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Abstract: A new class of scheduling algorithms is proposed for disk drive scheduling. As opposed to choosing the

request with the shortest access time in conventional shortest access time first (SATF) algorithms, we choose an ordered

sequence of pending I/O requests at the scheduling instant with the shortest cumulative access time. Additionally, we

introduce flexibility for forthcoming requests to alter the chosen sequence. Simulation results are provided to validate

the effectiveness of the proposed disk scheduler. Throughput gains of 3% and above are shown to be attainable, although

this occurs at the expense of increased computational complexity.
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1. Introduction

Magnetic hard disk drive (HDD) is the principal data storage technology stemming from large capacities, low

costs, and high reliability [1]. An HDD consists of one or more platters that rotate at a fixed speed. Each platter

has two sides, each of which is referred to as a surface. Data are stored on concentric circles of sectors on each

surface, called tracks. The disk head that is attached to the disk arm moves across the surface to position the

head over the desired track for I/O read/write operations. The disk service time is the sum of two components:

positioning time and transfer time. The positioning time is, again, the sum of two components: seek time and

rotational latency. The seek time is the time required for the disk head to travel to the track of the disk where

the data will be read from or written to. The seek comprises the following phases: acceleration, during which

the arm starts moving; coasting, when the arm moves at full speed; deceleration, when the arm slows down;

and settling, when the head is fine-positioned over the correct track [2]. Once the disk head is positioned on

the right track, we need to wait longer, i.e. rotational latency, until the rotation of the disk brings the required

disk sector under the read/write head. The sojourn time (or response time) of a request is the amount of time

that a request needs to wait in the system until it is fully served. Sojourn time is the sum of two components:

queue waiting time and service time. Typically, disk schedulers attempt to reduce the service times, which, in

turn, reduces the sojourn times. A lower sojourn time is indicative of a higher throughput, which is defined as

the mean number of I/O requests completed in unit time.

Disk performance, characterized in terms of I/O request latency or I/O throughput, is generally known to

be poor compared to that of other storage media such as solid state disks (SSDs). This is due to the mechanical
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nature of disk access time, i.e. the time required to position the disk head over the requested sector. In order

to enhance disk performance, various disk scheduling algorithms have been proposed, which choose to serve one

of the pending requests based on a certain policy. A disk scheduling algorithm may opt to maximize the overall

disk throughput; or be fair to different requests or classes of requests; or prioritize a certain class of requests

over others; or it may seek to minimize the computational effort placed for scheduling. In this study, we focus

on overall disk performance enhancement, and fair disk bandwidth-sharing by different I/O requests is omitted

from the scope of this paper.

In this article, we propose a new class of algorithms, called shortest cumulative access time first (SCATF)

algorithms, which serve a sequence of pending requests at a scheduling instant, as opposed to serving one request

only. Once the service of a sequence is started, new requests may or may not be allowed to change the service

sequence, leading to different versions of the SCATF algorithm.

The paper is organized as follows. In Section 2, a brief survey of existing disk scheduling algorithms is

presented. We describe the proposed SCATF algorithms in detail in Section 3. Section 4 presents the simulation

results, and the final section provides the conclusions.

2. Related work

In this section, we review the existing disk-scheduling algorithms proposed in the literature. For a more recent

and elaborate survey of disk schedulers, we refer the reader to [3].

2.1. First-come-first-serve scheduler

The first-come-first-serve (FCFS) scheduler serves the request that joined the system earliest, irrespective of

how the disk head is positioned with respect to the sectors containing data for pending requests [1]. Although

FCFS scheduling is commonly used elsewhere, it leads to poor performance in hard disk drives [3].

2.2. Shortest seek time first scheduler

The shortest seek time first (SSTF) scheduler is a greedy scheduler that first serves the requests on the nearest

track to minimize seek time [4,5]. There are several drawbacks to using SSTF: i) it does not take into account

the rotational delay, which may be (at least) equally important to the seek time in modern disk drives; ii) since

the middle disk tracks are more likely to be chosen by the SSTF algorithm, the pending requests located close

to the inner and outermost disk tracks may potentially starve, leading to unfairness among tracks; iii) the disk’s

internal details may not be available to the host OS, which may then only approximate SSTF, for example by

a nearest block first (NBF) algorithm [1].

2.3. SCAN scheduler

The SCAN algorithm (also known as the elevator algorithm) sweeps the disk arm from the outermost cylinder

towards the innermost cylinder and back, serving the pending disk requests along the way [6]. The SCAN

scheduler has many variations. The LOOK policy reverses the direction of a scan, once there are no more

outstanding requests in the current scan direction [7]. SCAN and LOOK schedulers visit the middle disk tracks

twice as often than the inner and outermost disk tracks, again leading to unfairness among tracks. Cyclical

variants of SCAN or LOOK, known as C-SCAN and C-LOOK, respectively, sweep the tracks in one direction

only. However, once the sweep is complete, the disk arm returns to the starting track and continues to sweep

in the same direction, eliminating the preferential treatment feature of the middle disk tracks of the original
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policies. SCAN-based policies are subject to starvation, for which starvation-reducing algorithms have been

proposed. For example, the VSCAN(R) algorithm, proposed in [8], forms a continuum of algorithms between

SSTF and LOOK, where the algorithm parameter R may be swept from R = 0 (pure SSTF) to R = 1 (pure

LOOK), trading off overall performance and starvation. A time-complexity analysis of several variants of SCAN

and SSTF is performed in [9].

2.4. Shortest access time first scheduler

The shortest access time first (SATF) policy is a greedy policy that serves the pending request with the shortest

access time, i.e. service time with respect to the current head position; see [10,11]. SATF is slightly different

from the shortest positioning time first (SPTF) policy, which includes the positioning time but not the data

transfer time, whereas SATF includes both [3]. For fixed-size data requests, these two policies are equivalent,

whereas SATF presents a slight preferential treatment to smaller data blocks in the case of variable-sized data

blocks. The SATF algorithm has been studied extensively and has been shown to outperform other existing

disk scheduling algorithms, such as SCAN, in terms of overall throughput [10–13]. Similarl to SSTF, SATF

is known to have vulnerabilities in terms of I/O request starvation. To reduce starvation, enhancements have

been proposed for SATF. For example, the aged shortest access time first (ASATF(ω)) algorithm, proposed in

[10], forms a continuum between FCFS and SATF, where the algorithm parameter ω may be swept from ω=

0 (pure SATF) to ω →∞ (pure FCFS), thus trading off overall performance and starvation.

2.5. Other proposed disk schedulers

The authors in [14] present hard disk scheduling algorithms by defining a reachability function, which uses the

radial distance to the location of a request as the input in order to increase the throughput. It does this by

minimizing the number of rotations during the service of waiting requests. In other words, the set with the

highest number of requests that can be visited in a single rotation is served first, and then the algorithm is

applied to the remaining ones. The study in [15] modifies the algorithm in [14] to obtain the longest increasing

subsequence in a permutation, assuming a probability distribution on the locations of I/O requests on the disk.

As these studies show, increasing speed and memory in modern processors give rise to the question of how to

improve the throughput performance of I/O scheduling without increasing its complexity. In [16], a new disk

scheduling algorithm is proposed to reduce the number of head movements, thereby reducing seek time and

improving the disk bandwidth for modern storage devices. The reference [17] employs fuzzy logic to optimize

the overall performance of disk drives, considering both seek time and rotational latency.

3. Shortest cumulative access time first scheduling algorithms

As opposed to the studies described in the previous section, we focus on developing algorithms that minimize the

cumulative access times of waiting requests, by considering all possible scheduling decisions whose complexity

strongly depends on the algorithm parameters. The proposed algorithm, namely the shortest cumulative access

time first (SCATF), has two variations, Version 1 (SCATFv1) and Version 2 (SCATFv2). SCATFv1 is

introduced first. Algorithm SCATFv1 is characterized by a pair of algorithm parameters (J, L), represented

by SCATFv1(J, L). Parameter J determines the maximum number of steps for which the cumulative access

time is to be calculated, whereas L is the maximum number of requests to be selected in each step of the

calculation of the cumulative access time. Let us assume W pending I/O requests (or requests in short) at a
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scheduling instant at which SCATFv1(J, L) chooses a sequence of pending requests of length J̄ = min(J,W ).

In this paper, a sequence is defined as an ordered list of distinct I/O requests. For the sake of simplicity,

we first assume W ≥ J. For the purpose of choosing an ordered sequence, in the first step of the algorithm,

SCATFv1(J, L) scans and orders all the pending requests in terms of access times from the current disk head,

and finds L1 = min(L,W ) distinct requests denoted by a
(1)
1 , a

(1)
2 , . . . , a

(1)
L1

, with shortest access times from the

current disk head. Let us denote the set of requests obtained in the first step as P1 = {a(1)1 , a
(1)
2 , . . . , a

(1)
L1
} . In the

second step, for each of the L1 requests a
(1)
j1

, 1 ≤ j1 ≤ L1 obtained in the first step, we find L2 = min(L,W −1)

requests denoted by a
(2)
j1,1

, a
(2)
j1,2

, . . . a
(2)
j1,L2

, with shortest access times from the disk head, assuming that the

disk head has just served the request a
(1)
j1

, 1 ≤ j1 ≤ L1. This construction gives rise to a set of L1L2 two-

hop sequences, i.e. sequences of length two, denoted by P2 = {(a(1)j1
, a

(2)
j1,j2

), 1 ≤ jk ≤ Lk, 1 ≤ k ≤ 2}. The

cumulative access time of a two-hop sequence (a
(1)
j1

, a
(2)
j1,j2

) is defined as the sum of the access time from the

current disk head to request a
(1)
j1

, and the access time required by the disk head to move from a
(1)
j1

to request

a
(2)
j1,j2

. We then scan and sort the sequences in P2 , so as to pick L̂2 = min(L,L1L2) of these sequences with

the shortest cumulative access times, denoted by the set of sequences C2 = {(a(1)j1
, a

(2)
j1,j2

)} of cardinalityL̂2 .

In the third step, for each of the L̂2 requests a
(2)
j1,j2

obtained as the last element of a sequence in C2 , we find

L3 = min(L,W − 2) requests, denoted by a
(3)
j1,j2,1

, a
(3)
j1,j2,2

, . . . , a
(3)
j1,j2,L3

with minimum access times from the

disk head, assuming that the disk head has just served the request a
(2)
j1,j2

. This construction subsequently gives

rise to the following set of three-hop sequences:

P3 = {(a(1)j1
, a

(2)
j1,j2

, a
(3)
j1,j2,j3

), (a
(1)
j1

, a
(2)
j1,j2

) ∈ C2, 1 ≤ j3 ≤ L3},

of cardinality L̂2L3 . At the end of the third step, we scan and sort the sequences in P3 in terms of the

cumulative access times in ascending order, so as to pick the highest L̂3 = min(L, L̂2L3) of the sequences with

minimum cumulative access times. These subsequently constitute the chosen set of sequences at the end of

the third step, denoted by C3 = {(a(1)j1
, a

(2)
j1,j2

, a
(3)
j1,j2,j3

)} of cardinality L̂3 . Here the cumulative access time of

the sequence (a
(1)
j1

, a
(2)
j1,j2

, a
(3)
j1,j2,j3

) is similarly defined as the sum of the cumulative access time of the two-hop

subsequence (a
(1)
j1

, a
(2)
j1,j2

) and the access time required for the disk head to move to request a
(3)
j1,j2,j3

, provided

that the disk head has just served request a
(2)
j1,j2

. This process then repeats for J − 1 steps to obtain the

following set of candidate sequences:

PJ−1 = {(a(1)j1
, a

(2)
j1,j2

, . . . , a
(J−1)
j1,j2,...,jJ−1

), (a
(1)
j1

, a
(2)
j1,j2

, . . . , a
(J−2)
j1,j2,...,jJ−2

) ∈ CJ−2, 1 ≤ jJ−1 ≤ LJ−1},

of cardinality L̂J−2LJ−1 , where Lk = min(L,W − k + 1), k ≥ 1. There are two versions of the algorithm

SCATFv1, depending on how the final J th step is executed. Version A of the proposed algorithm, named

SCATFv1A , decides to serve one of the subsequences in PJ−1 with the shortest cumulative access time, which

is defined as the sum of the cumulative access time of the subsequence (a
(1)
j1

, a
(2)
j1,j2

, . . . , a
(J−1)
j1,j2,...,jJ−1

) ∈ PJ−1and
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the shortest access time to some other request a
(J)
j1,j2,...,jJ

, given that the disk head has just served the request

a
(J−1)
j1,j2,...,jJ−1

. Once the scheduling decision has been made, the disk serves the chosen J requests in the

designated order. A slightly modified Version 2 of the same algorithm, called SCATFv1B , first picks L̂J−1 of

the sequences in PJ−1 with the shortest cumulative access times. Then we define the set of chosen sequences

CJ−1 = {(a(1)j1
, a

(2)
j1,j2

, . . . , a
(J−1)
j1,j2,...,jJ−1

)} with cardinality L̂J−1 . This step is then followed by the very final

step of choosing the sequence (a
(1)
j1

, a
(2)
j1,j2

, . . . , a
(J)
j1,j2,...,jJ

) ∈ CJ−1 with the shortest cumulative access time,

which is the sum of the cumulative access times of the subsequence (a
(1)
j1

, a
(2)
j1,j2

, . . . , a
(J−1)
j1,j2,...,jJ−1

) ∈ CJ−1and

the shortest access time to another request a
(J)
j1,j2,...,jJ

, given that the disk head has just served request

a
(J−1)
j1,j2,...,jJ−1

. Newcoming requests need to wait until the next scheduling instant while another request in

the sequence is being served, both in SCATFv1A(J, L) and inSCATFv1B(J, L). For the case of W < J ,

SCATFv1A(J, L)(SCATFv1B(J, L)) should be reduced to SCATFv1A(W,L)(SCATFv1B(W,L)), since it

is not possible to serve a J -hop sequence in this case. However, at most, W -hop sequences are allowed.

Although cumulative access time-based algorithms may prove to be beneficial in certain scenarios,

newcoming I/O requests are ignored until the next scheduling instant for the two variations of SCATFv1(J, L).

Algorithm SCATFv2A(J, L) is the same as SCATFv1A(J, L); when there are no request arrivals during the

time the chosen sequence is served. However, when a new request arrival takes place after the service of the

(i − 1)st request of the J -hop sequence, but before the ith request, the service ending of the ith request

becomes a new scheduling instant. In this case, SCATFv2A(J, L) reruns algorithmSCATFv1A(J − i, L),

to opt for a new subsequence of length (J − i) to serve after the disk head completes the service of the

ith request, while taking into consideration the new arrival(s). Algorithm SCATFv1B(J, L) is similarly

extended to SCATFv2B(J, L). For convenience, we describe SCATFv1A(J, L) in Algorithm 1, since the

extension of the algorithm to the remaining three algorithms, namely SCATFv2A(J, L), SCATFv1B(J, L),

andSCATFv2B(J, L), is straightforward.

In order to compare the computational complexities and storage requirements of the four proposed

algorithms, we assume that the computation of access time from a fixed request to each of the remaining

W − 1 requests requires one CPU operation, whereas the remaining operations (comparison within an array

of numbers, selecting and storing the minimum, etc.) are assumed to be negligible in terms of computational

complexity. For convenience, we also assume that W is much larger than parameters J and L . At the first step

of algorithm SCATFv1A, access times from the head to all the W requests are computed, which requires W

CPU operations. At step i for 2 ≤ i ≤ J , access times for each Li−1 request to the remaining W − i+ 1 ≈W

requests are computed. Overall, using algorithm SCATFv1A results in W
J−1∑
i=0

LiCPU operations to process J

requests. Moreover, access times for roughly JLJ−1 I/O requests should be stored in the memory. The only

difference of SCATFv1B is that at the final step, access times are computed forL requests instead of LJ−1 . This

reduces the number of CPU operations required to process J requests to WL + W

(
J−2∑
i=0

Li

)
≈ W

(
J−2∑
i=0

Li

)
for large . Similarly, access times for roughly (J − 1)LJ−2 requests should be stored in the memory instead

of JLJ−1 . On the other hand, each version of the SCATFv2 algorithm executes the corresponding version of
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Algorithm 1 SCATFv1A(J, L) disk scheduling algorithm.

Input: Parameters J, L, pending requests W , and the current position of the disk head

Output: Sequence of requests to serve

J̄ ← min(J,W )

L1 ← min(L,W )

P1 ← the set of L1 distinct requests with shortest access times from the current disk head

i← 2

while i ≤ J − 1 do

Li ← min(L,W − i+ 1)

Pi ← the set of sequences, including Li distinct requests with shortest access times for

each request in set Pi−1

i← i+ 1

end
PJ ← the set of sequences, including the distinct request with shortest access time for

each request in set PJ−1

Serve the sequence of requests with shortest cumulative access time in set PJ

the SCATFv1 algorithm J times, by processing one request at a time and reducing parameter J by 1 at each

step. Resulting CPU per request (total required CPU operations divided by J) and storage requirements are

provided in the Table, along with their values evaluated for the sample parameter set (W,J,L) = (128, 8, 4).

Table. CPU and storage requirement expressions for the four proposed algorithms.

SCATFv1A SCATFv1B SCATFv2A SCATFv2B

CPU operations W
J

J−1∑
i=0

Li W
J

J−2∑
i=0

Li W
J

J∑
k=1

J−k∑
i=0

Li W
J

J∑
k=1

max(J−k−1,0)∑
i=0

Li

(W,J,L) = (128, 8, 4) 87,376 21,840 465,984 116,480

Storage requirement JLJ−1 (J − 1)LJ−2 (J − 1)LJ−2 (J − 1)LJ−2

(W,J,L) = (128, 8, 4) 131,072 28,672 131,072 28,672

We now provide an illustrative example to describe the SCATF algorithms of interest. For this purpose,

consider a hypothetical disk drive, illustrated in Figure 1, with one surface, 6 tracks, and 8 sectors per track,

totaling 48 sectors on the single surface. For illustrative purposes, we assume the following simplistic disk model:

one full disk rotation requires 16 ms, and the seek time between a source and destination track is assumed to

be 4-ms times the distance between the two tracks. We assume all I/O requests require the transfer of one

single sector. At time t0 , 4 requests, namely requests 1, 2, 3, and 4, are assumed to be pending, and the disk

head resides at the outermost track. A scheduling decision is to be made at time ti, i ≥ 0, which will result in

the service completion of a request at time ti+1 . We assume request i + 4 to have just joined the system by

time ti+1. The parameter pair (J, L) is assumed to be (3, 2) for this illustrative example. In particular, we are

interested in the scheduling decisions made by both versions of SCATFv1(3, 2) and SCATFv2(3, 2) at time

ti, 0 ≤ i ≤ 2.
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Figure 1. Hypothetical disk drive with one surface, 6 tracks, and 8 sectors per track.

Let us start with SCATFv1(3, 2). At time t0, in the first step, there are W = 4 pending requests,

and SCATFv1(3, 2) finds the set P1 = {3, 4} with cardinality L1 = 2. Note that at time t0, the positioning

from the current disk head, i.e. access times minus the sector traversal times, to requests 3 and 4, are 12 and

14 ms, respectively, which are shorter than those to requests 1 and 2, which are 16 and 18 ms, respectively.

Subsequently, in the second step, we obtain the set P2 = {(3, 1), (3, 4), (4, 1), (4, 3)} . In the final step of

the algorithm, SCATFv1A(3, 2) finds one single three-hop sequence out of the subsequences in P2 , namely

sequence (3, 1, 4), with the shortest cumulative access time being 42 ms. This amounts to deciding at time t0

to serve requests 3, 4, and 1 at times t0, t1, and t2, respectively. For algorithmSCATFv1A(3, 2),we further

construct set C2 = {(3, 4), (4, 3)} , which is a subset of P2 of cardinality 2. In the final step, SCATFv1B(3, 2)

finds two three-hop sequences out of the subsequences in C2 , namely (3, 4, 1) and (4, 3, 1), with the shortest

cumulative access time being 44 ms, one of which will be chosen at random by SCATFv1B(3, 2). Evidently,

the two versions of SCATFv1(3, 2) produced different sequence decisions, for both of which the new-coming

requests 5 and 6 need to wait until t3 to be considered for service.

Next, we describe the operation of SCATFv2A(3, 2). As in SCATFv1A(3, 2), the decision to serve the

three-hop sequence (3, 1, 4) is made at t0 . However, request 5 arrives just before the service completion of

request 3, which occurs at time t1. Algorithm SCATFv1A(2, 2) is then run with request 5 taken into account

to find the shortest cumulative access time two-hop sequence, which turns out to be (4, 5). Once the service of

request 4 is complete, request 6 has just arrived. In the final step, SATF is employed to decide to serve request

5. We observe that the cumulative access times of these three requests are 32 ms, if SCATFv2A(3, 2) is used.

Let us now describe the operation of SCATFv2B(3, 2). As in SCATFv1B(3, 2), the decision to serve

one of the two sequences (3, 4, 1) or (4, 3, 1) at random, say sequence (4, 3, 1), is made at t0 . However, request 5

arrives just before the service completion of request 3, which occurs at time t1. The algorithm SCATFv2B(2, 2)

is then run at time t1 , with request 5 taken into account to find the shortest cumulative access time two-hop

sequence, which turns out to be (5, 1). Once the service of request 5 completes, request 6 has just arrived. In

the final step, SATF is employed to decide to serve request 1. We observe that if SCATFv2B(3, 2) is used,

the cumulative access times of these three requests is 28 ms. If SATF were used, requests 3, 4, and 5 would be

served at times t0, t1, and t2, respectively, yielding a total service time of 32 ms, which is the same as that of

SCATFv2A(3, 2).

3373



AKAR et al./Turk J Elec Eng & Comp Sci

4. Numerical examples

In all the numerical examples to follow, we employ the HP 97560 SCSI disk drive, based on [10], with 10 platters

and 19 data surfaces, 1964 physical cylinders, 72 sectors (512 bytes each) per track, yielding a total capacity of

1.38 GB. The disk speed is 4002 rpm and the settling time for switching between tracks in the same cylinder

is ignored in the simulations. The seek time model is again inherited from [10]. Each request reads or writes

two sectors of data. We note the differences with this general disk model used in all the numerical examples,

and the simple low-capacity disk used in the hypothetical example, given in Figure 1 for illustrative purposes.

Similar to the illustrative example of Figure 1, we assume that whenever a request is served, another new

request immediately joins the system at a random location on the disk, leading to a fixed number of pending

requests, which is denoted by Q . The disk model and scheduling mechanism of interest are implemented in

MATLAB, and each simulation is terminated once 2 106 requests are served. All four proposed algorithms are
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Figure 2. Percentage gain obtained by the proposed algorithms as a function of hop length J for Q = 8 and various

values of L .
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compared and contrasted against the conventional SATF algorithm by using a percentage gain metric G , which

is defined as G = T−TSATF

TSATF
× 100, where TSATF is the throughput of the system in units of I/O operations per

second (IOPS), if SATF is to be used as the scheduler. T is the throughput of the system when one of the four

variations of the proposed algorithm is to be deployed. A negative value for the metric G is indicative of a loss

in throughput performance with respect to SATF.

Example 1 In the first example, we plot the percentage gain obtained using the four proposed SCATF algo-

rithms as a function of the hop length J , for various choices the algorithm parameter L ∈ {2, 4, 6, 8} and for

three values of the fixed queue size Q ∈ {8, 32, 128}, shown in Figures 2, 3, and 4, respectively. For convenience,

we also plot the throughput obtained using SATF and the four proposed SCATF algorithms as a function of

the hop length J for Q ∈ {8, 32, 128} , shown in Figures 5, 6, and 7, respectively. We have encountered sub-
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Figure 3. Percentage gain obtained by the proposed algorithms as a function of hop length J for Q = 32 and various

values of L .
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Figure 4. Percentage gain obtained by the proposed algorithms as a function of hop length J for Q = 128 and various

values of L .

stantial performance losses with A and B variations of the SCATFv1 algorithm, with the loss increasing for

smaller queue length Q and for larger hop length J . The reason for this observation is that the ignorance

of new arrivals for smaller queue lengths and larger hop lengths leads to many wasted opportunities. On the

other hand, for larger queue sizes and relatively low values of hop length J, SCATFv1 presents an improved

throughput performance. Higher throughput values are obtained for both versions of the SCATFv2 algorithm,

which appear to consistently increase with increased hop length J and, again, for increased algorithm parame-

ter L . However, beyond certain values of the parameter pair (J, L) , improvement in throughput is marginal.

The A and B variations of the scheduling algorithm SCATFv2 provided very close results with SCATFv2A ,

slightly outperforming SCATFv2B for larger queue lengths and larger hop lengths. However, we have observed

cases where this ordering is slightly reversed in other scenarios. Based on the results obtained in Example 1

favoring SCATFv2 , and SCATFv2A in particular, we fix the disk scheduling algorithm to SCATFv2A in

the remaining numerical examples.
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Figure 5. Throughput obtained by SATF and the proposed algorithms as a function of hop length J for Q = 8 and

various values of L .

Hop length J

2 3 4 5 6 7 8 9 10

!
ro

u
gh

p
u

t 
(I

O
P

S)

0

30

60

90

120
(a) Q=32, L=2

SATF

SCATFv2B

SCATFv2A

SCATFv1B

SCATFv1A

Hop length J

2 3 4 5 6 7 8 9 10

!
ro

u
gh

p
u

t 
(I

O
P

S)

0

30

60

90

120
(b) Q=32, L=4

SATF

SCATFv2B

SCATFv2A

SCATFv1B

SCATFv1A

Hop length J

2 3 4 5 6 7 8 9 10

!
ro

u
gh

p
u

t 
(I

O
P

S)

0

30

60

90

120
(c) Q=32, L=6

SATF

SCATFv2B

SCATFv2A

SCATFv1B

SCATFv1A

Hop length J

2 3 4 5 6 7 8 9 10

!
ro

u
gh

p
u

t 
(I

O
P

S)

0

30

60

90

120
(d) Q=32, L=8

SATF

SCATFv2B

SCATFv2A

SCATFv1B

SCATFv1A

Figure 6. Throughput obtained by SATF and the proposed algorithms as a function of hop length J for Q = 32 and

various values of L .

Example 2 In this example, we study the performance gain G of SCATFv2A disk scheduler as a function of

hop length J for four values of algorithm parameter L , shown in Figure 8, and for varying values of the queue

length Q : (a) Q = 8, (b) Q = 12, (c) Q = 16, (d) Q = 32, (e) Q = 64 , and (f) Q = 128. We observe that

the performance gain obtained by SCATFv2A is always positive, with the gain monotonically increasing with

increased hop length J for all values of queue size Q . We also observed that for relatively large queue lengths
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Figure 7. Throughput obtained by SATF and the proposed algorithms as a function of hop length J for Q = 128 and

various values of L .
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Figure 8. Performance gain G , obtained by using SCATFv2A as a function of hop length J for four values of the

algorithm parameter L for varying values of queue length Q : (a) Q = 8, (b) Q = 12, (c) Q = 16, (d) Q= 32, (e) Q

= 64, (f) Q = 128.
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(for example Q ≥ 32) , gain G also increases monotonically with increased algorithm parameter L . However,

for much smaller queue lengths, i.e. Q < 32, this relationship may not necessarily hold for relatively small

values of J . Therefore, it is possible that increasing L may lead to a slight reduction in overall throughput in

this particular regime.

Example 3 In this example, we again employ SCATFv2A , although this time we plot the percentage per-

formance gain G , shown in Figure 9 and obtained using the disk scheduler SCATFv2A , in comparison with

SATF as a function of queue size Q for various values of the algorithm parameter pair (J, L). We observe

that the performance gain is not monotonic with respect to queue size Q for a given pair (J, L), and there is a

certain value for Q such that this gain is maximum. The maximum-gain attaining queue size appears to be close

to Q = 64 for most cases we studied. Hence, we observe a performance gain of 3.61% when J = 10, L = 8 .

Moreover, we observed that the maximum-observed gain increases with increased choices of J and L ; however,

beyond the choice of L = 6, the improvement is marginal. A similar statement can be made for parameter

choice J by also taking into account the findings of Figure 8.
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Figure 9. Performance gain G , obtained by using SCATFv2A as a function of queue size Q for various values of L

and for two different choices of hop length J : (a) J = 4, (b) J = 6, (c) J = 8, (d) J = 10.
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5. Conclusion

A new class of disk-scheduling algorithms is presented based on the choice of a sequence of pending I/O

requests at the scheduling instant with the shortest cumulative access time. This introduces flexibility for

forthcoming requests to alter the chosen sequence. The proposed algorithm requires the selection of two

algorithm parameters, namely J and L , which refer to the sequence length and number of next-hops computed

at each step of the algorithm, respectively. Through extensive simulations, it was shown that the SCATFv2A

algorithm can provide robust throughput performance gain in comparison to the conventional SATF algorithm

for sufficiently large choices of J and L . The largest performance gain was obtained for moderate queue lengths,

and up to 3.61% performance gains were observed. However, this increased performance gain is obtained at the

expense of increased computational effort, which needs to be further explored for the efficient implementation

of these algorithms.
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