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Abstract: Classical stretch processing (SP) obtains high range resolution by compressing large bandwidth signals with
narrowband receivers using lower rate analogue-to-digital converters. SP achieves the resolution of the large bandwidth signal
by focusing into a limited range window, and by deramping in the analogue domain. SP offers moderate data rate for signal
processing for high bandwidth waveforms. Furthermore, if the scene in the examined window is sparse, compressive sensing
(CS)-based techniques have the potential to further decrease the required number of measurements. However, CS-based
reconstructions are highly affected by model mismatches such as targets that are off-the-grid. This study proposes a sparsity-
based iterative parameter perturbation technique for SP that is robust to targets off-the-grid in range or Doppler. The error
between reconstructed and actual scenes is measured using Earth mover's distance metric. Performance analyses of the
proposed technique are compared with classical CS and SP techniques in terms of data rate, resolution and signal-to-noise
ratio. It is shown through simulations that the proposed technique offers robust and high-resolution reconstructions for the same
data rate compared with both classical SP- and CS-based techniques.

1 Introduction
Obtaining higher resolution is important in many engineering
applications such as remote sensing, medical and radar imaging.
Radar systems are often operated with large bandwidths to provide
high resolution. Classical matched filtering detects targets over the
entire unambiguous range if Nyquist rate samples are acquired.
This could require high data rates for large bandwidth waveforms.
On the other hand, stretch processing (SP) [1–3] processes wide
bandwidth signals with narrowband systems such as lower rate
analogue-to-digital converters (ADCs) by constraining the
observed range to a limited window and still obtains the high
resolution of the wide bandwidth waveform. Therefore, SP is very
well suited for target discrimination and classification [4], synthetic
aperture radar (SAR) imaging [5] and tracking applications [6].

In general, linear frequency-modulated (LFM) waveforms are
used in SP, and the received signal is stretched by mixing it with a
local oscillator LFM signal that has the same sweep rate as the
transmitted signal as illustrated in Fig. 1. 

After the mixing operation, targets at different ranges appear at
distinct frequencies. Classical SP determines these frequencies, and
hence their corresponding ranges, by spectrum analysis techniques
such as the discrete Fourier transform (DFT). The Doppler shift

due to moving targets causes frequency shifts which result in
ambiguity in the observed ranges. SP using multiple pulses within
a pulse–Doppler framework could estimate both range and
velocities of moving targets by using two-dimensional (2D)
spectral analysis [2, 7].

The range window observed by SP either has a small number of
targets or a single target that has a small number of dominant
reflecting points. In either case, the observed target scene can be
sparsely modelled. Compressive sensing (CS) [8, 9] provides
further reduction in the number of measurements for reconstruction
of sparse signals under a known basis. Owing to the appealing
properties of CS and its important advantages for radar, CS has
received considerable attention in the radar research community. In
[10], the possibility of sub-Nyquist sampling and elimination of
match filtering has been discussed. CS has been shown great
interest in many high-resolution radar imaging applications such as
SAR imaging [11, 12], inverse SAR imaging [13], ground
penetrating radar [14] and through-the-wall imaging [15].

The CS framework is also studied with SP in [16]. In this
application of CS to SP the continuous frequency space is
discretised into a frequency grid and the DFT basis is used only to
reconstruct the discrete frequency/range vectors. If the scatterers
are exactly on the ranges that correspond to the grid frequencies of

Fig. 1  Classical SP flow diagram
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the CS dictionary, then the observed scene is sparse and CS
reconstruction of the scene will be successful. However, no matter
how fine the grid is, the targets are typically located in off-grid
positions. It has been discussed in the literature that the off-grid
targets create an important degradation in CS reconstruction
performance [17–23] since the sparsity assumption on the defined
grids is no longer valid. In [16], performance degradation for off-
grid targets is discussed for CS and SP but a solution is not
provided.

This paper proposes to use a parameter-perturbed orthogonal
matching pursuit (PPOMP) technique [24] within the SP
framework for robust and joint estimation of range and Doppler
parameters of the targets for sparse reconstruction under the
general off-grid case following an initial work in [25]. The
proposed technique is analysed in terms of data rate, resolution and
reconstruction performance for varying levels of noise and it is
compared with classical SP- and CS-based approaches. It is shown
that the proposed robust CS-based technique for SP provides better
performing results in all compared metrics.

This paper is organised as follows: Section 2 describes the
signal model, as well as classical SP- and CS-based SP
frameworks. The proposed parameter perturbation technique and
its application to SP are detailed in Section 3. Simulation results on
a variety of examples with performance comparisons are given in
Section 4 and Section 5 covers conclusions.

2 Signal model for SP
Assume that the radar transmits an LFM waveform as

s(t) = ejπαt2 rect t
τT

(1)

where B is the bandwidth, τT is the pulse width, α = B/τT is the
sweep rate and rect(x) = 1, | x | ≤ 0.5 and 0 elsewhere. If there are
K scatterers at ranges Rk, k = 1, 2, …, K within the range interval
[Rmin, Rmax] around centre range R0, the received signal r(t) from
all reflectors will be modelled as

r(t) = ∑
k = 1

K
Akej2π f c t − τRk ejπα t − τRk

2
(2)

where f c is the carrier frequency, c is the propagation speed, Ak is
the complex reflectivity and τRk = 2Rk /c is the time delay of the kth
scatterer. This time delay can also be written with respect to the
time delay τ0 for the centre range as

τRk = τ0 + ΔτRk . (3)

In SP, a heterodyne LFM signal h(t) with the same sweep rate as
s(t) is formed

h(t) = ej2π f c(t − τ0)ejπα(t − τ0)2 (4)

and is mixed with the received signal r(t) as illustrated in Fig. 1.
The mixed output can be written as

v(t) = r(t)h∗(t)

= ∑
k = 1

K
A^

ke
− j2παΔτRkt + n(t)

(5)

where n(t) is the additive white Gaussian noise. The term A^
k

includes all complex constant terms for the scatterer. The mixer
output is a sum of complex exponentials as observed from (5) and
the frequency of the kth term that corresponds to a relative time
delay ΔτRk is f Rk = αΔτRk. The output of the mixer is sampled with
a lower rate ADC where the sampling frequency is determined by
the bandwidth in the mixed signal. Since the mixed signal is a sum
of complex exponentials, its bandwidth is related to the maximum

and minimum possible frequencies which are determined by the
range window extent. If the time delay interval for the examined
range window is ΔτRint = τRmax − τRmin where τRmax and τRmin
correspond to maximum and minimum time delay values for the
corresponding maximum and minimum ranges in the range
window; then a minimum ADC rate Fs = ΔτRintα is required in SP
which is less than the pulse bandwidth B. Uniformly sampling the
mixed output with Fs over a time interval of

τRmin − τT
2 ≤ t ≤ τRmax + τT

2  will generate at least

Ns ≥ Fs τT + ΔτRint  number of samples for SP. Target frequencies
f Rk and their corresponding ranges are estimated with any spectrum
estimation technique such as DFT.

If targets are moving, frequency shifts occur due to Doppler,
creating ambiguity in range estimation for a single pulse. To solve
for both range and velocity pulse–Doppler processing is used with
SP. In pulse–Doppler, a coherent train of Np pulses is transmitted.
So, the data model in (5) can be rewritten as

v(t) = ∑
n = 0

Np − 1

∑
k = 1

K
A^

ke
− j2π f Rkt fej2π f Dkts + n(t) (6)

where f Dk is the Doppler frequency of individual scatterers within

− PRF
2 , PRF

2  interval, tf is the fast time defined within

t0 − τh
2 ≤ t ≤ t0 + τh

2 , ts = nTPRI, n = 0, 1, …, Np − 1 is the slow

time where TPRI and PRF = 1/TPRI are the uniform pulse repetition
interval (PRI) and pulse repetition frequency, respectively.
Classical SP applies a 2D DFT to find both range and Doppler
frequency parameters of individual scatterers.

The examined range window is generally populated with a
small number of scatterers, hence application of CS-based
techniques allow further decrease in data acquisition rates.
Classical application of CS to SP requires discretisation of
continuous frequency space where target range and velocity
parameters live. Hence, a sparsifying basis is created where each
column corresponds to the data model that is expected to be
acquired for a target having on grid parameters. Under Nyquist rate
sampling this is 2D DFT basis. However, for the sparsity
assumption to hold, this model inherently assumes that the DFT
grid points θj = f R j, f D j , and discrete target frequencies exactly
coincide.

Assuming the on grid model, the measurements v can be written
as

v = Ψx + n (7)

where x is the discrete range–Doppler space and Ψ is the sparsity
basis with columns being a(θk) = e− j2π f Rtfej2π f Dts. The size of Ψ will
be NtNp × NRND where Nt is number of time samples, Np is
number of pulses and NR and ND are the number of frequency grid
points of range and Doppler, respectively.

If there are K scatterers that are exactly on grid, then x is a K-
sparse vector. However, target range and velocity values may be
anything from the continuous parameter space and v cannot be
represented as K-sparse in Ψ which diminishes the benefits of CS.

In formulation of CS, lower rate linear measurements of the
form are acquired

v = ΦΨx + n = Ax + n (8)

where Φ is a measurement matrix of size M × LtNp. Depending on
the implementation of the linear measurement setup, the Φ matrix
can be populated with random Gaussian or Bernoulli entries or it
can be random M rows of LtNp × LtNp identity matrix
corresponding to sampling at random times. In all cases the
combined matrix A = ΦΨ should satisfy the restricted isometry
property [26] for reconstruction of x from measurement v. The
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sparse scene x can be obtained by solving an optimisation problem
as

min
x

∥ x ∥1 s . t . ∥ v − Ax ∥2 ≤ ϵ . (9)

The problem in (9) can be efficiently solved with linear
programming. Also many greedy sparse reconstruction techniques
have been developed [27–30] for lower computational complexity.

3 Parameter perturbation for reconstruction
The model in (8) and the classical CS reconstruction in (9) assume
on grid target parameters. However, the targets may have any range
or Doppler parameter value and hence are essentially always off-
the-grid. This off-grid problem invalidates the sparsity assumption
with the previously used basis and hence degrades the
reconstruction performance of CS solvers. Here, parameter-
perturbed OMP (PPOMP) technique proposed in [24] is adapted
and applied for robust reconstruction of sparse scenes in SP. The
proposed algorithm is a greedy technique where at each iteration it
starts with a selected set of on grid dictionary vectors that can be
obtained via one of any known sparse reconstruction techniques
such as OMP [27]. Therefore, at the kth iteration the measured
signal can be represented as

v = v⊥ + ∑
i = 1

k
αia(θi), (10)

where v⊥ is the orthogonal residual of v to the span of k chosen
support vectors a (θi). The idea is to perturb the parameters θi in
(10) such that the norm of the orthogonal residual is to be
minimised; hence, the goal is to solve the following minimisation
problem:

arg min
αk, δ f Rk, δ f Dk

∥ v − ∑
i = 1

k
αia( f Ri + δ f Ri, f Di + δ f Di) ∥

s . t . |δ f Ri | < Δ f R/2, |δ f Di | < Δ f D/2
(11)

where δ f Ri and δ f Di are the perturbation of range and Doppler of
the ith scatterer from the corresponding grid point, respectively.
The proposed OMP-based iterative algorithm with the additional
step of parameter perturbation giving a sub-optimal solution to (11)
is summarised in Table 1. 

For the solution of the non-convex optimisation problem
defined in (11), an iterative optimisation of the cost function is
proposed where selected dictionary parameters are iteratively

updated toward directions that decrease the residual norm while
keeping them within their grids. To do so estimation of target
reflectivities α and the parameter perturbations are iteratively
performed. Starting from grid centres of corresponding k targets
θi, 1 = f Ri, f Di , i = 1, 2, …, k, target reflectivity vector αℓ is
obtained for the given target parameters θi, ℓ as

αℓ = arg min
α

∥ v − ∑
i = 1

k
αi, la(θi, l) ∥2 (12)

where ℓ is the perturbation index and i represents the target index.
Starting from the k target grid parameters, at each perturbation step,
parameters of all k targets are updated as

θi, ℓ + 1 = θi, ℓ + δθi, ℓ, i = 1, …, k (13)

The parameter updates δθi, ℓ at the perturbation index ℓ can be
found by solving (see (14)) The target reflectivities in (12) are
solved for using a standard least-square formulation. However, the
problem defined in (14) is a constrained non-linear optimisation
problem. For solving (14), a fRi, l + δ fRi, fDi, l + δ fDi  is linearised
at the current parameter point as

a fRi, l + δ fRi, fDi, l + δ fDi ≃ a fRi, l, fDi, l

+ ∂a
∂ fRi, l

δ fRi + ∂a
∂ fDi, l

δ fDi .
(15)

Hence using (15) in (14) results

[δθ1, ℓ…δθk, ℓ] = arg min
u

∥ rℓ − Bℓu ∥2 (16)

where rℓ is the orthogonal residual defined as

rℓ = b − ∑
i = 1

k
αi, ℓa θi, ℓ

and Bℓ ∈ CM × 2k is the matrix holding the weighted partial
derivatives at the linearisation point and is defined as

Bℓ = ΔRα1, ℓ
∂a

∂ fR1, l
, …, ΔRαk, ℓ

∂a
∂ fRk, l

,

ΔDα1, ℓ
∂a

∂ fD1, l
, …, ΔDαk, ℓ

∂a
∂ fDk, l

.
(17)

Note that Bℓ is different at each perturbation iteration ℓ since the
linearisation points θi, ℓ are updated and a new linearisation is made
at each updated parameter point as stated in (15). Since directly
using the solution from (16) could result in errors in parameter
updates due to a first-order linear approximation, instead a gradient
descent update that reduces the norm in (16) is adapted. The
negative gradient direction that reduces the norm at u = 0 will be
Re{2Bl

Hrl} and the proposed parameter update is

αℓ = [a(θ1, ℓ)a(θ2, ℓ)…a(θk, ℓ)]†b (18a)

θi, ℓ + 1 = θi, ℓ + μi, ℓRe{Bℓ
Hrℓ} (18b)

where μi, ℓ is the gradient descent step size. The proposed off-grid
parameter solver procedure is summarised in Table 2. 

Table 1 Proposed off-the-grid sparse solver
inputs: (A, y, ϵ)

initialisation:
y⊥, 0 = y, T0 = {}, e = ∥ y⊥, 0 ∥2, k = 1

keep iterating until e < ϵ

j∗ = arg max1 ≤ j ≤ N | a( f j)Hy⊥, k − 1|
Tk = Tk − 1⋃{ f j∗}

(α, [δ f1…δ fk]) = off − grid range and Doppler solver (ORDoS)(y, Tk)

y⊥, k = y − ∑
i = 1

k
αia( f i + δ f i)

e = ∥ y⊥, k ∥2

k = k + 1
output:

(α, [δ f1…δ fk], Tk)
 

[δθ1, l…δθk, l] = arg min
δ f Ri: |δ f Ri | ≤ Δ fR/2
δ f Di: |δ f Di | ≤ Δ fD/2

∥ v − ∑
i = 1

k
αi, l a fRi, l + δ fRi, fDi, l + δ fDi ∥

2
. (14)
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4 Simulation results
In this section, performance of the proposed technique is analysed
for SP in the case of targets that have arbitrary range or Doppler
parameters. In the comparisons, an SP framework is developed. A
linear chirp waveform with bandwidth of B = 20 MHz and pulse
width τT = 100 μs is used. Hence sweep rate is α = 0.2 MHz/μs.
The range window centre is taken to be 1.5 km, with an extent of
1.5 km around the centre. The range resolution will be ΔR = 7.5 m
corresponding Δ f R = 50 kHz and range window is discretised to
range grids with ΔR.

In addition, Np = 16 pulses are used with PRI of 1 ms, hence
PRF is 1 kHz. Doppler space is uniformly discretised to ND = 32
Doppler grid points within −PRF/2, PRF/2 . If classical SP is
used, a sampling frequency of Fs = ΔτRintα = 2 MHz would be
required to reconstruct the observed limited range window instead
of sampling at the waveform bandwidth of B = 20 MHz. Further
reduction in number of samples with CS is tested where CS uses
only a random subset of these measurements in the simulations.

First, a sparse scene with K = 6 scatterers is simulated using the
defined parameters. Additive white Gaussian noise is added with a
signal-to-noise ratio (SNR) of 20 dB. A surface clutter model
defined as in [7] is also generated and added to the measurements
with an signal-to-clutter ratio (SCR) of 15 dB. Classical SP obtains
the result in Fig. 2. It can be seen that a non-sparse scene is
generated with SP. In this case, SP uses DFT which is a matched
filtering operation resulting in sinc shape sidelobes. In addition,

performing DFT degrades considerably if random subsamples are
observed instead of full Nyquist samples. For classical CS and the
proposed PPOMP techniques, only 10% of the time samples are
used. Both techniques use the same measurements and have the
same stopping criteria. The obtained reconstruction results for CS
and PPOMP are shown in Figs. 3 and 4, respectively. Correct target
parameters are also plotted in these figures as circles for better
comparison. It can be seen that while PPOMP generates a correct
sparse scene, classical CS generates a non-sparse scene due to the
off-grid nature of the targets. In addition, CS only returns the grid
centres as parameter estimate values, while PPOMP could provide
off-grid target parameter estimates. 

Next for quantitative analysis, the proposed PPOMP technique
is compared with standard SP, OMP and ℓ1-based reconstruction
techniques for varying sparsity, SNR and measurement rate levels.
In each test, 50 independent trials are performed and target
parameters are selected randomly. Sparsity-based techniques are
terminated if the energy of residual signal is under a given
threshold. To measure the off-grid parameter estimation
performance of compared techniques Earth mover's distance
(EMD) [31] metric is used. EMD is a measure of minimum mass
flow between two compared scenes and it is more appropriate
compared with a mean squared error (MSE) since our goal is to
capture the off-grid parameter estimation performance.

First, effect of scene sparsity level is analysed. All techniques
are simulated using 20% of the entire set of measurements at an
SNR of 20 dB and SCR of 15 dB for varying sparsity levels from

Table 2 Off-grid RDoS
inputs:

(y, {θ1, θ2, …, θk}, ϵ)
initialise: l = 0, | | r0 | |2 = | | y | |2, θi, 0 = θi 1 ≤ i ≤ k, μ

while | | rl | |2 < ϵ
Al = [a(θ1, l)a(θ2, l)…a(θk, l)],

αl = Al
†y

rl = y − Alαl

Bl = Δ fRα1, l
∂a

∂ fR1, l
, …, Δ fRαk, ℓ

∂a
∂ fRk, l

, Δ fDα1, ℓ
∂a

∂ fD1, l
, …, Δ fDαk, ℓ

∂a
∂ fDk, l

gl = Re{Bl
Hrl},

for all i, 1 ≤ i ≤ k
fRi, l + 1 = fRi, l + Δ fRμi, lgi, l,

fDi, l + 1 = fDi, l + Δ fDμi + k, lgi + k, l,

check if θi, l + 1 = fRi, l + 1, fDi, l + 1  is within grid

δθi = θi, l + 1 − θi, 0

l = l + 1
output: αl{δθ1, δθ2, …, δθk}

 

Fig. 2  Classical SP result applying 2D DFT using all measurements.
Obtained EMD is 13 dB

 

Fig. 3  OMP result using only 10% of all measurements. Obtained EMD is
−6 dB
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10 to 100 point reflectors. The average EMD is shown in Fig. 5 for
each technique. It can be observed that the proposed technique
achieves lower EMD values for all sparsity levels compared with
tested techniques. EMD for SP is much higher compared with all
sparsity-based techniques since it generates a non-sparse scene and
its EMD value is affected the least from changing sparsity level of
the scene. While EMD increases for sparsity-based techniques as
the sparsity of the scene increases, PPOMP still achieves lower
values compared with classical OMP or ℓ1-based reconstruction
techniques. 

Second, measurement rates, M /N, is varied between 0.01 and 1
for a fixed setting of K = 30 targets with an SNR of 20 dB and
SCR of 15 dB. Obtained average EMD values are presented in
Fig. 6. It is seen that for measurement rates higher than 0.1 the
proposed technique provides lower EMD values than compared
techniques. Increasing the number of measurements lowers EMD
for the proposed method while OMP and ℓ1 techniques level off
since they only provide on grid solutions. While increasing M /N
ratio decreases EMD for SP, still it is much higher compared with
sparsity-based techniques. 

Next, all techniques are compared for varying SNR levels of
−10to 30 dB at a fixed setting of K = 40 and M /N = 0.2 for
sparsity-based techniques. All measurements are used in classical
SP. Average EMD results for compared techniques are given in
Fig. 7. It can be observed that while SP uses all measurements it
provides higher EMD values compared with all sparsity-based
techniques since it does not provide sparse results. PPOMP
provides lower EMD for SNRs higher than 0 dB. While increasing
SNR helps to lower average EMD for PPOMP, EMD does not get
smaller for other techniques. This shows that off-grid estimation
performance gets better with increasing SNR with the proposed

technique while classical sparsity-based techniques only provide on
grid results hence EMD stays similar after some SNR level. 

For resolution analysis of compared techniques, a two-target
scenario with same Doppler but varying ranges is performed. Two
targets are randomly located at different ranges with a distance of
R1, 2 which is less than a resolution level of ΔR. Classical OMP and
PPOMP techniques are compared using a finer grid size. The
average MSE in the target parameter estimates as a function of
ratio of target distance R1, 2 to range resolution level ΔR is shown in
Fig. 8. It can be seen that when targets are separated more than half
of the grid size, parameter estimation error for the proposed
technique is much smaller compared with OMP result. This shows
that the proposed technique provides better separation of targets
when the target separation is lower than the classical match filter
resolution limit. 

5 Conclusion
It is shown that the moderate data rate offered by classical SP for
high bandwidth waveforms can be further reduced by the CS-based
techniques. Although classical CS techniques provide advantages
over SP, it has off-the-grid target problems which reduce its
performance. The proposed sparsity-based PPOMP technique is
robust to targets off-the-grid in range or Doppler and successfully
recovers the sparse scenes. It is shown through simulations that the
proposed technique offers robust and high-resolution
reconstructions for the same data rate compared with classical SP-
and CS-based techniques.

Fig. 4  PPOMP result using only 10% of all measurements. Obtained EMD
is −21 dB

 

Fig. 5  Average EMD for tested techniques for different sparsity levels
 

Fig. 6  Average EMD for tested techniques for different measurement rates
 

Fig. 7  Average EMD for tested techniques at different SNR levels
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