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On the Discreteness of Capacity-Achieving
Distributions for Fading and Signal-Dependent
Noise Channels With Amplitude-Limited Inputs
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Abstract— We address the problem of finding the capacity of
two classes of channels with amplitude-limited inputs. The first
class is frequency flat fading channels with an arbitrary (but
finite support) channel gain with the channel state information
available only at the receiver side; while the second one we
consider is the class of additive noise channels with signal-
dependent Gaussian noise. We show that for both channel models
and under some regularity conditions, the capacity-achieving
distribution is discrete with a finite number of mass points.
Furthermore, finding the capacity-achieving distribution turns
out to be a finite-dimensional optimization problem, and efficient
numerical algorithms can be developed using standard optimiza-
tion techniques to compute the channel capacity. We demonstrate
our findings via several examples. In particular, we present an
example for a block fading channel where the channel gain
follows a truncated Rayleigh distribution, and two instances of
signal-dependent noise that are used in the literature of magnetic
recording and optical communication channels.

Index Terms— Fading channels, signal-dependent noise,
amplitude-limited inputs, peak power constraints, channel
capacity.

I. INTRODUCTION

S INCE the formulation of the relevant information theoretic
problem about fifty years ago, there has been much

progress on the characterization of channel capacity with the
practical constraint of amplitude limited inputs. Smith [2]
studied the capacity of a scalar Gaussian channel under
peak and average power constraints, and showed that there
is a unique optimal distribution that maximizes the mutual
information and this distribution has a finite number of mass
points. Tchamkerten [3] generalized Smith’s results to chan-
nels with additive noise, which is not necessarily Gaussian, and
proved that the capacity-achieving distribution under certain
conditions on the noise distribution is also discrete.
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Discrete distributions appear as optimal inputs in other cases
as well. As an example, quadrature Gaussian channels are
studied in [4], where the authors show that the capacity-
achieving distribution has a uniformly distributed phase and
discrete amplitude. The authors in [5] consider noncoherent
additive white Gaussian noise (AWGN) channels and prove
that the optimal input distribution is discrete. They also com-
pute tight lower bounds on the capacity of the channel based
on a close examination of some suboptimal input distributions.
The authors in [6]–[8] study the capacity of the Gaussian
Multiple Access Channels (MACs) with amplitude-constrained
inputs. They show that the sum-capacity achieving distribution
is discrete, and that discrete distributions achieve rates at
any of the corner points of the capacity region. In other
related work, transmissions over peak-power constrained chan-
nels are considered in [9]–[11], and multiple-input multiple-
output (MIMO) channels with amplitude-limited inputs are
studied in [12]. In [13], the authors study conditionally
Gaussian channels with amplitude-limited inputs for which the
distribution of the channel output conditioned on the channel
input is Gaussian. They show that the channel capacity is
achieved by a discrete input distribution with a finite number
of mass points.

In this paper, we consider two channel models. The first one
covers fading channels with amplitude-limited inputs where
the channel coefficients have a finite support and the channel
state information is available only at the receiver side; while
the second one covers signal-dependent additive Gaussian
noise channels such as those encountered in magnetic record-
ing systems and optical communication channels.

The capacity of fading channels with different constraints
on the inputs has been studied in the previous literature for
certain fading distributions. For instance, in [14] the authors
consider transmission over Rayleigh fading channels with
average power constrained inputs where neither the transmitter
nor the receiver has the channel state information. In [15],
the authors investigate the capacity of Rician fading channels
with inputs having constraints on the second and the fourth
moments. The capacity-achieving distribution is shown to
be discrete with a finite number of mass points for both
cases.

Certain aspects of the problem of finding the capacity of
signal-dependent Gaussian noise channels with amplitude-
limited inputs have also been studied previously. For example,
upper and lower bounds on the capacity of optical inten-
sity channels with input-dependent Gaussian noise where the
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variance of the noise varies linearly with the input are derived
in [16]. The upper bound relies on a dual expression for
the channel capacity and a new notion called the capacity-
achieving input distributions that escape to infinity. The lower
bound is based on a lower bound on the differential entropy
of the channel output in terms of the differential entropy of
the input.

We draw particular attention to [13] where the general
framework adopted covers certain classes of fading channels
and signal-dependent Gaussian channels encompassing a wide
range of scenarios with amplitude-limited inputs. We note,
however, that neither of our models falls within its frame-
work. For the case of fading channels, [13] covers the case
of complex Gaussian channel coefficients while our model
considers arbitrary channel coefficients with finite support. For
the case of signal-dependent noise channels, the results of [13]
apply for a class of noise variance functions, which converge
to zero for some limit points while we impose other technical
conditions. We will provide a specific example of a channel
model adopted in the literature of magnetic recording systems,
which falls within our framework but not that of [13] in the
numerical examples section.

We show that the capacity of fading channels with
amplitude-limited inputs is achieved by a unique input distrib-
ution and when the channel coefficients have a finite support,
the capacity-achieving distribution is discrete with a finite
number of mass points. For signal-dependent Gaussian chan-
nels with noise variance that depends on the transmitted signal,
we prove that, under some technical conditions, the capacity is
achieved by a discrete input distribution with a finite number
of mass points as well. In solving both problems, we extend
techniques utilized in [17] and [6]. For both channel models
considered, we prove that the mutual information is a concave,
continuous and weakly differentiable function of the input
distribution and the space of cumulative distribution functions
is compact and convex. Hence, the problem is a convex
optimization problem, which facilitates deriving conditions on
the optimal input distribution. The proof of the discreteness
of the optimal input distribution is achieved by adopting some
techniques from complex analysis.

The paper is organized as follows: in Sections II and III,
we describe the two channel models under consideration and
provide the required preliminaries for the rest of the paper.
In Section IV, we prove that the capacity of fading channels
with an arbitrary but finite support distribution on the channel
coefficients and amplitude-limited inputs is achieved by dis-
crete inputs with a finite number of mass points. In Section V,
we show that under some technical conditions, the capac-
ity of general signal-dependent Gaussian noise channels is
achieved by a discrete input distribution as well. In Section VI,
we present some numerical examples that illustrate our results.
Finally, we conclude the paper in Section VII.

A. Notation

Unless mentioned otherwise, the notation is as follows. The
set of real numbers, complex numbers and natural numbers
are denoted by R, C and N, respectively. We denote other sets

by calligraphic letters such as F . For a complex number z,
the real part is denoted by Re{z} while the imaginary part
is denoted by Im{z}. Random variables are written in bold
lowercase letters, e.g., x, and their realizations are shown using
standard lowercase letters, e.g., x . Constants are shown using
capital letters. The probability density function (PDF) of a
random variable x is denoted as fx(x), and the corresponding
cumulative distribution function (CDF) is referred to as Fx(x).
The PDF of a channel output y for an input x with CDF
Fx is denoted by fy(y; Fx) and the corresponding CDF is
denoted by Fy(y; Fx). We refer to the PDF of a random
variable x whose density depends on a parameter z as fx(x, z).
We reserve the notation E for the expectation operator, i.e., the
expectation of a function of a random variable x with a
CDF Fx is written as EFx [g(x)]. We denote the differential
entropy of the random variable x by HFx(x) and its entropy
density by hFx(x). The average mutual information functional
between the channel input x with distribution Fx and the
corresponding output y is denoted by IFx(x; y), and the
information density is denoted by iFx(x). The conditional
entropy of the channel output y conditioned on channel state
u for the corresponding input distribution Fx is denoted by
HFx(y|u) while the conditional entropy given that the channel
state takes on a specific value u is shown as HFx(y|u = u). The
conditional mutual information between the channel input x
and the output y conditioned on the channel state u is denoted
by IFx(x; y|u) while the conditional mutual information for a
specific channel state value u is denoted by IFx (x; y|u = u).
Finally, the conditional mutual information density between
the channel input x and the output y conditioned on the
channel state u is denoted by iFx(x |u) while the condition
mutual information density for a specific channel state u is
denoted by iFx(x |u = u).

II. CHANNEL MODELS

In this section, we describe the two channel models under
consideration, namely, fading channels with amplitude-limited
inputs and signal dependent additive Gaussian noise channels.

A. Fading Channels With Amplitude-Limited Inputs

The received signal y is given by

y = ux + z, (1)

where x is the channel input that is amplitude constrained
to [−A, A], i.e., it has a CDF Fx that belongs to the class
of CDFs Fx such that for any Fx ∈ Fx, Fx(x) = 0 for
x < −A and Fx(x) = 1 for x ≥ A. The random variable u is
the fading channel coefficient with a CDF Fu. We assume
that u has a finite support, i.e., for a fixed ε0 > 0, u ∈
[ε0, U ] for some U < ∞.1 Note that most of the results
throughout the paper apply for the case u ∈ [0, U ], however,

1We note that, this restriction will be used in the discreteness proof to be
able to make some technical arguments. It is clear that this model can be
used as an arbitrarily tight approximation to other fading channel models
with coefficients on the interval [0, ∞) (e.g., Rayleigh fading) by properly
selecting ε0 and U .
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the specific argument on the discreteness of the capacity-
achieving distribution requires u > 0. We also note that the
channel state information is available only at the receiver
side. The noise z is additive white Gaussian with zero mean
and variance σ 2

z , i.e., z ∼ N (0, σ 2
z ). We assume that the

input x and the fading coefficient u are independent. We also
assume an ergodic block fading channel model where coding
is performed over multiple fading blocks.

We emphasize that this model differs from the previous
models studied in the literature in the context of amplitude
limited inputs. The most closely related one is in [13] where
the authors study the conditionally Gaussian channels. When
the fading gain is zero mean complex Gaussian (i.e., for
Rayleigh fading), the channel becomes conditionally Gaussian,
and the results of [13] apply. However, here we consider fading
channels with an arbitrary (but finite support) distribution,
hence our model does not fall within this framework.

The PDF of the channel output y is given by

fy(y; Fx) =
∫ U

0

∫ A

−A
fz(y − ux) dFx(x) dFu(u),

where fz(y − ux) = fy|x,u(y|x, u) is the PDF of the channel
output y conditioned on specific values of x and u, and
fy(y; Fx) is the PDF of the channel output y when the input
has a CDF Fx. The existence of fy(y; Fx) can be verified by
computing the CDF of the channel output

Fy(y; Fx) =
U∫

0

A∫

−A

Fz(y − ux) dFx(x) dFu(u),

=
U∫

0

A∫

−A

y∫

−∞
fz(y ′ − ux) dy ′ dFx(x) dFu(u),

=
y∫

−∞

U∫

0

A∫

−A

fz(y ′ − ux) dFx(x) dFu(u) dy ′,

=
∫ y

−∞
fy(y ′; Fx) dy ′,

where Fz(·) is the CDF of the noise. The interchange of the
order of the integrals is justified since the PDF of the noise
fz(z) is nonnegative and integrable. Note that with the same
reasoning we can also write

fy(y; Fx) =
∫ U

0

∫ A

−A
fz(y − ux) dFx(x) dFu(u),

=
∫ A

−A

∫ U

0
fz(y − ux) dFu(u) dFx(x).

In the following, we provide bounds on the PDF of the
noise fz(y − ux) and the conditional PDF fy|u(y|u) for
later use. Following similar arguments as in Smith [2], it is
straightforward to show that, for u > 0, the noise PDF
evaluated at y − ux is bounded as follows

γ (y, u) ≤ fz(y − ux) ≤ �(y, u), (2)

where

γ (y, u) =
{

k1 exp(−k2(y − u A)2) if y ≤ 0,

k1 exp(−k2(y + u A)2) if y > 0,
(3)

and

�(y, u) =

⎧⎪⎨
⎪⎩

k3 exp(−k4(y + u A)2) if y ≤ −u A,

k3 if y ∈ [−u A, u A],
k3 exp(−k4(y − u A)2) if y > u A,

(4)

for some finite and positive k1, k2, k3, and k4. Let us also
define

q(m) � k1 exp(−k2m2). (5)

Clearly, q(y − ux) ≤ fz(y − ux).
We have the conditional PDF fy|u(y|u; Fx) as

fy|u(y|u; Fx) =
∫ A

−A
fz(y − ux) dFx(x). (6)

Hence, using (2), we can also write

γ (y, u) ≤ fy|u(y|u; Fx) ≤ �(y, u). (7)

B. Signal-Dependent Additive Noise Channels

For the case of additive noise channels with signal depen-
dent Gaussian noise, the received signal y is given by

y = x + n, (8)

where x is the channel input, n is the noise term, and y is
the channel output. As in Section II-A, we assume that the
random variable x is subject to an amplitude-constraint such
that |x| ≤ A for some A > 0. Let Fx denote the corresponding
class of input CDFs, i.e., Fx in Fx implies Fx = 0 for all
x < −A and Fx = 1 for all x ≥ A. The additive Gaussian
noise n has a zero mean, and its variance has two components:
one is independent of the input signal and the other depends on
the input, i.e., σ 2

n (x) = σ 2
0 + σ 2

1 (x), if x = x with |x | ≤ A.
In other words, the noise term conditioned on the channel
input fn|x(n|x) is a zero mean Gaussian random variable with
variance σ 2

n (x).
We assume that σ 2

1 (x) is a bounded, continuous and dif-
ferentiable function of the input x . We also note that we
can consider an arbitrary extension of the noise variance
σ 2

n (x) for |x | > A as this will not change the capacity of
the channel (under the specific input constraint). However,
we assume that an extension for |x | > A, which satisfies the
technical conditions stated in IV.D, is utilized to make sure
that the arguments in that section follow.

The existence of fy(y; Fx) is guaranteed since the noise
PDF fn(n) is a nonnegative and integrable function, i.e., we
have

fy(y; Fx) =
∫ A

−A
fn(y − x, x) dFx(x),

where

fn(y − x, x) = 1√
2π(σ 2

0 + σ 2
1 (x))

exp

[
− (y − x)2

2(σ 2
0 + σ 2

1 (x))

]
,
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which can be bounded as

k ′
1 exp

[
−k ′

2(y−x)2
]

≤ fn(y −x, x) ≤ k ′
3 exp

[
−k ′

4(y − x)2
]
,

for some positive finite values k ′
1, k ′

2, k ′
3, k ′

4 where

k ′
1 ≤ min|x |≤A

1√
2π(σ 2

0 + σ 2
1 (x))

, k ′
2 ≥ max|x |≤A

1

2(σ 2
0 + σ 2

1 (x))
,

k ′
3 ≥ max|x |≤A

1√
2π(σ 2

0 + σ 2
1 (x))

, k ′
4 ≤ min|x |≤A

1

2(σ 2
0 + σ 2

1 (x))
.

Define the functions q ′(m), γ ′(y), and �′(y) as

q ′(m) = k ′
1 exp(−k ′

2m2), (9)

γ ′(y) =
{

k ′
1 exp(−k ′

2(y − A)2) if y ≤ 0,

k ′
1 exp(−k ′

2(y + A)2) if y > 0,
(10)

and

�′(y) =

⎧⎪⎨
⎪⎩

k ′
3 exp(−k ′

4(y + A)2) if y ≤ −A,

k ′
3 if y ∈ [−A, A],

k ′
3 exp(−k ′

4(y − A)2) if y > A,

(11)

respectively. It is easy to see that the output PDF fy(y; Fx) is
bounded as

γ ′(y) ≤ fy(y; Fx) ≤ �′(y), (12)

and

q ′(y − x) ≤ fn(y − x, x). (13)

III. DEFINITIONS AND PRELIMINARIES

In this section, we provide some definitions and the prelim-
inaries required for the rest of the paper.

A. Preliminaries

In this subsection, we provide statements of several theo-
rems and lemmas that will be used throughout the paper.

• Helly-Bray Theorem [18]: Let Fx and
F (1)

x , F (2)
x , . . . , F (n)

x be CDFs on R. The Helly-Bray
theorem states that if F (n)

x → Fx (weak convergence),
then ∫

R

g(x) dF (n)
x (x) −−−→

n→∞

∫
R

g(x) dFx(x),

for each bounded and continuous function g(x).
• The Identity Theorem [19, p. 78]: Suppose f : � → C

is holomorphic (complex analytic) and Z f = {z ∈ � :
f (z) = 0}. Then either Z f = �, or Z f has no limit
points in �.

• Corollary to the Identity Theorem [19, p. 79]: Suppose
f and g are holomorphic in a region � and f (z) = g(z)
for all z in some nonempty open subset of � (or, more
generally for z in some sequence of distinct points with
a limit point in �). Then f (z) = g(z) throughout �.

• Ash’s Lemma [20]: Let f (x) and g(x) be arbitrary PDFs,
if

−
∫

f (x) log g(x) dx < ∞,

then

−
∫

f (x) log f (x) dx ≤ −
∫

f (x) log g(x) dx < ∞.

(14)

• Bounding the Logarithm of a Bounded PDF: Let
f : R → R be a positive-valued and bounded function,
i.e., 0 ≤ f (x) ≤ c < ∞ for any x ∈ R and some positive
constant c. We have

| log( f (x))|+log( f (x)) =
{

0 log( f (x))≤0,

2 log( f (x)) log( f (x))>0,

and

log( f (x)) ≤ log c, ∀x ∈ R.

Thus,

| log( f (x))| ≤ − log( f (x)) + 2| log c|. (15)

We note that this bounding approach was used in [6] as
well.

B. Fading Channels

The average mutual information between the input and
the output conditioned on the channel gain u is defined
as [21], [22]

IFx(x; y|u) �
∫ U

0
IFx(x; y|u = u) dFu(u), (16)

where

IFx(x; y|u = u)

�
∞∫

−∞

A∫

−A

fz(y − ux) log

(
fz(y − ux)

fy|u(y|u; Fx)

)
dFx(x) dy.

(17)

We define the conditional entropy HFx(y|u) as

HFx(y|u) �
∫ U

0
HFx(y|u = u) dFu(u), (18)

where

HFx(y|u = u) � −
∫ ∞

−∞
fy|u(y|u; Fx) log fy|u(y|u; Fx) dy.

(19)

For noise with finite variance and bounded PDF, the condi-
tional mutual information can be written as,

IFx(x; y|u) = HFx(y|u) − Dz, (20)

where Dz is the noise entropy which is defined as

Dz � −
∫ ∞

−∞
fz(z) log fz(z) dz. (21)

For a Gaussian noise density with zero mean and variance σ 2
z ,

as considered in this section,

Dz = 1

2
log
(

2πeσ 2
z

)
.
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The channel capacity is defined as2

C1 � sup
Fx∈Fx

IFx(x; y|u). (22)

We define the conditional mutual information density and
the conditional entropy density conditioned on a specific value
of u as

iFx(x |u = u) �
∫ ∞

−∞
fz(y − ux) log

fz(y − ux)

fy|u(y|u; Fx)
dy,

hFx(x |u = u) � −
∫ ∞

−∞
fz(y − ux) log fy|u(y|u; Fx) dy,

respectively. Clearly, the following equality holds

iFx(x |u = u) = hFx(x |u = u) − Dz.

Define the conditional mutual information density and the
conditional entropy density as

iFx(x |u) �
∫ U

0
iFx(x |u = u) dFu(u), (23)

hFx(x |u) �
∫ U

0
hFx(x |u = u) dFu(u), (24)

respectively. We can write

iFx(x |u) = hFx(x |u) − Dz,

IFx(x; y|u) =
∫ A

−A
iFx(x |u) dFx(x),

HFx(y|u) =
∫ A

−A
hFx(x |u) dFx(x).

We note that the change of the integration orders above is
justified by using Fubini’s theorem, which applies since the
mutual information density iFx(x |u) and the entropy density
hFx(x |u) are finite as proved next.

Lemma 1: The conditional entropy density hFx(x |u),
the conditional entropy HFx(y|u), the conditional mutual
information density iFx(x |u), and the conditional mutual infor-
mation IFx(x; y|u) are finite.

Proof: To show the finiteness of iFx(x |u), it is sufficient
to show the finiteness of hFx(x |u) as the difference between
them is constant. That is,

|hFx(x |u)|
=
∣∣∣∣
∫ U

0
hFx(x |u = u) dFu(u)

∣∣∣∣ ,

≤
∫ U

0

∫ ∞

−∞
∣∣ fz(y − ux) log( fy|u(y|u; Fx))

∣∣ dy dFu(u),

≤
∫ U

0

∫ ∞

−∞
fz(y − ux)[− log( fy|u(y|u; Fx))

+2| log(k3)|] dy dFu(u),

≤
U∫

0

∞∫

−∞
�(y, u)[− log(γ (y, u)) + 2| log(k3)|] dy dFu(u),

2We reserve C1 to denote the capacity of fading channels with amplitude-
limited inputs while C2 is used to denote the capacity of signal-dependent
Gaussian channels.

which is integrable. Hence, we can conclude the finiteness
of hFx(x |u) and iFx(x |u), i.e., |hFx(x |u)| ≤ L < ∞.
On the other hand, for the conditional entropy HFx(y|u),
we have

|HFx(y|u)| =
∣∣∣∣
∫ A

−A
hFx(x |u) dFx(x)

∣∣∣∣ ,

≤
∫ A

−A

∣∣hFx(x |u)
∣∣ dFx(x),

= L < ∞. (25)

Thus, we can conclude that HFx(y|u) and IFx(x; y|u) are
both finite as well. �

C. Signal-Dependent Additive Noise Channels

The conditional entropy HFx(y|x) (for a given input distri-
bution Fx) is given by

HFx(y|x) =
∫ A

−A
H (y|x = x) dFx(x),

=
∫ A

−A

1

2
log (2πe (σ 2

0 + σ 2
1 (x)) dFx(x),

=
∫ A

−A

1

2
log(2πeσ 2

0 ) dFx(x)

+1

2

∫ A

−A
log

(
1 + σ 2

1 (x)

σ 2
0

)
dFx(x),

= 1

2
log(2πeσ 2

0 ) + 1

2
EFx

[
log(σ 2(x))

]
, (26)

where σ 2(x) = 1 + σ 2
1 (x)

σ 2
0

. We note that the function σ 2(x)

is bounded (by assumption), and it is greater than or equal
to one, hence the expectation EFx

[
log(σ 2(x))

]
exists. Thus,

the average mutual information between the random variables
x and y becomes

IFx(x; y) = HFx(y) − D0 − 1

2
EFx

[
log(σ 2(x))

]
, (27)

where D0 = 1
2 log(2πeσ 2

0 ).
We define the mutual information density iFx(x) and the

entropy density hFx(x) as

iFx(x) �
∫ ∞

−∞
fn(y − x, x) log

fn(y − x, x)

fy(y; Fx)
dy, (28)

hFx(x) � −
∫ ∞

−∞
fn(y − x, x) log fy(y; Fx) dy. (29)

Clearly, we can write

iFx(x) = hFx(x) − 1

2
log(σ 2(x)) − D0. (30)

The channel capacity is defined as the supremum of the
mutual information over the space of the CDFs in Fx given
by

C2 � sup
Fx in Fx

IFx(x; y). (31)
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IV. CAPACITY OF FADING CHANNELS WITH

AMPLITUDE-LIMITED INPUTS

In this section, we show that the mutual information is a
strictly concave, weakly differentiable and continuous function
of the input distribution, and by utilizing the Identity Theorem,
we prove that the capacity of fading channels with amplitude-
limited inputs is achieved by a unique input distribution and
this distribution is discrete. We note that the results in the
subsections IV-A and IV-B have also been derived in [23],
however, we keep a brief description of these results with a
highlight of their proofs as our proof approach is different (and
to make the paper self-contained).

A. The Mutual Information Is a Continuous Function of the
Input Distribution

In order to show the continuity of the term HFx(y|u) in (20),
we first show that for any sequence of input distributions,
H

F (n)
x

(y|u = u) is bounded by an integrable function. That is,

let us fix a sequence {F (n)
x (x)}n≥1 in Fx such that F (n)

x (x) →
Fx(x) (convergence in the Levy metric [18]) for some
Fx ∈ Fx. Thus,

lim
n→∞ fy|u(y|u; F (n)

x ) = lim
n→∞

∫ A

−A
fz(y − ux) dF (n)

x (x),

(a)=
∫ A

−A
fz(y − ux) dFx(x),

= fy|u(y|u; Fx),

where (a) follows from the Helly-Bray Theorem [18]. That is,

lim
n→∞ − fy|u

(
y|u; F (n)

x

)
log
(

fy|u(y|u; F (n)
x )
)

= − fy|u(y|u; Fx) log
(

fy|u(y|u; Fx)
)

From (7) and (15), we have∣∣∣− fy|u(y|u; F (n)
x ) log

(
fy|u(y|u; F (n)

x )
)∣∣∣

≤ �(y, u)
[− log(γ (y, u)) + 2| log(k3)|

]
< ∞,

hence, by following similar steps as in [7], with the use of
the Dominated Convergence Theorem, we can argue that the
conditional entropy and the conditional mutual information are
continuous.

B. The Mutual Information Is a Strictly Concave and Weakly
Differentiable Function of the Input Distribution

From (20), it is enough to show that the conditional entropy
HFx(y|u) is a strictly concave function of the input distribution
to conclude the strict concavity of the mutual information. This
in turn can be verified using HFx(y|u = u) from (18).

We define a new random variable y′ = y
u for a fixed u > 0.

Thus, an equivalent channel model for a given channel gain
becomes

y′ = x + z
u

. (32)

We assume that Fu(0) 
= 1, i.e., the measure of the set of
the nonzero values of the channel coefficients is not zero.
Thus, the equivalent model in (32) is the same as the scalar

Gaussian channel model studied by Smith [2], which leads
to the strict concavity of the conditional entropy for any
u ∈ [ε0, U ], i.e., HFx(y|u = u) is a strictly concave function.
Using this result, we can conclude the strict concavity of
the conditional output entropy since the integration of strictly
concave functions is strictly concave [24, p. 79].

Lemma 2: The mutual information IFx(x; y|u) is a weakly
differentiable function at every point in Fx, and its weak
derivative denoted by I ′

F1,F2
(x; y|u) is given by

I ′
F1,F2

(x; y|u) =
∫ A

−A
iF1(x |u) dF2(x) − IF1(x; y|u). (33)

The proof of the lemma follows from similar line of arguments
as in [7], and it is omitted.

Theorem 1: The capacity of a fading channel with an
amplitude-limited input and a fading coefficient with finite
support is achieved by a unique CDF F∗ in Fx, and∫ A

−A
iF∗(x |u) dFx(x) − IF∗(x; y|u) ≤ 0, ∀F∗ ∈ Fx. (34)

Proof: The space Fx is convex and compact in the
Levy metric topology (topology of weak convergence) [17].
We showed that the function I :Fx → R is strictly concave,
continuous and weakly differentiable in Fx. Thus, there is a
unique optimal input distribution that maximizes the capacity.
The weak derivative of the mutual information (as shown in
Lemma 2) is

I ′
F1,F2

(x; y|u) =
∫ A

−A
iF1(x |u) dF2(x) − IF1(x; y|u). (35)

As a result, F∗ is the optimal input distribution if and only if∫ A

−A
iF∗(x |u) dFx(x) − IF∗(x; y|u) ≤ 0, ∀F∗ ∈ Fx. (36)

which concludes the proof. �
Corollary 1: The following conditions are necessary and

sufficient for an optimal input CDF

iF∗(x |u) ≤ IF∗(x; y|u), ∀x ∈ [−A, A], (37)

iF∗(x |u) = IF∗(x; y|u), ∀x ∈ E∗, (38)

where E∗ is the set of points of increase of the CDF F∗.
Proof: The proof follows from similar lines of reasoning

as in [2]. Assume that F∗ is optimal but the first inequality
is not valid. Then, there exists an x1 ∈ [−A, A] such that
iF∗(x1|u) > IF∗(x; y|u). Let Fx1(x) � U(x − x1), where U(·)
is the unit step function. Then,∫ A

−A
iF∗(x |u) dFx1(x) = iF∗(x1|u) > IF∗(x; y|u).

This contradicts the result of Theorem 1. Thus, the first
assertion is valid, i.e.,

iF∗(x |u) ≤ IF∗(x; y|u), ∀x ∈ [−A, A]. (39)

Define E ′ as a subset of E∗ with positive measure, i.e.,∫
E ′

dF∗(x) = δ > 0, (40)
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for which

iF∗(x |u) < IF∗(x; y|u), ∀x ∈ E ′. (41)

Since ∫
E∗−E ′

dF∗(x) = 1 − δ, (42)

and

iF∗(x |u) = IF∗(x; y|u) on E∗ − E ′,

we have

IF∗(x; y|u)

=
∫

E∗
iF∗(x |u) dF∗(x)

=
∫

E ′
iF∗(x |u) dF∗(x) +

∫
E∗−E ′

iF∗(x |u) dF∗(x)

(a)
< δ IF∗(x; y|u) + (1 − δ)IF∗(x; y|u)

= IF∗(x; y|u)

where (a) follows from (40), (41), and (42). Thus,
we have a contradiction and the second statement also
holds. �

C. Discreteness of the Optimal Distribution

In this subsection, we prove that the optimal distribution
that maximizes the mutual information in (22) is discrete
with a finite number of mass points. In a nutshell, we show
that the extension of the conditional entropy density to the
complex plane is well-defined and this extension is analytic.
Then, we assume that the set of points of increase of the
input CDF E∗ contains an infinite number of elements.
Finally, we demonstrate via Bolzano-Weierstrass and Identity
Theorems that this assumption leads to a contradiction, hence
proving that the optimal input distribution has a finite number
of mass points.

The conditional entropy density corresponding to the opti-
mal input distribution F∗ is given by

hF∗(x |u) =
∫ U

0
hF∗(x |u = u) dFu(u). (43)

We first extend hF∗(x |u = u) to the complex plane. For any
z = η + jζ ∈ C and u ∈ [0, U ],
|hFx(z|u = u)|

≤
∞∫

−∞
| fz(y − uz)|| log fy|u(y|u; Fx)| dy,

=
∞∫

−∞

1√
2πσ 2

z

∣∣∣∣exp

(−(y − uz)2

2σ 2
z

)∣∣∣∣
| log fy|u(y|u; Fx)| dy,

≤
∞∫

−∞

1√
2πσ 2

z

∣∣∣∣exp

(−(y − uη − juζ )2

2σ 2
z

)∣∣∣∣
[− log(γ (y, u)) + 2| log(k3)|] dy,

≤ 1√
2πσ 2

z

exp

(
u2ζ 2

2σ 2
z

)∫ ∞

−∞
exp

(−(y − uη)2

2σ 2
z

)

[
− log(k1) + k2(|y| + u A)2 + 2| log(k3)|

]
dy,

= exp

(
u2ζ 2

2σ 2
z

)∫ ∞

−∞
fz(y − uη)

[
− log(k1) + k2(|y| + u A)2 + 2| log(k3)|

]
dy,

< ∞.

Hence |h(z|u = u)| is finite for any |z| < ∞. Thus, the exten-
sion of hFx(z|u = u) is well defined.

Since there exists a finite B > 0 such that ∀u ∈ [0, U ],
we have |hFx(z|u = u)| ≤ B , i.e.,

|hF∗(z|u)| =
∣∣∣∣
∫ U

0
hFx(z|u = u) dFu(u)

∣∣∣∣,

≤
∫ U

0

∣∣hFx(z|u = u)
∣∣ dFu(u),

≤ B
∫ U

0
dFu(u) = B < ∞,

namely, hF∗(z|u) has an extension to the complex plane as
well.

Since the Gaussian PDF extended to the complex plane is
an analytic function, using the Cauchy Integral Theorem [25],
we have ∮

ω
fz(z) dz = 0, (44)

where ω is any simple closed contour. To show the analyticity
of the conditional entropy density, we use Morera’s Theorem,
i.e., by showing that the integration of the conditional entropy
over any simple closed contour is zero, we conclude that the
function is analytic. That is,∮

ω
hFx(z|u) dz

= −
∮

ω

U∫

0

∞∫

−∞
fz(y − uz) log( fy|u(y|u; Fx)) dy dFu(u) dz,

(a)= −
U∫

0

∞∫

−∞
log( fy|u(y|u; Fx))

∮
ω

fz(y − uz) dz dy dFu(u),

= 0,

where the order of integrals in (a) is changed by invok-
ing the Fubini’s Theorem that requires the finiteness of∮
ω |hFx(z|u)| dz. This can be justified as follows. Define Mω

as

Mω = max
z∈ω

∣∣hFx(z|u)
∣∣. (45)

Mω exists since the conditional entropy
∣∣hFx(z|u)

∣∣ is bounded,
continuous (the continuity is shown in Appendix B) in z, and
the contour ω is closed. Hence,∣∣∣∣

∮
ω

hFx(z|u) dz

∣∣∣∣ ≤
∮

ω

∣∣hFx(z|u)
∣∣ dz,

≤ Mωlω < ∞,



1170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

where lω is the length of ω, which is finite as ω is a closed
contour.

It is now easy to argue that the extension of the conditional
mutual information density iF∗(z|u) to the complex plane is
well defined (since its difference with the entropy density is a
constant), and it is analytic.

We prove the discreteness of the capacity-achieving distrib-
ution by a contradiction. We first assume that the set of points
of increase E∗ has an infinite cardinality. From the optimality
condition in (38) we have3

∫ U

ε0

(iF∗(x |u = u)− IF∗(x; y|u = u)) dFu(u) = 0, ∀x ∈ E∗.

The set E∗ is bounded, and hence it has a limit point
(Bolzano-Weierstrass Theorem). The conditional mutual infor-
mation density iF∗(z|u) is analytic on the entire complex
plane. That is, we can invoke the Identity Theorem to argue
that the optimality condition implies∫ U

ε0

(iF∗(x |u = u) − IF∗(x; y|u = u)) dFu(u) = 0, ∀x ∈ R,

and hence∫ U

ε0

(
−
∫ ∞

−∞
fz(y − ux) log fy|u(y|u) dy − Dz

− IF∗(x; y|u = u)

)
dFu(u) = 0, ∀x ∈ R. (46)

We now extend the approach in [3] and [6] to the case of
fading channels. For a fixed ε0 < u ≤ U , let us define L(u) �
IF∗(x; y|u = u) + 1

2 log(2πσ 2
z ), ρ(y, u) � log

(
fy|u(y|u)

) +
L(u), and x ′ � ux . Also define the sets

�+
u = {y : ρ(y, u) ≥ 0}, and �−

u = {y : ρ(y, u) < 0}.
We can then write,∫ U

ε0

[∫
�+

u

fz(y − ux)ρ(y, u) dy (47)

+
∫

�−
u

fz(y − ux)ρ(y, u) dy

]
dFu(u) = 0. (48)

For any y ∈ �+
u , we have ρ(y, u) ≤ log (�(y, u)) + L(u) ≤

log(k3) + L(u). Defining

l � max
u∈[ε0,U ] u A +

√
log(k3) + L(u)

k4 log(e)
< ∞, (49)

for any y ∈ �+
u , we have y ∈ [−l, l]. The last step in (49)

follows since L(u) < ∞ for any u ∈ [ε0, U ] (Lemma 1).
In other words, �+

u ⊆ [−l, l]. Therefore, for any u ∈ [ε0, U ]∫
�+

u

fz(y − ux)ρ(y, u) dy

≤
∫

�+
u

fz(y − ux)

(
log(k3) + max

u′∈[ε0,U ]
L(u′)

)
dy, (50)

≤
(

log(k3) + max
u′∈[ε0,U ]

L(u′)
)∫ l

−l
�(y − x ′, u) dy, (51)

3So far, we have written the integrals over the channel fading coefficient
from 0 to U , however, at this point we write the integration explicitly over the
interval where the coefficient belongs to. The exclusion of some neighborhood
of 0 is needed in the technical arguments about the discreteness of the optimal
input distribution.

which can be made arbitrarily small by choosing large values
for x ′.

On the other hand, for any given u > ε0 and x ′ > l + A,∫
�−

u

fz(y − ux)ρ(y, u) dy

(a)≤
∫ ∞

l
fz(y − x ′)ρ(y, u) dy,

≤
∫ x ′+A

x ′−A
q(y − x ′)

[
log(�(y, u)) + L(u)

]
dy

+
∫ ∞

x ′+A
q(y − x ′)

[
log(�(y, u)) + L(u)

]
dy, (52)

(b)
<

∫ x ′+A

x ′−A
q(A)

[
log(�(x ′ − A, u)) + L(u)

]
dy,

< 2Aq(A)
[

log(�(x ′ − A, u)) + L(u)
]

(c)
< 0, (53)

where (a) follows since [l,∞) ⊂ �−
u and the definition

of l guarantees that both ρ(y, u) and log(�(y, u)) + L(u)
are negative on [l,∞). The inequality (b) follows since
q(y − x ′) ≤ fz(y − x ′) and it is nonzero on its support by
the definition in (7). That is, the second integral in (52) is
strictly negative. Also notice that q(A) ≤ q(y − x ′) over the
region of integration for the first term in (52). Finally, (c)
follows since q(A) > 0, and the function log(�(y, u))+ L(u)
is negative and monotonically decreasing in y for y > l,
i.e., log(�(y, u)) + L(u) ≤ log(�(x ′ − A, u)) + L(u).

Therefore, from (51) and (53), one can argue that
∀u ∈ [ε0, U ], there exists an x ∈ R (same value of x for any
u ∈ [ε0, U ]) such that the integration in (46) is strictly less
than zero, which is a contradiction, hence we conclude that
the set E∗ does not have an infinite number of mass points
concluding the proof.

Remark: The channel capacity in (22) can be computed by
finding the optimal input distribution and then evaluating the
mutual information corresponding to this distribution. As we
have shown, the capacity optimization problem is convex since
the space of input distribution functions is convex and the
mutual information is strictly concave. We also have shown
that the capacity is achieved by a discrete distribution with a
finite number of mass points. Thus, the problem of finding the
optimal input distribution boils down to a finite-dimensional
optimization problem that aims to find the location of mass
points and the associated probabilities corresponding to this
distribution. To do this, an efficient numerical optimization
algorithm can be developed which iterates over the number
of mass points and its associated probabilities until the opti-
mality conditions are satisfied and hence the optimal input
distribution is found.

V. CAPACITY OF SIGNAL-DEPENDENT NOISE CHANNELS

WITH AMPLITUDE-LIMITED INPUTS

In this section, we present our results on the capacity of
signal-dependent Gaussian channels with amplitude-limited
inputs. We basically show that there is an optimal distribution
that maximizes the mutual information, and this distribution
is discrete under certain technical conditions. To accomplish
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this, we first show that the mutual information is a concave,
continuous and weakly differentiable function of the input
distribution, i.e., the capacity optimization problem is a convex
optimization problem for which we can derive conditions on
the optimality of the input distribution. We investigate the
properties of the optimal distribution using techniques from
analysis and show that under some technical conditions on the
function that relates the noise variance to the input signal the
capacity-achieving distribution is discrete with a finite number
of mass points.

We note that even though the noise is assumed to be
Gaussian (with parameters depending on the input) throughout
this section, the techniques developed here can potentially be
generalized to other types of noise similar to the generalization
in [3] (extending the work in [2]) for the case with no input
dependency. We also note that, as stated previously, the mutual
information in (27) is different from the one in the original
work of Smith [17] due the existence of the expectation term
1
2 EFx

[
log (σ 2(x))

]
and difference in the computation of the

output entropy HFx(y).

A. The Mutual Information Is a Continuous Function of the
Input Distribution

Let us fix a sequence {F (n)
x (x)}n≥1 in Fx such that

F (n)
x (x) → Fx for some Fx ∈ Fx at points of continuity of

Fx. Since the noise variance function σ 2(x) is continuous by
assumption, fn(y − x, x) is bounded and continuous in x, y,
we have

lim
n→∞ fy(y; F (n)

x ) = lim
n→∞

∫ A

−A
fn(y − x, x) dF (n)

x (x),

(a)=
∫ A

−A
fn(y − x, x) dFx(x),

= fy(y; Fx),

where (a) follows by the Helly-Bray Theorem [18]. Then,
we can write

lim
n→∞ fy(y; F (n)

x ) log
(

fy(y; F (n)
x )
)

= fy(y; Fx) log
(

fy(y; Fx)
)
.

Thus, from (11), and by applying the Dominated Convergence
Theorem, we conclude that HFx(y) is a continuous function of
the input distribution. The continuity of EFx

[
log (σ 2(x))

]
in

the input distribution function Fx(x) follows from the Helly-
Bray Theorem as well since σ 2(x) is bounded.

B. Concavity of the Mutual Information

For the mutual information term in (27), since
1 ≤ σ 2(x) < ∞, we have 0 ≤ log(σ 2(x)) ≤ M0 < ∞.
Thus,

EFx

[
log (σ 2(x))

]
=
∫ A

−A
log(σ 2(x)) dFx(x),

≤ M0

∫ A

−A
dFx(x),

= M0 < ∞.

The concavity of the output entropy HFx(y) can be shown
using a similar line of arguments as in [2] by considering an
input distribution of the form Fθ = θ F1+(1−θ)F2, where θ is
a scalar in [0, 1], and F1, F2 are two arbitrary CDFs satisfying
the input constraints, and by invoking Ash’s Lemma given
in (14). We omit the details as they are also available in [13].

C. The Mutual Information Function IFx(x; y)
Is Weakly Differentiable

For arbitrary distribution functions F1, F2, and θ ∈ [0, 1],
defining Fθ = (1 − θ)F1 + θ F2, we have

I (Fθ ) = H (Fθ ) − D0 − 1

2
EFθ

[
log(σ 2(x)

]
.

Defining J (θ, F1, F2) = I (Fθ )−I (F1)
θ , we can write

J (θ, F1, F2)

= H (Fθ ) − H (F1)

θ

− 1

2

EFθ

[
log(σ 2(x))

]− EF1

[
log(σ 2(x))

]
θ

,

= H (Fθ ) − H (F1)

θ

− 1

2

(
EF2

[
(log(σ 2(x))

]
− EF1

[
log(σ 2(x))

])
.

We then have

I ′
F1

(F2) = lim
θ→0

J (θ, F1, F2),

= lim
θ→0

[
H (Fθ ) − H (F1)

θ

]

− 1

2

(
EF2

[
log(σ 2(x))

]
− EF1

[
log(σ 2(x))

])
.

Following similar arguments as in Smith [2], we can show the
weak differentiability of the mutual information.

Theorem 2: The capacity of an additive signal-dependent
Gaussian noise channel is achieved by a random variable x∗
with CDF F∗ ∈ Fx, i.e., C2 = IF∗(x; y) for some F∗ ∈ Fx.
A necessary and sufficient condition for F∗ to achieve the
channel capacity is

∫ A

−A
iF∗(x) dFx(x) − IF∗(x; y) ≤ 0. (54)

Proof: The space Fx is convex and compact in the Levy
metric topology [17]. We showed that the function I : Fx → R

is concave, continuous and weakly differentiable in Fx. The
weak derivative of the mutual information is

I ′
F1

(F2) =
∫ A

−A
i(x; F1) dF2 − I (F1),

Hence, a distribution F∗ ∈ Fx is optimal if and only if
∫ A

−A
i(x; F1) dF2 − I (F1) ≤ 0. �



1172 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

As a result of this theorem and similar to what is done in [2]
and Section IV, we can show that the following conditions are
necessary and sufficient for F∗ to be optimal:

iF∗(x) − IF∗(x; y) ≤ 0, ∀x ∈ [−A, A], (55)

iF∗(x) − IF∗(x; y) = 0, ∀x ∈ E∗, (56)

where E∗ is the set of points of increase of F∗.

D. The Capacity-Achieving Distribution Is Discrete

In this subsection, we show that the capacity-achieving
distribution of the signal-dependent Gaussian noise channels
is discrete under certain assumptions on the noise variance
function. This is shown by assuming that the set of points
of increase of the capacity-achieving input distribution has
an infinite number of mass points, and then by proving
via a series of arguments that this assumption leads to a
contradiction. Before going into detail, we state the specific
technical conditions as follows:

• The noise variance σ 2(x) and its logarithm log(σ 2(x))
can be extended to an open connected set in the complex
plane containing the real line R (possibly excluding a
finite number of branch points denoted by the set S.
We assume that the set of branch points is a finite set
of points which guarantees that the extension of the
log(σ 2(x)) will be defined over a connected set in the
complex plane and the Identity Theorem applies).

• The extension of the noise variance denoted by σ 2(z) is
analytic on an open connected set D ∈ C including the
real line. From this assumption, it is easy to show that
the function log(σ 2(z)) is analytic as well.4

The aforementioned technical conditions on the noise vari-
ance are imposed to apply the Identity Theorem to prove the
discreteness of the optimal input distribution. We note that
there are examples for which these technical conditions are
not satisfied, nevertheless for many important cases used in
the existing literature (e.g., those used in magnetic recording
and optical communications channels), they are satisfied as
will be illustrated later in Section VI. We also note that these
technical conditions are different from those in [13]. In the
numerical results section, we will provide an example of a
magnetic recording channel for which the adopted noise model
is included in our set-up while it does not fall within the
framework of [13].

First, we extend the function iFx(x) to the complex plane
as detailed in Appendix A where we show that the extension
of the mutual information density to the complex plane is
well defined. The discreteness of the optimal distribution can
be established through the following contradiction arguments.
Assuming that the set E∗ has an infinite number of points,
since it is a bounded set, any infinite sequence in E∗ has
a limit point (Bolzano-Weierstrass Theorem). We show in
Appendix B that the function iF∗(z) is analytic on some open
connected set D in the complex plane C that includes the real
line R except the set of branch points S. Using the Identity

4The extension of the noise variance function log(σ2(x)) is defined over
an open connected set on the complex plane except branch cuts that can be
defined such that they do not include the entire real line.

Theorem, we conclude that iF∗(z) = IF∗(x; y) for all D \ S.
We can then write

hF∗(z) = IF∗(x; y) + 1

2
log(σ 2(z)) + D0 = 0, ∀z ∈ D \ S,

which implies that hF∗(x) = IF∗(x; y) + 1
2 log(σ 2(x)) + D0

on the entire real line except the set S. We note that the
branch points of the function log(σ 2(z)) are only located in
the interval between [−A, A] because outside this region the
extension of the noise variance is arbitrary and can be defined
in such a way that it does not have any branch points (constant
for example).

Clearly, σ 2(x) ≥ 1, and hence log(σ 2(x)) ≥ 0. Let us define
L � IF∗(x; y)+D0+ 1

2 log(σ̂ 2) and ρ(y) � log ( fy(y; F∗))+
L, where σ̂ 2 is a constant.5 For sufficiently large values of x ,
we have

hF∗(x) − IF∗(x; y) − 1

2
log(σ̂ 2) − D0 = 0,

namely,∫ ∞

−∞
fn(y − x, x)

[
log( fy(y; F∗)) + IF∗(x; y)

+ 1

2
log(σ̂ 2) + D0

]
dy = 0. (57)

We define

f ∗
n (y − x) � 1√

2π

(
σ 2

0 + min
|x ′|≤A

σ 2
1 (x ′)

)

× exp

⎛
⎜⎜⎝− (y − x)2

2

(
σ 2

0 + max
|x ′|≤A

σ 2
1 (x ′)

)
⎞
⎟⎟⎠, (58)

and

�+ � {y : ρ(y) ≥ 0}, and �− � {y : ρ(y) < 0}.
Then,∫

�+
fn(y − x, x)ρ(y) dy +

∫
�−

fn(y − x, x)ρ(y) dy = 0.

(59)

By (11), we get ρ(y) ≤ log(�′(y)) + L ≤ log(k ′
3) + L,

for any y ∈ R, and x > A. Hence, k ′
3 > 2−L . Choose a

constant l such that l > A +
√

log(k′
3)+L

k′
4 log(e)

. Using (11), one has

�+ ⊆ [−l, l]. Therefore,

∫
�+

fn(y − x, x)ρ(y) dy

≤
∫

�+
f ∗
n (y − x)

(
log(k ′

3) + L
)

dy,

≤ (
log(k ′

3) + L
) ∫ l

−l
f ∗
n (y − x) dy, (60)

5We choose the constant σ 2(x) = σ̂ 2 to be an arbitrary extension of the
noise variance function for sufficiently large values of x . This can be done in
such a way that differentiability and boundedness of σ2(x) are still guaranteed.
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which can be made arbitrarily small by choosing large values
for x .

On the other hand, for x > A + l, we have∫
�−

fn(y − x, x)ρ(y) dy

(a)≤
∫ ∞

l
fn(y − x, x)ρ(y) dy,

≤
∫ ∞

l
fn(y − x, x)

[
log(�′(y)) + L

]
dy,

≤
∫ x+A

x−A
q ′(y − x)

[
log(�′(x − A)) + L

]
dy

+
∫ ∞

x+A
q ′(y − x)

[
log(�′(x − A)) + L

]
dy (61)

(b)
< 2Aq ′(A)

[
log(�′(x − A)) + L

] (c)
< 0 (62)

where (a) follows since [l,∞) ⊂ �−, and (b) follows since
the function q ′(y − x) ≤ fn(y − x, x) and it is nonzero on
its support by definition in (10). Namely, the second integral
in (61) is strictly negative, i.e.,∫ ∞

x+A
q ′(y − x)

[
log(�′(x − A)) + L

]
dy < 0. (63)

Also note that q ′(A) ≤ q ′(y −x) over the region of integration
for the first term in (61). Finally, (c) follows since q ′(A) > 0
and the function log(�′(x − A))+ L is negative and monoton-
ically decreasing in y for y > l. Therefore, we establish
that (57) does not hold for very large (but finite) values of
x and hence there is a contradiction, i.e., the set E∗ cannot
have an infinite number of points, completing the proof.

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples to illus-
trate our findings. For the case of fading channels, we exem-
plify our results by finding the optimal input distribution for
a truncated Rayleigh channel, and we compare the capacity
of peak and average power constrained cases. In the case of
signal-dependent Gaussian noise channels, we compare our
results with the results in [16] and [26].

A. Fading Channels With Amplitude-Limited Inputs

We consider a fading channel for which the channel coeffi-
cient u follows a truncated Rayleigh distribution, i.e., the PDF
of the channel coefficient is given by

fu(u) = 4u

1 − exp(−32)
exp(−2u2), u ∈ [0, 4]. (64)

We take a noise variance of 1.5, and an amplitude constraint
of A = 3. We compute the capacity-achieving distribution
by following an iterative algorithm similar to the one in [2]
that starts by assuming that the input distribution has only
two points, and increases the number of mass points until the
optimality conditions are satisfied. Fig. 1 shows the resulting
optimal input distribution for our example.

We also compare the capacity of the truncated Rayleigh
fading channel, with the same fading distribution, for two
different input constraints: peak-power constrained inputs and

Fig. 1. Probability mass function (PMF) of the optimal input for the fading
channel example for A = 3.

Fig. 2. The capacity of the Rayleigh fading channel versus the amplitude
constraint A.

average power constrained inputs. Both capacities are plotted
in Fig. 2, which shows that constraining the peak power
reduces the channel capacity compared to the same constraint
on the average power, as expected.

B. Additive Channels With Signal-Dependent Noise

We now present two specific examples of the capacity of
some Gaussian channels with signal-dependent noise under
peak power constrained inputs. The first model we consider is
the optical communication channel based on intensity modu-
lation, which has been studied in detail in [16]. The received
signal y is given by,

y = x + √
xz1 + z0, (65)

where x ≥ 0 denotes the channel input z0 ∼ N (0, σ 2) is a
zero-mean, variance σ 2 Gaussian random variable describing
the input-independent noise and z1 ∼ N (0, ςσ 2) is a zero-
mean, variance ςσ 2 Gaussian random variable describing the
input-dependent noise. Here z0 and z1 are assumed to be inde-
pendent. The parameter σ 2 > 0 describes the strength of the
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Fig. 3. The branch cut of the function log(1 + ς z).

Fig. 4. Asymptotic capacity of intensity modulated optical channel for low
SNRs and the exact capacity.

input-independent noise, while ς > 0 is the ratio of the input-
dependent noise variance to the input-independent noise. Thus,
σ 2(x) = 1 + ςx . Moser [16] derives an approximation for
the channel capacity for small signal-to-noise ratios (SNRs),
a universal lower bound for any amplitude constraints, and an
upper bound on the capacity that is valid only at high SNRs.

The function log(σ 2(z)) = log(1 + ςz) has a branch
point at z = − 1

ς , hence we can define a branch cut as the

line connecting the two points {(− 1
ς , 0), (− 1

ς , ∞̃)}, where ∞̃
represents the complex infinity. Then, the extension of the
function σ 2(x) is well defined on the entire complex plane
except the line connecting the two points {(− 1

ς , 0), (− 1
ς , ∞̃)},

as shown in Fig. 3. Fig. 4 shows the capacity of this channel
at low SNRs along with the approximate formula, and Fig. 5
shows the capacity along with the lower and upper bounds
in [16].

As a further illustration, we present another example in
which the signal-dependent noise term appears as the dominant
noise component, i.e., in magnetic recording systems where
the media noise is strongly signal-dependent and is modeled
as Gaussian noise with variance σ 2(x) = 1 +√

1 − x2, where
the input signal |x | < 1 [26]. The extension of the function

Fig. 5. The capacity of intensity modulated optical communication channel
along with upper and lower bounds.

Fig. 6. The capacity of the magnetic recording system modeled as in [26].

log(σ 2(x)) to the complex plane log(1 + √
1 − z2) has two

branch points, (1, 0), (−1, 0), the branch cuts can be chosen
such that they do not include other parts of the real line. Fig. 6
shows the capacity of this magnetic recording system along
with a lower bound. We note that this channel model does
not fall within the framework of [13] as the required technical
condition (that is, the noise variance converging to zero for
some limit point in the set of admissible channel inputs where
the extension of the noise variance function behaves well) is
not satisfied, however, our results apply indicating that the
optimal input distribution is discrete. The lower bound is
computed based on an evaluation of the mutual information
with a suboptimal input distribution (namely truncate Gaussian
distributions) in [26]. We observe that the actual channel
capacity is significantly higher than the mutual information
evaluated previously.

VII. CONCLUSIONS

We study the capacity of two classes of channels with
amplitude limited inputs, namely, fading channels with the
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channel state information available only at the receiver, and
signal dependent Gaussian noise channels. The former model
is useful for many wireless communications settings while
the latter is suitable for other applications including optical
communication and magnetic recording channels. For the
first model, we prove that if the fading coefficients have a
finite support (but otherwise arbitrary), the capacity achiev-
ing distribution is discrete with a finite number of mass
points. For the latter, we prove that under certain technical
conditions on the noise variance function, the capacity is
achieved by discrete inputs with a finite number of mass
points as well. For both cases, the capacity computation
is a finite-dimensional optimization problem and hence the
optimal input distribution and the channel capacity can be
computed efficiently. The findings are illustrated via several
examples and through comparisons with existing results in the
literature.

APPENDIX A
THE MUTUAL INFORMATION DENSITY IS EXTENDABLE

TO THE COMPLEX PLANE

In this appendix, we show that the mutual information
density of the signal-dependent Gaussian noise channel can
be extended to the complex plane. First, we assume that the
function log(σ 2(x)) can be extended to the entire complex
plane C excluding the branch cuts of log(σ 2(z)). We define

σ 2(z) � σ 2
r (z) + jσ 2

i (z). (A.1)

where σ 2
r (z) and σ 2

i (z) are the real and imaginary parts of
σ 2(z), respectively. Since we assume that the extension of the
noise variance to the complex plane is well defined, we have,
∀ z ∈ C, i.e., z = a + jb, |σ 2(z)| < ∞, |σ 2

r (z)| < ∞, and
|σ 2

i (z)| < ∞.
The function hFx(x) given in (29) can be extended to the

entire complex plane C by showing that ∀ z s.t. |z| < ∞.

|hFx(z)| ≤
∫ ∞

−∞
| fn(y − z, z)| ∣∣log( fy(y; Fx))

∣∣ dy,

= 1√
2π |σ 2(z)|

∫ ∞

−∞

∣∣∣∣∣exp

(
− (y − a − jb)2

2σ 2
r (z) + j2σ 2

i (z)

)∣∣∣∣∣∣∣log( fy(y; Fx))
∣∣ dy,

= η√
2π |σ 2(z)|

∫ ∞

−∞
exp

(
− (y − ζ )2

ε

)

∣∣log( fy(y; Fx))
∣∣ dy,

≤ η√
2π |σ 2(z)|

∫ ∞

−∞
exp

(
− (y − ζ )2

ε

)

[− log(γ ′(y)) + 2| log k ′
3|
]

dy < ∞,

where η, ζ , and ε are real values that depend on a, b, σ 2
r , σ 2

i .
The last step follows since we can show the finiteness of the
integral as in [6]. Thus, hFx(x) can be extended to the complex
plane, and hence, iFx(x) can also be extended to the complex
plane.

APPENDIX B
THE MUTUAL INFORMATION DENSITY

IS AN ANALYTIC FUNCTION

In this appendix, we show that the mutual information den-
sity of signal-dependent Gaussian noise channels is analytic
under some conditions on the noise variance. We assume
that the function log(σ 2(x)) can be extended to an open
connected set in the complex plane containing the real line
excluding some branch points. We also note that, since σ 2(z)
is an analytic function (by assumption) and log(σ 2(z)) is well
defined, the function log(σ 2(z)) is analytic over some open
connected set in the complex plane excluding some branch
cuts.

First, we show that the function hFx(z) is continuous
on any open connected set Dδ . If we can show that there
is an integrable function g : R → [0,∞) such that∣∣ fn(y − zn, zn) log( fy(y; Fx))

∣∣ ≤ g(y) for any y ∈ R, and∫∞
−∞ g(y) dy < ∞ then we can invoke the Dominated Con-

vergence Theorem to conclude the continuity of fn(y−zn, zn).
Let {zn}n≥1 be a sequence of complex numbers in Dδ

converging to z ∈ Dδ. Let zn = ηn + jξn such that |ξn | ≤ δ.
For a fixed ε > 0, there exists t ∈ N for which for all n ≥ t
such that |η − ηn | < ε. Thus, the extension of the entropy
density for the sequence {zn}n≥t is

hFx(zn) = −
∫ ∞

−∞
fn(y − zn, zn) log( fy(y; Fx)) dy. (B.1)

We define the extension of the noise variance as

σ 2(zn) � σ 2
r (zn) + jσ 2

i (zn), (B.2)

where σ 2
r (zn) and σ 2

i (zn) are the real and imaginary parts of
σ 2(zn), respectively. We have,

| fn(y − zn, zn)|
=
∣∣∣∣∣

1√
2π(σ 2(zn))

exp

(
− (y − zn)

2

2σ 2(zn)

)∣∣∣∣∣,

= 1√
2π
∣∣σ 2(zn)

∣∣
∣∣∣∣exp

(
− (y − zn)2

2(σ 2(zn))

)∣∣∣∣,

≤ 1√
2π
∣∣σ 2(zn)

∣∣ exp

(
δ2

2
(
(σ 2

r (zn))2 + (σ 2
i (zn))2

)
)

× exp

(
δ2(σ 2

i (zn))
2

2
(
(σ 2

r (zn))2 + (σ 2
i (zn))2

)
σ 2

r (zn)

)

× exp

⎛
⎜⎜⎜⎝−

σ 2
r (zn)

(
y − ηn − δ

σ 2
i (zn)

σ 2
r (zn)

)2

2
(
(σ 2

r (zn))2 + (σ 2
i (zn))2

)

⎞
⎟⎟⎟⎠.

Let us define the following,

m1 � sup
λ∈C

η−ε≤Re{λ}≤η+ε
|Im{λ}|≤δ

1√
2π |σ 2(λ)| ,

m2 � sup
λ∈C

η−ε≤Re{λ}≤η+ε
|Im{λ}|≤δ

σ 2
r (λ)

2
(
(σ 2

r (λ))2 + (σ 2
i (λ))2

) ,
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m3 � sup
λ∈C

η−ε≤Re{λ}≤η+ε
|Im{λ}|≤δ

(σ 2
i (λ))2

2
(
(σ 2

r (λ))2 + (σ 2
i (λ))2

)
σ 2

r (λ)
,

m4 � sup
λ∈C

η−ε≤Re{λ}≤η+ε
|Im{λ}|≤δ

(
σ 2

i (λ)

σ 2
r (λ)

)2

,

m5 � inf
λ∈C

η−ε≤Re{λ}≤η+ε
|Im{λ}|≤δ

(
σ 2

i (λ)

σ 2
r (λ)

)2

,

and finally,

m∗ � m1 exp
(
δ2(m3 + m2)

)
. (B.3)

Thus, we can construct an upper bound on the extension of
the noise PDF by defining τ (y, ε, δ) as,

τ (y, ε, δ) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m∗ exp
(−m2(y − η + ε − δm5)

2
)

if y < η − ε + δm5,

m∗ if η − ε + δm5 ≤ y ≤ η + ε + δm4,

m∗ exp
(−m2(y − η − ε − δm4)

2
)

if y > η + ε + δm4.

(B.4)

Namely,

| fn(y − zn, zn)| ≤ τ (y, ε, δ). (B.5)

We can write

| fn(y − zn, zn)| ∣∣log( fy(y; Fx))
∣∣

≤ τ (y, ε, δ)
[−2 log(γ ′(y)) + 2| log(k ′

3)|
]
.

In the case of η > ε − δm5,

|hFx(zn)| ≤
∣∣∣∣
∫ ∞

−∞
fn(y − zn, zn) log( fy(y; Fx)) dy

∣∣∣∣,
≤
∫ ∞

−∞
τ (y, ε, δ)

[−2 log(γ ′(y)) + 2| log(k ′
3)|
]
,

< ∞.

Similarly, we can show the finiteness of |hFx(zn)| for the other
cases of η < −ε + δm4 and −ε + δm4 < η < ε − δm5.
Thus, we can invoke the Dominated Convergence Theorem to
conclude the continuity of hFx(z) for any domain Dδ .

We now show that
∣∣∮

ω hFx(z) dz
∣∣ is finite. Let us define Mω

as

Mω = max
z∈ω

∣∣hFx(z)
∣∣, (B.6)

where ω is any simple closed contour. Hence,∣∣∣∣
∮

ω
hFx(z) dz

∣∣∣∣ =
∣∣∣∣
∮

ω

∫ ∞

−∞
fn(y − z, z) log( fy(y; Fx)) dy dz

∣∣∣∣ ,
≤
∮

ω

∫ ∞

−∞
∣∣ fn(y − z, z) log( fy(y; Fx))

∣∣ dy dz,

≤
∮

ω
Mω dz,

≤ Mωlω < ∞, (B.7)

where lω is the length of ω which is finite as ω is a closed
contour.

We then argue that the extension of the entropy density
hFx(x) is analytic. We note that the extension of the noise PDF
fn(y−z, z) is analytic since σ 2(z) is analytic (by assumption).
We have,∮

ω
hFx(z) dz

= −
∮

ω

∫ ∞

−∞
fn(y − z, z) log( fy(y; Fx)) dy dz,

(a)= −
∫ ∞

−∞
log( fy(y; Fx))

∮
ω

fn(y − z, z) dy dz = 0,

where the order of integration in (a) is changed due to (B.7).
Since this is true for any simple contour ω, by invoking Mor-
era’s Theorem, we conclude that the extension of the entropy
density function hFx(z) is analytic on any open connected set
on the complex plane C.
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