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Abstract— We consider downlink of a multiuser massive
multiple-input multiple-output (MIMO) system and focus on
reducing the hardware costs by using a single common power
amplifier and separate phase shifters (PSs) for antenna front-
ends. In the previous literature, the use of analog PSs in
this setup has been considered. Here, we study the use of
practical digital PSs, which only support a limited set of discrete
phases. Considering the sum of interference powers as a metric,
we formulate the corresponding nonlinear discrete optimization
problem and solve for the phases to be used during transmission.
We devise a low-complexity algorithm, which employs a trellis
structure providing suboptimal, but efficient and effective solu-
tions. We demonstrate via examples that the proposed solutions
have comparable performance to conventional analog PS-based
algorithms. Furthermore, we prove that by utilizing discrete-
phase constant envelope precoding, the interference can be
made arbitrarily small by increasing the number of antennas.
Therefore, the asymptotic gains promised by massive MIMO
systems are preserved. We also obtain closed-form expressions
for the rate loss due to errors in the phase and amplitude of the
PSs, for both low and high SNR regimes.

Index Terms— Constant envelope precoding, massive MIMO,
multiuser MIMO, digital phase shifter, discrete optimization.

I. INTRODUCTION

THE seminal work of [1] in 2010 has sparked a great
interest in utilizing a large number of antennas at the base

station (BS), a.k.a. massive multiple-input multiple-output
(m-MIMO), in recent years. Numerous advantages of
m-MIMO have made it one of the key technology
enablers for the next generation of wireless communication
systems [3], [17]. One of the main advantages of m-MIMO
is that as the number of BS antennas goes to infinity, the
performance of linear precoders approaches to that of optimal
nonlinear ones [2], [18]. On the other hand, to implement
the usual precoding algorithms, each antenna element needs a
radio frequency (RF) power amplifier and a phase shifter (PS).
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Therefore, by increasing the number of antennas, the number
of RF elements, and hence the implementation cost, increases
tremendously. One way to reduce this cost is to deploy a single
common RF power amplifier for all antenna elements and a
separate RF PS for each one, leading to antenna outputs with
equal amplitudes but different phases. The resulting techniques
are called constant envelope precoding (CEP) which were first
considered in the context of m-MIMO in [4].

In CEP, since antenna elements have the same output
amplitude and use a single common power amplifier, a highly
power efficient nonlinear amplifier can be used instead of a
linear one [4]. Typically, a nonlinear power amplifier can be
about 4 to 6 times more power efficient [5]. Therefore, with
CEP, higher power efficiency and lower cost can outweigh
the slight performance degradation, especially in the m-MIMO
regime.

In [6], considering constant envelope (CE) transmission,
the authors derive achievable rates of a Gaussian broadcast
channel for the special case of a single user. They extend their
work to the case of multiuser precoding in [4]. They obtain
the desired antenna phases by solving a nonlinear nonconvex
continuous optimization problem with sum of squares of
interuser interference terms as the objective function to be
minimized. They prove that the performance of the resulting
CEP algorithm is comparable to that of precoding under an
average only total transmit power constraint (APC) in the m-
MIMO regime. To reduce the complexity, they also provide
an alternating minimization (AM) method by taking all the
phases but one to be a constant in each sub-iteration. That
is, in each iteration, they solve N one-dimensional problems
instead of an N-dimensional one. The authors extend their
work to frequency selective channels in [7].

In [8], cross-entropy optimization (CEO) method is used to
solve the CEP problem, and it is shown that the resulting
performance is less sensitive to the selection of the initial
phase guesses. In order to reduce the out-of-band emissions
in the common nonlinear power amplifier, in [9], the authors
present a CEP with small phase variations by limiting the dif-
ference of the phase angles transmitted in consecutive channel
uses. They show that, by achieving low phase variations, the
performance degrades by 3 dB with every doubling of the
number of BS antennas.

Only analog PSs, which can support a continuous range of
phase shifts, have been considered in the existing literature for
CEP. However, in practice, due to advantages like increased
immunity to noise on their voltage control lines, more uniform
unit-to-unit performance and having flat phase over a wider
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bandwidth, mostly digital PSs are used [10]. Digital PSs
provide a discrete set of phase states which are controlled by
a string of binary digits; the higher the number of supported
phase states, the higher the price. For instance, a 2-bit digital
PS supports only 4 phase states, namely, 0, 90, 180 and
270 degrees [10].

In this paper, we show that the CEP design problem can be
formulated as a nonlinear discrete optimization problem con-
sidering practical digital PSs. In general, discrete optimization
problems are NP-hard, so they are usually solved using some
suboptimal algorithms which usually have exponential time
complexity [11]. Even in well-conditioned problems, when
dimensions of the problem grow, as in the case of m-MIMO
systems, their solution time is nontrivial and in most cases
impractical. Therefore, innovative approaches are necessary to
perform precoding in an efficient manner.

The contributions of this paper are fourfold: 1) considering
digital PSs, the CEP design problem is formulated as a non-
linear discrete optimization problem, and then, using a trellis
structure, a low-complexity solution is obtained, 2) a robust
version of the proposed algorithm against channel estimation
errors is derived, 3) it is shown that using CEP with discrete
phases, interference powers at the users can be made arbitrarily
small by taking the number of BS antennas to be sufficiently
large, 4) the effects of phase and amplitude errors in practical
PSs on the performance of CEP algorithms are analyzed.

Our main approach is as follows. We reformulate the
interference power objective function as a sum of real terms.
Then, by appropriately defining trellis states, we solve the
corresponding nonlinear discrete optimization problem using
a trellis structure in a manner similar to the Viterbi algo-
rithm. Our proposed algorithm is compared with the technique
of nonlinear optimization by mesh adaptive direct search
(NOMAD) which has almost the same performance as other
conventional discrete optimization techniques but it is much
faster [13]. We demonstrate that the proposed approach has
three main advantages. First, it is a few orders of magnitude
less complex (hence much faster). Secondly, its performance
is independent of the initial starting point. Thirdly, contrary
to the conventional algorithms, its computational complexity
is independent of factors such as input data or channel coef-
ficients. We also demonstrate via extensive numerical results
that the newly proposed algorithm has comparable or even
better performance than NOMAD based solutions, especially
in the m-MIMO regime.

We also provide some important analytical results. We prove
that, similar to the case of continuous-phase CEP in [4],
the user interference is guaranteed to be arbitrarily small in
discrete-phase CEP by increasing the number of BS antennas.
Closed-form expressions are also provided for the rate loss
due to errors in phase and amplitude of the PSs for both low
and high signal-to-noise ratio (SNR) regimes. The results show
that by increasing the number of antennas, these effects do not
fade away.

The rest of the paper is organized as follows.
In Sections II and III, the system model and main problem
formulation are introduced, respectively. In Section IV, the
proposed trellis structure is presented and it is employed

Fig. 1. System model showing downlink of a multiuser MIMO with the BS
utilizing a single common power amplifier (PA) and separate PSs.

to solve the corresponding interference power minimization
problem. The effects of number of BS antennas on the user
interference, and phase and amplitude errors on the data rates
are analyzed in Sections V and VI, respectively. Numerical
examples are presented in Section VII. Finally, the paper is
concluded in Section VIII.

II. SYSTEM MODEL

We consider downlink transmission in a m-MIMO system
and assume that there is no cooperation among users. The
system model consists of K single antenna users and a BS with
N antennas. We assume that the BS knows the channel vector
to each user. In our set-up, the BS utilizes a single common
RF power amplifier for all the antennas and a separate RF PS
for each one with the objective of CEP. The system model is
illustrated in Fig. 1.

The received signal at the kth user, yk , can be written as

yk =
√

PT

N
hk q+wk, (1)

where q �= [
e jθ1, e jθ2, · · · , e jθN

]T
is the vector of CE signals

transmitted from the BS, and θi is the output phase of the
i th antenna. In (1), wk is a zero-mean complex circularly
symmetric Gaussian noise with variance σ 2

w , hk is the channel
vector to the kth user (kth row of the K×N channel matrix H),
and PT is the total transmission power. We do not assume any
specific fading channel model. While we provide numerical
examples for Rayleigh fading channels, the proposed algo-
rithm for CEP applies for any channel distribution, and the
theoretical findings apply under very general conditions on
the channel statistics specified in Sections V and VI.

III. PROBLEM FORMULATION

Denoting the desired symbol for the kth user by xk , (1) can
be divided into desired and interference parts as

yk =
√

Ek xk︸ ︷︷ ︸
desired

+
(√

PT

N
hk q −√

Ek xk

)

︸ ︷︷ ︸
interference

+wk, (2)

where Ek denotes the symbol energy of the kth user. There-
fore, by considering the sum of interference powers at the users
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as the main criterion, the desired phases can be obtained as

q̂ = arg min
q

K∑
k=1

∣∣∣∣∣
√

PT

N
hk q−√

Ek xk

∣∣∣∣∣
2

,

s.t. |qn| = 1, n = 1, 2, · · · , N, (3)

which is a nonlinear nonconvex optimization problem.
As can be seen in (3), a challenge in CEP is, in general, that

the corresponding optimization problem is a function of both
the channel coefficients and the user data, hence the precoding
coefficients are functions of them as well. Therefore, even
when the channel does not change, the optimization should be
performed in each data transmission interval.

All the previous CEP related works (e.g., [4], [7]–[9])
have considered the use of analog PSs, and have solved the
optimization problem (3) by using such techniques as AM [4]
and CEO [8]. However, as mentioned earlier, digital PSs
may be more preferable in practice due to factors such as
increased immunity to noise on their voltage control lines [10].
Assuming digital PSs which support a discrete set of phase
states, (3) turns into a nonlinear discrete optimization problem,
namely,

q̂ = arg min
q

K∑
k=1

∣∣∣∣∣
√

PT

N
hk q−√

Ek xk

∣∣∣∣∣
2

,

s.t. qn ∈ QM , n = 1, 2, · · · , N, (4)

where QM is a set of M unit amplitude symbols (e.g., phase
shift keying (PSK) symbols).

Taking qn = exp
(

2π mn
M

)
, mn ∈ {1, · · · , M}, (4) turns

into a nonlinear integer optimization problem and it can be
solved by conventional integer programming methods such
as branch-and-cut [16] and NOMAD. However, the worst-
case complexity of such discrete (or integer) programming
methods is exponential, and when the problem dimensions
are large, their computational complexity is nontrivial, and in
many cases, they become impractical even in well-conditioned
problems [11]. Hence, they are not suitable options for the m-
MIMO scenario in which N and consequently the problem
dimension is very large.

To tackle this problem, we first expand the squares in the
objective function of (4) and then take the summation over k.
By ignoring the terms independent of q, we have

q̂= arg min
q

PT

N

N∑
j=1

N∑
i=1

q∗j G j,iqi−2

√
PT

N

N∑
j=1

Re
{

xHEH j q j

}

s.t. qn ∈ QM , n = 1, 2, · · · , N, (5)

where H j is the j th column of the channel matrix H, G
�=

HHH, x is the K×1 vector of desired users’ symbols, and
E is a K×K diagonal matrix whose kth diagonal element
is
√

Ek . Since G is a Hermitian matrix, we can write
N∑

j=1

N∑
i=1

q∗j G j,iqi =
N∑

j=1
G j, j

∣∣q j
∣∣2 + 2

N∑
j=1

j−1∑
i=1

Re
{

q∗j G j,iqi

}
.

Substituting this into (5) and knowing that
∣∣q j

∣∣ = 1, the final

Fig. 2. Trellis structure of TB-CEP.

form of the discrete optimization problem becomes

q̂= arg min
q

N∑
j=1

Re

⎧⎪⎨
⎪⎩
√

PT

N

j−1∑
i=1

q∗j G j,i qi − xHEH j q j

⎫⎪⎬
⎪⎭

s.t. qn ∈ QM , n = 1, 2, · · · , N. (6)

In this form, the objective function is transformed into sum
of N real terms in which the j th term is only a function of
the first j variables. In the next section, we propose a trellis
based optimization algorithm which exploits this property to
provide a suboptimal but efficient and effective method.

IV. DISCRETE-PHASE CONSTANT ENVELOPE PRECODING

We reformulated the discrete-phase CEP problem in such
a way that sum of N real terms in which the j th term
is only a function of first j variables is to be optimized.
We now propose a low-complexity algorithm which exploits
this special structure, that is, by appropriately defining trellis
states, we introduce a low-complexity trellis-based solution to
the main discrete optimization problem in (6). We analyze the
computational complexity of the proposed algorithm in the
remaining two subsections.

A. Proposed Trellis-Based CEP

Since the objective function in (6) is the sum of N real terms
in which the j th term is only a function of the first j variables,
the problem can be solved using a multistage approach.
A simple way is the greedy approach. That is, at the j th stage,
we can select the symbol in the set QM (corresponding to
the phases for the PSs) which minimizes the j th term of the
objective function of (6) as the j th antenna output. However,
we make the observation that if we keep the most likely set of
variables at each stage instead of only one variable, and make
the overall decision at the end of the algorithm’s run, we can
obtain improved results. We can accomplish this by employing
a trellis structure much like what the Viterbi algorithm utilizes
in decoding or channel equalization. We call the resulting
algorithm trellis-based CEP (TB-CEP).

Define the previous L qi variables as the memory, each
taking on M possible values. Hence, we have a trellis with M L

states, each having M outgoing branches with labels chosen
from QM (e.g., set of M-PSK symbols) as illustrated in Fig. 2.

The proposed algorithm (TB-CEP) works as follows. At the
first step, the initial L variables are taken as initial memory
values and their M L possible combinations form the trellis
states. Initial metrics are determined by putting the values of
each state in the first L terms of the objective function of (6).
At the t th stage, the branch labels correspond to the (t+L)th
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Algorithm 1 Trellis-Based Constant Envelope Precoding
(TB-CEP)
1: Calculate the initial metrics by applying the state values

into the first L terms of the objective function of (6); i.e.,
L∑

j=1
Re

{√
PT
N

j−1∑
i=1

q∗j G j,iqi − xHEH j q j

}

2: for j = L+1 : N do
3: Calculate each branch metric by applying its label and

the path values associated with its originating state
into the j th term of the objective function of (6); i.e.,

Re

{√
PT
N

j−1∑
i=1

q∗j G j,iqi − xHEH j q j

}

4: Calculate the cumulative metric of each branch by adding
its metric to the cumulative metric of its originating path

5: Among branches entering the same state, choose the
branch with the minimum cumulative metric and discard
the other branches

6: Update the cumulative path metrics
7: end for
8: Choose the path with the minimum cumulative metric
9: q(L+1:N)← branch labels of the selected path

10: q(1:L)← values of the corresponding initial state

variable (qt+L), and the branch metric is the (t+L)th term
of the objective function of (6). At each stage, the cumulative
metric of branches are calculated by adding the branch metrics
to the cumulative metric of their originating paths. Then,
among the branches entering the same state, the branch with
the least cumulative metric is kept and the others are discarded.
The algorithm is terminated after N−L stages and the path
with the minimum cumulative metric is selected as the final
decision. The labels on the selected path give the latter N−L
variables, and the initial state associated with the selected path
gives the first L variables. The procedure is summarized in
Algorithm 1. It should be noted that the proposed algorithm
is not iterative and solves the optimization problem in a single
run.

B. Computational Complexity Analysis

In our proposed algorithm, we have N−L stages and
M L states, with M branches entering each state. Therefore,
there are a total of (N−L)M L+1 comparisons. Since the
terms of (6) are used as the branch metrics, the numbers
of additions and multiplications are both O

(
N2 K M L+1

)
for

each channel use. In other words, the complexity is polynomial
in the number of BS antennas which is significantly better
than the alternatives which have exponential complexity [11].
We further note that the complexity of the proposed algorithm
is comparable to that of continuous-phase CEP and also to
conventional linear precoders (without the CE constraint). For
example, the numbers of additions and multiplications in zero
forcing (ZF) precoding are O

(
N K 2

)
for carrying out the

pseudo-inverse in each coherence time interval of the channel,
and O (N K ) for matrix vector product in each channel use [4].
The continuous-phase CEP has a complexity of O (N K Niter )

in each channel use, where Niter is the number of iterations
used in the optimization process [4].

Our numerical results in Section VII show that the proposed
algorithm is a few orders of magnitude faster than the conven-
tional discrete programming algorithms such as NOMAD in
the m-MIMO scenario. Furthermore, unlike the conventional
discrete programming algorithms, the complexity and running
time of the proposed algorithm are fixed and independent
of factors like user data and channel coefficients. Finally,
the proposed algorithm does not need an initial point, on
the contrary, the performance and speed of the conventional
algorithms heavily depend on the choice of initialization.

C. Robust CEP

In practice, the channel coefficients are estimated with some
error. Hence, we need to focus on the effects of estimation
errors on the performance of the proposed algorithm. Let the

estimated channel matrix be Ĥ �= H + H̃, where H̃ denotes
the error values. Assuming that H̃ has zero mean entries and

C �= E
[
H̃HH̃

]
, using (3), a robust CEP problem can be posed

as follows [19]:

q̂= arg min
q

K∑
k=1

∣∣∣∣∣
√

PT

N
ĥkq−√Ek xk

∣∣∣∣∣
2

+ PT

N

∥∥∥C
1
2 q
∥∥∥2

2
,

s.t. |qn| = 1, n = 1, 2, · · · , N. (7)

Since C is a Hermitian matrix and |qn| =1, we have
∥∥∥C

1
2 q
∥∥∥2

2
=

N∑
j=1

N∑
i=1

q∗j C j,iqi=
N∑

j=1
C j, j+2

N∑
j=1

j−1∑
i=1

Re
{

q∗j C j,i qi

}
. Therefore,

in the same manner as Section III, using (7), the robust disrete-
phase CEP problem becomes:

q̂= arg min
q

N∑
j=1

Re

⎧⎪⎨
⎪⎩
√

PT

N

j−1∑
i=1

q∗j B j,i qi−xHEĤ j q j

⎫⎪⎬
⎪⎭

s.t. qn ∈ QM , n = 1, 2, · · · , N, (8)

where B �= E
[
ĤHĤ

]
+ C.

Note that by substituting G with B in the non-robust
discrete-phase CEP problem (6), we obtain the above robust
formulation. Therefore, the robust discrete-phase CEP problem
can be solved using the proposed TB-CEP algorithm (summa-
rized in Algorithm 1) by substituting G with B. We call the
resulting algorithm the robust TB-CEP. For a more detailed
analysis and management of channel uncertainties in MIMO
systems, see [20] and the references therein.

V. ANALYSIS OF INTERFERENCE WITH INCREASING

NUMBER OF BS ANTENNAS

In this section, we show that the interference terms at the
receivers in CEP with discrete phases can be made arbitrarily
small by taking N sufficiently large. This is proved to hold
for the case of continuous-phase CEP in [4], hence we only
state and prove the result as an extension to the case of
digital PSs in Theorem 1. The general idea of the proof
is as follows. Not considering noise and taking the channel
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vectors and the transmission power as constants, the number
of possible received signal vectors at the users is equal to M N ,
each one related to a specific set of antenna output phases.
So by increasing the number of BS antennas, the number
of possible received signal vectors increases. That is, since
the transmission power is kept constant, the space of the
received signal vectors becomes denser. As a result, under
mild conditions on the channel gains, the probability that
there exists a received signal vector (or equivalently, a set
of antenna output phases), whose distance to the vector of
desired symbols is smaller than a certain value, increases. This
probability can be shown to be nonzero, indicating that there
is a solution with the desired precoding properties.

Theorem 1: Fix the number of users K . Considering the
random channel coefficients matrices, {HN }∞N=K , which sat-

isfy lim
N→∞

E
[
hk,i hr,i h∗s,i h∗t,i

]
N =0,∀ k, r, s, t∈1, 2, . . . , K , for any

data vector x chosen from a fixed finite alphabet χ and any
�>0, there exists an integer N ′({HN } , χ,�) such that with
N≥N ′({HN } , χ,�), there exists a phase vector θ x

N (�) =[
θ x

1 (�) , . . . , θ x
N (�)

]T chosen from a set of discrete phases
which when transmitted results in the multiuser interference
energy at each user being upper bounded by 2�2. In other
words, the user interference in discrete-phase CEP can be
guaranteed to be arbitrarily small as N→∞.

Proof: The continuous-phase case of Theorem 1 is proved
in [4]. The proof of the discrete case follows similar steps with
some necessary modifications. The proof is based on showing
that the vector of noiseless received signals at the users is
asymptotically jointly normal which, in [4], is only proved to
hold for the case of continuous phases. Since the proof in [4],
except the part of joint normality, is independent of the phases
being continuous or discrete, in order to avoid repetition, here
we only show that joint normality also holds for the case of
discrete phases, and refer the reader to [4] for the rest.

Result 1: Let {Xn} be a sequence of independent random
variables (RV). Let E [Xn]=μn , E

[
(Xn−μn)2] = σ 2

n , and
for some fixed ξ>0, E

[|Xn−μn|2+ξ
]=βn exists for all n.

Furthermore let Bn
�=(

n∑
i=1

βi )
1

2+ξ and Cn
�=(

n∑
i=1

σ 2
i )

1
2 . Then if

lim
n→∞

Bn
Cn
=0 (to ensure that no one variable Xn dominates the

summation), the cumulative distribution function (c.d.f.) of
Yn=

∑n
i=1 (Xi−μi )

Cn
converges in the limit to the c.d.f. of a real

Gaussian RV with mean zero and unit variance [14].
Result 2: If every linear combination of a set of RV’s has

normal distribution, then they are jointly normal [12].
To complete the proof of Theorem 1, first using Result 1, we

show that every linear combination of the noiseless received

signals at the users, zk=
√

PT
N hkq, has asymptotically a normal

distribution. Then, using Result 2, we conclude that the
noiseless received signals at the users are jointly normally
distributed. We define the linear combination of the noiseless
received signals

ζ
�=

K∑
k=1

λkzk =
√

PT

N

K∑
k=1

λk hkq =
N∑

i=1

ηi , (9)

where ηi
�=
√

PT
N e jθi

K∑
k=1

λkhk,i and λk is an arbitrary coefficient.

Since Theorem 1 is an existence theorem, only stating that
such a discrete-phase precoder exists, we can assume the phase
angles to be independent of each other, and hence ηi ’s become
independent. Without loss of generality, we assume the output
phases to be uniformly distributed, therefore for the mean and
the variance of ηi , we have

μi
�= E [ηi ]=

√
PT

N
E
[
e jθi

] K∑
k=1

λk hk,i = 0,

σ 2
i

�= E
[
|ηi − μi |2

]
=E

[
|ηi |2

]
= PT

N

∣∣∣∣∣
K∑

k=1

λk hk,i

∣∣∣∣∣
2

. (10)

For ξ = 2, we have

βi= E
[
|ηi |4

]
=
(

PT

N

)2
∣∣∣∣∣

K∑
k=1

λk hk,i

∣∣∣∣∣
4

, (11)

which exists for all i . Now, using (10) and (11), we calculate
BN and CN as follows.

BN =
(

P2
T

N

K∑
k=1

K∑
r=1

K∑
s=1

K∑
t=1

λkλrλ
∗
s λ
∗
t

1

N

N∑
i=1

hk,i hr,i h
∗
s,i h
∗
t,i

) 1
4

,

(12)

CN =
(

PT

K∑
k=1

K∑
t=1

λkλ
∗
t

1

N

N∑
i=1

hk,i h
∗
t,i

) 1
2

. (13)

Using the law of large numbers, the normalized summations
of the product of channel coefficients in (13) and (13) asymp-
totically tend to their expected values for large N . Hence, we
obtain

BN →
(

P2
T

N

K∑
k=1

K∑
r=1

K∑
s=1

K∑
t=1

λkλrλ
∗
s λ
∗
t E

[
hk,i hr,i h

∗
s,ih
∗
t,i

]) 1
4

,

(14)

CN →
(

PT

( K∑
k=1

K∑
t=1
t �=k

λkλ
∗
t

∣∣E [
hk,i

]∣∣2+
K∑

k=1

|λk |2E
[∣∣hk,i

∣∣2]))
1
2

,

(15)

where CN is a nonzero constant independent of N (ignoring
the trivial case of all-zero λk ’s). Using (14) and (15), we have

lim
N→∞

BN

CN

=

(
P2

T

K∑
k=1

K∑
r=1

K∑
s=1

K∑
t=1

λkλr λ
∗
s λ
∗
t lim

N→∞
E
[
hk,i hr,i h∗s,i h∗t,i

]
N

) 1
4

(
PT

(
|μ|2

(∣∣∣∣
K∑

k=1
λk

∣∣∣∣
2

−
K∑

k=1
|λk |2

)
+ σ 2

K∑
k=1
|λk |2

)) 1
2

= 0,

(16)

where we employed the assumption lim
N→∞

E[hk,i hr,i h∗s,i h∗t,i ]
N = 0,

∀ k, r, s, t∈1, 2, . . . , K . Note that this is a very mild constraint
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satisfied with many interesting fading channel models includ-
ing Rayleigh and Rician fading scenarios. Hence, we conclude
that the Lyapunov CLT holds for the case of the discrete
phases. Therefore, using Result 2, the noiseless received
signals at the users are jointly normal, and the rest of the
proof is the same as the continuous-phase case [4].

Theorem 1 basically says that by increasing N , the user
interference fades away, and hence the users’ interference links
turn into noninterfering parallel links, increasing the user data
rates. This fact reinforces our choice of user interference as
the design criterion in the precoding design problem which is
discussed in Sections III and IV. More importantly, Theorem 1
implies that restricting the phases of the antenna elements to
a limited set has no effect on the performance of the system
when N is sufficiently large (as in the m-MIMO systems).

VI. RATE LOSS DUE TO PHASE AND AMPLITUDE

ERRORS OF PHASE SHIFTERS

PSs are not ideal in practice. A nonideal PS changes the
amplitude of the input signal, and also its output phase is
not exactly the same as the set of predefined discrete phases.
In a PS, these deviations from the ideal case are called phase
and amplitude errors, respectively. In this section, we analyze
the effects of such errors on the performance of CEP systems.
To achieve this goal, closed-form expressions for rate loss due
to PS phase and amplitude errors are obtained for both low
and high SNR regimes.

The following is shown to be an achievable rate for the kth
user in CEP systems [4]

Rk(θ) = log2

(
Ek

Ik (θ)+ σ 2
w

)
, (17)

where θ = [θ1, θ2, . . . , θN ] is the vector of BS output phases

and Ik(θ)
�= Eh,x

[∣∣∣∣
√

PT
N

N∑
i=1

hk,i e jθi −√Ekxk

∣∣∣∣
2]

is the aver-

age interference power at the kth user. Here, we employ this
rate as a performance metric as well. We note that since PS
errors occur after the precoder optimization, they do not affect
the optimization itself, however, they impact the overall system
performance.

Using (17), the following achievable rate can be obtained
in the presence of phase and amplitude errors

Rk(θ+ε,α) = log2

(
Ek

Ik (θ+ε,α)+ σ 2
w

)
, (18)

where ε=[ε1, ε2, . . . , εN ] and α=[α1, α2, . . . , αN ] are the
vectors of phase and amplitude errors, respectively, and

Ik(θ+ε,α)
�=Eh,x

[∣∣∣∣
√

PT
N

N∑
i=1

hk,i (1+αi )e j (θi+εi )−√Ek xk

∣∣∣∣
2]

is

the average interference power at the kth user in the presence
of phase and amplitude errors. We define the rate loss of the
kth user due to phase and amplitude errors as follows

�Rk
�= Eε,α [Rk(θ)− Rk(θ + ε,α)] . (19)

Theorem 2: Let the PSs have zero mean amplitude and zero
mean symmetric phase error vectors with covariance matrices
of σ 2

ε I and σ 2
α I, respectively. Then, in a CEP with K�N ,

the rate loss expressions of the kth user due to phase and
amplitude errors are approximately equal to

�RlowSNR
k ≈ log2(e)

PT

σ 2
w

(
(1+ρk)+σ 2

α− (1+ρk) ϕ2
E(1)

)
,

(20)

�RhighSNR
k ≈ log2

(
PT

σ 2
w

(
(1+ρk)+σ 2

α− (1+ρk) ϕ2
E(1)

))
,

(21)

where ϕE (·) denotes the characteristic function of the
phase error and ρk

�= Ek
PT

. Note that the low SNR and high
SNR regimes are defined as σ 2

w�Eε,α [Ik (θ+ε,α)] and
σ 2

w�Eε,α [Ik (θ+ε,α)], respectively.
Proof: We make the following approximation: a good

precoder minimizes the objective function well enough for
K�N to make the interference power at each user much
smaller than the noise power, i.e., Ik (θ)�σ 2

w (this is verified
by our simulations of the CEP algorithms for large number of
antennas). Therefore, the data rate (17) can be approximated
as follows

Rk(θ) ≈ log2

(
Ek

σ 2
w

)
. (22)

First, we consider the case that phase and amplitude errors do
not increase each user’s interference power more than the noise
power. That is, Eε,α [Ik (θ+ε,α)]�σ 2

w, or equivalently we
operate in the low SNR regime. In this case, using first-order
Taylor approximations log2(1+δ)≈δlog2(e) and 1

1+δ≈1−δ
(|δ| � 1), and considering phase and amplitude errors, an
approximation for the data rate (18) can be obtained as

Rk(θ+ε,α) ≈ log2

(
Ek

σ 2
w

(
1− Ik (θ+ε,α)

σ 2
w

))

= log2

(
Ek

σ 2
w

)
+log2

(
1− Ik (θ+ε,α)

σ 2
w

)

≈ log2

(
Ek

σ 2
w

)
− log2 (e)

Ik (θ+ε,α)

σ 2
w

. (23)

Using (22) and (23), the approximate rate loss of the kth user
in the low SNR regime due to phase and amplitude errors is

�RlowSNR
k ≈ log2(e)

σ 2
w

Eε,α [Ik (θ+ε,α)] . (24)

The expected value of the interference power in the presence
of phase and amplitude errors is obtained in the Appendix as
follows

Eε,α[Ik(θ+ε,α)]≈PT

(
(1+ρk)+σ 2

α− (1+ρk) ϕ2
E(1)

)
. (25)

Substituting (25) into (24) gives (20).
We next consider the case that phase and amplitude errors

increase the user interference powers more than the noise
power. That is, Eε,α[Ik (θ+ε,α)]�σ 2

w , or equivalently the
high SNR regime. In this case, the data rate can be approxi-
mated in a similar manner to (23) as follows

Rk(θ+ε,α) ≈ log2

(
Ek

Ik (θ+ε,α)

)
− log2(e) σ 2

w

Ik (θ+ε,α)

≈ log2

(
Ek

σ 2
w

)
+ log2

(
σ 2

w

Ik (θ + ε,α)

)
. (26)
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Therefore, using (22) and (26), the approximate rate loss of
the kth user in the high SNR regime is

�RhighSNR
k ≈ Eε,α

[
log2

(
Ik (θ+ε,α)

σ 2
w

)]

≈ log2

(
Eε,α[Ik (θ+ε,α)]

σ 2
w

)
. (27)

Finally, (21) is obtained by substituting (25) into (27).
It should be noted that we do not consider the channel

coefficients and precoding weights to be independent of each
other in the above arguments. Theorem 2 implies that by
increasing N , the effects of phase and amplitude errors in the
PSs do not fade away. One reason is that these errors occur
independently of the precoding optimization in the antenna
front-ends and are not accounted for in the optimization
process. Note also that the result obtained in Theorem 2 is
for general CEP and not restricted to the discrete case.

Corollary 1: For the case of phase errors with sufficiently
small variances, the rate loss expressions (20) and (21) can be
further approximated as

�RlowSNR
k ≈ log2(e)

PT

σ 2
w

(
σ 2

α + (1+ ρk)σ
2
ε

)
, (28)

�RhighSNR
k ≈ log2

(
PT

σ 2
w

(
σ 2

α + (1+ ρk)σ
2
ε

))
. (29)

Proof: Assuming the phase error to be sufficiently small
and knowing that it is zero mean, the second order Taylor
approximation of its characteristics function becomes

ϕE (t)
�=Eε

[
e j tε

]
≈1+ j tEε[ε]−1

2
t2Eε

[
ε2
]
=1−1

2
t2σ 2

ε .

(30)

Using (30) and knowing that σ 2
ε � σ 4

ε , the rate loss expres-
sions (20) and (21) can be further simplified as stated in (28)
and (29), respectively.

Corollary 2: Assuming sufficiently small error variances,
the normalized rate loss (defined as �Rk/Rk(θ)) in the high
SNR regime due to phase and amplitude errors of the PSs is

�RhighSNR
k

Rk(θ)
≈ 1+

log2

(
1
ρk

σ 2
α + ( 1

ρk
+ 1)σ 2

ε

)

log2

(
ρkPT
σ 2

w

) . (31)

Proof: (31) is readily obtained using (22) and (29).
Corollary 2 shows that even the normalized rate loss due to

phase and amplitude errors is independent of N and it does
not fade away as N increases. According to Corollary 2, the
normalized rate approaches one at very high transmit SNRs
(PT/σ 2

w), which makes CEP algorithms impractical in that
regime. However, our simulations show that, in the high (but
still practical) SNR regime, the normalized rate loss is not too
detrimental, and the proposed CEP solution remains effective.

VII. NUMERICAL EXAMPLES

In this section, we first study the performance of the
proposed TB-CEP algorithm in various set-ups and compare
it with other alternatives. Then, we investigate its complexity-
performance trade-off. The first algorithm to be compared with

is NOMAD which is a discrete optimization solver based on
mesh adaptive direct search algorithm. Based on our numerous
simulations, NOMAD has almost the same performance as
other conventional solvers but it is much faster. The other
algorithm is the continuous CEP (solving (3) using a quasi-
Newton algorithm), as an upper bound on the performance.

Since the overall data rate is the final goal, we use the
average rate per user as the main comparison criterion. Since
the actual sum-rate of CEP is not available in the literature,
we use an achievable data rate of CEP developed in [4] as
stated in (17) for our numerical examples. In our simulations,
we consider Rayleigh flat fading with independent zero mean
and unit variance channel coefficients. The number of BS
antennas N , the number of users K , the noise variance σ 2

w
and the transmit power PT are set to 100, 10, 1 and 10 dBW,
respectively, unless mentioned otherwise. In discrete-phase
algorithms, possible values of the antenna outputs are from
a set of M-PSK symbols. All the figures are obtained by
averaging over 100 realizations of the channel.

As for the choice of the symbol energy, Ek , the optimal
value can be obtained by maximizing (18) over Ek’s. However,
to circumvent this exhaustive search, we take Ek=PT , which
is a near-optimal choice based on our extensive simulations.

Since solving the continuous CEP is less complex than the
discrete CEP, an idea that comes to mind is to solve the contin-
uous CEP problem first, and then, quantize the obtained phases
to the desired set of predefined phases. We have tried this
approach for many examples, and observed that there is a high
total phase error especially for small constellation sizes and
large number of antennas. As a result, due to the sensitivity of
precoding coefficients to phase errors, the overall performance
degrades considerably. For instance, considering above system
parameters with 4-ary PSs, the relative achievable rate of the
quantized version of the continuous CEP with respect to the
proposed TB-CEP with L=2 decreases from 87% for N=10
to 51% for N=100. We do not consider this approach any
further because of its significantly inferior performance.

Another way of solving discrete optimization problems such
as discrete-phase CEP problem in (4) is to utilize semidefinite
relaxation (SDR) method [21], [22]. In order to study its effec-
tiveness, we have performed simulations using this technique
as well. We have observed that the SDR method outperforms
the newly proposed TB-CEP algorithm when there are limited
number of BS antennas (i.e., for regular MIMO systems),
however, it has a significantly inferior performance in the
m-MIMO regime. For instance, considering the above system
parameters with 4-ary PSs, the relative achievable rate of the
SDR method with respect to the proposed TB-CEP with L=2
decreases from 120% for N=30 to 54% for N=100.

A. System Performance

In Fig. 3, the average interference power per user versus
the number of BS antennas is shown. It can be seen that
the interference powers of all the algorithms decrease as N
increases, which is in accordance with Theorem 1. Fig. 3
also gives us the minimum number of base station antennas
required for a certain interference level. For instance, the
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Fig. 3. Average interference power per user versus number of BS antennas
(K=10).

Fig. 4. Average rate per user versus number of BS antennas (K=10).

Fig. 5. Average rate per user versus number of users (N=100).

minimum number of BS antennas required for an average
interference power per user of less than one (which is the
same value as the noise power considered in the simulations)
is 18, 36 and 44 for continuous CEP, TB-CEP QPSK with
L=2 and NOMAD QPSK, respectively.

The average rate per user versus the number of BS antennas
is presented in Fig. 4. It can be seen that the rate increases until
it saturates for all the algorithms as N increases. According

Fig. 6. Average rate per user versus transmit power.

Fig. 7. Average rate per user versus number of trellis states.

to Fig. 4, for higher numbers of BS antennas (in the m-
MIMO regime), TB-CEP has almost the same performance
as the continuous CEP and surpasses NOMAD for the case
of 4-ary PSs. For instance, for N=50 with 4-ary PSs,
TB-CEP with L=0 and L=2 achieve about 73% and 80% of
the performance of the continuous CEP, respectively. These
percentages increase to about 85% and 92% for N=100.

The average rate per user versus the number of users (K ) is
plotted in Fig. 5. As K increases, while N is kept constant, the
average rate per user decreases. This is because of the fact that
by increasing K , the per-user interuser interference increases.
As it is shown in Fig. 5, the newly proposed algorithm again
offers a significantly better performance than NOMAD.

In Fig. 6, the average rate per user is plotted as a function of
the transmit power for N=100. We observe that by increasing
the transmit power, the performances of all the algorithms
improve until they saturate at a certain point. Also, the
performances of all the algorithms improve as the N/K ratio
(degree of freedom per user) increases. For instance, 4-ary
TB-CEP with L=2 and PT=10 dBW for N/K=1, N/K=4
and N/K=10 achieves about 33%, 65% and 90% of the rate
offered by the continuous CEP, respectively.

In Fig. 7, the average rate per user versus the number of
trellis states (S=M L ) is plotted, while keeping the constella-
tion size constant. The performance of the proposed algorithm
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Fig. 8. Average rate per user versus M-PSK constellation size.

Fig. 9. Average rate per user versus channel estimation SNR.

is improved by increasing the number of states. For instance,
in the case of 4-ary PSs, the rate relative to that of continuous
CEP increases from 85% for L=0 to 95% for L=5, surpassing
that of NOMAD with the same constellation size.

The average rate per user versus the constellation size is
presented in Fig. 8 for various N/K ratios for N=100. Note
that for NOMAD, only the range in which it gives acceptable
results is plotted. We observe that, as the constellation size
increases, the performances of all the algorithms improve
until they rapidly saturate. For instance, for 4-ary PSs with
N/K=10, TB-CEP with L=0, L=1 and L=2 achieve about
85%, 89% and 91% of the rate performance of the continuous
CEP, respectively. Also, as expected, we obtain a better
performance as N/K increases. For example, 4-ary TB-CEP
with L=2 achieves about 45%, 70% and 90% of the rate
performance of the continuous CEP for N/K=2, N/K=4 and
N/K=10, respectively.

In Fig. 9, the average rate per user is plotted versus the
channel estimation SNR in order to study the effect of errors
in channel estimation on the performance of the algorithms.
The robust versions of the algorithms are based on the results
in Subsection IV.C. We define the channel estimation SNR as
E
[‖H‖2F]/E

[‖H̃‖2F], where ‖·‖F is the Frobenius norm. It is

Fig. 10. Average rate per user versus phase error.

Fig. 11. Average rate per user versus amplitude error.

clear that the performances of all the precoding algorithms
improve as the channel estimation SNR increases. The pro-
posed robust TB-CEP has a better performance than TB-CEP
especially for moderate values of the channel estimation SNR.

In Fig. 10 and Fig. 11, the average rate per user is plotted
against the phase and amplitude error variances in the RF
PSs, respectively. We clearly see that while the performance
degrades for all the algorithms as the imperfections in the
RF PSs increase, the proposed algorithm is fairly robust, in
the sense that it shows the same level of degradation as the
continuous-phase algorithm of [4].

Finally, as a verification of the result in Theorem 2, the
average rate loss per user due to phase and amplitude errors
versus SNR is plotted in Fig. 12 for N=100. The phase and
the amplitude error variances are assumed to be σ 2

ε=5 deg2

and σ 2
α=0.1, respectively. Noting that the expressions in

Theorem 2 are obtained under the assumption that a good
CEP precoder minimizes the objective function well enough
for K�N to make the interference power at each user much
smaller than the noise power, as it can be seen in Fig. 12, we
obtain better approximations of the rate loss due to the phase
and amplitude errors for both low and high SNR regimes as
N/K increases.
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TABLE I

COMPLEXITY-PERFORMANCE TRADE-OFF OF TB-CEP

Fig. 12. Average rate loss per user due to phase and amplitude errors
versus SNR.

B. Computational Complexity

The complexity-performance trade-off of the proposed
algorithm is presented in Table I, where tc and td are the rela-
tive computation times of TB-CEP with respect to continuous
CEP [4] and NOMAD [13], respectively. Also, rc and rd are
the relative achievable rates with respect to the continuous-
phase CEP and NOMAD, respectively.

According to Table I, by increasing the trellis memory (or
equivalently, the number of states), the relative performance
of the proposed algorithm improves at the cost of increased
computational time. This trade-off can help us to select a
practical trellis memory as a design parameter. For example,
for M=2 with L=0, we achieve 85% of the rate of NOMAD,
with only 0.5% of its computation time. For this specific exam-
ple, the relative computation time increases while the relative
performance does not change significantly with increasing L,
making L=0 a good choice for both cases of M=2 and M=4.

VIII. CONCLUSIONS

In this paper, we have formulated and solved the discrete-
phase CEP problem for m-MIMO systems. We have utilized
the sum of interference powers as the objective function and
reformulated it as a sum of real terms. Then, by appro-
priately defining states, we have proposed a low-complexity
trellis-based algorithm to solve the reformulated optimization
problem. We have also extended the algorithm to be robust
against channel estimation errors. Based on extensive numeri-
cal results, we conclude that the performance of the proposed
algorithm is comparable to the conventional ones (which have

exponential complexity), and in some cases it even surpasses
them, especially in the m-MIMO scenario. Also, compared
to the continuous-phase algorithm, as an upper-bound on
performance, the proposed algorithm shows only a small
degradation. Furthermore, the performance loss decreases as
the number of antennas is increased. We also provide impor-
tant analytical results. We prove that by increasing the number
of BS antennas, user interference can be guaranteed to be
arbitrarily small, and we derive closed-form expressions for
rate loss due to errors in the phase and the amplitude of the
PSs.

APPENDIX

Knowing that ε and α are zero mean with variances σ 2
ε and

σ 2
α , respectively, the expected value of the interference power

in the presence of phase and amplitude errors is

Eε,α[Ik (θ+ε,α)]

= Eh,x,ε,α

[
PT

N

N∑
i=1

(1+αi )
2
∣∣hk,i

∣∣2

+ PT

N

N∑
i=1

N∑
j=1
j �=i

hk,i h
∗
k, j (1+αi )

(
1+α j

)
e j(εi−ε j)e j(θi−θ j)

− 2

√
PT Ek

N
Re

{
N∑

i=1

hk,i (1+αi )e
j (θi+εi )x∗k

}
+Ek |xk|2

]
.

(32)

Since Eε,α [ f (ε, α)] = Eε

[
Eα|ε [ f (ε, α)]

]
, we have

Eε,α [Ik (θ + ε,α)]

= Eh,x

⎡
⎣ϕE (−1) ϕE (1)

∣∣∣∣∣
√

PT

N
hke jθ −√

Ek xk
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+ PT

N

(
1+ σ 2

α − ϕE (−1) ϕE (1)
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∣∣hk,i
∣∣2

+ (1− ϕE (−1) ϕE (1)) Ek|xk|2

− 2

√
PT Ek

N
(ϕE(1)−ϕE(−1) ϕE(1)) Re

{
hke jθ x∗k

}]
,

(33)

where ϕE(t)
�=Eε

[
e j tε

]
is the characteristic function of ε.

We assume that the phase error is a zero mean symmetric RV,
which is a practical assumption. The characteristic function of
a zero mean symmetric RV is a real-valued even function [15].
Therefore, assuming the desired transmitted symbols have unit
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power and knowing that channel gains are zero mean with

unit variances, and that we have
√

PT
N hke jθ≈√Ekxk for large

number of antennas and K�N , (33) can be simplified as

Eε,α[Ik(θ+ε,α)]≈PT

(
(1+ρk)+σ 2

α− (1+ρk)ϕ
2
E(1)

)
, (34)

where ρk
�= Ek

PT
.
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