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An Analytical Approach to the Design of Multiple
Mode Rectangular Cavity Waveguide Filters
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Abstract— The multiple mode rectangular cavity structure with
square corner cuts is revisited. An attempt to predict the physical
dimensions of the cavity for dual mode second-order and triple
mode third-order filters is made. Analytic expressions are formed
to be used in the design process. The classical triple mode cavity
filter structure is altered to give a finite frequency transmission
zero either in the lower or upper sideband of the center frequency.
The concept is illustrated with example designs. A novel additive
manufacturing technique is used to fabricate a selected filter
structure. The experimental results are in agreement with the
expectations.

Index Terms— Additive manufacturing, cavity filter, dispersion,
multiple mode cavity, triplet, trisection.

I. INTRODUCTION

M ICROWAVE filters have always played an important
role in both civilian and military systems and this role

becomes more critical with the ever-increasing need for more
bandwidth and channels in the spectrum, which is a very
scarce resource. On the other hand, more compact lightweight
solutions are always welcome. One such filter solution is the
multiple mode cavity filter.

The idea of using the degenerate modes within a
cavity in the synthesis of a filter was introduced in
[1, pp. 673–677] in the late 1940s, whereas a thorough analysis
of the idea is carried out in [2]. The necessary coupling
between the degenerate modes within the structure is realized
by perturbing the geometry of the cavity. The corresponding
perturbation elements can be tuning screws as well as square
corner cuts [3]. In a more recent work [4], a specific sequence
of intermodal couplings in a triple mode rectangular cavity,
implemented with similar corner cuts, is proposed and an
investigation is made on how a computer-aided design can
be realized using the proposed structure.

The main contributions of this paper to the cavity filter
design techniques are as follows.

1) Simple closed-form expressions to determine the res-
onant frequency shifts of the modes of a multiple
mode cavity, and the resulting coupling coefficient
due to various types of corner cuts are obtained. The
resulting expressions are combined with rectangular
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Fig. 1. Dual mode rectangular cavity filter structure. (a) Cavity. (b) Cavity
and waveguide.

aperture-related expressions from the literature to form
a complete set of equations that defines the connec-
tion between the physical dimensions and the coupling
matrix of a second or third-order multiple mode single
cavity filter.

2) A filter design algorithm that uses the above-mentioned
set of expressions is proposed. The algorithm provides
a good starting point in obtaining the optimized dimen-
sions of a single cavity multiple mode filter.

3) An analytical expression determining the dispersive
behavior of the rectangular aperture is derived. This
expression can be used directly with the coupling matrix
to estimate the dispersion caused nonideal response of
a filter.

4) The classical triple mode filter structure is altered to
form a triplet. The new structure is able to gener-
ate either positive or negative cross couplings, hence
allowing placement of a finite frequency transmission
zero (TZ) either at the upper or lower sideband of the
center frequency.

5) The additive manufacturing technology is combined
with multiple mode cavity technique for the first time.
The combination of the two techniques results in very
lightweight filters. An example design illustrating the
concept is realized in Ka-band.

II. MULTIPLE MODE CAVITY FILTER

The dual and triple mode cavity filter structures can be seen
in Figs. 1 and 2. Both are composed of a single cavity with
square corner cuts to generate the intermodal couplings and
rectangular apertures to realize the source/load-to-resonator
couplings.

0018-9480 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Triple mode rectangular cavity filter structure. (a) Cavity. (b) Cavity
and waveguide.

4×4 coupling matrix corresponding to a Chebyshev second-
order filter is in the following form:

M = [Mij ] =

⎡
⎢⎢⎣

S R1 R2 L

S 0 cS1 0 0
R1 cS1 0 c12 0
R2 0 c12 0 c2L

L 0 0 c2L 0

⎤
⎥⎥⎦. (1)

The only nonzero, thus to be defined, parameters of the
coupling matrix are the source to the first resonator coupling
cS1, the inter-resonator coupling c12, and the load to the last
resonator coupling c2L . Due to symmetry, cS1 = c2L .

For a third-order Chebyshev filter, the only nonzero ele-
ments of 5×5 coupling matrix are M12 = M21 = M45 =
M54 = cS1 and M23 = M32 = M34 = M43 = c12 with again
only two independent parameters.

III. INTERMODAL COUPLING

A. Square Corner Cut

Atia et al. [3] proposed the idea of using square corner cuts
instead of tuning screws to couple the degenerate modes of a
square cross section waveguide/cavity. The same structure is
also used for triple mode cavities [4].

A square cross-sectioned cavity has dual symmetry, hence,
it has two degenerate modes. In the presence of a square
corner cut, these modes are no longer degenerate and can
be interpreted to be coupled to each other. The physical
intermodal coupling coefficient, kc, can be related to the
resonant frequencies, f1 and f2, of the coupled modes with [3]

kc = f 2
1 − f 2

2

f 2
1 + f 2

2

. (2)

The presence of the square corner cut in a waveguide forces
the fields to be diagonal [1, p. 675], [5]. The rectangular cavity
field expressions of [6, pp. 155–157] are modified with the

diagonal mode approach and are given as
⎧⎪⎪⎪⎪⎪⎨
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ŷ
]

H{1,2}t = j
π2

k0ac

√
ε0

μ0
cos

(πz

c

)[
sin

(πy

a

)
x̂±sin

(πx

a

)
ŷ
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(3)

where a is the cavity dimension in the x- and y-directions, c is
the cavity dimension in the z-direction, k0 = π

√
1/a2 + 1/c2

is the wavenumber of the unperturbed resonance, ε0 and μ0
are the dielectric permittivity and permeability in the vacuum.

Different approaches in predicting the resonant frequency
of a perturbed cavity’s T M110 mode are presented in [7].
In this paper, Slater’s perturbational formulation [8] is pre-
ferred

f1,2 − f0

f0
=

∫
�V (μ0|H1,2|2 − ε0|E1,2|2)dv∫
V0

(μ0|H1,2|2 + ε0|E1,2|2)dv
(4)

where �V is the volume of the corner cut, f0 and V0 are
the resonant frequency and volume of the unperturbed cavity,
respectively. Replacing (3) in (4) and letting r = s/a be the
normalized corner cut dimension, the resonant frequencies are
found as

f1,2

f0
= 1 + r2

1 + a2/c2

[
sinc(2πr) ± sinc2(πr)

]
(5)

where sinc(x) = sin(x)/x .
Replacing (5) in (2) and using the first two terms of the

Taylor series around r = 0, we find the coupling coefficient,
kc, as

kc ≈ 2

1 + a2/c2 r2. (6)

The inverse function that can be used for design is

r ≈
[

kc(1 + a2/c2)

2

] 1
2

. (7)

For the special case of a triple mode rectangular cavity with
a = c, the expressions simplify to

kc ≈ r2 or r ≈ √
kc. (8)

To check their validity, the analytical expressions are plot-
ted together with the values obtained from CST Microwave
Studio’s Eigenmode Solver for a/c = 5/6. The perturbed
cavity’s coupled modes’ resonant frequencies are given in
Fig. 3, whereas the resulting coupling coefficient is given in
Fig. 4 as a function of r . Figs. 3 and 4 also display the results
for the triangular and rounded corner cut cases as investigated
below.

B. Triangular Corner Cut

The perturbation resulting from a triangular corner cut can
be found using a similar procedure

f1,2

f0
= 1 + r2

2(1 + a2/c2)

[
sinc2(πr) ± sinc(πr)

]
(9)

kc ≈ 1

1 + a2/c2 r2 or r ≈
√

kc(1 + a2/c2). (10)
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Fig. 3. Normalized resonance frequencies of the two coupled modes versus r
with a/c = 5/6. The solid lines correspond to the results obtained analytically,
whereas the symbols correspond to simulation results.

Fig. 4. Physical coupling coefficient as a function of normalized corner cut
dimension with a/c = 5/6. The solid lines correspond to the results obtained
analytically, whereas the symbols correspond to simulation results.

Fig. 5. Equivalent circuit for the waveguide-cavity aperture coupling
structure.

C. Rounded Corner Cut

For a rounded corner cut, we apply the trapezoidal approx-
imation with 64 partitions [9, p. 374] and taking up to the
second-order terms, we find

f1

f0
≈ 1 + 0.43

r2

(1 + a2/c2)
and

f2

f0
≈ 1 (11)

kc ≈ 0.43
r2

(1 + a2/c2)
or r ≈

[
kc(1 + a2/c2)

0.43

] 1
2

. (12)

IV. WAVEGUIDE TO CAVITY COUPLING WITH A

RECTANGULAR APERTURE

The waveguide to cavity coupling structure’s equivalent
circuit proposed by Wheeler [10] is given in Fig. 5, where
X L and XC represent the unperturbed cavity, whereas R0
shows the load resistance presented by the waveguide. The
coupling between them is represented by an inductance with
xn R0 = kc X L [10]. Here, xn is the equivalent normalized

shunt reactance due to an aperture placed in an infinitely long
rectangular waveguide, whereas kc is the coupling coefficient
due to an aperture placed in the common wall of two identical
cavities.

For xn , combining the results from [11]–[13] we get

xn = αmβ10

pq

[
1 + sinc

(
πl

p

)][
2 fa

π f
tan

(
π f

2 fa

)]
(13)

where p, q are waveguide cross-sectional dimensions, β10 is
the propagation constant of the waveguide’s T E10 mode, and
αm is the corresponding longitudinal magnetic polarizability
given by [14], [15]

αm = 0.132 l3

ln(1 + 0.66 l/h)
e− π t

l (14)

t being the thickness of the aperture. The aperture resonance
frequency fa can be approximated by the cutoff frequency of
the waveguide having the aperture’s dimensions [12]: fa =
1/(2l(ε0μ0)

1/2).
On the other hand, for kc, combining the results from [12],

[13], and [15] we get

kc = 2αm

abc(1 + c2/a2)

[
1 + sinc

(
πl

a

)][
2 fa

π f
tan

(
π f

2 fa

)]
.

(15)

Referring to Fig. 5, the cavity loading impedance, Z L , is
given as

Z L = x2
n R0

1 + x2
n

+ j
xn R0

1 + x2
n
. (16)

Using (16) and the equivalence of the two forms of the
coupling inductance, we can find the quality factor, Qe

Qe = X L

Re{Z L} = 1 + x2
n

xnkc
. (17)

Its value can be found using (13) and (15). The new resonant
frequency of the cavity is found by including the effect of
coupling aperture. Setting the imaginary part of the overall
structure’s equivalent impedance to zero, the new resonant
frequency can be approximated as

fr

f0
=

√
Qexn

1 + Qexn
=

√
1 + x2

n

1 + kc + x2
n

≈
√

1

1 + kc
. (18)

Using the first three terms of the Taylor series for the sine and
cosine functions around π f /(2 fa) = 0

fr

f0
=

[
6A2(1 + kcs) + 3

2(3 + kcs)

−
√

36A4(1 + kcs)2 + 12A2(kcs − 3) + 9

2(3 + kcs)

] 1
2

(19)

where A = 2 fa/(π f0) and kcs is the coupling expression
provided in (15) without the Cohn’s tangential frequency
correction term [12].

To check the validity of the expressions, an example cubic
cavity of a = b = c = 6.5 mm attached to a WR-28
standard waveguide (p = 7.112 mm, q = 3.556 mm) via
a rectangular aperture of h = 1 mm is analyzed for different
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Fig. 6. Qe of the example aperture coupled cavity for different aperture wall
thicknesses, for h = 1 mm. The solid lines correspond to the results obtained
analytically, whereas the symbols correspond to simulation results.

Fig. 7. Normalized resonant frequency of the example aperture coupled
cavity for different aperture wall thicknesses, for h = 1 mm. The solid
lines correspond to the results obtained analytically, whereas the symbols
correspond to simulation results.

values of l and t . The structure is also simulated with CST
Studio Eigenmode Solver for comparison. The results are
plotted in Figs. 6 and 7. The predicted Qe is in good agreement
with the simulation results. On the other hand, the resonant
frequency prediction error increases with increasing aperture
length but stays below 2% for all thickness values analyzed.

V. INVESTIGATION OF DISPERSION

In the ideal case, the elements of the coupling matrix
are assumed frequency independent. In the previous section,
we showed that Qe actually depends on frequency and this
dependence is approximately given as

Qe ∝ 1

β10

[
2 fa

π f
tan

(
π f

2 fa

)]−2

. (20)

Let us define the normalized dispersion factor η as the ratio
of Qe normalized to its value at the center frequency ( f0) of
the filter. Then, η is given as

η � Qe| f = f0

Qe
= ηwgηap (21)

where ηwg is due to waveguide and ηap is due to the rectan-
gular aperture

ηwg =
√

f 2 − f 2
c√

f 2
0 − f 2

c

and ηap =
[

f0 tan(π/2 × f/ fa)

f tan(π/2 × f0/ fa)

]2

(22)

where fc is the cutoff frequency of the waveguide. Assum-
ing that the intermodal couplings are frequency independent

Fig. 8. Dispersion effects due to the waveguide and due to the aperture.

(valid for narrow band filters), the effect of dispersion can
be implemented in the coupling matrix by multiplying the
corresponding coupling element (cS1) with (21).

Both dispersion effects are given in Fig. 8 as a func-
tion of f/ f0 for different f0/ fc and f0/ fa ratios. It can
be seen that the frequency dependence slope due to the
waveguide gets higher when f0 moves closer to fc, hence,
the distortion due to dispersion gets worse. For a spe-
cific filter, if the waveguide to be used is predefined,
this effect cannot be prevented. But note that, its value
is relatively small as long as f0 is sufficiently away
from the waveguide’s cutoff frequency (which generally is).
On the other hand, the frequency dependence slope due to the
aperture gets higher when the aperture resonance frequency
gets closer to f0. The gravity of this dispersion effect can
be lightened using aperture structures resulting in the same
amount of coupling but having a higher resonance frequency.
The search for such aperture structure is not the subject of this
paper, hence rectangular-shaped irises will be used.

VI. FILTER DESIGN ALGORITHM

Using the results obtained so far, the physical dimensions of
a dual (triple) mode second (third)-order filter can be predicted
with the following algorithm.

1) Calculate the cavity dimensions resonating at filter
center frequency f0.

2) Find the required corner cut dimension using (7).
3) Compensate for the frequency shift of the modes, as

proposed in [1, p. 676], with the use of (5). The blank
cavity now resonates at f ′

0 < f0.
4) Go to step 2 until the corner cut dimension converges.
5) Calculate the aperture length corresponding to Qe

using (17).
6) Compensate for the frequency lowering effect of the

input-output coupling irises by decreasing the length
of the cavity [16, p. 463], so that the aperture coupled
cavity still resonates at f ′

0 using (18).
7) Go to step 5 until the aperture and cavity length dimen-

sions converge.
8) Recompute the required corner cut dimension using (7),

based on the final values of a and c.

VII. EXAMPLE SECOND-ORDER FILTER DESIGN

Let us design a second-order Chebyshev bandpass filter
at 34 GHz, with a fractional bandwidth of 1% and an in-band
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TABLE I

PHYSICAL DIMENSIONS (IN MILLIMETERS) OF THE
DESIGNED SECOND-ORDER FILTER

Fig. 9. Initial response of the designed filter together with the theoretical
response.

return loss of 25 dB. The corresponding normalized coupling
matrix of (1) has cS1 = 1.4312 and c12 = 2.1670.

The physical coupling coefficients ki j and Qe can be found
from [17, pp. 516–520]

ki j = B

f0
Mij and Qe = f0

B

1

R
(23)

where B and R are the bandwidth and the coupling resis-
tance respectively. Let the input-output be WR-28 standard
waveguide, the height of the coupling aperture be 1 mm, and
its thickness be 0.5 mm. Since a dual mode cavity resonating
at f0 is not unique, let us also specify the cavity ratio (a/c)
as 1.25.

Since the resonant frequencies of the resonators of a second-
order filter are located symmetrically around its center fre-
quency, the third step of the algorithm is applied to find the
length (c) of the cavity that results in ( f1 + f2)/2 = f0. Upon
completion of all the steps, the dimensions given in Table I
are obtained.

Fig. 9 depicts the result of CST Microwave Studio simu-
lation run with the predicted dimensions. For this example,
it can be seen that the initial response is very close to the
dispersion included theoretical response without the need for
optimization. In case it is not as close as desired, it is possible
to do an optimization with only two parameters (c and l)
assuming the intermodal coupling to be less susceptible to
dimension changes.

VIII. EXAMPLE THIRD-ORDER FILTER DESIGN

Let us consider a third-order filter at 34 GHz with a 1%
fractional bandwidth and an in-band return loss of 25 dB.
The normalized 5 × 5 coupling matrix has cS1 = 1.2214
and c12 = 1.2197. Again, let the input-output be WR-28

TABLE II

PHYSICAL DIMENSIONS (IN MILLIMETERS) OF THE
DESIGNED THIRD-ORDER FILTER

Fig. 10. S-parameters of the predicted and optimized structures together with
the theoretical response.

standard waveguide, the height of the coupling aperture be
1 mm, whereas its thickness be 0.5 mm. This time, there is
no need to specify the cavity ratio since a triple mode cavity
is cubic.

On the other hand, the application of the algorithm’s third
and fourth steps differs from that of the second-order case. For
a third-order filter, two of the resonators’ resonant frequencies
( f1 and f2) are again located symmetrically around the center
frequency, whereas the third resonator ( f3) resonates at the
center frequency. Therefore, the algorithm needs to be applied
to find the length (c) of the cavity that results in ( f1+ f2)/2 =
f0, and the width (a) that results in f3 = f0 at the same time.
Equation (5) can be used to predict all the three resonant
frequencies assuming that the corner cut that couples two
modes does not affect the third mode. However, note that,
taking into account the directions of the corner cuts, when
a �= c, the dual mode approximation does not hold anymore.
Therefore, while keeping the cavity cubic, the frequency
compensation can be based either on ( f1 + f2)/2 = f0 or
f3 = f0. Here, the first one is chosen. With a = c, there is no
need to perform the fourth step of the algorithm, and the value
a that will be obtained will be a lower bound for the required
value. Upon completion of all the steps, the dimensions given
in Table II are obtained.

Using the initial results, an optimization is run in CST with
the two cavity parameters (not three since the cavity has to be
square cross sectioned) and the aperture length parameter. The
corner cut dimension is left as is, assuming that the coupling
coefficient will be less sensitive to dimensional changes. The
obtained result is given in Fig. 10 together with the theoretical
response (including the dispersion effect).
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Fig. 11. Triplet coupling diagram.

Note that the obtained response rejects better at lower
frequencies but worse at higher frequencies as expected in
light of the results obtained in the previous sections. An
interesting point is that, this dispersion caused effect is similar
to that of a capacitive cross-coupling between the first and third
resonators.

IX. TRIPLET STRUCTURE

One way of generating a finite frequency TZ in a multiple
mode cavity is via the use of nonresonating node concept [18].
On the other hand, in a filter of order three, it is also possible
to add the TZ by introducing a cross-coupling between the first
and third resonators. The coupling diagram corresponding to
this triplet structure can be seen in Fig. 11. Assuming k12 and
k23 are positive, if the cross-coupling (k13) is negative, the TZ
is at the lower sideband and if it is positive, the TZ is at the
upper sideband [19].

In a triple mode rectangular cavity, it is possible to
implement the cross-coupling with a corner cut along the
input-output direction. The sign of the cross-coupling can be
alternated by rotating the corner that is cut by 90°, since the
rotation interchanges the coupled modes’ resonant frequencies.
Hence, third-order filters containing either a lower or an upper
sideband TZ can be designed. Both cases are considered below.

A. Transmission Zero at the Upper Sideband

Consider a filter with the specifications of Section VIII and
having a TZ at 34.75 GHz. The corresponding normalized
coupling matrix is given as

M =

⎡
⎢⎢⎢⎢⎣

S R1 R2 R3 L

S 0 1.2214 0 0 0
R1 1.2214 0.0945 1.1841 0.3455 0
R2 0 1.1841 −0.3052 1.1841 0
R3 0 0.3455 1.1841 0.0945 1.2214
L 0 0 0 1.2214 0

⎤
⎥⎥⎥⎥⎦

.

(24)

Note that, there is an inductive (positive) coupling between
the first and third resonators. This coupling is realized with a
corner cut along the input-output direction. The structure can
be seen in Fig. 12. The cross-coupling corner cut is divided
into two parts to prevent intersection with the main coupling
corner cut. The two parts are located at opposite corners so
that they both result in the same type of coupling.

To determine the dimensions other than the cross-coupling
corner cut dimension (sc), the proposed filter algorithm in

Fig. 12. Triple mode triplet structure with an upper sideband finite
frequency TZ.

TABLE III

PHYSICAL DIMENSIONS (IN MILLIMETERS) OF THE

DESIGNED TRIPLET WITH UPPER SIDEBAND TZ

the form described in Section VIII is used. The deviations
of the modes’ resonant frequencies from the case with no TZ
are assumed small, and are therefore neglected. On the other
hand, the intermodal coupling expression in (7) is used to
determine sc. Note that the obtained value is a lower bound for
the actual sc needed, because the generated inductive coupling
needs to counteract the capacitive effect of dispersion as well.
A full-wave optimization is performed based on the initial val-
ues and the final dimensions are attained. (The main coupling
corner cut parameter sm is left out of optimization assuming
that intermodal coupling is less susceptible to dimensional
changes.) Both predicted and optimized values are given in
Table III, whereas Fig. 13 depicts the corresponding responses
together with the theoretical response.

B. Transmission Zero at the Lower Sideband

Let us move the TZ of the filter in Section IX-A to the
lower sideband, at 33.25 GHz. The corresponding normalized
coupling matrix is

M =

⎡
⎢⎢⎢⎢⎣

S R1 R2 R3 L

S 0 1.2214 0 0 0
R1 1.2214 −0.0925 1.1857 −0.3377 0
R2 0 1.1857 0.2985 1.1857 0
R3 0 −0.3377 1.1857 −0.0925 1.2214
L 0 0 0 1.2214 0

⎤
⎥⎥⎥⎥⎦

.

(25)

This time, there is a capacitive (negative) coupling between
the first and third resonators. This coupling is realized with
a corner cut along the input-output direction rotated by
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Fig. 13. Response for the triple mode triplet structure with an upper sideband
finite frequency TZ.

Fig. 14. Triple mode triplet structure with a lower sideband finite frequency
TZ.

TABLE IV

PHYSICAL DIMENSIONS (IN MILLIMETERS) OF THE

DESIGNED TRIPLET WITH LOWER SIDEBAND TZ

90° compared to the earlier design. The new structure can
be seen in Fig. 14.

The dimensions are determined with the same procedure
described in the previous section. Note that, because the fre-
quency dependence of the external couplings acts like a capac-
itive cross coupling, the overall effective coupling becomes
higher than intended. Therefore, the determined cross-coupling
corner cut dimension (sc) is an upper bound for the actual
value required. A full-wave optimization is performed based
on the predicted dimensions and the final values are obtained.
(The main coupling corner cut parameter sm is left out of opti-
mization.) Both the predicted and optimized dimensions can
be seen in Table IV, whereas the corresponding responses and
the theoretical response are given in Fig. 15 for comparison.

Fig. 15. Response for the triple mode triplet structure with a lower sideband
finite frequency TZ.

Fig. 16. Chromate conversion coated parts of the machined filter. The scale
is in centimeters.

X. EXPERIMENTAL VERIFICATION

A Ka-band filter with 2% fractional bandwidth, having
a lower sideband TZ is designed and fabricated with CNC
milling. This type of filter can be used to increase selectivity
in the lower sideband, or to obtain high rejection at a specific
frequency, e.g., the TZ can be adjusted to coincide with the
local oscillator frequency to prevent leakage at the output of
a transmitter. The chromate conversion coated parts of the
fabricated filter can be seen in Fig. 16. The assembled structure
weighs 10.2 g.

Fig. 17 depicts the measurement results compared to the
simulation results of the machined filter as well as the additive
manufactured filter that is discussed below. The measurement
results of the machined filter are in perfect agreement with the
simulation results and the measured in-band insertion loss is
below 0.7 dB.

One interesting alternative manufacturing possibility is the
use of novel 3-D printing technology. It is possible to print
the structure’s main body with the use of a polymer (wall
thickness down to 0.5 mm attainable) and then metal coat the
printed bare body.1

The same filter is also fabricated with additive manufactur-
ing for comparison. The fabricated filter, having a minimum

1Home swissto12. [Online]. Available: http://www.swissto12.com/.
Accessed: 2016-05-20.
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Fig. 17. Response for the fabricated triple mode triplet structure with a
lower sideband finite frequency TZ. (a) S-parameters. (b) Close-up view of
the insertion loss in the passband.

Fig. 18. Additive manufactured triple mode rectangular cavity filter.

wall thickness of 1 mm and Cu plating of 5 μm with 100 nm
Au flash on top of it,1 can be seen in Fig. 18. The input and
output of the filter are designed to be used with standard WR-
28 waveguide flanges. The structure weighs only 4.4 g.

The measurement results are given in Fig. 17. The in-band
insertion loss is below 0.5 dB. Note that the insertion loss
of the additive manufactured filter is lower compared to the
machined filter. This is an expected result since copper is a

better conductor than aluminum. The usage of gold for the
3-D printed filter and chromium for the machined filter as
the coating material further favors the printed filter in terms
of loss. On the other hand, although the in-band responses
are in agreement, the TZ in the response of the printed filter
is missing. This is probably because the dimensions of the
cross-coupling corner cut are too small to be implemented with
this technology in its present state. Nonetheless, the results
are very promising: additive manufacturing together with the
multiple mode cavity technique is advantageous in filtering
applications, especially if the weight and space have limited
budgets.

XI. CONCLUSION

In this paper, the analytical study of the multiple mode
rectangular cavity is pursued. Expressions are obtained for
the resonant frequency shift and external Q of the aperture
coupled cavity, and for the intermodal coupling due to various
corner cut shapes.

An analysis is performed on the dispersion characteristic of
the rectangular aperture coupled multiple mode cavity filter.
Upon implementing the expression obtained in the coupling
matrix of a given filter, the dispersed response can be pre-
dicted.

An algorithm is used to predict the physical dimensions of
the multiple mode cavity filter. Example dual mode second-
order and triple mode third-order filters are designed using the
algorithm provided.

With the addition of an extra corner cut, the triple mode
rectangular cavity structure is altered to form a triplet structure.
Filters having TZs at the upper and lower sidebands are
designed.

An example design is fabricated with both machining and
additive manufacturing. The additive manufactured Ka-band
third-order triple mode cavity filter structure weighs only
4.4 g and the experimental results are in agreement with the
expectations.
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