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Abstract: Implantable sensor systems are effective tools for biomedical diagnosis, visualization and
treatment of various health conditions, attracting the interest of researchers, as well as healthcare
practitioners. These systems efficiently and conveniently provide essential data of the body part
being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood
glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the
implantable sensor units to an external receiver node or network and then to a central monitoring
and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are
typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units.
In particular, capsule-based systems have attracted significant research interest recently, with a variety
of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable
sensor systems, one of the most challenging problems is the accurate localization and tracking of
the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a
literature review of the existing localization and tracking techniques for robotic implantable sensor
systems with their merits and limitations and possible solutions of the proposed localization methods.
The article also provides a brief discussion on the connection and cooperation of such techniques
with wearable biomedical sensor systems.

Keywords: localization; tracking; biomedical robotics; gastrointestinal (GI) tract; capsule endoscopy;
biomedical microrobot; wireless capsule endoscopy

1. Introduction

Recent discoveries in electronics, nanotechnology, semiconductor technology and advances in
material science have resulted in promising new approaches for the development of medical devices.
As a result, medical innovation leading to lower cost of healthcare, minimally-invasive procedures and
shorter recovery times has become equally or comparably important to healthcare business leaders,
educators, clinicians and policy makers. Miniaturization of large electronic components has especially
enabled the production of sufficiently small implantable or wearable biomedical sensor systems, such
as smart pills or capsules, pacemakers and body sensor networks. Those smaller and low-cost wireless
biomedical devices are more convenient for implanting inside the human body or for wearing.

Wireless capsule endoscopy (WCE) systems constitute an important class of the aforementioned
biomedical systems [1]. The interest in WCE has increased with the effect of noticeable gastrointestinal
(GI) disease statistics. Every year, in the USA, about 150,000 additional patients suffer from colorectal
cancer, and about 60,000 die from the disease. More than 230,000 (one in every 150) Canadians
suffer from inflammatory bowel disease (IBD) every year. Today, diagnosis and treatment of GI
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tract (Figure 1) health problems, such as Crohn’s disease, chronic diarrhoea, obscure bleeding,
irritable bowel syndrome and colon cancer, are extremely challenging problems for physicians [2,3].
Conventional diagnosis and treatment methods, such as endoscopy and colonoscopy, are often painful
and uncomfortable for patients because of the difficulty of accessing various parts of the GI tract [4].
WCE overcomes this problem, replacing the inconvenient endoscopic tools with swallowable wireless
endoscopic capsules (WECs).
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Figure 1. GI tract of the human body.

WCE starts with the patient swallowing the WEC. The natural peristalsis force of the human
body helps the WEC to move through the GI tract without any harm or pain, collecting images and
other data and transmitting them to a monitoring system placed outside the body. GI physiological
parameters, such as temperature, pressure or pH level, can be measured by WECs. Figure 2 illustrates
a typical WEC, based on the architecture of the M2A capsule [5], which is composed of an image sensor,
a radio frequency (RF) data transmitter, an illumination unit and a battery. A typical WCE system
comprises a spatial robot manipulator with a sensor unit attached to its end effector or a belt-shaped
sensor array unit attached to the body with a real-time viewer. A sensor array unit concept attached to
the body with a real-time viewer [4] and a 3D Cartesian robot concept [6] for manipulating the sensor
unit are illustrated in Figure 3a,b, respectively. Other examples of spatial robots for manipulating such
sensor units are reported in [7].
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Figure 2. Structure of a typical wireless endoscopic capsule (WCE), based on the architecture of the
M2A capsule.
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Figure 3. (a) WCE receiver set; (b) a robotic navigation system for gastric capsule endoscopy.

The WEC swallowing approach was first proposed in the preliminary communication article [8]
on RF transmission of temperature and pressure data from the human GI tract. Currently, WCE has
been established as a safe and convenient tool for the diagnosis and treatment of GI tract diseases
and disorders, including GI bleeding, small intestine tumours and Crohn’s and Celiac diseases. It is
indicated that over 1,250,000 patients have benefited from the WCE test all around the world [7,9].
These statistics demonstrate the acceptance and importance of WCE technologies in the diagnosis and
monitoring of GI diseases. A detailed review of WCE technologies is provided in [4,7].

PillCam (SB3, Colon2, UGI, PATENCY) WCEs constitute the pioneer group of commercially
available WCE products produced by Given Imaging Ltd. and currently marketed by Medtronic Inc.
SmartPill by Given Imaging Ltd., EndoCapsule by Olympus Co., MiroCam by IntroMedic Co., OMOM
capsule by Chongqing Jinshan Science and Technology Co. and the CapsoCam panoramic HD imaging
capsule by CapsoVision Inc. are the other key commercial WCE products produced so far.

In the commercial localization technologies used in the M2A WEC by Given Imaging Ltd., a set
of receivers is positioned on the patient’s abdomen, and a transmitter inside the WEC sends data
to the receivers. Location data are calculated based on the principle that the receiver closest to the
capsule receives the strongest signal [7,10]. This approach is not used widely because of its low
accuracy (3.77 cm) [7]. The motility monitoring system (MTS2) by Motilis Medica SA provides data
for visualizing regional transit time and WEC location. SmartPill by Given Imaging Ltd. provides
pressure, pH level and temperature data to evaluate the GI track conditions. The aforementioned
localization technologies in use are attractive since they are simple and do not require additional
equipment [11]. However, they suffer from exterior electromagnetic noise and complicated RF signal
absorption characteristics of the human body [12]. Further, these technologies still do not provide
accurate location and orientation data of the capsule associated with problems, such as tumour
diagnosis [3,4].

Acquiring accurate data on the capsule’s location and orientation while the capsule moves along
the GI track is one of the most crucial problems for several reasons: (1) capsule position does also
provide information on the location of tumours, bleeding or other problematic issues in the GI tract;
(2) without position information, finding solutions to other problems of capsule endoscopy (CE),
e.g., tracking of the capsule or arranging the working time of the capsule for potential targeted drug
delivery, and adapting the frame rate for video transmission, is nearly impossible; (3) it is helpful to
determine the insertion path of the biomedical device to eliminate the repetitive attempts of invasive
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endoscopy; (4) localization is essential in developing effective actuation systems; (5) location- and
orientation-based path reconstruction enables various micro-robotic surgeries and reveals the uncertain
interior small intestine environment to researchers for educational objectives; (6) precise localization
enables transmission power control and energy saving by turning the device on and off. Because of
the complex and non-homogeneous medium of the interior of the body, 3D restoration of the WCE
acting route in the small intestine is still in its start-up phase [4,7,13,14]. Currently, most commercial
software packages only provide 2D tracking of the capsule route [14]. Therefore, there is a need for
further research in localization technologies and algorithms of WCE.

As an example of implantable medical sensor applications outside the WCE field, implantable
bladder sensors are applied to patients who suffer from losing urinary bladder control/sensation,
also known as urinary incontinence (UI). They provide direct measurement of the bladder urine
volume or pressure for long-term monitoring by eliminating the risks of infection caused by catheters,
wires or high-energy waves. In implantable bladder sensors, hermiticity, bio-compatibility, drifting,
telemetry, power transfer and compatibility issues still require more research for enhanced patient
comfort and long-term monitoring. The study [15] indicates that the wireless communication distance
is an essential factor for such sensors, since RF signals rapidly spread in the human body, but inductive
coupling necessitates alignment and appropriate localization of both interior and exterior coils for
effective power transmission.

As a second example, robotic transapical transcatheter aortic valve implementation (TA-TAVI)
devices are extremely helpful for the diagnosis and treatment of heart diseases [16,17]. In recent
advancements, one of the challenging issues for TAVI is the localization and tracking problem of the
valve during the cardiovascular procedure. Researchers focus on improving the 2D valve localization
of TAVI, integrating a robotically-activated delivery sheet and ultrasound or computed tomography
or magnetic resonance imaging (MRI) and ultrasound techniques for TA-TAVI. However, there are
numerous limitations and challenges of each of these approaches that require further investigation.

In the research domain, four main approaches have been explored for biomedical implantable
sensor localization: (1) electromagnetic wave-based techniques; (2) magnetic field strength (MFS)-based
techniques; (3) hybrid techniques; and (4) others, as shown in Table 1.

Table 1. Implantable biomedical sensor localization techniques in the literature.

Implantable Biomedical Sensor Localization Techniques
RF Electromagnetic Wave Magnetic Field Strength Hybrid Other
Based Techniques Based Techniques Techniques Techniques
RSS [4,12, ToF AoA RFID Active Passive [6, RF RF and | Magnetic| Ultrasound, | X-Ray, 7-Ray,
. - _ - and Magnetiq and MRI, CT | Visible Wave

18 25] and [7] [27 [6’32 36] 34,36 45] Video [6,13, Video [49-54] [51,53,54]

TDoA 31] [13, 47) [48]

[4,18, 46]

26]

The purpose of this article is to provide a literature review on the techniques and technologies
to localize and track biomedical sensors inside the human body. The rest of the article is organized
as follows: In Section 2, we summarize the existing RF electromagnetic signal-based localization
techniques and algorithms, as well as the challenges in CE in the literature. The details of the magnetic
signal-based techniques are provided in Section 3. Section 4 provides a literature review of the distance
and/or bearing measurement-based location estimation algorithms utilized in the localization schemes
in Sections 2 and 3. Sections 5 and 6 introduce the hybrid and other techniques used in biomedical
sensor localization, respectively. Section 7 presents a discussion on extensions and counterparts of the
covered localization techniques for wearable biomedical sensor systems. A summary and concluding
remarks are provided in Section 8.
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2. Radio-Frequency Electromagnetic Signal-Based Localization and Tracking

The main advantages of electromagnetic wave-based approaches are that (i) the electromagnetic
signal radiated by the wireless biomedical sensor (WBS) can be used without any need for additional
equipment or signal generation and (ii) these approaches are not affected by the magnetic field used for
actuating the WBS, unlike magnetic strength-based localization techniques [6,7,47]. On the downside,
high-frequency electromagnetic waves have much higher attenuation as compared to magnetic waves
when they propagate through human tissue, and low-frequency electromagnetic waves provide a
low precision of localization [7,19]. In the literature, there are various electromagnetic wave-based
localization technologies for localization and tracking of a WBS inside the human body, including
received signal strength (RSS), time of flight (ToF), time difference of arrival (TDoA), angle of arrival
(AoA) and RF identification (RFID)-based methodologies [7,22].

It is indicated in [7] that for the aforementioned near-field applications, the time-based ToF and
TDoA techniques are unrealizable due to the high speed of radio waves (3 x 10® m/s); therefore, highly
(nanosecond level) accurate synchronized clocks are required to provide a localization resolution of
30 cm. Similarly, AoA techniques are inappropriate in the GI tract conditions because of their low level
of accuracy in indoor environments [7]. Although many positioning techniques have been introduced,
none of the mentioned studies could provide an absolute solution to resolve the WBS positioning issue.
Between these techniques, RF signal-based positioning methods have certain merits of application and
require a lower cost of implementation. Thus, those methods have already been preferred in several
commercial wireless biomedical capsules (WBC), such as SmartPill, MicroCam and the M2A [4,7].

Unique problems exist for localization inside the human body, because of its complicated structure:
the shadowing effects, variable and uncertain signal propagation velocities and path loss parameters in
the whole human body, strong absorption of human tissue and the peristalsis movement. Furthermore,
detailed RSS and ToF models are fairly complex, since the signals received from the body-mounted
sensors are distorted due to multi-path effects caused by the refraction at the boundary of human
organs and tissues [7,49,55,56].

In addition to the technological challenges mentioned above, another essential point to take into
account in localization system design for WBSs is the regulatory safety standards [4,57,58]. The band
or power level of the signals to be used for biomedical sensor localization are upper-bounded by
such standards, e.g., the Medical Implant Communication Service (MICS) standard asserts use of the
402-405 MHz frequency band for communication with medical implants [4,58]. In order to decrease
the interference among signals within the allowed band, the channel bandwidth is limited to 300 kHz.
Therefore, having a high data rate is not easy [4,7,57,59]. The aforementioned band limitations further
lead to limitations in MICS signal transmission power and accuracy degradation in ToF measurements.
Another aspect of safety limitations is the power absorption characteristics of human tissues exposed
to electromagnetic signals emitted by WECs. A detailed analysis of this aspect is provided in [60].

The standard perspective for RF-based positioning utilizes a two-step estimation procedure to find
the position. The first step is to guess the environmental coefficients that are related to the transmitter
position, such as relative permittivity for ToF or path loss coefficient for RSS-based techniques, with
a priori data on the environmental coefficient of each organ or medium. The second step uses these
estimated parameters to subsequently guess the position based on an appropriate localization and
tracking algorithm [4,6,7,22,26,47,61,62].

2.1. RSS Based Techniques

RSS or RSS indicator (RSSI) is a distance measurement method that depends on the signal strength
sensed by a receiver placed in the sensor [63,64]. In a general RSS model, the target signal source T,
which needs to be localized, emits a pulse with original power Pr. The power Ps received by the
receiver S has an exponential decay model, which is a function of Pr, the distance dr between S
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and T, and the path loss coefficient (exponent) (1) represents the signal propagation effect in the
corresponding environment. The widely-accepted mathematical model is:

Ps = K,Prd,", 1)

where K, represents the other factors, such as the influences of antenna height and gain. K is taken
into consideration as log-normal, and in most cases, it is ignored in the algorithm resulting in lower
cost and the simplified model:

Ps = Prd,". ()

The RSS techniques generally provide lower cost among all existing radio technologies, such as Wi-Fi
and ZigBee. However, RSS can suffer from multi-path influences, such as shadowing, reflection,
diffraction and refraction due to unpredictable environmental conditions, especially for indoor
applications [64]. In modelling, these influences are also lumped and included in the coefficient
Ky of Equation (1).

The study in [12] is one of the first on developing an RSS-based WEC localization system.
The localization system developed in [12] is based on measuring the RSS of a WEC’s wireless
transmission data via eight exterior antennas, and it has been utilized in Given Imaging Ltd.’s M2A
capsule. RSS-based methods fuse the power measurement of the signals received at different positions
on the abdomen for the localization of the WEC (Figure 4). Usually, a signal propagation model is
used, which relates the RSS to the distance between the in-body transmitter and the receiver located
on the body [4,7,12,18,22,61]. In RSS-based localization systems, the use of transmitter-receiver pairs
allows transmitting a signal from the biomedical sensor to some receivers placed on the abdomen and
having those receivers provide the signal strength measurements to be used in determining the correct
location of the object [18].

External Receiver
Antenna

Tx « Biomedical
Sensor

Figure 4. Signal transmission through tissue layers inside the human body; Tx: transmitter and
Rx: receiver.

After the distances from the receiver are estimated, a trilateration method could be employed to
calculate the coordinates of the WEC. In [21], instead of using a propagation model, the authors used
an algorithm based on a look-up table, which stores the off-line measurements carried for different
WEC positions. Later on, during the experiment, the measured RSS was compared with the look-up
table entries to find the closest value, and the corresponding WEC position in the table was taken as
the position estimate.
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There have been efforts to build a more accurate propagation model, which depends on not
only the distance, but also the antenna orientation and tissue absorption [19,20]. Thus, the RSS-based
methods need a propagation model that varies from person to person due to the complex radio wave
absorption properties of the human tissue [7]. The authors in [23] have introduced an algorithm based
on a look-up table, storing the previous 2D positions of a biomedical sensor to be localized, together
with the corresponding signal strength values. During the experiments of [23], the parameters in the
look-up table were checked against the newly-acquired dataset to determine the nearest equivalent
and select the most likely location.

The studies in [19,20] consider both the distance based on the RSS data and the effects of the
antenna orientation factors and tissue absorption impacts to develop an attenuation compensation
model. The researchers in [24,25] take into account the effect of variant organs and sensor array’s
geometry on the location error in positioning systems based on the signal strength.

2.2. ToF-Based Techniques

In ToF-based techniques, the distance measurement sensor unit consists of a transmitter, receiver
and precision clock; the transmitter transmits a signal, which is reflected by a biomedical sensor and
received by the receiver, and the ToF reading is used to estimate the distance. The environmental
conditions are shown in the electromagnetic signal propagation velocity

c
= —, 3
v= 7 ®)
where c is the speed of light and ¢ is the propagation coefficient. The distance dr is estimated by
multiplying this propagation velocity and the sensed ToF value. The ersatz mathematical model is
illustrated in Figure 5 and can be formulated [65] as

2dr

tp = =dp\E 4)
Vave
where:
e 4
CZ U%UE’

The vgye is the average signal propagation velocity; ¢ represents the single-trip propagation time
between the target node and the reference node; £ 4.1,, denotes to the processing time at the reference
node; and t,5,nq = tgeiay + tf denotes the round-trip propagation time of impulses.
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Figure 5. Principle of the two-way ToF distance measurement.

A largely accepted merit of ToF-based methods is their high precision compared to RSS-based
methods [4,7,22]. ToF-based methods consider the signals’ travelling times between the known sensor
nodes and unknown target nodes. Ranging data are estimated by multiplying the propagation velocity
of the RF signal and the measured ToF value. The ToF value can be detected not only by sensing the
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phase of the received narrow-band carrier signal, but also by directly detecting the arrival time of
a wide-band narrow signal [4,18]. However, the study in [49] shows that time-based methods need
strict time synchronization and a high bandwidth to achieve the desired precision, which is difficult to
achieve in the MedRadio band (401-406 MHz). It could be used for ultra-wide band (UWB)-based
localization [66].

There exist three widely-known techniques for ToF-based localization. Firstly, direct line of
sight (DLoS) can provide higher accuracy for outdoor applications. However, considerably large
measurement errors can be observed due to the severe multipath environment for indoor applications.
It is a direct function of the distance between the transmitter and the receiver. Secondly, the
direct sequence spread spectrum (DSSS) demonstrates better performance for compressing systems
(Figure 6). For these systems, a known pseudo-noise signal is multiplied by the carrier signal. This
method is chosen always to achieve better ranging accuracy because of the limited bandwidth in real
applications. Lastly, UWB, ultra-wide band, is the latest and a more accurate and promising method [4].
In this method, c

d= o (5)

where d is the absolute resolution and BW is the bandwidth of the signal. The large bandwidth of the
UWB system is capable of resolving multiple paths and combating multipath fading and interference.
However, these systems are limited to low range and building penetration by large attenuation. One of
the main problems of UWB systems is the interference between UWB devices and other services, such
as GPS systems, operating at 1.5 GHz.
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Figure 6. DLoS and DSSS scenarios for ToF ranging.

In addition, the authors in [26] use a mobile sensor unit for ToF-based measurements and take
into account the effect of the electrical properties of different organs and tissues. For this purpose, they
divide the human body into four sub-volumes and calculate the average relative permittivity value for
each region. However, this method does not provide precise data on the relative permittivity of the
human body.

The study in [4] compares the effect of the number of capsules and sensors on the localization
accuracy and demonstrates that for both ToF and RSS approaches, the number of receivers on the body
surface has more effect on the accuracy of positioning than the number of capsules in cooperation in
the GI tract, based on both ToF and RSS methods.

2.3. AoA-Based Techniques

The accuracy of an AoA measurement system is determined by the resolution of the directional
antenna or antenna array and the algorithms used for estimating the AoA simultaneously [7]. With the
exception of AoA-based methods, the first step in the localization process is the estimation of the
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distance (also called ranging) from the transmitter to the different receivers. Hence, a more accurate
distance estimate will result in a more accurate position estimate.

Given the accuracy of AoA measurement system, the number of reference points is determined by
the target position with respect to the reference points when the target lies between the two reference
points (Figure 7). AoA measurements will not be able to provide the exact location of the target on the
line between the two reference points. Hence, more than two reference points are required to have
more accurate data on the localization [7].

o @ TxB

(Xp:Ys)
(XnYr)

Figure 7. The idea behind the AoA-based technique: the AoA is calculated representing the direction
in which the signal is emitted.

2.4. RFID-Based Techniques

Besides the RSS technique, RFID is also investigated in RF-based localization systems for
WCE [27-31]. Here, a cubic antenna array is placed around the human body to detect an RFID
tag placed inside a capsule. Similarly, in [28], a cubic antenna array is designed around the body to
sense the RFID tag inside the WCE. Localization is performed based on the assumption that the closest
antenna detects the tag. An improved method consisting of RFID tags having bi-directional antennas
is presented in [29,31]. The phase difference of the signal from an RFID tag without any localization
algorithm is discussed in [27]. Using this approach, the authors in [30] use support vector regression
to sense bio-medical sensors/devices, such as needles and catheters, having an RFID tag with a mean
accuracy in the millimeter range. However, the tag orientations are kept fixed, and the effect of the
human tissues on the RF signal is not taken into account.

3. Magnetic-Signal-Based Localization and Tracking

In magnetic signal-based methods, a permanent magnet is united with the biomedical sensor, and
an exterior array of magnetic sensors is located outside the human body. Since the biomedical sensor
moves together with its magnet, magnetic-signal-based methods have the advantages of magnetic
levitation, robotic magnetic steering, helical propulsion by a rotational magnetic field and remote
magnetic manipulation [67-69]. Hence, a considerable amount of research is focused on building
active locomotion biomedical sensors and their settings [34,44,70]. The main advantage of positioning
techniques based on the magnetic field strength is that low-frequency magnetic fields can run through
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the body with reduced attenuation since tissues of the human body are non-magnetic. However,
one challenge is the interference from the magnetic fields produced by the materials present in the
environment and also from the Earth’s magnetic field, and this may require additional hardware for
the analysis of the magnetic signal to solve the positioning problem [7].

A series of studies [37,67,70] have proposed a pioneer magnetic strength-based localization
algorithm for WCE. In these studies, the authors used a WEC with an interior magnet and placed
tri-axial magnetic field sensors outside the body to estimate the WEC’s location. Alternatively, in [12],
the implementation required additional hardware. This encouraging technique to track the movement
of a WEC through the GI tract is through the magnetic strength of an on-board permanent magnet [7].
Magnetoresistive sensors bonded to the skin allow the positional error of the 6D location data of the
WEC to be around 3.3 mm [71]. However, magnetic signal-based techniques have some drawbacks, as
well, including inconvenient weight and size, conflicts between actuation and localization systems,
certain health risks for patients associated with increased magnetic field and magnetic field interference
with other magnetic field sources, such as MRI systems [7].

There exist recent works on the compatibility of WCE with implanted biomedical devices, such
as cardiac pacemakers, and non-medical devices, such as mobile phones and laptops [52]. In the
experimental tests of [52], devices were activated alone or simultaneously in proximity with another
device. The functioning of the WCE may also be affected by metal clips, batteries, magnets in the body
and the nearby surroundings. Further research is required to quantify the effects [52].

Additionally, some magnetic capsules (Navi Capsule, IntroMedic) have been approved by South
Korea to help with mobilizing the device through the GI tract to facilitate delivery in patients with
delayed gastric emptying [3]. Furthermore, the safety of the mechanical aspects of localization, the
magnetic fields produced by the neodymium iron boron (NIB) magnets used in the study [72], with a
magnetic field of up to two Tesla, are classified as non-significant risk devices by the USA Food and
Drug Administration (FDA).

In the implementation and application of the magnetic field-based techniques, magnetic signals are
used for both detecting the location of diseases and as a feedback mechanism for the actuation system.
Further, significant interference exists between the localization and actuation systems [37,70,71,73].
Hence, these two systems have to be considered together. In the literature, based on the actuation
system, magnetic-field localization is studied separately for passive and active magnetic manipulation
of biomedical sensors.

3.1. Magnetic Localization and Tracking of Passive Sensors

In a magnetic-field-based localization scheme, the magnetic source and the magnetic sensor
modules are the most significant elements (Figure 8). The magnetic source inside the biomedical sensor
can be formed in three different ways, using: (i) a permanent magnet; (ii) an embedded secondary coil;
and (iii) a tri-axial magnetoresistive sensor [7,37].

magnetic

@l sensor
Zy <3

ref. point

magnet
in the capsule

Figure 8. Coordinate frame of a magnet for WBC localization.
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Most researchers focus on the use of a permanent magnet inside the WBS in the literature,
since this approach provides the generation of a magnetic field, and based on the magnet position
and orientation, magnetic sensors placed outside the patient’s body can detect the magnetic flux
intensities [6,7,34,39]. The magnet position and orientation can be computed by feeding the sensor data
to an appropriate algorithm [37,38] based on the well-established mathematical model of the magnetic
field of a magnet with position [a,b,c]T and orientation Hy = [m,n, p]T, at a certain point [x,y,z]T,
given by:

B — ‘MO‘MTMT 3(HgP)P . HO (6)
47 IP[° P37
Mr = mto?LM,, @)

where P = [x —a, y — b, z— c]T is the relative position of the magnet. The yit, o, M1, o, L and My
are the relative permeability of the medium, the air magnetic permeability, magnetic intensity of the
magnet, the radius of the magnet, the length of the magnet and the magnetization strength, respectively.

In [40], a three-magnet positioning method is introduced to eliminate the interference caused
by the complicated structure of the human body during the localization process using a magnetic
flux density-based algorithm and a sensor array with tri-axial magnetic sensors. The study in [44]
proposed an original approach where the magnetic field sensors are placed in a biomedical sensor for
positioning by considering a pre-computed magnetic field model together with the sensed data.

The authors of [45] introduce a 3D localization method for the magnetically-actuated soft WEC
using a coaxially-aligned exterior permanent magnet. Estimated distance, depending on the WEC
shape deformation as the exterior magnet gets closer to the body, helps to track the WEC inside
the body.

The study in [41] introduces a technique to measure the magnetic field generated by an exterior
magnet at the center of an interior magnet placed in a WEC, by eliminating the interaction of the
interior magnet. Data on such magnetic fields enable the manipulation of the magnetic field around the
body and help to control the motion of the WEC. The article [36] proposes a non-iterative positioning
technique by applying a rotating magnetic dipole to create highly accurate 6-DoF position data.
However, the technique requires a 30 s post-processing time.

Another magnetic field-based WEC localization method is proposed in [42], utilizing sensed data
and pre-defined magnetic field model. This method provides 6-DoF location and orientation data and
can be implemented in real-time during the actuation of the WEC using an exterior permanent magnet.
The authors further improve this algorithm in their later studies by using the Jacobian of the magnetic
field of the capsule to eliminate magnetic dipole assumption inaccuracies [43].

3.2. Magnetic Localization and Tracking of Active Sensors

These systems are developed to function efficiently with their own magnetic actuation.
Accordingly, many research groups are investigating the design and development of active locomotion
sensors and settings [7,32-34].

3.2.1. Alternating Magnetic Field-Based Techniques

This technique uses a spiral structure-shaped permanent magnet on a capsule that is incorporated
with three pairs of coils, located in three perpendicular axial directions to create an exterior rotating
magnetic field around the human body. The spiral pattern rotates the capsule using the magnetic field
around the capsule and can move the capsule back and forth. The frequency of the rotational magnetic
field cannot exceed the 10 Hz limit [7].
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3.2.2. Inertial Sensing-Based Techniques

The inertial “magnetic steering” technique utilizes a 6-DoF robotic arm that has a permanent
magnet at its end effector. Four cylindrical magnets are placed over the surface of the biomedical
sensor to form a magnetic link between the sensor surface and the exterior permanent magnet so that
the capsule can be drifted and directed efficiently through the magnetic interaction. For localization
purposes, a tri-axial accelerometer is inserted into the capsule [7].

3.2.3. Exterior Rotational Magnetic Field-Based Techniques

These techniques utilize a helical architecture for the WEC, which generates an exterior rotational
magnetic field to rotate the two permanent magnets placed in the WEC [35,36]. In [35], a large
parallel piped permanent magnet composed of seven smaller rectangular magnets is rotated to create
a magnetic field. Here, an electrical motor mounted on a manipulator helps to generate the magnetic
field, since it can rotate and its location can be altered during the motion control of the WEC [7].

4. Localization and Tracking Algorithms

The previous two sections have focused on the RF electromagnetic and magnetic signal-based
distance and/or bearing measurement techniques utilized in biomedical sensor localization and
tracking. Such distance and/or bearing measurements need to be effectively fused using suitable
algorithms to produce an on-line (real time) location estimate of the biomedical sensor. The distance
and/or bearing measurement-based localization algorithms in the literature can be categorized as linear
vs. nonlinear algorithms and off-line/batch vs. on-line/adaptive/recursive algorithms [39,61,63,65,74].

The study in [39] indicates that nonlinear algorithms for magnetic sensing-based methods have
some disadvantages, such as their slow speed, computational complexity and dependence on the
initial parameter estimates. Linear algorithms can provide better solutions in terms of rapidity and
achieving a real-time tracking system.

There exist several minimization algorithms studied for localization applications, such as Powell’s
algorithm [75], the downhill simplex algorithm [75], DIRECT [39], multilevel coordinate search
(MCS) [76] and the Levenberg-Marquardt method [77], to solve the high-order nonlinear localization
equations. The Levenberg-Marquardt method is used in [19,37-39,67,70] for WEC localization and
orientation. The trilateration method is another localization approach to estimate the WBS position,
based on the transmitter-receiver distances in a sensor network. Proximity data from the measurement
units are converted into position information generally by applying triangulation that takes the features
of distance geometry and rigid graph theory into account [63]. Further varieties and details of wireless
sensor network-based localization algorithms utilizing distance and /or bearing measurements can be
found in [63,78,79].

There are various positioning algorithms and techniques proposed in the literature to find the
location and orientation of a sensor in the human body. Among these methodologies, RF signal-based
location estimation methods are favourable based on their implementation and cost effectiveness.
Accordingly, such RF-based techniques have been utilized in the SmartPill, MicroCam and the M2A
biomedical capsules [4]. ToF-based methods are well known to provide higher accuracy in comparison
to RSS- and AoA-based methods. However, the intense absorption of the human body leads to
large errors in the ToF estimate. Furthermore, the limited bandwidth (402—405 MHz) according to
the Medical Implant Communication Services (MICS) prevents very accurate ToF measurements.
In addition, because of relative permittivity uncertainties and variations in the human body, large
errors are observed. The peristalsis action of the human body causes even more unpredictable distance
measurement errors [4].

Another WBS localization and tracking approach studied in the literature is adaptive localization
and tracking [6,22,47,61] based on linear parametric modelling [80] of the governing sensor equations
and some other adaptive control tools [74,80]. The approach in [6,22,47] utilizes geometric cooperative
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sensor methods [61] to estimate the path loss coefficient for RSS and the relative permittivity for
ToF-based methods, using a mobile sensor triplet instead of a single sensor. It involves an adaptive
localization and tracking scheme integrating this coefficient estimation technique and a discrete-time
recursive least squares (RLS) parameter identification algorithm.

5. Hybrid Localization and Tracking Techniques

Existing commercially available RF-based positioning systems can only provide low accuracy and
discrete position estimates of the WCE location and/or orientation, due to the complicated structure
of the body tissues and highly complicated geometry of the GI tract. As an alternative approach,
hybrid techniques, including fusion of RF electromagnetic signal and video-based techniques [46],
fusion of RF electromagnetic signal and magnetic-field-based techniques [6] or fusion of other sensing
modalities, have the potential to provide more accurate simultaneous location and orientation estimates.
Although these hybrid techniques naturally require the integration of multiple technologies and have
higher algorithmic complexity, using hybrid methods accordingly has some capabilities to provide
higher accuracy on the localization problem of implantable or wearable medical devices within
the safety limits, since each of the aforementioned methods has some limitations due to the safety
regulations, such as MICS (402-405 MHz).

A particular approach to further improve the WEC positioning accuracy and generate a 3D map
of the GI tract is to obtain the estimates using different types of techniques independently first and
then effectively fuse the generated estimates of the WEC position [13].

5.1. RF and Video Fusion-Based Techniques

The authors of [13,46] propose a hybrid WEC localization system that integrates the RSS-based
(or ToF) RF positioning with the image processing-based tracking of the WEC. In these articles,
the problem is mathematically analysed and the corresponding accuracy level is derived in terms
of the Cramer—Rao lower bound for the proposed hybrid WEC localization system. The design and
analysis are established for both RSS and ToF distance measurements.

5.2. RF and Magnetic Strength Fusion-Based Techniques

In [6,47], the authors have investigated WBS tracking, for magnetic sensing and actuation settings,
where an embedded permanent magnet is used inside a passive WBS together with magnetic sensors
outside the body, producing a magnetic field around the WBS. In those studies, a hybrid localization
technique with high accuracy for simultaneous location and orientation estimation has been introduced.
The proposed hybrid localization technique is based on data fusion of magnetic measurements and
electromagnetic signals emitted by the WBS for image transmission and other medical information
using a similar adaptive RLS parameter estimation scheme. This method provides higher accuracy
with relatively low mathematical complexity and a smaller number of magnetic sensors, since the
applied adaptive tracking law enables the distance between the magnetic sensor and the capsule in a
certain sensing range [13].

5.3. Magnetic Strength and Image Fusion-Based Technigues

The authors in [48] introduce an ultrasound imaging-based localization scheme for the WECs,
integrated with magnetic-field-based localization. The localization system is composed of a Cartesian
robot actuating a transcutaneous sonographic probe in 2D. While the WEC moves along the GI tract via
the use of a magnetic field, the localization system generates sonographic image data through the back
of the person, illustrating the current position of the WEC. The results provided in [48] verify that the
approach is real-time implementable and can be applied to navigate a WEC inside the patient’s body.
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6. Other Techniques

As alternatives to the aforementioned localization and tracking methods, computed tomography
(CT), X-rays, MRI or y-rays can be used for localizing a WBS inside the GI tract by inserting radiation
opaque material into the WBS [7,51,53,54]. However, using these techniques is costly, and there exist
some health risks for the patient [7]. For instance, the study in [52] indicates that undergoing magnetic
resonance imaging (MRI) while the WCE is inside the patient’s body might cause serious damage to
the patient’s GI tract.

Ultrasound sensing is another alternative technique for localization in soft tissues [81]. In this
approach, the implantable biomedical sensor position information is estimated using the ToF
measurements between the ultrasonic signals transmitted from an exterior source and the signals
reflected by the capsule [81]. Here, accurate data on the speed of sound in human tissues is essential
for accurate tracking. Furthermore, the WBS is required to stay in the scanning plane to be sensed [50].
These two constraints can be relaxed following a second approach, where an ultrasound transducer
embedded in the biomedical sensor emits ultrasonic signals to be received by exterior receivers placed
over the patient’s abdomen [7,50].

Another positioning technique based on microwave imaging is introduced by [49]. In [49], electric
features of different tissues and organs are considered together with different tissue and organ locations
to help to acquire more accurate data on the 2D position of the WBS. Preliminary tests resulted in
errors less than 1 cm in 2D.

7. A Discussion on the Connection and Cooperation with Wearable Sensors

In this section, we discuss the connection and cooperation between implantable biomedical
sensors (IBSs) and wearable/body sensors from two perspectives: (1) the connection between IBS and
wearable sensor localization and tracking schemes; and (2) the cooperative use of IBSs and wearable
sensors in hybrid sensor network settings, where the IBS localization and tracking is performed in
cooperation with the wearable sensors in the network.

From the first perspective, note that the second major class of biomedical sensors, complementary
to implantable ones is the class of wearable sensor systems. With their low software and hardware costs
and requirements, light weight, compactness and portability, wearable units have become a significant
alternative to cameras or other external sensor systems embedded to the environment. In particular,
wearable biomedical sensor technologies provide lower cost of care, minimally-invasive and effective
procedures and shorter recovery times that improve the health outcomes. Detailed characteristics
and various applications of wearable biomedical sensor systems can be found in [57,82-86]. Some of
the more recent wearable sensor application areas are monitoring of vital signals, medical diagnosis
and treatment, home-based rehabilitation and physical therapy, telesurgery, biomechanics, gait and
posture recognition, detecting the emotional state and stress level of people and remote monitoring of
the physically or mentally disabled, the elderly and children.

Wearable motion sensors, such as accelerometer-, gyroscope- and magnetometer-based ones,
are widely used in monitoring the activities of daily living [87-90] and the detection of anomalies,
such as falls. Falls are potentially dangerous and often occur unexpectedly while performing daily
activities or when making transitions between two activities that require a change of body posture.
Falls might lead to serious injury or even death if medical attention cannot be provided rapidly [91-93].
For these reasons, they should be detected, classified and localized reliably to reduce fall-related injuries.
Smart phones that contain embedded accelerometers and gyroscopes are suitable devices for executing
fall detection algorithms [94]. In a typical scenario, a small network for the user is pre-defined on
his/her telephone. This network may consist of a hospital, a call center, healthcare professionals,
the user’s relatives and friends, etc. If the algorithm detects a fall, a warning or alarm signal can
be automatically sent to this small network to alert them about the fall. This important feature can
be complemented by biomedical sensors that monitor vital symptoms, such as the heart rate, blood
pressure and body temperature.
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It is also crucial to accurately identify the location where the fall took place, so that medical help
can be provided rapidly. Remote health monitoring and fall detection systems combine these tasks
with the localization of the person, who has vital symptoms or has fallen, via one of the aforementioned
positioning methods [84]. Mobile devices that run fall detection algorithms provide a suitable medium
for this purpose, as well. Localization and activity recognition can be performed simultaneously within
the same loop, in which localization accuracy can be improved using activity cues [95] and vice versa.
Since these tasks also require wireless technology to acquire and transmit data, approaches similar to
those in the previous sections can be employed for localization.

Most of the techniques reviewed in the previous sections on the localization and tracking
of IBS systems can be adapted to wearable sensor systems, as well. However, the use of these
technologies is currently limited to highly controlled laboratory environments and clinical trials.
The studies in [96-98] indicate that the positioning of wearable motion sensors with embedded wireless
connectivity is important to achieve more accurate results. However, in the literature, optimization
of the positioning of wearable sensors is not well studied [99], and there exist some contradictory
results. Another difficulty is the variability of the acquired data between the different subjects and
experiments [100].

From the cooperation perspective, wearable sensors can be used in conjunction with IBS networks
to allow people to be monitored continuously during their everyday activities. Modern IBS systems
apply wireless technology for data acquisition and transmission. Wearable sensor systems can also
cooperate with IBS systems synchronously [6,22,101]. To this end, wearable sensor systems need to be
placed at well-defined positions on the human body to transmit the collected data outside the body
to health professionals, caregivers, family members or a monitoring device, such as a cell phone or
computer. However, one of the main issues is deciding how and where to position these sensor nodes
and how many of them to use, in a form wearable on the human body, to enable more efficient and
accurate measurement and transmission [7,22,96,98,101]. In a recent study [102], the authors propose
two algorithms that are invariant to how wearable motion sensors are oriented on the body at fixed
positions in the context of activity recognition. This should soon be followed by position-invariant
algorithms to allow some flexibility in the placement of wearable sensors.

Further, in the implementation of some of the IBS localization and tracking schemes covered in
the previous sections, especially the sensor network-based cooperative ones, wearable sensors are
utilized. For example, the RSS-based IBS localization setting described in Section 2.1 and illustrated in
Figure 4 utilizes wearable sensors that are composed of electromagnetic signal receivers, processors
and transmitters for the transmission of the collected information to central monitoring units. Similarly,
in the magnetic signal-based IBS localization and tracking schemes described in Section 3, an exterior
array of magnetic sensors is utilized as a wearable sensor network.

8. Conclusions

In this article, the existing literature on the localization and tracking of robotic implantable sensor
systems has been reviewed. The main localization and tracking methodology approaches, with their
merits and limitations, have been presented. For these approaches, both the current state-of-the-art
commercial products and system designs within the research domain are summarized. In all of these
approaches, there exists a significant amount of open research tasks for further investigation in terms
of improving positioning accuracy and practical implementation. Further, a short review of extensions
and counterparts of such techniques for wearable biomedical sensor systems has been provided.
In current implantable biomedical sensor design studies, one goal is to have full robotic capabilities for
simultaneous diagnosis and treatment. In order to achieve this goal, developing hybrid techniques is a
promising approach for accurate localization within the safety limits. Motion control of biomedical
implantable sensors is another key research topic for developing fully robotic implantable sensor
systems for drug delivery, surgery and many other biomedical applications.
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