN = diag(d0, d1, . . . , dN−1), where di = pi − lb denotes the net rate of change of the stored
energy in the battery when the EHP resides in state i.

We focus on the particular case when the sensing rate function λ(X(t), Z(t)) is a piece-wise constant function of the
instantaneous battery level X(t), i.e., the sensing rate depends only on Z(t) when X(t) resides between two boundaries. For
this purpose, we define the regime boundaries 0 = T (0) < T (1) < · · · < T (J)

= u < · · · < T (K )
= B, where u and

B are the initial battery level and battery capacity, respectively. The battery is said to reside in regime k at time t when
T (k−1) < X(t) < T (k). We denote the sensing rate in harvester state i and regime k by λi(k) for 0 ≤ i ≤ N − 1 and 1 ≤ k ≤ K .
We define the regime-k sensing rate matrixΛ(k) = diag (λ0(k), λ1(k), . . . , λN−1(k)) for 1 ≤ k ≤ K .
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Fig. 2. l-level Erlangization of the horizon H .

The system starts to operate with initial battery level u and in an harvester state according to a given initial probability
vector α = [α0 α1 . . . αN−1] where αi = Pr{Z(0) = i}. Whenever Z(t) is in state i, the energy in the battery changes with
rate di = pi − lb. When pi < lb, the energy buffer is drained at rate lb − pi. When T (k−1) < X(t) ≤ T (k), a sensing event
occurs in the interval (t, t + ∆t) with probability λi(k)∆(t) + O(∆t) where o(∆t)

∆t → 0 as ∆t → 0. A sensing event leads to
an immediate battery energy drop with amount S which is exponentially distributed with mean E[S]. Obviously, the battery
level X(t) can not be negative. The time of battery outage denoted by τ (u,α) is given by

τ (u,α) = inf{t > 0 : X(t) = 0}, (6)

and the finite-horizon battery outage probability before the so-called horizon valueH denoted byψ(u,α,H) is then given by

ψ(u,α,H) = Pr{τ (u,α) < H}. (7)

The average sensing rate λavg represents the average number of transmitted data packets (i) in the time interval [0,H] if no
outage occurs within H , or (ii) in the interval [0, τ (u,α)] in case τ (u,α) < H .

3.2. MRMFQ model

In order to model the deterministic time horizon H in our MRMFQ model, we use Erlangization which refers to
approximating a deterministic quantity by an Erlang distribution of sufficiently high order for analytical tractability; see
for example [50] that employs Erlangization to approximate the deterministic time horizon in the risk theory context. In
this paper, we employ l-stage Erlangization to model the deterministic horizon H as depicted in Fig. 2 for various values of
the parameter l. The state labeled as abs refers to the absorbing state representing the horizon expiration and η = l/H is the
transition rate from one Erlang stage to the next one. Starting operation at the first stage at time zero, the time to reach the
abs stage is then Erlang-l distributed with mean H . Clearly, as l → ∞, the Erlang-l distribution converges to a Dirac delta
function located at H . We define the following Erlang-l sub-generator TH and the vector T 0

H to be used in the MRMFQ model
we propose:

TH =

⎡⎢⎢⎢⎢⎣
−η η

−η η

. . .
. . .

−η η

−η

⎤⎥⎥⎥⎥⎦ , T 0
H = −TH1l×1.

The state-space of ourMRMFQmodel is nowdescribed. First,weneed l replicas of each harvester state,which are represented
by the pair (i, j) for 0 ≤ i ≤ N − 1 and 1 ≤ j ≤ l, resulting in a total number of Nl so-called idle states, since there is no data
transmission in these states. As packets being transmitted, there should be a reduction in the battery level. For this purpose,
we need a transmission-mode replica of the idle state (i, j) denoted by (i, j)* and these Nl replicas will be referred as the
transmitting states. A sensing event forces the system tomove from state (i, j) to state (i, j)*. On the other hand, wemove from
(i, j)* to (i, j) upon the completion of a transmission unless battery outage occurs. These two sets of states are indeed sufficient
to describe the long-term evolution of the battery energy process X(t). However, as far as the battery outage probabilities
are concerned, the evolution of X(t) beyond the horizon, i.e., t > H is not needed at all. Therefore, when the time horizon H
is reached, we propose to bring the battery energy to its initial value u and the EHP process to its initial state according to the
initial probability vectorα and let the battery energy process evolve again.When this process repeats itself, we obtain an em-
bedding of thewhole sequence of battery energy processes into one single trajectory of a specially constructedMRMFQ.With
the aim of constructing this MRMFQ, we propose to use three additional states, namely Outage (O), Reset (R), and Good (G)
states.We describe the use of these states in Fig. 3which depicts two sample paths for the battery energy processwhich is re-
set to its initial values each time the horizon is reached. Note thatwithin the horizonH , either of the two eventswould occur:

• No battery outage: For this event, time expires before the horizon without the battery level hitting zero. We introduce
the G and R states to describe the behavior of the battery level in this case. As the horizon expires, the battery level is
decreased down to zero (during the G state) and then increased up to the initial level u (in the R state); see Fig. 3(a).

• Battery outage: The battery level hits zero before the horizon. In this case, the O state is used to initialize the battery
level by increasing it up to u after the battery hits zero; see Fig. 3(b).
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Fig. 3. Sample paths for (a) no battery outage, (b) battery outage, within a finite horizon H .

In either case, with the battery level set to u, the system transits into one of the first Erlang states (i, 1), 0 ≤ i ≤ N − 1,
according to the initial probability vector α and the cycle starts over. Note that in Fig. 3, abrupt falls of the battery level
represent data transmission and battery leakage (energy harvesting) is shown by a negative (positive) slope.

The trajectories in Fig. 3 can not be described by anMRMFQyet due to the discontinuities. Therefore,we propose to reduce
the energy level at a finite rate of pT as opposed to abrupt drops. For this purpose, we choose scalar parameters pT and β
such that the mean dissipated energy for one packet transmission E[S] equals the product pT/β . Consequently, each time a
packet gets to be transmitted, the battery level is allowed to reduce at a rate of pT for an exponentially distributed amount of
timewith parameter β leading to an exponentially distributed eventual energy drop withmean E[S]. With this modification
(does not lead to any inaccuracy as will be shown in the sequel), the trajectories in Fig. 3 can be expressed as an MRMFQ
for which we order the states as (i) O state, (ii) R state, (iii) G state, (iv) Nl idle states enumerated lexicographically, (v) Nl
transmission states enumerated lexicographically. With this state space, we are now ready to describe the MRMFQ model
which is a translation of the sample paths provided in Fig. 3 into anMRMFQ that uses the regime boundaries T (k), 0 ≤ k ≤ K .
Therefore, in the proposed MRMFQ model, the regime-k generator matrix is expressed as

Q (k)
=

⎡⎢⎢⎢⎣
0 0 0 01×Nl 01×Nl
0 0 0 01×Nl 01×Nl
0 0 0 01×Nl 01×Nl

0Nl×1 0Nl×1 1N×1 ⊗ T 0
H IN ⊗ TH + (Q −Λ(k))⊗ Il Λ(k) ⊗ Il

0Nl×1 0Nl×1 0Nl×1 βINl −βINl

⎤⎥⎥⎥⎦ .
The boundary-k generator matrix Q̃ (k)

= Q (k) for k ∈ {1, 2, . . . , J − 1, J + 1, . . . , K }. The boundary-J generator is slightly
different as given below:

Q̃ (J)
=

⎡⎢⎢⎢⎣
−1 0 0 α ⊗ e1 01×Nl
0 −1 0 α ⊗ e1 01×Nl
0 0 0 01×Nl 01×Nl

0Nl×1 0Nl×1 1N×1 ⊗ T 0
H IN ⊗ TH + (Q −Λ(J))⊗ Il Λ(J) ⊗ Il

0Nl×1 0Nl×1 0Nl×1 βINl −βINl

⎤⎥⎥⎥⎦ ,
where e1 denotes a row vector of zeros of size l except for a one in the first position. The boundary-0 generator is given
below:

Q̃ (0)
=

⎡⎢⎢⎢⎣
0 0 0 01×Nl 01×Nl
0 0 0 01×Nl 01×Nl
0 1 −1 01×Nl 01×Nl

1Nl×1 0Nl×1 0Nl×1 −INl 0Nl×Nl
1Nl×1 0Nl×1 0Nl×1 0Nl×Nl −INl

⎤⎥⎥⎥⎦ .
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The regime-k and boundary-k drift matrices of the proposed MRMFQ are given as follows:

R(k)
=

{
diag(1, 1,−1,D ⊗ Il,−pT INl), 1 ≤ k ≤ J,
diag(−1,−1,−1,D ⊗ Il,−pT INl), J < k ≤ K . (8)

R̃(k)
=

⎧⎪⎪⎨⎪⎪⎩
R(k), k ̸∈ {0, J, K },

max(0, R(1)), k = 0,
diag(0, 0,−1,D ⊗ Il,−pT INl), k = J,
min(0, R(K )), k = K ,

(9)

where themax andmin are element-wise operators. With the way theMRMFQ is constructed, note that the amount of time
spent in the O and R states during each visit to these two states possess the same distribution. This observation holds also for
the time spent in these two states restricted to x = u. Consequently, the finite-horizon battery outage probabilityψ(u,α,H)
can be written as

ψ(u,α,H) =
c(J)O

c(J)O + c(J)R

, (10)

where c(J)R and c(J)O as the probability mass accumulations of the proposed MRMFQ at the boundary J in states R and O,
respectively. Subsequently, we propose to use the method described in [18] to solve for the steady-state distribution (in
particular the quantity given in (10)) of the specially constructed MRMFQ with 2Nl + 3 states and K regimes. Note that the
computational complexity of the entire process is O(N3l3K ) [51].

3.3. Engineering methodology

By solving the mathematical model described above, we now derive an expression to calculate the average sensing rate
λavg . Subsequently, we study various adaptive sensing rate policies to maximize the average sensing rate where the system
requirement is the finite-horizon outage probability given in (10) being less than a given desired probability ψT . For the
purpose of reducing the number of decision variables for computational tractability, the sensing rate λi(k) is allowed to take
either a minimum or a maximum value, denoted by λmin and λmax, respectively. The optimization problemwe deal with can
be written as:

maximize λavg
subject to ψ(u,α,H) < ψT ,

λi(k) = λmin or λmax

(11)

for 1 ≤ k ≤ K . Intuitively, when the battery level is close to zero, the rate should be set to λmin to avoid battery outage.
Similarly, the IoT device should sense the environment with rate λmax when the battery is almost fully charged to provide
enough space in the battery for new energy arrivals. This leads us to investigate a threshold-based structure for λi(k). In this
study, we assume a two-state EHP with two harvester states 0 and 1 and the thresholds for these states are denoted by B0
and B1, respectively. Since we let each state have its own threshold, we refer to this policy as the State-Dependent Threshold
Policy (SDTP). SDTP being employed for a two-state energy harvesting process results in a 4-regime MFQ. Together with the
boundary points at T (0)

= 0, T (J)
= u and T (K )

= T (4)
= B, we have two more boundary points each of which corresponds

to the threshold of one harvester state. For instance, if B1 < u < B0, we have T (1)
= B1, T (2)

= u and T (3)
= B0. Similarly, if

B1 < B0 < u, the boundary points can be written as T (1)
= B1, T (2)

= B0 and T (3)
= u, and so on. As an example, the SDTP

policy for the case B1 < u < B0 < B is illustrated in Fig. 4. Note that two or more boundary points may coincide, which will
not have any adverse effect on the solution methodology. Similar to the power-save mode proposed in [20], we also define
the Single Threshold Policy (STP) for which there is a single threshold for the battery level regardless of the harvester state,
i.e., B0 = B1. Clearly, STP can bemodeledwith a 3-regimeMRMFQ. Wedenote the steady-state joint pdf and probabilitymass
accumulations of the idle state (i,m) in regime k by f (k)(i,m)(x) and at boundary point T (k) by c(k)(i,m), respectively. To calculate the
average sensing rate λavg , we also denote the normalized steady-state joint pdf and probability mass accumulations f̂ (k)(i,m)(x)
and ĉ(k)(i,m) for idle states. Since O, R, and G are auxiliary states which are defined to calculate the outage probability, we
censor these states towards the calculation of the average sensing rate. Transmitting states also need to be censored since
transmissions are modeled as abrupt falls of the instantaneous battery level. Finally, since probability mass accumulations
at zero occur due to battery outage, we also censor them. Subsequently, we write the normalized the steady-state joint pdf
f̂ (k)(i,m)(x) as:

f̂ (k)(i,m)(x) =
f (k)(i,m)(x)∑1

i=0
∑l

m=1

(∑K
k=1

∫ T (k)−
T (k−1)+ f (k)(i,m)(x)dx +

∑K
k=1 c

(k)
(i,m)

) · (12)
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Fig. 4. Sensing rate λi(k) for the case B1 < u < B0 < B.

The quantities ĉ(k)(i,m) can be obtained similarly. The generalization of these equations toN-state EHPs is straightforward.With
these normalized quantities, one can calculate the average sensing rate as follows:

λavg =

1∑
i=0

λmin Pr{Z(t) = i, X(t) ≤ Bi} + λmax Pr{Z(t) = i, X(t) > Bi}

=

1∑
i=0

l∑
m=1

⎡⎣λmin

Ki∑
k=1

(∫ T (k)−

T (k−1)+

f̂ (k)(i,m)(x)dx + ĉ(k)(i,m)

)⎤⎦
+

1∑
i=0

l∑
m=1

⎡⎣λmax

K∑
k=Ki

(∫ T (k)−

T (k−1)+

f̂ (k)(i,m)(x)dx + ĉ(k)(i,m)

)⎤⎦ (13)

where Ki (Ki) is the value of k such that T (k)
= Bi (T (k−1)

= Bi).With the expressions derived for the battery outage probability
and average sensing rate in terms of the steady-state solution of a certain MRMFQ with 2Nl + 3 states, one can solve for the
outage probabilities as a function of the pair (B0, B1). The particular values of this pair that yield the largest average sensing
rate among those that yield ψ(u,α,H) < ψT are to be chosen as the optimum pair of threshold parameters.

4. Numerical examples

4.1. Model parameters

Throughout this section, the units of power and energy are to be taken as mW and mWh, respectively. The time unit
is set to hours; however the unit for the horizon parameter H is set to months for convenience. In [13], properties of
various rechargeable battery technologies are investigated including two commonly used Nickel Metal Hydride (NiMH) and
Lithium-based batteries. Although Lithium-based batteries outperformNiMH batteries in several aspects such as energy and
power densities, charging efficiency and self-discharge rate, recharging Li-based batteries requires relatively sophisticated
circuits. In numerical examples, we use a NiMH battery model whose self discharge rate, charging efficiency, and capacity
are 30%/month, 66% and 3000 mWh, respectively, yielding the choice lb = 1.25 in our stochastic model. We use the first
order radio model given in [52] assuming a d4 energy loss as a function of distance d. According to this model, the IoT device
consumes

ETx(k, d) = k(Eelec + ϵampd4) (14)

of energy to transmit a k-bit packet over a distance d. Eelec and ϵamp are the amounts of energy that the transmitter circuitry
and amplifier consume per bit, respectively. In the examples, we set Eelec = 50 nJ/bit, ϵamp = 100 pJ/bit/m4, d = 100 m
and we assume exponentially distributed packet sizes with mean 1000 bytes giving rise to E[S] ≈ 22.222 mWh to transmit
one packet on the average. We also set pT = 10 and β = 0.45. We assume that the IoT device is equipped with a solar cell
of size 37 × 33 mm2 as in [53,54]. As discussed in [13], we assume 100 mW/cm2 of available energy and 15% conversion
efficiency.With 66% charging efficiency of the NiMH battery, 120mWh of energy can be stored in one hour. According to the
data records of solar irradiance reported in [55], the average daily stored energy is 483 mWh for the solar cell model used
in that study. Motivated by the studies including [25] and [56], we employ a two-state EHP (1 for harvesting and 0 for no
harvesting). Energy is stored in the battery with a power of 120 mW (p1) and 0 mW (p0) for exponentially distributed time
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(a) u = 750. (d) u = 750.

(b) u = 2000. (e) u = 2000.

(c) u = 2750. (f) u = 2750.

Fig. 5. Battery outage probabilityψ(u,α,H) and average sensing rate λavg in (a), (b), (c) and (d), (e), (f), respectively, as functions of λmin forH = 1, λmax = 4,
B1 = 1500, B0 = 2500 and u = 750, 2000 and 2750.

intervals with means 1 and 5 h, respectively. This results in a daily stored energy of 480 mWh which is consistent with the
measurements in [55]. For this model, one can write the Q , P , and D matrices as:

Q =

[
−1/5 1/5
1 −1

]
, P = diag(0, 120),

and D = P − lbIN = diag(−1.25, 118.75). Note that the steady-state probability vector of Q is given by π =
[
5/6 1/6

]
satisfying πQ = 0.

4.2. Example I - Validation

In the first example, we verify the accuracy of the outage probability and average sensing rate expressions derived in
Section 3. For this purpose, the system is simulated for 105 time cycles where a time cycle refers to a single horizon for each
of which we keep track of whether outage has occurred or not, and additionally the number of overall transmitted packets.
As the system parameters, we set H = 1, λmax = 4, B1 = 1500, and B0 = 2500, and vary λmin and compare the resulting
outage probabilities and average sensing rates with the simulation results in Fig. 5(a), (b), (c) and (d), (e), (f), respectively,
for u = 750, 2000, 2750. For all of the following examples, we set α =

[
5/6 1/6

]
unless otherwise stated. We observe

that as the number of Erlangization levels l increases, the analytical results forψ(u,α,H) converge to the simulation results,
while the average sensing rate seems to be less sensitive to the particular choice of l. A remarkable accuracy is obtained with
the choice of l = 50 (requires a computation time of approximately 0.6 sec. with MATLAB running on a notebook using an
Intel Core i5-3210M Processor and a RAM of 8 GB for one problem instance) for both performance metrics. Therefore, we set
l to 50 for the remaining examples.

In Fig. 6, the outage probability is depicted as a function of B1 when B0 is fixed to 1500 and H = 1, 3, 12. The other
parameters are set to u = 3000, λmin = 0.4, λmax = 10. In all the cases shown in Fig. 6, the findings of the analytical method
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Fig. 6. Battery outage probability as a function of B1 for H = 1, 3, 12 and u = 3000, λmin = 0.4, λmax = 10, α = [5/6 1/6].

Fig. 7. Battery outage probability as a function of α = [(1−α1) α1] for u = 100, 200, 300, 400, 500 and λmin = 0.5, λmax = 4,H = 1, B0 = 2000, B1 = 1000.
The notation (S) is used to indicate simulation results, others being analytical results.

overlap with the simulation results. We also compare the analytical results with simulations for various values of the initial
probability vector α and u = 100, 200, 300, 400, 500. We set λmin = 0.5, λmax = 4, H = 1, B0 = 2000, B1 = 1000 and
α = [(1 − α1) α1] and vary α1 from 0 to 1. As illustrated in Fig. 7, the initial harvester state is more important for relatively
lower values of the initial battery level u. Again, we observe that the analytical results are in line with simulations.

For validation purposes, we also investigate the case inwhich a thirdmoderate sensing rate λmod satisfying λmin < λmod <

λmax is introduced which results in two thresholds for each state and four thresholds in total. We denote the thresholds of
state i by Bi,1 and Bi,2 for i = 1, 2 such that the sensing rate λi(k) is given by the following expression:

λi(k) =

{
λmin, X(t) ≤ Bi,1,

λmod, Bi,1 < X(t) ≤ Bi,2,

λmax, X(t) > Bi,2.

As the other system parameters, we set λmin = 0.4, λmod = 2, λmax = 10, B0,1 = 1500, B0,2 = 2250, B1,1 = 500,
B1,2 = 1250, u = B = 3000, α = [5/6 1/6] and tabulate the analytical and simulation results for the finite-horizon
battery outage probability ψ(u,α,H) and average sensing rate λavg for H = 1, 3, 6, 9, 12 in Table 1. We also provide 98%
confidence intervals for ψ(u,α,H) in the simulation results. We observe that the simulation and analytical results match
for this four-threshold model as well.

4.3. Example II - Fixed Sensing Rate Policy (FSRP)

Let us now assume a Fixed Sensing Rate Policy (FSRP) for which the sensing rate λ(X(t), Z(t)) does not depend on X(t) or
Z(t) and equals λ. For a given desired outage probability ψT , we define the maximum attainable fixed sensing rate λ* called
the limit-sensing rate which meets the outage probability constraint. In this case, the MRMFQ possesses two regimes with
T (0)

= 0 < T (1)
= u ≤ T (2)

= B . For this example,we assume that the battery is initially fully charged, i.e., u = B = 3000, and
the horizonH is varied from 1 to 24months. For other parameters being fixed, one can easily obtain the value of λ* by binary
search. The limit sensing rate λ* is depicted in Fig. 8 as a function of the horizonH for four different values ofψT , namely 0.01,



12 C. Tunc, N. Akar / Performance Evaluation 111 (2017) 1–16

Table 1
Comparison of analytical and simulation results for λmin = 0.4, λmod = 2, λmax = 10, B0,1 = 1500, B0,2 = 2250, B1,1 = 500, B1,2 = 1250, u = B = 3000,
α = [5/6 1/6] and H = 1, 3, 6, 9, 12.

H ψ(u,α,H) λavg

Analytical Simulation Analytical Simulation

Result Result 98% Conf. Int. Result Result

1 0.0135 0.0134 ±0.0007 0.9677 0.9677
3 0.0499 0.0503 ±0.0014 0.8867 0.8869
6 0.1019 0.1021 ±0.0019 0.8664 0.8665
9 0.1510 0.1514 ±0.0022 0.8597 0.8597

12 0.1974 0.1977 ±0.0025 0.8563 0.8565

Table 2
Execution time of the MATLAB code (in seconds) to obtain the dataset as in
Fig. 9 with a granularity of 50 for B0 and B1 and for the Erlangization parame-
ter l = 1, 5, 20, 50, on a laptop equipped with Intel Core i5-3210M processor
and 8 GB of RAM.

Parameter l 1 5 20 50

Execution time (s) 30.18 56.03 291.30 2145.76

Fig. 8. The limit sensing rate λ* as a function of the horizon H for four different values of ψT .

0.025, 0.05 and 0.1. We observe that λ* decreases as H increases. Moreover, as the outage probability constraint is relaxed
andψT is increased, higher sensing rates can be achievedwhilemeeting the QoS constraint. For the threshold-based policies,
one should make sure that λmin < λ* so that the system is functional and the battery level remains positive throughout the
specified horizon for a given ψT . Moreover, λmax may be selected as large as the application requires in order to utilize the
harvested energy.

4.4. Example III - State-Dependent Threshold Policy (SDTP)

In this example, we set H = 12, λmin = 0.4, λmax = 10 and u = 3000, which means the battery is initially fully charged.
We first show how ψ(u,α,H) and λavg change as thresholds B0 and B1 vary between [0, 3000] in Fig. 9 from which one
can obtain the values of B0 and B1 that maximize λavg while satisfying ψ(u,α,H) < ψT for a given ψT . We denote these
particular values by B*

0 and B*
1.

We also provide the execution time required to obtain the dataset of Fig. 9 with a granularity of 50 for the threshold
parameters B0 and B1 in Table 2. Obtaining the dataset of Fig. 9 requires 612

= 3721 MRMFQ problem instances to solve.
Also, recall that Fig. 9 uses l = 50 Erlangization levels only but the execution times in Table 2 are obtained for varying values
of the Erlangization parameter l. The average execution time per problem instance is less than a second even for the choice
of a large Erlangization parameter, i.e., l = 50, but it can considerably be reduced to less than one tenth of a second with
reduced lwithout sacrificing much from accuracy.

In Fig. 10, we demonstrate how the optimum thresholds B*
0 and B*

1 behave as a function of H when ψT = 0.1, along with
B*, the optimum threshold for the single threshold policy STP. For all values of H , B* appears to lie between B*

0 and B*
1 but

for this example, all optimum thresholds appear to be close. For the same example, the average sensing rates λavg obtained
by SDTP, and STP, and the limit sensing rate λ* is depicted in Fig. 11 as a function of the horizon parameter H . We observe
that adaptive sensing increases substantially the average sensing rate if the adaptation is performed optimally. Moreover,
the average sensing rate obtained by SDTP is slightly better than that of STP.
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Fig. 9. (a) Battery outage probabilityψ(u,α,H) and (b) average sensing rate λavg as functions of B0 and B1 for u = 3000, H = 12, λmin = 0.4 and λmax = 10.

Fig. 10. Optimum thresholds B*
0 , B

*
1 , and B* as functions of the horizon H for ψT = 0.1, u = 3000, α = [5/6 1/6], λmin = 0.4 and λmax = 10.

We now consider a 100-times slower EHP whose transition rates out of harvester states 1 and 0 are 1/500 and 1/100,
respectively. For the following scenario, we set α =

[
1 0

]
, which means that the initial harvester state is always 0. We

also set λmin = 0.9λ* for all values of H . The other parameters are the same as in the previous scenario. We again plot the
optimum thresholds and average sensing rates in Figs. 12 and 13, respectively. B* still lies between B*

0 and B*
1 which are quite

apart from each other. Moreover, STP is substantially outperformed by SDTP in terms of the average sensing rate. Similar to
the relatively faster EHP, both SDTP and STP outperform FSRP for this example as well.
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Fig. 11. Average sensing rates λavg and limit sensing rate λ* as functions of the horizon H for ψT = 0.1, u = 3000, α = [5/6 1/6], λmin = 0.4 and
λmax = 10.

Fig. 12. Optimum thresholds B*
0 , B

*
1 , and B* for 100-times slower process as functions of the horizon H for ψT =, 0.1, u = 3000, α = [1 0], λmin = 0.9λ*

and λmax = 10.

Fig. 13. Average sensing rates λavg and limit sensing rate λ* for 100-times slower process as functions of the horizon H forψT = 0.1, u = 3000, α = [1 0],
λmin = 0.9λ* and λmax = 10.

5. Conclusions

We propose in this paper a risk-theoretic multi-regime Markov fluid queue based method for computing finite-horizon
battery outage probabilities in energy harvesting IoT devices. Subsequently, we use this method as the engine of an
optimization framework by which we determine the optimum operational parameters of a so-called State-Dependent
Threshold Policy (SDTP)whichmaximizes the average sensing ratewhile satisfying finite-horizon battery outage probability
constraints. SDTP is compared and contrasted with numerical examples against other policies such as Fixed Sensing Rate
Policy (FSRP) and Single Threshold Policy (STP). Threshold-based policies, namely SDTP and STP, outperform FSRP in terms
of the average sensing rate in all the numerical examples we tried. We have also shown merit in using SDTP against STP for
relatively slower EHPs. Future work will consist of more sophisticated models where sensing and packet transmission may
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be uncoupled leading to two queues; one queue for energy and the other for data. Another future work will be related to
obtaining optimum sensing rate policies that are more general than the double-valued policies extensively studied in this
work.
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