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Optimal Power Allocation for Jammer Nodes in
Wireless Localization Systems

Suat Bayram , Musa Furkan Keskin , Sinan Gezici , Senior Member, IEEE, and Orhan Arikan

Abstract—In this paper, optimal power allocation strategies are
investigated for jammer nodes in a wireless localization system.
Building upon the concept of the restricted Bayesian approach, a
generalized optimization strategy, called the restricted scheme, is
proposed for power allocation of jammer nodes, and its theoretical
properties are characterized. In the restricted scheme, the aim is to
maximize the average Cramér-Rao lower bound (CRLB) of target
nodes while keeping their minimum CRLB above a predefined level
in the presence of average (total) and peak power constraints. It is
proved that the average CRLB achieved by the restricted scheme is
a strictly decreasing and concave function of the constraint on the
minimum CRLB level. A closed-form solution is obtained for the
restricted scheme when the tradeoff parameter and the total power
limit are below certain thresholds. In addition, it is shown that the
optimal solution of the restricted scheme corresponds to the use
of at most NT jammer nodes, where NT is the number of target
nodes, and that the optimal solution of the minimum CRLB maxi-
mization scheme is determined by at most NJ target nodes, where
NJ is the number of jammer nodes. Extensions of the restricted
scheme and an alternative scheme that aims to maximize the num-
ber of disabled target nodes (whose CRLBs are above a preset
level) are considered, and the corresponding optimal strategies for
jammer power allocation are identified. Numerical examples are
provided to verify the theoretical derivations for various network
configurations.

Index Terms—Localization, jammer, restricted scheme, power
allocation, Cramér-Rao lower bound.

I. INTRODUCTION

A. Background and Motivation

W IRELESS positioning has attracted a significant amount
of interest due to its crucial role in numerous appli-

cations for location-based services, such as package tracking,
home automation, intelligent transport systems, monitoring of
patients, and search-and-rescue operations [1]–[4]. Indoor wire-
less localization systems provide a promising alternative for
positioning in environments where GPS signals cannot be uti-
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lized. A common approach for position estimation in wireless
networks is to deploy a number of anchor nodes with known lo-
cations, from which target nodes estimate their locations using
parameters such as time-of-arrival (TOA) and received signal
strength (RSS) [5]. In order to quantify performance bounds of
wireless localization systems, theoretical accuracy limits have
intensely been studied in the literature; e.g., [6].

Localization accuracy of wireless networks can be reduced by
employing jammer nodes over the area of interest, which aim to
disrupt the position estimation process of target nodes [7]. Sev-
eral studies are performed on jamming of wireless localization
systems in the literature [8]–[14]. In [8], performance of GPS
jamming and anti-jamming techniques are investigated, while
the studies in [9], [10] focus on the design of anti-jamming algo-
rithms for GPS receivers. In [11], optimal locations of jammers
on the nodes of a uniform grid are determined in the absence of
any information about the network to be jammed. Optimal attack
and defense strategies from the viewpoints of the jammer and
the network are analyzed for wireless sensor networks in [12],
where the optimization objective is to maximize (minimize) the
total delay for the jammer (network). Although jamming and
anti-jamming methods and their performances have been con-
sidered in the literature, only a few studies have presented a
theoretical framework to optimize the performance of jammer
nodes with respect to different optimization metrics [13], [14].
In [13], two different optimization schemes with the aim of
maximizing the average (max-mean scheme – Scheme 1) or the
minimum (max-min scheme – Scheme 2) CRLB of target nodes
are employed in order to obtain the optimal power allocation
strategies for jammer nodes. The work in [14] investigates the
optimal location of the jammer node that maximizes the min-
imum CRLB of target nodes in a non-cooperative localization
network.

The work in [13] explores optimal strategies for jammer
power allocation by maximizing the minimum or the average
of the CRLBs of target nodes under average and peak power
constraints. Since either the minimum or the average CRLB
metric is considered in [13], the obtained power allocation strat-
egy can lead to unfavorable performance in terms of the other
metric not considered in the optimization. In particular, the
max-min scheme adopts a conservative approach by optimiz-
ing the worst-case performance from jamming perspective (i.e.,
the minimum CRLB) whereas the max-mean scheme considers
the average performance. However, the max-min scheme may
lead to poor performance in terms of the average CRLB by con-
sidering only the worst-case performance, and the max-mean
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scheme tends to produce intolerably low CRLBs for some tar-
get nodes, which can be of critical importance from jamming
perspective, by ignoring the worst-case scenario. Hence, the
max-mean and max-min schemes account for only the two ex-
treme cases of the optimal jammer power allocation problem.
The motivation behind this paper is to devise a new optimization
scheme which covers the max-mean and max-min schemes as
special cases and balances the effects of each criterion on the
overall jamming performance via a design parameter. There-
fore, in this paper, a new optimization approach, namely the
restricted scheme, is proposed for jammer power allocation,
where the objective is to maximize the average CRLB while
keeping the minimum CRLB above a predefined level. The re-
stricted scheme is shown to be equivalent to the maximization of
a linear combination of the average and the minimum CRLBs;
thus it presents a trade-off between the average and worst-case
performances by incorporating the minimum CRLB level into
optimization constraints for average CRLB maximization. In
addition, an alternative scheme is considered, where the aim
is to disable as many target nodes as possible under average
and peak power constraints. Even though the optimal jammer
power allocation problem has been studied before in the litera-
ture, e.g., [13], novel optimization schemes are employed in this
paper which provide improved jamming performance in terms
of degradation of localization accuracy in a wireless localization
network.

B. Literature Survey on Resource Allocation

The problem of optimal resource (e.g., power and bandwidth)
allocation for wireless localization and radar systems has widely
been studied in the literature [15]–[23]. In [15], the power allo-
cation problem for anchor nodes in a wireless localization net-
work is formulated to minimize the squared position error bound
(SPEB) and the maximum directional position error bound (mD-
PEB) regarding the position estimation of target nodes. It is
shown that SPEB and mDPEB based formulations can be ex-
pressed as semidefinite programming (SDP) and second-order
cone programming (SOCP) problems, respectively, which lead
to fast solutions. The study in [16] investigates optimal power
allocation algorithms for anchor and agent (i.e., target) nodes
in a cooperative localization system by using the individual
SPEB (iSPEB) as the performance metric for localization. Sim-
ilarly, sensor and beacon ranging energies are minimized for a
wireless sensor network in [17] via an SDP based efficient algo-
rithm under the constraint that the CRLB for positioning does
not exceed a certain threshold. In addition to power allocation
schemes, several studies are carried out on joint allocation of
available resources, such as power and bandwidth, in wireless
localization networks [18], [19]. As a common approach, the
purpose of joint resource optimization in such systems is to
maximize the localization accuracy of target nodes via efficient
utilization of power and spectral resources. In [18], the joint
power and bandwidth allocation problem is formulated to min-
imize the total SPEB of agent node positioning in a cooperative
localization network. Due to the nonconvex nature of the objec-
tive functions, a Taylor linearization based iterative algorithm

is proposed for finding the optimal power and bandwidth distri-
butions related to agent nodes. The study in [19] performs joint
optimization of power, carrier frequency, and bandwidth allo-
cation for agent nodes in non-cooperative wireless localization
networks in order to maximize the localization accuracy by em-
ploying the single condensation (SC) method for approximating
the non-convex problems as geometric programming problems.

Power allocation for radar systems, especially for distributed
architectures, has drawn some attention in the literature. The
authors in [21] investigate optimal power allocation strategies
under total and individual power constraints in wireless sensor
networks for distributed passive multiple-radar architectures. In
[23], a cognitive radar network consisting of several radars used
for multiple-target tracking is considered, where algorithms for
optimal power allocation among multiple antennas are devel-
oped by using the posterior CRLB on target and channel state
estimates as an optimization criterion. The study in [22] exploits
constraint and objective relaxation of the formulated optimiza-
tion problem and domain decomposition methods to determine
the optimal power allocation among radar transmit powers in
a distributed multiple-radar system, where both CRLB of tar-
get localization and total transmit power budget are used as
performance metrics.

C. Contributions

In this paper, a new scheme (named as the restricted scheme)
is proposed for optimal jammer power allocation in wireless lo-
calization systems. The proposed scheme is essentially based on
the notion of the restricted Bayesian approach [24], [25], which
covers the Bayesian and minimax approaches as special cases.
The objective in the restricted Bayesian problem is to minimize
the Bayes risk (average risk) under the constraint that the min-
imum risk is not allowed to exceed a predefined level which is
specified according to the uncertainty degree in the prior prob-
abilities (related to unknown parameters or hypotheses). In this
paper, we basically build up a framework for power alloca-
tion of jammer nodes in wireless localization systems by using
the notion of the restricted Bayesian approach. Even though
the restricted scheme and the restricted Bayesian approach are
similar from the technical point of view, the motivations, and
the parameter and function definitions are completely different.
In summary, by utilizing the notion of the restricted Bayesian
approach, we propose a generalized power allocation criterion
(named as the restricted scheme) for jammer nodes in wire-
less localization systems, which is a generalized criterion in the
sense that it covers the criteria proposed in [13] as special cases
and establishes a trade-off ground between them. The main con-
tributions of this paper can be summarized as follows:

� The restricted scheme is proposed as a generalized op-
timization framework for power allocation among jam-
mer nodes in wireless localization systems. The proposed
scheme is formulated as a linear programming problem
and shown to represent a trade-off between the average
and the minimum CRLB optimization schemes.

� It is demonstrated that the average CRLB corresponding
to the optimal solution of the restricted scheme is a strictly
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decreasing and concave function of the constraint on the
minimum CRLB level.

� A closed-form power allocation solution for the restricted
scheme is obtained under certain conditions on the total
power limit and the design parameter that signifies the
level of trade-off.

� Based on the minimax theorem, it is shown that the opti-
mal solution of the restricted scheme contains at most NT

jammer nodes, where NT is the number of target nodes,
and that the optimal solution of the minimum CRLB maxi-
mization scheme is determined by at most NJ target nodes,
where NJ is the number of jammer nodes.

� By utilizing the framework in [25], an extension to the
restricted scheme is proposed to cover more generic sce-
narios and the corresponding optimal solution is character-
ized. In the extended scheme, the target nodes are grouped
into subsets based on their significance levels and the con-
straint on the minimum CRLB level is different for each
subset.

� An alternative optimization scheme is proposed in order
to maximize the number of disabled (deactivated) target
nodes in a given wireless localization system, where deacti-
vation of a target node is determined according to its CRLB
for localization. The solution of the alternative scheme is
proved to be the same as that of the minimum CRLB maxi-
mization scheme for a specific subnetwork of target nodes.

II. SYSTEM MODEL

Consider a two-dimensional wireless localization system con-
sisting of NA anchor nodes and NT target nodes located at yj ∈
R2 , j = 1, . . . , NA and xi ∈ R2 , i = 1, . . . , NT , respectively.1

In the localization scenario, self-positioning is considered [5];
that is, the target nodes are assumed to estimate their locations
based on signals received from the anchor nodes with known
locations. In addition to the target and anchor nodes, there ex-
ist NJ jammer nodes at z� ∈ R2 , � = 1, . . . , NJ in the system,
which aim to degrade the localization performance of the sys-
tem. In compliance with the common approach in the literature
[26]–[28], the jammer nodes are assumed to transmit zero-mean
Gaussian noise.

In this paper, there exists no cooperation among the target
nodes; that is, the target nodes receive signals only from the
anchor nodes (i.e., not from the other target nodes) for position
estimation. In addition, the connectivity sets are defined asAi �
{j ∈{1, . . . , NA} | anchor node j is connected to target node i}
for i ∈ {1, . . . , NT }.2 Then, the received signal at target node
i coming from anchor node j can be expressed as [13]

rij (t) =
Li j∑

k=1

αk
ij sj (t − τk

ij ) +
NJ∑

�=1

γi�

√
PJ

� vij�(t) + nij (t)

(1)

1Generalizations to the three-dimensional scenario are straightforward, but
not explored in this study.

2An anchor node being connected to a target node means that the receiver of
a target node will be able to decode the signal coming from an anchor node,
which happens only when the SNR is above a threshold.

for t ∈ [0, Tobs ], i ∈ {1, . . . , NT }, and j ∈ Ai , where Tobs is
the observation time, αk

ij and τk
ij denote, respectively, the ampli-

tude and delay of the kth multipath component between anchor
node j and target node i, Lij is the number of paths between
target node i and anchor node j, and γi� represents the channel
coefficient between target node i and jammer node �, which has
a transmit power of PJ

� .3 The transmit signals sj (t)’s are as-
sumed to be known and orthogonal, and the measurement noise

nij (t) and the jammer noise
√

PJ
� vij�(t) are assumed to be in-

dependent zero-mean white Gaussian random processes, where
the average power of nij (t) is N0/2 and that of vij�(t) is equal
to one. In addition, for each target node i, nij (t) is independent
for j ∈ Ai , and vij�(t) is independent for � ∈ {1, 2, . . . , NJ }
and for j ∈ Ai .4 The delay term τk

ij in (1) can be expressed as

τk
ij �

‖yj − xi‖ + bk
ij

c
(2)

where bk
ij ≥ 0 and c denote, respectively, the range bias and

the speed of propagation. For the paths between anchor node
j and target node i, the range bias bk

ij describes the difference
between the actual travel distance of the kth signal path and the
distance between nodes. Set Ai is partitioned as

Ai � AL
i ∪ AN L

i (3)

where AL
i and AN L

i represent the sets of anchors nodes with
line-of-sight (LOS) and non-line-of-sight (NLOS) connections
to target node i, respectively.

In order to derive the CRLB for localization of the target
nodes, the unknown parameter vector for target node i must
be specified. The vector consisting of the bias terms related to
target node i in the LOS and NLOS cases is given by

bij =

⎧
⎪⎨

⎪⎩

[
b2
ij . . . b

Li j

ij

]T
, if j ∈ AL

i

[
b1
ij . . . b

Li j

ij

]T
, if j ∈ AN L

i

. (4)

Based on (4), the unknown parameters related to target node i
are defined as [29]

θi �
[
xT

i bT
iAi (1) · · · bT

iAi (|Ai |) αT
iAi (1) · · ·αT

iAi (|Ai |)
]T

(5)

where Ai(j) denotes the jth element of set Ai , |Ai | represents
the number of elements in Ai , and αij � [α1

ij · · ·αLi j

ij ]T . It
is assumed that the total noise level is known by each target
node [14].5

3The channel coefficient γi� between target node i and jammer node � is
modeled to be independent of the anchor node index based on the assumptions
that time division multiple access is employed for communications of different
anchor nodes with target node i and the channel coefficient γi� does not change
considerably over the time slots.

4Multiple access techniques make vij � (t)’s independent over the anchor
nodes; i.e., for j ∈ Ai (Remark 1 in [14]).

5This assumption enables target nodes to employ the maximum likelihood
(ML) estimator for localization, which involves the total noise levels corre-
sponding to different anchor nodes. Since the ML estimator asymptotically
converges to the CRLB as the SNR and/or effective bandwidth increases [30],
it is reasonable to assume that target nodes perform position estimation using
an ML estimator. In that case, the CRLB as a performance metric represents a
localization accuracy that is close to the accuracy attained by target nodes (see
Remark 3 for a detailed discussion).
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The CRLB for location estimation of target node i is provided
by [4]

E
{‖x̂i − xi‖2} ≥ tr

{[
F−1

i

]
2×2

}
(6)

where x̂i denotes an unbiased estimate of the location of target
node i, tr{·} represents the trace operator, and F i is the Fisher
information matrix for vector θi . Following the derivations per-
formed in [6],

[
F−1

i

]
2×2 can be expressed as

[
F−1

i

]
2×2 = J i(xi ,p

J )−1 (7)

where the equivalent Fisher information matrix J i(xi ,p
J ) in

the absence of prior information about the location of the target
node is calculated as

J i(xi ,p
J ) =

∑

j∈AL
i

λij

N0/2 + aT
i pJ

φijφ
T
ij (8)

with

λij �
4π2β2

j |α1
ij |2

∫∞
−∞ |Sj (f)|2df
c2 (1 − ξij ) , (9)

ai �
[|γi1 |2 · · · |γiNJ

|2]T , (10)

pJ �
[
PJ

1 · · ·PJ
NJ

]T
, (11)

φij � [cos ϕij sinϕij ]
T . (12)

In (9), βj is the effective bandwidth, which is expressed as βj =√∫∞
−∞ f 2 |Sj (f)|2df/

∫∞
−∞ |Sj (f)|2df , with Sj (f) denoting the

Fourier transform of sj (t), and the path-overlap coefficient ξij is
a non-negative number between zero and one, i.e., 0 ≤ ξij ≤ 1
[6]. Also, in (12), ϕij denotes the angle between target node i
and anchor node j. In addition, it is assumed that the elements
of ai are non-zero (i.e., strictly positive) for i ∈ {1, 2, . . . , NT }.
It is noted from (8) that the effects of the jammer nodes appear
as the second term in the denominator since the jammer nodes
transmit Gaussian noise.

According to Lemma 1 in [13], the trace of the inverse of the
equivalent Fisher information matrix J i(xi ,p

J ) in (8); equiv-
alently, the CRLB for target node i, is an affine function with
respect to pJ , which is expressed as

tr
{
J i(xi ,p

J )−1} = ri aT
i pJ + riN0/2 � Ci(pJ ) (13)

where

ri � tr

⎧
⎨

⎩

⎡

⎣
∑

j∈AL
i

λijφijφ
T
ij

⎤

⎦
−1⎫⎬

⎭ . (14)

Remark 1: The dependency of the Fisher information ma-
trix on network geometry (i.e., locations of anchor, target and
jammer nodes) and jammer powers can be scrutinized by con-
sidering the expression in (8) as follows: The Fisher information
matrix in (8) for the location of target node i depends on the
target location xi via the parameters λij , ai , and φij , and on
the jammer powers via the power vector pJ . First, from (9), the
amplitude of the LOS path α1

ij and the path-overlap coefficient
ξij between target node i and anchor node j depend on xi and

yj . Next, ai in (10) consists of the channel gains between tar-
get node i and jammer nodes, which depend on xi and z� for
� ∈ {1, . . . , NJ }. In addition, the parameter φij in (12) is de-
termined by the angles ϕij , which are also location dependent.
Therefore, both network geometry and jammer powers affect
the performance of jamming strategies.

Remark 2: The role played by multipath propagation in a
practical localization scenario can be explained as follows: The
parameters affected by the network configuration (i.e., anchor,
target and jammer positions) in the CRLB expression for target
node i in (8) are ai , φij , and λij . As discussed in Remark 1,
ai contains the channel gains between target node i and jam-
mer nodes and thus has no relevance to the multipath scenario.
Hence, varying jammer positions does not alter the multipath
conditions between the anchor and target nodes. Secondly, φij

depends on the angle ϕij between target node i and anchor node
j via (12). Since ϕij is determined by the network geometry,
changing the value of ϕij , imposed by a change in the network
geometry, will affect multipath conditions (i.e., delays and am-
plitudes of multipath components). In addition, the parameter
λij in (9) also reflects the multipath effect via the path-overlap
coefficients ξij , which are determined by the transmitted wave-
forms sj (t) and the delays τk

ij for j ∈ AL
i [6, Appendix III-A].

According to [6, Corollary 1], ξij = 0 is obtained if the first path
is resolvable, i.e., the delay between the LOS path and the first
arriving NLOS path exceeds the duration of sj (t). Depending
on the amount of overlap between the LOS path and the NLOS
paths, ξij takes values in the interval [0, 1]. Hence, the multipath
scenario characterizes the value of ξij , which, in turn, affects
the CRLB via λij . Therefore, the effect of varying anchor node
positions on the CRLB can be manifested in the angles ϕij and
the multipath delays τk

ij between target nodes and anchor nodes.
Remark 3: The CRLB is considered as the performance met-

ric for target location estimation since it provides a tight bound
on the mean-squared error (MSE) of the ML estimator for high
effective bandwidths, βj , and/or high SNRs [30]. Hence, the
CRLB serves as a meaningful performance benchmark for high-
accuracy localization scenarios. When neither the SNRs nor the
effective bandwidths are sufficiently high, the performance of
the ML estimator may deviate from the CRLB [31]. These con-
clusions are also valid in the presence of multipath since the
considered CRLB expression based on (8) and (9) takes the
multipath effects into account via the path-overlap coefficients,
ξij in (9) [6]. In other words, when the ML estimator is designed
for the multipath scenario and the CRLB is calculated via (8)
and (9), the CRLB again provides a tight bound on the MSE of
the ML estimator for high effective bandwidths and/or SNRs.
When neither the SNRs nor the effective bandwidths are high,
the CRLB is not tight in general and the gap between the CRLB
and the MSE of the ML estimator depends on specific multi-
path conditions. In this study, the optimized CRLB constitutes
a lower bound on the target localization performance of the ML
estimator when the optimal jamming strategies are employed
by the jammer network. Optimal jammer power allocation solu-
tions obtained via CRLB optimization provide essential guide-
lines for developing efficient jamming strategies. Moreover, the
choice of CRLB as an optimization metric is also motivated by
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Fig. 1. The network considered in the simulations, where the anchor node po-
sitions are [−10 0], [−5 − 5

√
3], [−5 5

√
3], [5 5

√
3], [5 − 5

√
3], and [10 0] m.,

the target node positions are [−8 2], [−2 − 3], [3 4], [5 − 5] and [8 − 2] m.,
and the jammer node positions are [−6 1], [1 − 6], and [6 5] m.

its decent mathematical structure that favors theoretical charac-
terizations (e.g., [13], [15], [17], [19], [32]).

III. RESTRICTED SCHEME

In this section, one of the proposed schemes, namely the
restricted scheme, is introduced. The restricted scheme is an
optimal power allocation strategy for jammer nodes in a wireless
localization system, which covers both Scheme 1 (the max-
mean scheme) and Scheme 2 (the max-min scheme), proposed
in [13], as special cases. For a given wireless localization system
(see, e.g., Fig. 1), Scheme 1 attempts to maximize the average
CRLB of target nodes while Scheme 2 considers the minimum
CRLB as the jamming performance metric. In what follows,
the formulations for Scheme 1 and Scheme 2 are revisited with
certain modifications, and the restricted scheme is proposed as
a generalization of Scheme 1 and Scheme 2. All the schemes
are formulated by imposing average (total) and peak jammer
power constraints, as considered in [13]. Also, in accordance
with practical systems, it is assumed that the total power limit
for the jamming network is lower than the sum of the peak power
limits for the jammer nodes.

Since the elements of ai in (10) are positive, the CRLBs of
the target nodes in (13) monotonically increase with jammer
powers. Therefore, similar to Scheme 1 and Scheme 2 in [13],
the restricted scheme has the full total power utilization prop-
erty, meaning that its optimal solution always operates at the
average (total) power limit (cf. Lemma 3 in [13]). Therefore,
all the power vectors pJ (see (11)) in this study are assumed
to satisfy 1T pJ = PT , where PT represents the total power
limit. Hence, in the following optimization problems, the total
(equivalently, the average) power constraint is represented by
1T pJ = PT instead of 1T pJ ≤ PT . Also, due to the full total
power utilization property, the CRLB for target node i can be
expressed via (13) as

Ci(pJ ) = dT
i pJ (15)

where

di � ri ai + ri
N0

2PT
1. (16)

Let g[i] denote a probability mass function (PMF) defined
over the set {1, 2, . . . , NT }, which describes the significance
level of each target node. Then, the average CRLB is calculated
as follows:

Cavg(pJ ) =
NT∑

i=1

g[i]Ci(pJ ). (17)

In Scheme 1 in [13], all the target nodes are assumed to have
the same significance level in terms of jamming performance
and are thus considered to contribute equally to the average
(overall) CRLB. However, in some cases, jamming some target
nodes may have priority over jamming others. Therefore, it is
important to calculate the average CRLB by taking the signif-
icance level of each target node into account. The significance
level of a target node can be specified by the characteristics of
a target or by the region occupied by it (i.e., some regions may
be more critical than others from the jamming standpoint). The
expression in (17) generalizes the average CRLB formulation
in [13], which considers only the uniform PMF, to an arbitrary
PMF g[i]. Accordingly, Scheme 1 in [13] is reformulated as
follows (cf. [13, Eq. (16)]):

maximize
pJ

Cavg(pJ )

subject to 1T pJ = PT (18)

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ .

The solution of (18) is given by that of the original version
of Scheme 1 in Proposition 2 of [13] with w being rede-
fined as w �

∑NT

i=1 g[i]di . Namely, the solution assigns all
the available power to the jammer node corresponding to the
first, second, third, ...largest element of w under the peak power
limit and until the average (total) power limit is reached (see
Eq. (18) in [13]).

Before formulating Scheme 2 for power allocation among
jammer nodes, the definition of the least-favorable PMF is pro-
vided as follows:

Definition 3.1: Let g[i] be a PMF over the set {1, 2, . . . , NT }
and pJ

∗ denote the corresponding optimal solution of (18). Then,
g[i] is defined as the least-favorable PMF if it satisfies

NT∑

i=1

g[i]Ci(pJ
∗ ) = min

i∈{1,2,...,NT }
Ci(pJ

∗ ) . (19)

Remark 4: The least-favorable PMF g[i] minimizes the aver-
age CRLB among all PMFs defined over the set {1, 2, . . . , NT }
(see Appendix A for the proof).

Scheme 2 considers the minimum CRLB as a performance
metric, which is in fact the average CRLB calculated based on
the least-favorable significance level distribution (from the jam-
ming standpoint) over the target nodes (i.e, the least-favorable
g[i] according to Definition 3.1). Scheme 2 is regarded as a
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conservative approach since it considers the worst-case scenario
(in terms of jamming performance), which occurs when g[i]
corresponds to the least-favorable PMF. The formulation of
Scheme 2 is provided as follows [13, Eq. (19)]:

maximize
pJ

min
i∈{1,2,...,NT }

Ci(pJ )

subject to 1T pJ = PT

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ .

(20)

Remark 5: It is noted from Definition 3.1 that Scheme 1 and
Scheme 2 become equivalent for the least-favorable PMF (see
Appendix B for the proof).

It should be emphasized that g[i] represents the relative
significance level of each target node with respect to the other
target nodes; hence, the average CRLB is mainly dependent
on the PMF g[i]. On the other hand, the minimum CRLB is an
absolute metric in the sense that it is not affected by the relative
relations among the target nodes (that is, it is only dependent
on the worst-case scenario). Therefore, it can be concluded that
the average and minimum CRLBs are not alternatives to each
other; that is, they represent two completely different facets
of a design problem. In general, even if g[i] is not the same
as the least-favorable PMF, the minimum CRLB being lower
than some level can be intolerable due to design requirements.
To that end, a new scheme, namely the restricted scheme,
is proposed for the aim of maximizing the average CRLB
while keeping the minimum CRLB above a preset level. The
restricted scheme is formulated as follows:6

maximize
pJ

Cavg(pJ )

subject to min
i∈{1,2,...,NT }

Ci(pJ ) ≥ α (21)

1T pJ = PT

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ

where α is a design parameter preset according to design re-
quirements. In the restricted scheme, both the average and the
worst-case performances are taken into account, and the design
parameter can be adjusted to determine the effect of each per-
formance metric on the overall jamming performance. It should
be noted that (21) covers both (18) and (20) as special cases:
The restricted scheme reduces to Scheme 2 if α takes its max-
imum value α which corresponds to the solution of (20) (i.e.,
α � mini∈{1,2,...,NT } Ci(p̄J ), where p̄J is the solution of (20)),
and reduces to Scheme 1 if the value of α is lower than or equal
to the value α corresponding to the solution of (18) (i.e., α �
mini∈{1,2,...,NT } Ci(pJ ), where pJ is the solution of (18)). The
formulation in (21) can be expressed as a linear programming
(LP) problem as is the case for both Scheme 1 and Scheme 2.

6This formulation is similar to that of the restricted Bayes [24], [25], which
includes both Bayesian and minimax problems as special cases.

Equivalently, the restricted scheme can also be formulated as
follows:

maximize
pJ

λCavg(pJ ) + (1 − λ)min
i

Ci(pJ ) (22a)

subject to 1T pJ = PT (22b)

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ (22c)

where 0 ≤ λ ≤ 1, similar to α, is specified according to design
requirements [25].7

IV. PROPERTIES OF OPTIMAL SOLUTION FOR

RESTRICTED SCHEME

In this section, the aim is to characterize the optimal solution
for the restricted scheme formulations in (21) and (22). The
following proposition investigates the characteristics of the op-
timal solution of (22) and establishes a link between the optimal
solutions of (18) and (22).

Proposition 4.1: Define a PMF v[i] as v[i] � λ g[i] + (1 −
λ) f [i], where f [i] is any valid PMF defined over the set
{1, 2, . . . , NT }. If pJ

∗ is the solution of Scheme 1 for v[i] and
satisfies

NT∑

i=1

f [i]Ci(pJ
∗ ) = min

i∈{1,2,...,NT }
Ci(pJ

∗ ) , (23)

then it is a solution of (22) for g[i].
Proof: The steps in this proof are similar to those in [25,

Theorem 1]. Let pJ represent any power vector satisfying the
total and peak power constraints. Then,

λCavg(pJ ) + (1 − λ) min
i∈{1,2,...,NT }

Ci(pJ ) (24)

≤ λ

NT∑

i=1

g[i]Ci(pJ ) + (1 − λ)
NT∑

i=1

f [i]Ci(pJ ) (25)

=
NT∑

i=1

(λ g[i] + (1 − λ) f [i]) Ci(pJ ) (26)

≤
NT∑

i=1

(λ g[i] + (1 − λ) f [i]) Ci(pJ
∗ ) (27)

= λCavg(pJ
∗ ) + (1 − λ) min

i∈{1,2,...,NT }
Ci(pJ

∗ ) (28)

where the first inequality due to the relation between the mini-
mum and the average operations, pJ

∗ (the solution of Scheme 1
for v[i]) is employed to proceed from (26) to (27), and the con-
dition (23) in the proposition is used to obtain (28) from (27).
Overall, the relation between (24) and (28) indicate that pJ

∗ is a
solution of (22) for g[i]. �

The optimal solution specified by Proposition 4.1 always
exists since the probability distributions are discrete and de-
fined over a compact set [25], [33]. It can be noted based on

7The proof of equivalence of the optimization schemes in (21) and (22) will
be provided in Section IV.
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Proposition 4.1 that the solution of (22) can be obtained by find-
ing a PMF f [i] for which (23) is satisfied for the power vector
corresponding to Scheme 1 for v[i], which has a closed-form
solution [13]. Hence, the solution of the restricted scheme for-
mulation in (22) reduces to determining a PMF f [i] such that
the conditions in Proposition 4.1 are satisfied. This proposition
also emphasizes the equalizer nature of the restricted scheme.
For example, if f [i] consists of three point masses at i = 1, 3,
and 4, it implies based on the proposition that the CRLBs of
target nodes 1, 3, and 4 are equalized to the minimum CRLB of
the whole network.

The following corollary shows that the formulations in (21)
and (22) of the restricted scheme are equivalent to each other,
and forms a formal link between them.

Corollary 4.2: Under the conditions in Proposition 4.1, pJ
∗

solves the optimization problem in (21) when the design param-
eter satisfies α = mini∈{1,2,...,NT } Ci(pJ

∗ ).
Proof: The proof follows similar steps to those in [25,

Corollary]. For any pJ satisfying the constraints in (21),
Proposition 4.1 implies the following inequality:

λCavg(pJ ) + (1 − λ) min
i∈{1,2,...,NT }

Ci(pJ )

≤ λCavg(pJ
∗ ) + (1 − λ) min

i∈{1,2,...,NT }
Ci(pJ

∗ ). (29)

It is given that mini∈{1,2,...,NT } Ci(pJ
∗ ) = α, thus the inequality

mini∈{1,2,...,NT } Ci(pJ ) ≥ α with (29) results in Cavg(pJ
∗ ) ≥

Cavg(pJ ). �
Corollary 4.2 establishes a formal link between parameters λ

and α; that is, for any λ, α can be calculated through the equation
in the corollary. More specifically, the optimization problem in
(22) is solved for a given λ and the optimal solution pJ (λ) is
inserted into the equation mini∈{1,2,...,NT } Ci(pJ (λ)) = α to
obtain α for a given λ.

In the following proposition, it is shown that the optimal
solution of the restricted scheme is the solution of Scheme 1
for the least-favorable PMF v[i] among a family of PMFs [25,
Theorem 2]. This result reveals an important property of the
PMF v[i] as defined in Proposition 4.1, for which Scheme 1
is to be solved in order to obtain the optimal solution of the
restricted scheme.

Proposition 4.3: Under the conditions in Proposition 4.1,
v[i] = λ g[i] + (1 − λ) f [i] minimizes the average CRLB
among all PMFs in the form of ṽ[i] = λ̃ g[i] + (1 − λ̃) f̃ [i]
for λ̃ ≥ λ, where f̃ [i] is any valid PMF defined over the set
{1, 2, . . . , NT }. Equivalently,

NT∑

i=1

v[i]Ci(pJ
∗ ) ≤

NT∑

i=1

ṽ[i]Ci(pJ
+) (30)

for any ṽ[i] described above, where pJ
∗ and pJ

+ are the solutions
of Scheme 1 for v[i] and ṽ[i], respectively.

Proof: See Appendix C. �
It is noted that when λ = 0, the restricted scheme in (22) is

equivalent to Scheme 2 and the family of PMFs among which
f [i] minimizes the average CRLB becomes the set of all PMFs
defined over the set {1, 2, . . . , NT } (ṽ[i] represents the set of

all valid PMFs by taking λ̃ = 0). Therefore, as a special case of
Proposition 4.3, it can be deduced that Scheme 2 is equivalent
to Scheme 1 if g[i] is the least-favorable PMF among all PMFs
defined over the set {1, 2, . . . , NT }, which is in compliance with
Remark 5.

Next, the characteristics of the average CRLB of the re-
stricted scheme is investigated with respect to the changes in
α. Let pJ

r , pJ
1 , and pJ

2 denote the solutions of the restricted
scheme, Scheme 1, and Scheme 2, respectively. Also, let α �
mini∈{1,2,...,NT } Ci(pJ

1 ) and α � mini∈{1,2,...,NT } Ci(pJ
2 ) de-

fine the minimum CRLBs of Scheme 1 and Scheme 2, respec-
tively. In particular, α is the maximum value that α can take
due to the definition of Scheme 2; that is, when α = α, the
restricted scheme reduces to Scheme 2. For 0 ≤ α ≤ α, the
constraint on the minimum CRLB in (21) becomes ineffective,
which results in that the restricted scheme reduces to Scheme 1
for 0 ≤ α ≤ α. Accordingly, Cavg(pJ

r ) is constant and equal to
Cavg(pJ

1 ) for 0 ≤ α ≤ α. Therefore, in practice, α is an element
of the closed interval [α, α]; that is, α ∈ [α, α]. The following
proposition characterizes the behavior of the average CRLB of
the restricted scheme with respect to α ∈ [α, α].

Proposition 4.4: The average CRLB of the restricted
scheme, Cavg(pJ

r (α)), is a strictly decreasing and concave func-
tion of α for α ∈ [α, α].

Proof: See Appendix D. �
The following corollary, which is obtained based on

Proposition 4 in [13], Proposition 4.1, and Corollary 4.2,
presents a closed-form solution for the restricted scheme un-
der certain conditions on λ and PT .

Corollary 4.5: Let ζn for n ∈ {1, 2, . . . , NJ } be defined as
follows:

ζn �
rk

(|γkb |2 − |γkn |2
)

∑NT

i=1 g[i]ri (|γin |2 − |γib |2) + rk (|γkb |2 − |γkn |2)
(31)

where k is the target node that uniquely has the minimum CRLB
in the absence of jamming and b is given by

b = arg max
�∈{1,2,...,NJ }

|γk� |2 . (32)

Also, define ζ̃ as

ζ̃ = min
n∈J

ζn (33)

where the set J is given by

J =
{

n ∈ {1, 2, . . . , NJ }
∣∣∣n 
= b and ζn ≥ 0

}
. (34)

Then, 0 ≤ λ ≤ ζ̃ corresponds to α = α if the total power limit
satisfies PT ≤ P

(k)
T , where P

(k)
T is described in [13, Eq. 22]

(assuming that P peak
b ≥ PT ). In other words, when 0 ≤ λ ≤

ζ̃, the restricted scheme and Scheme 2 become identical for
PT ≤ P

(k)
T . In addition, the solution of both schemes under the

conditions 0 ≤ λ ≤ ζ̃ and PT ≤ P
(k)
T is to allocate all the power

to jammer node b.
Proof: In Proposition 4.1, consider f [i] as f [i] = δ[i − k],

where δ[·] denotes the unit sample (impulse) function; hence, the
corresponding v[i] is given by v[i] = λ g[i] + (1 − λ) δ[i − k].
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If the inequality PT ≤ P
(k)
T holds, then the condition in (23) is

satisfied by f [i], according to Proposition 4 in [13], in which
case the power vector pJ

∗ that allocates all the power to jammer
node b is the solution of Scheme 2. On the other hand, the power
vector pJ

∗ , which is the solution of Scheme 2 and satisfies (23),
is the solution of Scheme 1 for v[i] if the index of the first largest
element of vector w =

∑NT

i=1 v[i]di is b, which occurs when the
following condition holds:

b = arg max
n∈{1,2,...,NJ }

(
λ

NT∑

i=1

g[i]ri |γin |2 + (1 − λ)rk |γkn |2
)

.

(35)
Since the expression in (35) is an affine function of λ for each
n ∈ {1, 2, . . . , NJ } and b = arg maxn∈{1,2,...,NJ } rk |γkn |2 , the
bth index of w has the highest value until the first intersection
of the line corresponding to b and any of the remaining lines
corresponding to n ∈ {1, 2, . . . , NJ } \ b. Therefore, if 0 ≤ λ ≤
ζ̃, where ζ̃ is given by (33), then the solution of Scheme 1 for v[i]
is to allocate all the power to jammer node b corresponding to the
largest element of w. This implies, according to Proposition 4.1,
that the solution that assigns all the power to jammer node b is
also the solution of the restricted scheme. Hence, allocating all
the power to jammer node b is the solution for both the restricted
scheme and Scheme 2 for 0 ≤ λ ≤ ζ̃ if PT ≤ P

(k)
T . �

Corollary 4.5 implies that if ζ̃ ≥ 1, then the restricted
scheme and Scheme 2 are identical for any value of the
design parameter λ in (22) if PT ≤ P

(k)
T . It is concluded

from (31), (33), and (34) that ζ̃ ≥ 1 occurs when b =
arg maxn∈{1,2,...,NJ }

∑NT

i=1 g[i]ri |γin |2 .
In the following proposition (which is based on Proposition 5

in [13] and the minimax theorem), the numbers of target and
jammer nodes which are effective in the solution of the restricted
scheme (i.e., (22)) are specified. Proposition 5 in [13] presents
only the number of jammer nodes that determine the solution of
Scheme 2. Based on the minimax theorem, the following propo-
sition enhances this property by also specifying the number of
target nodes that are involved in the solution of the restricted
scheme.

Proposition 4.6: Suppose that ri defined in (14) is finite for
each i. Then, in the absence of peak power constraints, the so-
lution of the restricted scheme is determined by at most NT

jammer nodes, where NT is the number of target nodes. In ad-
dition, f [i] in Proposition 4.1 contains at most NJ point masses,
which implies that the solution of Scheme 2 (i.e., the restricted
scheme for λ = 0) is determined by at most NJ target nodes,
where NJ is the number of jammer nodes.

Proof: In the absence of the peak power constraint, (22c)
becomes ineffective; hence, (22) can be reformulated as follows:

maximize
p̃J ∈AN J

min
f̃∈AN T

PT (λ g + (1 − λ) f̃)T D p̃J (36)

where p̃J � pJ /PT , 1T p̃J = 1, and p̃J � 0; 1T f̃ = 1 and
f̃ � 0; D � [d1 d2 · · ·dNT

]T ; and finally g � [g[1] g[2] · · ·
g[NT ]]T . From the foregoing constraints on p̃J and f̃ , it is

clear that set Am is given by

Am =
{
h ∈ Rm

∣∣h � 0 and 1T h = 1
}

(37)

for m ∈ {NJ ,NT }, which is compact and convex. It should also
be noted that the objective function in (36) is an affine function
of f̃ for a fixed p̃J , and a linear function of p̃J for a fixed
f̃ . Hence, the minimax theorem [34] can be applied to (36),
implying that (36) is equivalent to the following optimization
problem:

minimize
f̃∈AN T

max
p̃J ∈AN J

PT (λ g + (1 − λ) f̃)T D p̃J (38)

which can also be expressed as follows:

minimize
f̃∈AN T

max
p̃J ∈AN J

(p̃J )T DT (λ g + (1 − λ) f̃)PT . (39)

For a given p̃J ∈ ANJ
, the objective function in (36) is min-

imized for f̃ = ek , where k = arg mini∈{1,2,...,NT } dT
i p̃J and

ei denotes the vector whose ith element is 1 and other elements
are 0. Hence, the possible set of values that can be assumed by
f̃ in (36) contains only NT elements. In a similar way, the max-
imizer of the objective function in (39) for a given f̃ ∈ ANT

is
provided by a vector of the form ei , which confines the number
of possible values of p̃J to NJ . Therefore, applying the steps
followed in the proof of Proposition 5 in [13] to (36), it is con-
cluded that the solution of the restricted scheme is determined
by at most NT jammer nodes. Similarly, applying those same
steps to (39), it is concluded that f [i] in Proposition 4.1 contains
at most NJ point masses, which also implies that the solution
of the restricted scheme for λ = 0 (i.e., Scheme 2) is deter-
mined by at most NJ target nodes. (When λ = 0, the solution
of Scheme 1 for v[i] = f [i] is also the solution of the restricted
scheme, which is identical to Scheme 2.) �

Proposition 4.6 yields an essential result for determining the
optimal jammer power allocation strategies under the restricted
scheme. It is noted from Proposition 4.6 that the optimal jammer
power vector contains at most NT non-zero elements, which
facilitates the elimination of the solutions that allocate non-
zero power to more than NT jammer nodes. Hence, the solu-
tion space for power vectors is significantly reduced based on
Proposition 4.6, especially for scenarios where the number of
target nodes is considerably lower than that of jammer nodes.
In addition, the set of PMFs f [i] that satisfy the conditions in
Proposition 4.1 is reduced by constraining the search for feasi-
ble PMFs to only those having at most NJ non-zero elements.
Therefore, for wireless network configurations containing fewer
jammer nodes than target nodes (for which Proposition 5 in
[13] does not help reduce the solution space of Scheme 2),
Proposition 4.6 facilitates the solution of the restricted scheme,
which relies on finding a PMF f [i] as defined in Proposition 4.1.
Furthermore, the solution of Scheme 2 (the restricted scheme
for λ = 0) is also the solution of Scheme 1 for f [i], where f [i]
satisfies the condition in (23). Hence, based on Remark 5, it is
stated that the least-favorable PMF contains at most NJ point
masses.
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V. EXTENSION OF RESTRICTED SCHEME

In this section, the restricted scheme is extended to cover more
generic scenarios by utilizing the framework in [25]. Based
on their significance levels, the target nodes can be grouped
into subsets Λ1 , . . . ,ΛM with a decreasing order of signif-
icance levels (i.e., subset Λ1 contains the target nodes with
the highest significance levels), where Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛM =
{1, 2, . . . , NT }. Then, the restricted scheme formulation in (21)
can be extended as follows [25]:

maximize
pJ

Cavg(pJ )

subject to min
i∈Λk

Ci(pJ ) ≥ αk , k = 1, . . . ,M (40)

1T pJ = PT

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ

where α1 > · · · > αM are the design parameters. The formula-
tion in (40) corresponds to an LP problem, as well. In addition,
it can be shown that the full total power utilization property
also holds for this extended scheme (cf. Lemma 3 in [13]).
The following proposition characterizes the solution of (40),
which can be obtained by following the steps in the proofs of
Proposition 4.1 in Section IV and Theorem 4 in [25]:

Proposition 5.1: Define a PMF v[i] as v[i] � λ0 g[i] +∑M
k=1 λk fk [i] with λk ≥ 0 and

∑M
k=0 λk = 1, where fk [i] is

any valid PMF defined over set Λk . If pJ
∗ is the solution of

Scheme 1 for v[i] and satisfies

∑

i∈Λk

fk [i]Ci(pJ
∗ ) = min

i∈Λk

Ci(pJ
∗ ) = αk , k = 1, . . . ,M

then it solves the optimization problem in (40).

VI. ALTERNATIVE SCHEME

The general objective of jammer networks is to degrade the
localization performance of target nodes with respect to a perfor-
mance measure. In Section III and Section IV, optimal jammer
power allocation strategies have been investigated to maximize
a certain function of the CRLBs of target nodes. However, for
some localization systems, it may be more critical to maximize
the number of disabled (deactivated) target nodes than to max-
imize their average or minimum CRLB, where a target node is
assumed to be disabled when its CRLB exceeds a predefined
level (i.e., when its localization accuracy becomes useless for
the considered application). For instance, in military applica-
tions, the effectiveness of the jamming system may depend on
the number of deactivated enemy targets. Therefore, in this sec-
tion, a new scheme is proposed with the aim of maximizing the
number of disabled target nodes in a wireless localization system
under average and peak power constraints. The proposed power
allocation scheme optimizes a jamming performance metric that
is different from the one in (21) and can be more critical in prac-
tice for certain localization scenarios. Let Λ denote any subset
of {1, 2, . . . , NT }, and |Λ| represent the size of subset Λ. Then,

the proposed scheme is formulated as follows:

maximize
pJ

|Λ|

subject to min
i∈Λ

Ci(pJ ) ≥ t (41)

1T pJ ≤ PT

0 ≤ PJ
� ≤ P peak

� , � = 1, 2, . . . , NJ

Λ ⊆ {1, 2, . . . , NT }
where t is the predefined level for disabling a target node (i.e., a
target node with a CRLB larger than t is regarded as disabled).

For convenience, let the resulting minimum CRLB of the
target nodes in a network operating according to Scheme 2 be
named as the max-min CRLB in accordance with the formula-
tion of Scheme 2 in (20). The following definition introduces a
new parameter that will facilitate the solution of (41).

Definition 6.1: Let Λk with k ∈ {1, 2, . . . , NT } be the sub-
set consisting of k target nodes which constitute the subnetwork
achieving the maximum max-min CRLB among all possible
subnetworks with k target nodes. Then, tk is defined as the
corresponding max-min CRLB.

Based on Definition 6.1, it should be noted that t1 is the
maximum achievable CRLB for an individual target node in the
whole network; hence, t1 is the maximum value which t can take
in practice (i.e., the maximum number of disabled target nodes
is zero when t > t1). The following corollary demonstrates the
monotonicity of tk with respect to the number of target nodes k.

Corollary 6.2: For k ∈ {1, 2, . . . , NT − 1}, tk is larger than
or equal to tk+1 , where tk is as defined in Definition 6.1.

Proof: Let Sk be the set of all k-element subsets of
{1, 2, . . . , NT }. Then, assuming that the power vector pJ satis-
fies the total and peak power constraints,

tk+1 = max
Γ∈Sk + 1

max
pJ

min
i∈Γ

Ci(pJ ) (42)

= min
i∈Λk + 1

Ci(pJ
∗ ) (43)

≤ max
Γ∈Gk

min
i∈Γ

Ci(pJ
∗ ) (44)

≤ max
Γ∈Gk

max
pJ

min
i∈Γ

Ci(pJ ) (45)

≤ max
Γ∈Sk

max
pJ

min
i∈Γ

Ci(pJ ) = tk (46)

where pJ
∗ is the optimal power vector in (42) and Gk denotes

the set of all k-element subsets of Λk+1 . �
Next, the following proposition specifies the solution of (41):
Proposition 6.3: In the case of tk+1 < t ≤ tk for k =

1, 2, . . . , NT (where tNT +1 is defined as zero), the solution
of (41) is the same as that of Scheme 2 obtained for the sub-
network consisting of all the target nodes in subset Λk , and the
corresponding number of disabled target nodes is equal to k.

Proof: Consider the case of tk+1 < t ≤ tk . The proof is
based on showing that the maximum value of |Λ| in (41) must
be smaller than k + 1 and that there exists a subset Λ consisting
of k target nodes which satisfy the constraints in (41). Assume
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that the size of subset Λ is given to be equal to k + 1. Then,
based on the definitions of Λk+1 and tk+1 , it is concluded that
the maximum value the minimum CRLB mini∈Λ Ci(pJ ) can
take is equal to tk+1 , which is achieved by pJ corresponding to
the solution of Scheme 2 obtained for the subnetwork consisting
of all the target nodes in subset Λk+1 . This means that the size
of Λ must be lower than k + 1 in order for mini∈Λ Ci(pJ ) ≥ t
to hold. Next, consider subset Λk whose size is k by definition.
Then, from the definitions of Λk and tk , the minimum CRLB
mini∈Λk

Ci(pJ ) achieves tk with pJ corresponding to the so-
lution of Scheme 2 obtained for the subnetwork consisting of
all the target nodes in subset Λk . �

It is noted that the solution of (41) does not have to be unique;
that is, there can be more than one solution for the problem in
(41). In Proposition 6.3, only one of the solutions is specified.

VII. SIMULATION RESULTS

In this section, the proposed schemes are investigated
through simulations. Parameter λij in (9) is computed by
λij = 100N0‖xi − yj‖−2/2 based on the free space propa-
gation model presented in [15], and the peak power limits are
assigned as P peak

� = 10, ∀ �. Also, |γi� |2 in (10) is modeled as
|γi� |2 = ‖xi − z�‖−2 , and the total power PT is normalized as
P̄T = 2PT /N0 [14]. In addition, N0 is taken as 2, and LOS con-
nections to all the anchor nodes are assumed for each target node.

In the following subsections, three different localization sce-
narios are considered to corroborate the theoretical derivations
obtained for the proposed optimization schemes. Specifically,
we provide examples for the restricted scheme properties in
Proposition 4.1, Corollary 4.2, Proposition 4.4, Corollary 4.5,
and Proposition 4.6, and for the alternative scheme properties
in Corollary 6.2 and Proposition 6.3. The first scenario includes
a network configuration where jammer nodes are placed inside
the convex hull of anchor nodes. In the second scenario, jam-
mer nodes are located outside the convex hull of anchor nodes
to explore the theoretical results under various network config-
urations. Finally, the purpose of the third scenario is to validate
the sparsity property of the optimal power allocation vector as
demonstrated in Proposition 4.6.

A. Scenario 1: Jammers Inside the Convex Hull of Anchors

For the first set of simulations, a network consisting of six
anchor nodes, five target nodes, and three jammer nodes is con-
sidered, where the node locations are as illustrated in Fig. 1.
The PMF g[i] is defined as g[1] = 0.4, g[2] = g[4] = 0.1, and
g[3] = g[5] = 0.2.

1) Restricted Scheme: In Fig. 2, the average CRLB of the
restricted scheme is plotted against α for various values of the
normalized total power P̄T , where α ∈ [α, α]. It is observed that
the average CRLB is a strictly decreasing and concave function
of α for α ∈ [α, α] in accordance with Proposition 4.4. Also, the
edge points of the curves in Fig. 2 are marked as Scheme 1 and
Scheme 2 since the restricted scheme converges to Scheme 1
for α = α and to Scheme 2 for α = α (see the paragraph before
Proposition 4.4). Moreover, the average CRLB achieved by the
restricted scheme and the values of α and α become larger as the

Fig. 2. Average CRLB versus α for the restricted schemes corresponding to
P̄T = 22, P̄T = 20, and P̄T = 18 for the scenario in Fig. 1, where α ∈ [α, α].
The edge points marked by circles and squares correspond to Scheme 1 and
Scheme 2, respectively.

Fig. 3. Average and minimum CRLBs versus λ for the restricted schemes
corresponding to P̄T = 23 and P̄T = 15 for the scenario in Fig. 1.

total power increases, which agrees with the CRLB expression
in (13) and the definitions of α and α.

In Fig. 3, the average and minimum CRLBs of the restricted
scheme are illustrated versus λ for various values of the normal-
ized total power P̄T . From the figure, it is seen that an increase in
λ can result in an increase in the average CRLB and a decrease
in the minimum CRLB, which means that as λ increases the
restricted scheme converges to Scheme 1 whereas it converges
to Scheme 2 as λ decreases; this is in fact the role assigned to λ,
which is specified by (22). In addition, it is observed that larger
average and minimum CRLBs can be attained for higher values
of the total power, as implied by the CRLB expression in (13).
Furthermore, it is noted from Fig. 3 that there can exist disconti-
nuities in the average and minimum CRLBs, which occur due to
the changes in the nature of the optimal power allocation strate-
gies of the jammer nodes. However, it can be shown that the
objective function in (22) (which is the combination of the aver-
age and the minimum CRLBs) is continuous with respect to λ.
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Fig. 4. Average and minimum CRLBs of Scheme 1, Scheme 2, and the re-
stricted scheme (for λ = 0.3) versus P̄T for the scenario in Fig. 1.

TABLE I
ALLOCATED POWERS TO JAMMER NODES FOR THE RESTRICTED SCHEME FOR

THE SCENARIO IN FIG. 1

In Fig. 4, the average and minimum CRLBs of Scheme 1,
Scheme 2, and the restricted scheme (for λ = 0.3) are plotted
versus the normalized total power. The figure emphasizes the
main characteristic of the restricted scheme; namely, the re-
stricted scheme can provide a trade-off between Scheme 1 and
Scheme 2: An increase in the minimum CRLB can be provided
at the expense of a decrease in the average CRLB, or vice versa.
Also, in compliance with the definitions of Scheme 1, Scheme 2,
and the restricted scheme, the maximum and the minimum gaps
between the average and the minimum CRLBs are, respectively,
achieved by Scheme 1 and Scheme 2 for all P̄T . Thus, it can be
concluded that the restricted scheme trades off the complexity
for a decrease or an increase in the gap between the average and
the minimum CRLBs. Furthermore, P (k)

T and ζ̃ in Corollary 4.5

are calculated as P
(k)
T = 1.2914 and ζ̃ = 0.4761, which, ac-

cording to Corollary 4.5, indicates that the restricted scheme
and Scheme 2 are identical for PT ≤ 1.2914 and λ ≤ 0.4761.
As observed from Fig. 4, the restricted scheme for λ = 0.3 and
Scheme 2 achieve the same minimum CRLB for PT ≤ 1.2914,
which complies with Corollary 4.5. In Table I, the optimal power
allocation strategies corresponding to the restricted schemes (for
λ = 0.2 and λ = 0.6) are presented for various values of P̄T for
the scenario in Fig. 1. It is observed that the optimal power
allocation strategy can assign power to one, two, or all three
jammer node(s) in different scenarios. In addition, it is observed
that as the total power limit increases further, the peak power

Fig. 5. Average and minimum CRLBs of Scheme 1, Scheme 2, and the re-
stricted scheme (for λ = 0.3) versus P̄T for the scenario in Fig. 1 with jammer
nodes uniformly distributed over a disk whose boundary is represented by
dashed lines in Fig. 1.

limit starts becoming effective. As a result, it is noted that the
optimal jamming policy may vary depending on the specific
network configuration, the choice of the design parameter λ in
(22a), the total power limit in (22b), and the peak power limit
in (22c).

In order to derive the mean jamming performance when the
jammer nodes are randomly placed over an area of interest,
simulations are carried out for the network in Fig. 1. In the
simulations, the anchor and target nodes have fixed positions
whereas the jammer nodes are uniformly distributed over a disk
centered at the original jammer positions with a radius of 1m, as
shown in Fig. 1. Fig. 5 illustrates the average and the minimum
CRLBs averaged over 1000 Monte Carlo cycles for Scheme 1,
Scheme 2, and the restricted scheme for λ = 0.3. Similar to
the fixed configuration used in Fig. 4, Fig. 5 highlights the
compromising nature of the restricted scheme. In addition, it is
observed that random deployment of jammer nodes serves as a
smoothing mechanism for the CRLB curves of all the schemes
due to the averaging effect.

2) Alternative Scheme: The alternative scheme proposed in
Section VI is investigated in Fig. 6 for the scenario in Fig. 1.
The figure plots the number of disabled target nodes versus t for
various values of normalized total power P̄T . It is observed from
the figure that the number of disabled target nodes decreases as t
increases, which is in agreement with Proposition 6.3. Also, the
jamming performance measured with respect to the alternative
scheme in (41) can be improved by increasing the total power,
which is highly intuitive. For P̄T = 11, it is calculated that Λ4 =
{1, 2, 4, 5}, Λ3 = {1, 3, 5}, Λ2 = {1, 3} and Λ1 = {1}; and for
P̄T = 22, it is calculated that Λ4 = {1, 2, 3, 5}, Λ3 = {1, 3, 5},
Λ2 = {1, 3} and Λ1 = {1}. In Table II, the optimal power allo-
cation strategies for the alternative scheme are presented along
with the corresponding values of tk for various values of P̄T for
the scenario in Fig. 1. It is noted that some jammer nodes are in-
effective in certain scenarios (e.g., for k = 1, 2, 5 and P̄T = 11)
while all the jammer nodes are assigned nonzero powers in
other scenarios (e.g., for k = 3, 4 and P̄T = 11). In addition,
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Fig. 6. Alternative schemes (for P̄T = 11 and P̄T = 22) versus t for the
scenario in Fig. 1.

TABLE II
PARAMETER tk AND ALLOCATED POWERS TO JAMMER NODES FOR THE

ALTERNATIVE SCHEME FOR THE SCENARIO IN FIG. 1

Fig. 7. The network considered in the simulations, where the anchor node po-
sitions are [−10 0], [−5 − 5

√
3], [−5 5

√
3], [5 5

√
3], [5 − 5

√
3], and [10 0] m.,

the target node positions are [−8 0], [−5 − 1], [0 5], [4 2] and [7 4] m., and the
jammer node positions are [−10 5], [0 10], and [10 5] m.

the monotonicity property of tk with respect to k, as shown in
Corollary 6.2, can be seen from Table II.

B. Scenario 2: Jammers Outside the Convex Hull of Anchors

Secondly, the network illustrated in Fig. 7 is considered. Un-
like the previous scenario, the jammer nodes are located outside
the convex hull of the anchor nodes. The PMF g[i] for this
scenario is defined as g[1] = g[2] = 0.1, g[3] = g[4] = 0.2, and
g[5] = 0.4.

Fig. 8. Average CRLB versus α for the restricted schemes corresponding
to P̄T = 20, P̄T = 17 and P̄T = 14 for the scenario in Fig. 7. The edge
points marked by circles and squares correspond to Scheme 1 and Scheme 2,
respectively.

Fig. 9. Average and minimum CRLBs versus λ for the restricted schemes
corresponding to P̄T = 20 and P̄T = 14 for the scenario in Fig. 7.

1) Restricted Scheme: In Fig. 8, the average CRLB versus α
is plotted for the restricted scheme for various values of the nor-
malized total power P̄T . In Fig. 9, the average and the minimum
CRLBs of the restricted scheme are illustrated against λ for var-
ious values of the normalized total power P̄T . In Fig. 10, the av-
erage and the minimum CRLBs of Scheme 1, Scheme 2, and the
restricted scheme (for λ = 0.5) are illustrated versus the normal-
ized total power. From the figure, it is observed that the restricted
scheme (for λ = 0.5) is identical to Scheme 2 for P̄T ≤ 9.75 and
identical to Scheme 1 for P̄T ≥ 19.28. For all of these figures,
similar observations to those for the network in Fig. 1 are made.
Table III presents the optimal power allocation strategies cor-
responding to the restricted schemes (for λ = 0.2 and λ = 0.8)
for various values of P̄T for the scenario in Fig. 7. The values of
P

(k)
T , ζ̃, and b in Corollary 4.5 are calculated as P

(k)
T = 7.3787,

ζ̃ = 0.2830, and b = 1. As seen from Table III, the optimal
strategy for λ = 0.2 is to allocate all the power to jammer node
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Fig. 10. Average and minimum CRLBs of Scheme 1, Scheme 2, and the
restricted scheme (for λ = 0.5) versus P̄T for the scenario in Fig. 7.

TABLE III
ALLOCATED POWERS TO JAMMER NODES FOR THE RESTRICTED SCHEME FOR

THE SCENARIO IN FIG. 7

b = 1 for PT = 3 and PT = 6, which is in compliance with
Corollary 4.5. In addition, the individual target CRLBs corre-
sponding to the optimal power vector for P̄T = 27 and λ =
0.2 in Table III are obtained as [0.6498 0.6498 0.8076 0.7547
2.0239]. Consider the PMF v[i] = λg[i] + (1 − λ)f [i] where
λ = 0.2, f [i] = 0.5 for i = 1, 2 and f [i] = 0 otherwise. Then,
the solution of Scheme 1 in (18) for v[i] is given by pJ

∗ =
[10 7 10]T , which satisfies (23) in Proposition 4.1 and consti-
tutes a solution of the restricted scheme in (22) for g[i], in
compliance with Proposition 4.1. Also, it is noted that f [i] con-
tains 2 point masses (i.e., the solution of Scheme 2 is determined
by 2 target nodes), which is in accordance with Proposition 4.6.
Moreover, choosing the design parameter of the problem in (21)
as α = mini∈{1,2,...,NT } Ci(pJ

∗ ) = 0.6498, the solution of (21)
is given by pJ

∗ , which agrees with Corollary 4.2.
2) Alternative Scheme: The alternative scheme is illustrated

in Fig. 11 for the scenario in Fig. 7. The figure shows the num-
ber of disabled target nodes versus t for various values of nor-
malized total power P̄T . For both P̄T = 14 and P̄T = 17, it is
calculated that Λ4 = {1, 3, 4, 5}, Λ3 = {3, 4, 5}, Λ2 = {3, 5}
and Λ1 = {5}. Based on the above results and those presented
in Section VII-A2, it should be noted that whether the relation
Λk ⊂ Λk+1 holds or not depends on the total power constraint
and the specific network configuration, which determines the

Fig. 11. Alternative schemes (for P̄T = 14 and P̄T = 17) versus t for the
scenario in Fig. 7.

TABLE IV
PARAMETER tk AND ALLOCATED POWERS TO JAMMER NODES FOR THE

ALTERNATIVE SCHEME FOR THE SCENARIO IN FIG. 7

Fig. 12. The network considered in the simulations, where the anchor node po-
sitions are [−10 0], [−5 − 5

√
3], [−5 5

√
3], [5 5

√
3], [5 − 5

√
3], and [10 0] m.,

the target node positions are [−4 2], [3 − 4] and [4 2] m., and the jammer node
positions are [−6 0], [−2 − 8], [0 7], [7 5] and [8 − 3] m.

individual target CRLBs and thus the subnetwork that leads to
the maximum max-min CRLB (see Definition 6.1). In addition,
Table IV illustrates the optimal power allocation strategies for
the alternative schemes along with the corresponding values of
tk for various values of P̄T for the scenario in Fig. 7.

C. Scenario 3: Sparsity of the Optimal Solution

In the final example, the number of jammer nodes that are
effective in the solution of the restricted scheme is investigated
for different normalized power levels. A network consisting of
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Fig. 13. Number of nonzero elements in the optimal solution of the restricted
scheme for various values of P̄T versus λ for the scenario in Fig. 12.

six anchor nodes, three target nodes, and five jammer nodes is
considered, where the network configuration is shown in Fig. 12.
The target significance levels are set as g[1] = 0.5, g[2] = 0.3,
and g[3] = 0.2. In Fig. 13, the number of nonzero elements in
the optimal jammer power vector corresponding to the restricted
scheme against λ is illustrated for various values of P̄T . As seen
from Fig. 13, the optimal solution contains at most NT = 3
jammer nodes for P̄T = 2 and P̄T = 8, which is in compliance
with Proposition 4.6 since the peak power constraint (P peak

� =
10, ∀ �) is not effective for P̄T = 2 and P̄T = 8. However, when
the peak power constraint is incorporated by setting P̄T = 20,
the solution of the restricted scheme is determined by more
than three jammer nodes for a certain range of values of λ.
Therefore, it can be concluded that the optimal jammer power
vector is sparse for sufficiently low values of P̄T (i.e., when the
peak power constraint becomes ineffective).

VIII. CONCLUDING REMARKS

In this paper, the restricted scheme has been proposed to in-
vestigate optimal power allocation strategies for jammer nodes
in a wireless localization system. The restricted scheme aims to
maximize the average CRLB of target nodes while keeping the
minimum CRLB above a predefined level under average and
peak jammer power constraints. Through theoretical analyses,
the restricted scheme has been shown to establish a trade-off
between the two extreme cases – maximization of the average
and the minimum CRLBs. Then, a closed-form solution has
been derived under certain conditions on the design parameter
that adjusts the trade-off. In addition, it has been proved that the
average CRLB of the restricted scheme is a strictly decreasing
and concave function of the constraint on the minimum CRLB
level. Furthermore, it has been demonstrated that the optimal
solution of the restricted scheme involves at most NT jammer
nodes, where NT is the number of target nodes, and that the
optimal solution of the minimum CRLB maximization scheme
corresponds to at most NJ target nodes, where NJ is the number
of jammer nodes. In order to cover more generic scenarios, an
extension to the restricted scheme has been proposed, where

target nodes are assigned to subsets depending on their sig-
nificance levels and the tolerable CRLB level is set differently
for each subset in the formulation. In addition to the restricted
scheme, an alternative scheme has been proposed, where
the number of disabled target nodes is considered as the
optimization criterion. Extensive simulations carried out for
various wireless network configurations have exemplified the
theoretical results and illustrated the trade-off characteristics of
the restricted scheme.

Theoretical and numerical results obtained in this study pro-
vide important insights into the design of efficient jamming algo-
rithms in practical scenarios. For instance, the sparsity property
of the optimal jammer power vector leads to a significant simpli-
fication of the solution for wireless networks containing fewer
target nodes than jammer nodes. In addition, the proposed power
allocation criterion puts forward a new and generalized frame-
work for power/resource optimization and thus can be employed
in different problems, such as the problem of power allocation
among anchor nodes for CRLB minimization of target nodes,
where the objective is to minimize the average CRLB while
keeping the maximum CRLB below a predefined threshold.

APPENDIX

A. Average CRLB Minimization Property of Least-Favorable
PMF

Let g[i] and g̃[i] denote, respectively, the least-favorable PMF
and any valid PMF defined over the set {1, 2, . . . , NT }. Also,
let pJ

∗ and pJ
+ represent the solutions of Scheme 1 for g[i] and

g̃[i], respectively. Then,

NT∑

i=1

g[i]Ci(pJ
∗ ) = min

i∈{1,2,...,NT }
Ci(pJ

∗ ) ≤
NT∑

i=1

g̃[i]Ci(pJ
∗ )

≤
NT∑

i=1

g̃[i]Ci(pJ
+) (47)

where the equality is due to (19), the first inequality is by def-
inition, and the last inequality follows from the fact that pJ

+ is
the solution of Scheme 1 for g̃[i]. The overall inequality in (47)
indicates that the least-favorable PMF minimizes the average
CRLB among all PMFs. �

B. Equivalence of Scheme 1 and Scheme 2

Assume that g[i] is the least-favorable PMF and that pJ
∗ is the

solution of Scheme 1 for g[i]. Then,

min
i∈{1,2,...,NT }

Ci(pJ
∗ ) =

NT∑

i=1

g[i]Ci(pJ
∗ ) ≥

NT∑

i=1

g[i]Ci(pJ )

≥ min
i∈{1,2,...,NT }

Ci(pJ ) (48)

for any power vector pJ satisfying the total and peak power
constraints. Hence, pJ

∗ is also the solution of Scheme 2. �
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C. Proof of Proposition 4.3

The steps of the proof are similar to those in [25,
Theorem 2]. Namely,

NT∑

i=1

v[i]Ci(pJ
∗ )

= λ

NT∑

i=1

g[i]Ci(pJ
∗ ) + (1 − λ)

NT∑

i=1

f [i]Ci(pJ
∗ ) (49)

= λCavg(pJ
∗ ) + (1 − λ) min

i∈{1,2,...,NT }
Ci(pJ

∗ ) (50)

≤ λ̃ Cavg(pJ
∗ ) + (1 − λ̃) min

i∈{1,2,...,NT }
Ci(pJ

∗ ) (51)

≤ λ̃

NT∑

i=1

g[i]Ci(pJ
∗ ) + (1 − λ̃)

NT∑

i=1

f̃ [i]Ci(pJ
∗ ) (52)

=
NT∑

i=1

(
λ̃ g[i] + (1 − λ̃) f̃ [i]

)
Ci(pJ

∗ ) (53)

=
NT∑

i=1

ṽ[i]Ci(pJ
∗ ) ≤

NT∑

i=1

ṽ[i]Ci(pJ
+) (54)

where (50) follows from (23), (51) follows from the inequality
λ̃ ≥ λ and that Cavg(pJ

∗ ) ≥ mini∈{1,2,...,NT } Ci(pJ
∗ ), (52) is

due to the relation between the minimum and the average oper-
ators, and (54) follows from that pJ

+ is the solution of Scheme 1
for ṽ[i]. Hence, (30) in Proposition 4.3 is obtained. �

D. Proof of Proposition 4.4

The proof is constructed based on similar arguments to those
in [25, Lemma]. First, the concavity of Cavg(pJ

r (α)) is proved.
From the definition of the restricted scheme in (21), it can be
concluded that Cavg(pJ

r (α)) is a non-increasing function of α.
The new power vector pJ is defined as a randomization of two
power vectors corresponding to the solutions of the restricted
scheme for α1 and α2 :

pJ � κ pJ
r (α1) + (1 − κ)pJ

r (α2) (55)

where 0 ≤ α1 ≤ α2 ≤ α and 0 < κ < 1. From the definition of
pJ , it is clear that pJ satisfies both the total and peak power
constraints. The following relation on the average CRLB corre-
sponding to pJ is obtained via (15) and (55):

Cavg(pJ ) = κCavg(pJ
r (α1)) + (1 − κ)Cavg(pJ

r (α2)). (56)

Similarly, for the minimum CRLB corresponding to pJ ,

min
i∈T

Ci(pJ ) ≥ κ min
i∈T

Ci(pJ
r (α1)) + (1 − κ) min

i∈T
Ci(pJ

r (α2))

≥ κα1 + (1 − κ)α2 , (57)

where T = {1, 2, . . . , NT }. Let α = min
i∈T

Ci(pJ ) and α∗ =

κα1 + (1 − κ)α2 , then α ≥ α∗ is concluded from (57). This

results in

Cavg(pJ
r (α∗)) ≥ Cavg(pJ

r (α)) (58)

≥ Cavg(pJ ) (59)

= κCavg(pJ
r (α1)) + (1 − κ)Cavg(pJ

r (α2))
(60)

which proves the concavity of Cavg(pJ
r (α)), where (58) fol-

lows from the non-increasing property of Cavg(pJ
r (α)), (59)

is due to the definition of the restricted scheme with α =
mini∈T Ci(pJ ), and (60) follows from (56).

Next, the strictly decreasing property of Cavg(pJ
r (α)) is

proved. To that end, the following equality is first shown to
hold for α ∈ (α, α):

min
i∈T

Ci(pJ
r (α)) = α. (61)

Assume that mini∈T Ci(pJ
r (α)) > α, and define pJ � κ pJ

1
+ (1 − κ)pJ

r (α), where 0 < κ < 1 is selected so that
mini∈T Ci(pJ ) ≥ α (it is clear that pJ satisfies the average
and peak power constraints). The existence of such a κ can be
proved as follows:

min
i∈T

Ci(pJ ) = min
i∈T

(
κ dT

i pJ
1 + (1 − κ)dT

i pJ
r (α)

)
(62)

≥ κ min
i∈T

dT
i pJ

1 + (1 − κ)min
i∈T

dT
i pJ

r (α) (63)

= κ min
i∈T

Ci(pJ
1 ) + (1 − κ)min

i∈T
Ci(pJ

r (α))

(64)

where (62) and (64) follows from (15). Since mini∈T Ci(pJ
1 ) =

α < α and mini∈T Ci(pJ
r (α)) > α, there exists κ ∈ (0, 1) such

that the expression in (64) is equal to α. Hence, the proof
for the existence of κ is completed. From the definition of
Scheme 1, the average CRLB corresponding to pJ

1 is larger
than that corresponding to pJ

r (α) for α ∈ (α, α), which implies
that Cavg(pJ ) > Cavg(pJ

r (α)), leading to a contradiction with
the definition of the restricted scheme. (Note that pJ satisfies the
constraints in (21).) Thus, (61) must hold. Finally, let α < α1 <
α2 < α, and assume that Cavg(pJ

r (α1)) = Cavg(pJ
r (α2)).

Then, pJ
r (α1) is also the solution of the restricted scheme for

α2 , which requires that mini∈T Ci(pJ
r (α2)) = α1 , which in turn

contradicts with the fact that mini∈T Ci(pJ
r (α2)) = α2 . There-

fore, Cavg(pJ
r (α1)) > Cavg(pJ

r (α2)) must hold. �
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