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We propose a novel algorithm for distributed processing applications constrained by the available 
communication resources using diffusion strategies that achieves up to a 103 fold reduction in the 
communication load over the network, while delivering a comparable performance with respect to the 
state of the art. After computation of local estimates, the information is diffused among the processing 
elements (or nodes) non-uniformly in time by conditioning the information transfer on level-crossings of 
the diffused parameter, resulting in a greatly reduced communication requirement. We provide the mean 
and mean-square stability analyses of our algorithms, and illustrate the gain in communication efficiency 
compared to other reduced-communication distributed estimation schemes.
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1. Introduction

In tandem with the increasing computational capabilities of 
processing units and the growing amount of generated data, the 
demand on distributed networks and decentralized data process-
ing algorithms have remained an area of growing interest [1–3]. 
With intrinsic characteristics such as robustness and scalability, 
distributed architectures provide enhanced efficiency and perfor-
mance for a wide variety of applications ranging from adaptive 
filtering, sequential detection, sensor networks, to distributed re-
source allocation [4–9]. However, successful implementation of 
such applications depends on a substantial amount of communica-
tion resources. As an example, in smart grid applications, measure-
ment units operating with high frequency put the communication 
infrastructure of the grid under significant pressure [10]. This calls 
for resource-efficient, event-triggered distributed estimation solu-
tions that incorporate event-driven communication [11–15]. To this 
end, in this paper, we construct distributed architectures that have 
a significantly reduced communication load without compromising 
performance. We achieve this by introducing novel event triggered 
communication architectures over distributed networks.

In a distributed processing framework, a group of measurement-
capable agents, termed nodes, in a network cooperate with one an-
other in order to estimate an unknown common phenomenon [16]. 
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Among the different approaches for distributed estimation, we 
specifically consider diffusion-based protocols that exploit the spa-
tial diversity of the network by restricting information sharing 
to neighboring nodes, without considering any central process-
ing unit or a fusion center [16,17]. Diffusion protocols provide 
an inherently scalable data processing framework that is resilient 
to changes in network topology such as link failures as well as 
changes in the statistical properties of the unknown phenomenon 
that is measured [16]. However, the requirement for all nodes to 
exchange their current estimates with their neighbors at each it-
eration places a heavy burden on the available communication 
resources [18].

Here, we propose novel event-triggered distributed estima-
tion algorithms for communication-constrained applications that 
achieve up to a 103 fold reduction in the communication load 
over the network. We achieve this by leveraging the uneven dis-
tribution of the events over time to efficiently reduce the commu-
nication load in real life applications. In particular, we condition 
an information exchange between the neighboring nodes on the 
level-crossings of the diffused parameter [19], unlike using a fixed 
rate of diffusion, cf. [16,17]. Furthermore, we show that it is suffi-
cient to only diffuse the information indicating the direction of the 
change in the levels, which can be handled using only two bits for 
a slowly-varying parameter.

Reduced communication diffusion is extensively studied in the 
signal processing literature [18,20–23]. In [18,20,21], the authors 
restrict the number of active links between neighbors using a 
probabilistic framework, or by adaptively choosing a single link 
of communication for each node. In [22], local estimates are ran-
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Fig. 1. An example distributed network with bidirectional connections. Circular area 
represents the neighborhood of the ith node.

domly projected, and the information transfer between the nodes 
is reduced to a single bit. In [23], only certain dimensions of the 
parameter vector are transmitted. On the other hand, in this paper, 
we reduce the communication load down to only a single bit or a 
couple of bits, unlike [18,20,21,23], in which authors diffuse pa-
rameters in full precision. Furthermore, we regulate the frequency 
of information exchange depending on the rate of change of the 
parameter, unlike [22] where the authors transfer information at 
each single time instant.

Our main contributions are as follows. We introduce algorithms 
for distributed estimation that i) significantly reduce the commu-
nication load on the network, ii) while continuing to provide equal 
performance with the state of the art. We also perform the mean 
and mean-square stability analyses of our algorithms. Through nu-
merical examples, we show that our algorithms provide significant 
reduction in the communication load over the network.

The paper is organized as follows: In Section 2, we introduce 
the distributed estimation framework and discuss the adapt-then-
combine (ATC) diffusion strategy. We further detail our algorithms 
in Section 3, where we formulate the level-triggered distributed 
estimation algorithm. In Section 4, we present the algorithmic de-
scription of the proposed scheme. In Sections 5 and 6, we provide 
respectively the mean and mean-square stability analyses of the 
proposed distributed adaptive filter and state the conditions for 
stability. We provide experimental verification of the algorithm in 
Section 7, and concluding remarks in Section 8.

2. Problem description

Consider a network with N nodes that are distributed spa-
tially as shown in Fig. 1. Each node sequentially observes a noise-
corrupted transformation of an unknown parameter wo through a 
linear model

di,t = uT
i,t wo + vi,t, i = 1, . . . , N (1)

and diffuses information to its neighboring nodes j ∈ Ni ,1 where 
wo ∈ R

M is the unknown phenomenon, with ui,t and vi,t rep-
resenting the regressor and the noise processes, respectively. The 
additive observation noise vi,t and the regressor ui,t are assumed 
to be temporally and spatially independent, and independent of 
one another, with E

[
ui,t uT

i,t

]
= σ 2

u,i I M , E
[

v2
i,t

]
= σ 2

v,i . For each 
node i, we assume that at time t only the regressor ui,t and the 

1 We represent vectors (matrices) by bold lower (upper) case letters. For a vec-
tor a (a matrix A), aT (AT ) is the transpose. ‖a‖ represents the Euclidean norm. 
The diag {A} returns a new matrix with only the main diagonal of A while diag {a}
puts a on the main diagonal of the new matrix. col {a1, . . . ,aN } produces a column 
vector formed by column-wise stacking its arguments on top of one another. I M

represents the M × M identity matrix. ⊗ stands for the Kronecker product, Tr{·}
stands for the trace.
observation di,t along with the parameter estimates from neigh-
boring nodes φ j,t , j ∈ Ni are available to it. Therefore each node 
incurs the cost for the parameter w [17]

J i(w) = 1

2
E|di,t − uT

i,t w|2 + 1

2

∑
j∈Ni\{i}

αi, j
∥∥w − φ j

∥∥2
2 , (2)

where αi, j is a non-negative, real coefficient satisfying 
∑N

j=1 αi, j =
1 that assigns different weights to different neighbors. In order to 
minimize (2) in an online manner, we employ the stochastic gra-
dient approach [24]. To this end, we calculate the gradient for (2)
as[∇w J i(w)

]T = (
Ru,i w − Rdu,i

) +
∑

j∈Ni\{i}
αi, j(w − φ j), (3)

where Ru,i = E[ui,t uT
i,t] and Rdu,i = E[ui,tdi,t]. Using the instan-

taneous approximations Ru,i ≈ ui,t uT
i,t and Rdu,i ≈ ui,tdi,t in (3), 

we obtain an approximate expression for the gradient of the cost 
function in (3) as[∇w J i(w)

]T ≈ ui,t(uT
i,t w i,t − di,t) −

∑
j∈Ni\{i}

αi, j(φ j − w i,t). (4)

Considering that we are optimizing a sum of two convex cost func-
tions in (2) with the use of (4), we note that we can carry out the 
optimization using incremental solutions over (2) where the up-
date is performed in two steps. Since we consider the adapt-then-
combine (ATC) diffusion strategy for this paper, first we create an 
intermediate estimate by using the gradient of the first summand 
in (2) and then update the estimate using the second summand in 
(2) as [17]

φi,t+1 = w i,t + μi ui,t(di,t − uT
i,t w i,t), (5)

w i,t+1 = φi,t+1 + ηi

∑
j∈Ni\{i}

αi, j(φ j,t+1 − φi,t+1), (6)

where μi and ηi are positive step sizes. Note that we have re-
placed the estimates coming from neighbors φ j with their instan-
taneous approximations φ j,t+1. Now, we represent the equation in 
(6) as

w i,t+1 =
∑
j∈Ni

pi, jφ j,t+1, (7)

where we have defined pi,i = (1 − ∑
j∈Ni\{i} ηiαi, j) and pi, j =

ηiαi, j for j �= i to obtain (7), yielding the network matrix P = [pi, j]
comprised of the combination weights 

∑N
j=1 pi, j = 1 with pi, j ≥ 0.

3. Distributed estimation with level triggered sampling

The well-known ATC full diffusion scheme (7) requires all nodes 
in the network to communicate their current estimates (i) in their 
entirety, and (ii) at a fixed rate to all their neighboring nodes [17]. 
We propose a new scheme, which achieves an increased commu-
nication efficiency by conditioning the diffusion of information on 
the trigger of an event, instead of relying on a fixed rate of diffusion. 
Our approach considerably reduces the load on communication re-
sources since only “significant changes” in the diffused parameter, 
e.g., an abrupt change in the local estimate, are conveyed based on 
the particular realization of the signal.

To clarify the framework, we consider the diffusion of a scalar 
parameter ξi,t from a given node i to a neighboring node j. As an 
example, this information can be a single component of the esti-
mates [23], or the error associated with an additional estimation 
layer [22]. In our distributed framework, due to communication 
constraints, a quantized version of the original parameter, ξq is 
i,t
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Fig. 2. Illustration of the operation of the LC quantizer. Blue dots represent the 
original node estimates, while red ones represent the quantized version of the cor-
responding estimates. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

shared. We aim to form a quantization scheme, which guarantees 
that ξi,t and ξq

i,t are approximately equal to each other for all t , 
while at the same time keeping the load on communication re-
sources relatively small.

To solve this problem, we propose an event-triggered com-
munication algorithm where, as the event-triggered approach, we 
specifically use level crossing (LC) quantization [19]. To clarify the 
framework, suppose we have a discrete time signal ξi,t as shown 
in Fig. 2 that represents the information to be communicated from 
the node i to the node j, e.g., the estimated parameter, or the es-
timation error. In conventional quantization, at each time instant, 
we sample and quantize this parameter. On the other hand, in the 
LC quantization, we consider a set of levels S � {l1, . . . , lK }, which 
is illustrated in Fig. 2. At each discrete time index t , the node i
checks whether a level-crossing has occurred on ξi,t . When the 
parameter ξi,t crosses a level li,t , i.e.,(
ξi,t−1 − li,t

) (
ξi,t − li,t

)
< 0 for some li,t ∈ S,

the node i transmits information to its neighboring nodes. For ex-
ample, this information can be the direction of the level-crossing 
[19]. A neighboring node j uses this received information to form 
an estimate ξq

i,t for ξi,t .
If there is an information transfer by the node i at time t , 

the receiving node j estimates the parameter as the level through 
which a level crossing has occurred:

ξ
q
i,t = li,t . (8)

For the time instants when the node i is silent, the node j in-
fers that no significant change in the parameter has taken place, 
and uses the estimated parameter value from the previous time 
instant:

ξ
q
i,t = ξ

q
i,t−1. (9)

We note that the set of levels S is known by all nodes in the 
network. Hence, as the diffused information, it is sufficient for 
the node i to only convey how ξ

q
i,t changes compared to the 

previously-crossed level ξq
i,t−1. In particular, we note the follow-

ing two cases: In the first case, the parameter ξi,t changes slowly 
enough such that a crossing through multiple levels do not oc-
cur, so that the node i only needs to indicate the direction of the 
change in levels. Therefore, we transmit two bits for this case, one 
for indicating that the single level crossing occurs and the other 
for indicating the direction of crossing. In the second case, we may 
have multiple crossings where we directly code the full location 
information of the new level value ξq
i,t with a flag bit indicating 

multiple level crossing occurred using 
log2(K )� +1 bits. As shown, 
this approach significantly lowers the amount of communication 
while maintaining estimation performance.

4. Algorithm description

In this section, we present the full algorithmic description of 
the proposed diffusion scheme with the level-crossing quantization 
[19]. At time t , a given node i in the network makes the scalar 
observation di,t through the linear model di,t = uT

i,t wo +vi,t , which 
is then used to update its intermediary local estimate using the 
LMS adaptation

φi,t+1 = (I M − μi ui,t uT
i,t)w i,t + μi ui,tdi,t .

Due to the quantized communication framework, a neighboring 
node j does not have access to the true value of the parameter 
φi,t+1, which has M entries. As such, based on the limited infor-
mation it receives from the node i, the node j tries to estimate 
this parameter as the M-entry vector φq

i,t+1. Specifically, in the LC 
quantization, the node j receives information about how the cur-
rent values of the entries of the parameter φ i,t+1 have changed 
relative to the most recent estimate the node j has access to, 
namely φq

i,t . The node i records the most recent estimate, φq
i,t , as a 

reference and diffuses information to the neighboring nodes j ∈ Ni
indicating how the current estimate φ i,t+1 compares to this ref-
erence on a per-entry basis. In particular, the node i makes this 
comparison by checking for a level crossing between correspond-
ing entries of the two vector quantities φq

i,t and φ i,t+1. If there is 
a level crossing on an entry, the node i transmits information to 
its neighbors through a channel frequency allocated to this par-
ticular entry. If there is a single level-crossing, this information 
indicates the direction of the level crossing; otherwise, the trans-
mitted information directly specifies the location of the new level. 
A neighboring node j then constructs the estimate φq

i,t+1 using (8)
or (9) on a per-entry basis, depending on whether the node i dif-
fuses information or not, respectively, at time t .

While diffusing information related to its own local estimate, 
the node i also receives information from the neighboring nodes 
j representing their local estimates φ j,t+1. For each neighboring 
node j, the node i uses this diffused information to reconstruct 
φ

q
j,t+1 using (8) or (9). The final estimate w i,t+1 is then con-

structed using the combination

w i,t+1 = pi,iφi,t+1 +
∑

j∈Ni\{i}
pi, jφ

q
j,t+1.

Remark. In order to keep the presentation clear, we illustrate the 
special case of M = 1 of the proposed algorithm in Algorithm 1, 
which can be generalized to arbitrary M in a straightforward man-
ner.

Remark. We note that an alternative approach to dealing with the 
M > 1 case is to have the nodes in the network transmit only a 
certain entry of their intermediary estimates φ i,t . As an example, 
in this case, the nodes can cycle through different entries across 
time in a round-robin fashion. The non-communicated entries are 
replaced by the corresponding entries in the local intermediary es-
timate [23]. This approach is explored in Section 7.

5. Mean stability analysis

To continue with the stability analysis of the proposed scheme, 
we assume that the regressors ui,t are temporally and spatially 
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Algorithm 1 ATC diffusion LMS with the LC quantization, M = 1.
1: for i = 1 to N do

Initialization:
2: wi,0 = φ

q
i,0 = 0

3: end for
4: for t ≥ 0 do
5: for i = 1 to N do

Local adaptation:
6: φi,t+1 = (1 − μi u2

i,t )wi,t + μi ui,tdi,t

Check for level crossing:
7: if ∃ li,t ∈ S such that

(φ
q
i,t − li,t) (φi,t+1 − li,t) < 0 then

8: if The crossing is to an adjacent level then
9: Diffuse the direction of the crossing

10: else
11: Diffuse the location of the new level
12: end if
13: Locally store φq

i,t+1 = li,t in record

14: else
15: Remain silent
16: Locally set φq

i,t+1 = φ
q
i,t

17: end if

Reconstruction:
18: for all j ∈Ni \ {i} do
19: if node j is silent then
20: Reconstruct as φq

j,t+1 = φ
q
j,t

21: else
22: Reconstruct φq

j,t+1 using the diffused
information

23: end if
24: end for

Combination:
25: wi,t+1 = pi,iφi,t+1 + ∑

j∈Ni\{i} pi, jφ
q
j,t+1

26: end for
27: end for

independent, zero mean and white, with covariance matrix �i �
E

[
ui,t uT

i,t

]
= σ 2

u,i I M . The observation di,t at node i is assumed to 
follow a linear model of the form

di,t = uT
i,t wo + vi,t, (10)

where {vi,t}t≥1 is a zero mean white Gaussian noise process with 
variance σ 2

v,i , independent of {u j,t}t≥1 ∀i, j.
In our proposed level-triggered estimation framework, at each 

node i, the diffusion LMS update for the ATC strategy takes the 
form

φi,t+1 = (I M − μi ui,t uT
i,t)w i,t + μi ui,tdi,t, (11)

w i,t+1 = pi,iφi,t+1 +
∑

j∈Ni\{i}
pi, jφ

q
j,t+1, (12)

where the combination matrix P is taken to be stochastic, with its 
rows summing up to unity. We rewrite the expressions (11) and 
(12) as

φi,t+1 = (I M − μi ui,t uT
i,t)w i,t + μi ui,tdi,t, (13)

w i,t+1 =
∑
j∈Ni

pi, jφ j,t+1 −
∑

j∈Ni\{i}
pi, jα j,t+1, (14)

by defining the quantization error for node j

α j,t � φ j,t − φ
q
j,t .

We represent the diffusion update over the network N in state-
space form by introducing the following global quantities:
dt � col
{

d1,t, . . . ,dN,t
}

vt � col
{

v1,t, . . . , v N,t
}

wo � col {wo, . . . , wo} U t � diag
{

u1,t, . . . , uN,t
}

M � diag {μ1 I M , . . . ,μN I M} wt � col
{

w1,t, . . . , w N,t
}

φt � col
{
φ1,t, . . . ,φN,t

}
φ

q
t � col

{
φ

q
1,t, . . . ,φ

q
N,t

}
αt � col

{
α1,t, . . . ,αN,t

}
G � P ⊗ I M

P C � P − diag {P } G C � P C ⊗ I M

Using the above-defined quantities, the diffusion updates (13), (14)
take the following global state-space form:

φt+1 = (I MN − MU t U T
t )wt + MU tdt, (15)

wt+1 = Gφt+1 − G Cαt+1. (16)

Similarly, the data model (10) can be expressed in terms of the 
global quantities as

dt = U T
t wo + vt . (17)

To facilitate the mean stability analysis, we define the global 
deviation parameters

w̃t � wo − wt,

φ̃t � wo − φt .

After substituting (17) and subtracting both sides of (15), (16) from 
wo , the diffusion updates in terms of the deviation parameters 
take the following form:

φ̃t+1 = (I MN − MU t U T
t )w̃t − MU t vt, (18)

w̃t+1 = Gφ̃t+1 + G Cαt+1, (19)

where we have used the relation G wo = wo , which results from 
the stochastic nature of P .

The expressions (18), (19) can be expressed compactly as

w̃t+1 = G(I MN − MU t U T
t )w̃t − G MU t vt + G Cαt+1. (20)

Assumption. The quantization error over the network αt has zero 
mean. This is a reasonable assumption for the analysis of quanti-
zation effects [24]. The applicability of the assumption is verified 
by our experiments in Section 7.

Taking expectations of both sides of (20) yields

E
[

w̃t+1
] = G(I MN − M�) E

[
w̃t

]
, (21)

where � � diag {�1, . . . ,�N } is block diagonal. For mean stability 
and asymptotic unbiasedness of the distributed filter (11)–(12), we 
require that the spectral radius |G(I MN − M�)| < 1, which, not-
ing that G is stochastic with nonnegative entries, is equivalent to 
requiring

|(I MN − M�)| < 1, (22)

by the Theorem 4.4 of [25]. Noting that the eigenvalues of the 
block diagonal matrix I MN − M� is the union of the eigenvalues 
of its individual blocks I M −μi�i where �i = σ 2

u,i I M ; we conclude 
that the distributed filter is mean stable if |1 − μiσ

2
u,i| < 1, i =

1, . . . , N , i.e., if

0 < μi <
2

σ 2
u,i

i = 1, . . . , N,

which provides the stability condition of the proposed algorithm.
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6. Mean-square stability

We utilize the weighted energy relation approach [24] to pro-
ceed the mean square transient analysis of the distributed fil-
ter. Through a positive-definite weighting matrix �, taking the 
weighted norm of both sides of (20) yields:

w̃ T
t+1�w̃t+1 =

w̃ T
t (I MN − MU t U T

t )T G T �G(I MN − MU t U T
t )w̃t

− 2v T
t U T

t M G T �G(I MN − MU t U T
t )w̃t

+ 2αT
t+1G T

C �G(I MN − MU t U T
t )w̃t

− 2v T
t U T

t M G T �G C αt+1

+ v T
t U T

t M G T �G MU t vt

+ αT
t+1G T

C �G Cαt+1. (23)

Noting that vt is zero-mean and independent of U t and w̃t , and 
taking the expected value of both sides of (23) yields the following 
variance relation:

E‖w̃t+1‖2
� = E‖w̃t‖2

�′

+ 2E
[
αT

t+1G T
C �G(I MN − MU t U T

t )w̃t

]
− 2E

[
v T

t U T
t M G T �G Cαt+1

]
+ E

[
v T

t U T
t M G T �G MU t vt

]
+ E

[
αT

t+1G T
C �G C αt+1

]
, (24)

where

�′ � G T �G − G T �G MU t U T
t − U t U T

t M G T �G

+ U t U T
t M G T �G MU t U T

t .

By the temporal independence of the regressor process U t and the 
independence of the noise process vt from U t , we have the result 
that U t is independent of w̃t . Hence, the random weighting matrix 
�′ can be replaced by its mean value �′ � E

[
�′] in (24). Thus,

�′ = G T �G − G T �G M� − �M G T �G

+ E
[

U t U T
t M G T �G MU t U T

t

]
, (25)

where � � E
[
U t U T

t

]
. Substituting the φ̃t+1 expression from (18)

into (24) yields the following final form of the variance relation

E‖w̃t+1‖2
� = E‖w̃t‖2

�′

+ 2E
[
αT

t+1G T
C �Gφ̃t+1

]
+ E

[
αT

t+1G T
C �G C αt+1

]
+ E

[
v T

t U T
t M G T �G MU t vt

]
. (26)

To capture the mean-square behavior of the adaptive net-
work, we express the relations (25), (26) in a compact form 
by using the convenient vector notation [24]. In particular, we 
use the bvec{·} block vectorization operation [16] which trans-
forms an arbitrary MN × MN block matrix � with the (i, j)th 
block �i j of size M × M into the vector col {σ 1, . . . ,σ N}, where 
σ j � col

{
vec{�1 j}, . . . ,vec{�N j}

}
. We also use the block Kro-

necker product A � B defined as having the (i, j)th block

[A � B]i j =
⎡
⎢⎣

Ai j ⊗ B11 . . . Ai j ⊗ B1N
...

. . .
...

A ⊗ B . . . A ⊗ B

⎤
⎥⎦ , (27)
i j N1 i j N N
which is related to the bvec{·} operator via bvec{ABC} =
(C T � A) bvec{B}. Defining σ � bvec{�} and vectorizing both sides 
of (25) yields

bvec{�′} = ((I MN � I MN) − (�M � I MN)

− (I MN � �M)) (G T � G T )σ

+ bvec{E
[

U t U T
t M G T �G MU t U T

t

]
}. (28)

The term E
[
U t U T

t M G T �G MU t U T
t

]
on the right-hand side of 

(28) can be vectorized by resorting to the Gaussian factoriza-
tion theorem [16,17]. We let �̃ = M G T �G M with (i, j)th block 
�̃i, j and with the vectorized form bvec{�̃} = col

{
σ̃ 1, . . . , σ̃ j

}
where σ̃ j = col

{
σ̃ 1 j, . . . , σ̃ N j

}
. Then, the (k, l)th block �kl of � �

E
[

U t U T
t �̃U t U T

t

]
is given by

�kl =
{

�k�̃kl�l for k �= l,

�k�̃kl�k + 2�k Tr{�̃kk�k} for k = l,

with the vectorized form

γ kl =
{

(�l ⊗ �k) σ̃ kl for k �= l,(
(�l ⊗ �k) + 2rkrT

k

)
σ̃ kl for k = l,

by the factorization theorem, where �k � E
[

uk,t uT
k,t

]
, rk �

vec{�k}. Letting bvec{�} = col
{
γ 1, . . . ,γ j

}
where γ j =

col
{
γ 1 j, . . . ,γ N j

}
, we observe that we can express γ j in the form

γ j = A jσ̃ j,

where A j � diag
{
� j ⊗ �1, . . .

(
� j ⊗ � j

) + 2r jrT
j , . . . ,� j ⊗ �N

}
. 

Further defining A � diag {A1, . . . ,AN }, we arrive at the represen-
tation

bvec{�} = Abvec{�̃} = A(M � M)(G T � G T )σ . (29)

Substituting (29) to (28) yields

bvec{�′} = ((I MN � I MN) − (�M � I MN)

− (I MN � �M) +A(M � M)) (G T � G T )σ . (30)

The term E
[

v T
t U T

t M G T �G MU t vt
]

in (26) can be verified to be

E
[

v T
t U T

t M G T �G MU t vt

]
= E

[
Tr{v T

t U T
t M G T �G MU t vt}

]
= E

[
Tr{�G MU t vt v T

t U T
t M G T }

]
= Tr{�G M H M G T }, (31)

where we have defined H = E
[
U t vt v T

t U T
t

]
. We observe that 

H has the (k, l)th block Hkl = σ 2
v,k�kδkl , which yields H =

(�v ⊗ I M)�, where �v � E
[

vt v T
t

]
. Thus (31) becomes

E
[

v T
t U T

t M G T �G MU t vt

]
= Tr{�G M(�v ⊗ I M)�M G T }
= ((G M � G M)bvec{(�v ⊗ I M)�})T σ . (32)

Similarly the remaining terms in the RHS of (26) can be verified to 
be
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E
[
αT

t+1G T
C �Gφ̃t+1

]
= ((G � G C )bvec{E[αt+1φ̃

T
t+1]})T σ ,

E
[
αT

t+1G T
C �G Cαt+1

]
= ((G C � G C )bvec{E[αt+1α

T
t+1]})T σ .

(33)

Defining the quantities

bt � (G M � G M)bvec{(�v ⊗ I M)�} + (G � G C )bvec{E[αt φ̃
T
t ]}

+ (G C � G C )bvec{E[αtα
T
t ]},

F � ((I MN � I MN) − (�M � I MN) − (I MN � �M)

+ A (M � M)) (G T � G T ), (34)

and further using the shorthand E‖w̃t‖2
σ for E‖w̃t‖2

bvec−1(σ )
, yields 

the following compact form for the weighted energy recursion:

E‖w̃t+1‖2
σ = E‖w̃t‖2

Fσ + bT
t+1σ (35)

Remark. We note that the expectations E[αt+1φ̃
T
t+1] and

E[αt+1αT
t+1] present some difficulty for further analytical simpli-

fications in closed form, in exact or approximate terms. This is 
caused by the large degree with which the quantization error term 
αt is coupled with itself as well as the intermediary parameter de-
viation φ̃t nonlinearly through the non-deterministic reference lev-
els {φq

i,t′ }t′≤t against which the level crossing events are checked, 
which evolve through (13)–(14). We further note that invoking an 
approximation based on independence arguments for E[αt+1φ̃

T
t+1], 

which captures the covariances between the intermediary param-
eter deviations and the quantization errors over arbitrary pairs of 
nodes on the network, is not feasible in general unless further 
assumptions are made on the number of quantization levels em-
ployed so that the deviations become statistically less sensitive 
on the error terms. We stress that the lack of closed-form ex-
pressions for these expectations does not hamper our analysis for 
the mean-square stability, since requiring that the aforementioned 
terms remain bounded is sufficient for the purposes of establishing 
a bound for the (weighted) mean-square deviation E‖w̃t‖2

σ .

Iteration of (35) yields the recursions

E‖w̃t+1‖2
σ = E‖w̃t‖2

Fσ + bT
t+1σ

E‖w̃t+1‖2
Fσ = E‖w̃t‖2

F 2σ
+ bT

t+1 Fσ

...

E‖w̃t+1‖2
F N2 M2−1σ

= E‖w̃t‖2
F N2 M2

σ
+ bT

t+1 F N2 M2−1σ . (36)

Using Cayley–Hamilton theorem with characteristic polynomial 
p(x) for F results in

F N2 M2 = −pN2 M2−1 F N2 M2−1 − . . . − p1 F − p0.

Substituting to (36) then results in the expression

E‖w̃t+1‖2
F N2 M2−1σ

= −pN2 M2−1 E‖w̃t‖2
F N2 M2−1σ

− . . . − p0 E‖w̃t‖2
σ

+ bT
t+1 F N2 M2−1σ ,

which can be placed into the state space form

Wt+1 = FWt +Yt+1, (37)

where
Wt �

⎡
⎢⎢⎢⎢⎣

E‖w̃t‖2
σ

E‖w̃t‖2
Fσ

...

E‖w̃t‖2
F (N2 M2−1)σ

⎤
⎥⎥⎥⎥⎦ , Yt �

⎡
⎢⎢⎢⎢⎣

bT
t σ

bT
t Fσ
...

bT
t F N2 M2−1σ

⎤
⎥⎥⎥⎥⎦ (38)

F �

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−p0 −p1 −p2 . . . −pN2 M2−1

⎤
⎥⎥⎥⎦ . (39)

To make the mean-square stability analysis more tractable, we 
introduce the following assumption:

Assumption. The quantization error covariances E
[
αt+1φ̃

T
t+1

]
and 

E
[
αt+1αT

t+1

]
remain bounded, with 

∥∥∥E
[
αt+1φ̃

T
t+1

]∥∥∥
F
,∥∥E

[
αt+1αT

t+1

]∥∥
F

< A for some A > 0 for the Frobenius norms.

Using the assumption, we obtain a bound the norm ‖bt‖2 as

‖bt‖2 ≤ ‖(G M � G M)bvec{(�v ⊗ I M)�}‖2

+ ‖G � G C ‖2

∥∥∥bvec{E[αt φ̃
T
t ]}

∥∥∥
2

+ ‖G C � G C ‖2

∥∥∥bvec{E[αtα
T
t ]}

∥∥∥
2

≤ ‖(G M � G M)bvec{(�v ⊗ I M)�}‖2

+ A (‖P‖2 + ‖P C ‖2)‖P C ‖2 � B.

Inspecting (39), we observe that the boundedness of ‖bt‖2 im-
plies the boundedness of ‖Yt‖2, hence ∃C > 0 s.t. ‖Yt‖2 < C ∀t .

The recursion (37) can be solved for Wt in closed form as

Wt = F tW0 +
t−1∑
n=0

FnYt−n. (40)

Using (40), we can obtain a bound for ‖Wt‖2 as

‖Wt‖2 ≤ ‖F‖t
2 ‖W0‖2 +

t−1∑
n=0

‖F‖n
2 ‖Yt−n‖2

≤ ‖F‖t
2 ‖W0‖2 + C

t−1∑
n=0

‖F‖n
2

= ‖F‖t
2 ‖W0‖2 + C

1 − ‖F‖t
2

1 − ‖F‖2
(41)

where we have used the fact that since F is in the form of a 
companion matrix for F , they share the same set of eigenvalues.

We note that requiring that ‖Wt‖2 remains bounded is suffi-
cient to guarantee the mean-square stability of the overall system 
since doing so ensures that E‖w̃t‖2

σ remains bounded. Thus, by 
(41), the mean-square stability condition reduces to the matrix F
given by (34) being stable. Hence in order to ensure MS stability, it 
is sufficient that the step sizes μi are chosen such that the matrix 
F is stable.

7. Experiments

In this section, we demonstrate the significant reduction in the 
communication load achieved by our algorithms while providing 
equal performance with respect to the state of the art.

For the first part of the simulations, we consider a sample 
network consisting of N = 10 nodes, where each node makes its 
observation through the linear model
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di,t = uT
i,t wo + vi,t, i = 1, . . . , N. (42)

The regressor data ui,t are zero mean i.i.d. Gaussian with stan-
dard deviations σu,i chosen randomly from the interval (0.3, 0.8). 
The observation noises are generated from a Normal distribution 
with standard deviations σv,i chosen randomly from the interval 
(0.1, 0.3). In Fig. 3, we depict the network topology and the net-
work’s statistical profile to show how the signal power and the 
noise power vary across the network.

The unknown vector parameter wo with M = 10 components 
is randomly chosen from a Normal distribution and normalized to 
have a unit energy. We changed the source statistics in the middle 
of the simulations to observe how well the proposed algorithm is 
able to track the sudden changes in the unknown parameter.

We use Metropolis combination rule to generate the network 
matrix P such that

pi, j =
⎧⎨
⎩

2
M2

1
max(Ni ,N j)

if i �= j are linked,

0 for i and j not linked,
1 − ∑

j∈Ni\i pi, j for i = j

using the randomly selected network adjacency matrix given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 1 0 0 0
1 1 1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0 0 1
0 0 1 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1 1
1 0 1 1 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 1 1 0 0 1 1 0
0 0 1 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We configure the nodes such that they cycle through the entries 
of the intermediary estimates φ i,t in a round-robin fashion, and 
exchange only this selected L = 1 dimension out of M in one time 
instant. For instance, for a L = 1, M = 3 system at time instants 
t = 1, . . . , 4, the ith node will send its entries of the intermediary 
estimate φi,t as in (43)

φ1,i =
⎡
⎣φ1,1,i

0
0

⎤
⎦ , φ2,i =

⎡
⎣ 0

φ2,2,i
0

⎤
⎦ , φ3,i =

⎡
⎣ 0

0
φ3,3,i

⎤
⎦ ,

φ4,i =
⎡
⎣φ1,4,i

0
0

⎤
⎦ , (43)

where φl,t,i is the lth dimension of the intermediary entry φ i,t of 
the ith node at time t that is sent to the neighbors.

We evaluate the communication reduction performance of the 
proposed algorithm with respect to the algorithm in [23], where 
only one entry of intermediate estimates is exchanged by the 
nodes at each round in a sequential order as explained in (43).

In Fig. 4, the MSD performance of the proposed algorithm is 
demonstrated, where as a reference, we have considered the al-
gorithm in [23] with an adaptive Lloyd–Max quantizer and with 
a no-quantization (scalar diffusion) implementation of the sys-
tem. Note that both in scalar diffusion algorithm and Lloyd–Max 
quantized algorithm, which is referred as conventionally quantized 
algorithm later, nodes are exchanging the information of one di-
mension per communication round. However, in scalar diffusion 
algorithm, information of the exchanged dimension is diffused 
with full precision, while in Lloyd–Max case, information of the 
exchanged dimension is quantized with a finite precision. We se-
lected the quantization interval so that we do not suffer from any 
Fig. 3. Network topology and statistical profile.

saturation effects and also we have chosen the number of quan-
tization levels so that no further significant improvement can be 
made on the MSD performance of the algorithms by increasing the 
number of levels. We observed that 53 quantization levels for the 
LC algorithm and 31 quantization levels for the conventional algo-
rithm were sufficient. We use a step size of μ = 0.05 during the 
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Fig. 4. The global MSD curves of the proposed algorithm, displayed with the label 
‘LC’, in comparison with the conventional quantization and the scalar diffusion al-
gorithms (N = 10, M = 10). Magnified figure provides the transient performance of 
the algorithms. Source statistics change at time t = 2 × 104.

Fig. 5. Time evolution of the number of bits transmitted across the network. Sudden 
increase in the ‘LC’ curve corresponds to the time where the source statistics are 
changed.

simulations due to its good learning rate and convergence results. 
The results that we obtained in the experiments are averaged over 
100 independent trials.

From these simulations, we observe that the convergence rate 
of the scalar diffusion and the conventionally quantized diffusion 
algorithms are superior compared to the proposed algorithm, while 
the steady-state MSD values of all three systems are identical. We 
note that it was our aim to get equal steady-state MSD values al-
lowing a fair comparison in terms of the convergence speeds. Also, 
it is observed that the proposed algorithm is able to adapt well 
when faced with a sudden change in the source statistics.

In Fig. 5, we present the communication load that each al-
gorithm incurs on the network. We exclude the scalar (infinite-
precision) diffusion algorithm from this comparison since it re-
quires an infinite number of bits to encode the information ex-
changed among the nodes. We observe a substantial enhancement 
in the communication efficiency achieved by the proposed algo-
rithm in terms of the total number of bits exchanged between the 
nodes across the entire adaptive network with respect to the al-
gorithm that uses the conventional quantization. Particularly, for 
this N = 10 node network, we note that the proposed algorithm 
provides 103 times less communication load over the reference 
implementation with the same steady state MSD values. We also 
observe that at the time of change in the source statistics, there 
is a sudden increase in the number of bits used by the proposed 
algorithm. This is because there are multiple level crossings occur 
due to the sudden change in the parameter of interest at that time, 
which requires more than two bits to encode. However, we ob-
serve that the system quickly adapts itself to using two-bits again. 
The same behavior is not present for the conventional quantiza-
tion case since it already encodes true values of the levels at every 
single time instant. We stress further that we achieve this im-
provement with relatively little complexity since we have shown 
that using a simple non-adaptive quantizer is sufficient to realize 
the improvements.

In the second part of the experiments, we aim to observe 
the performance of the proposed algorithm over high dimensional 
data. Therefore, we have changed the former setup so that the 
unknown vector parameter wo with M = 100 components is ran-
domly chosen from a Normal distribution and normalized to have 
a unit energy. We use the same distributed network with connec-
tions given in Fig. 3c. Quantization levels for the algorithms again 
chosen so that no further significant improvement can be made 
by increasing the number of levels. We observed that 53 quanti-
zation levels for the LC algorithm and 31 quantization levels for 
the conventional algorithm were sufficient. We again use a step 
size of μ = 0.05 and the results are averaged over 10 independent 
trials. We have decreased the number of independent trials to be 
averaged since processing high dimensional data takes significantly 
more time.

We present the MSD performance of the proposed algorithm 
in comparison with the sequential variant of the algorithm in [23]
with the parameters M = 100, L = 1 in Fig. 6. We observe that 
in the high dimensional data case, the convergence rate of the 
proposed algorithm is the same as the compared algorithms. They 
also have the same steady-state MSD values. These results indicate 
that the adaptation performances of the scalar diffusion algorithm 
and the conventionally quantized diffusion algorithm decrease for 
the high dimensional case since the nodes are allowed to share 
only one dimension per round, which prevents them from quickly 
sending their entire intermediary estimates to their neighboring 
nodes. Therefore, we observe that for such systems, the proposed 
algorithm performs similar to the scalar diffusion and the conven-
tionally quantized algorithms.

In Fig. 7, we illustrate the communication load for each algo-
rithm. We observe an improvement on the communication require-
ments in a similar vein to the previous experiments. Ultimately, 
the proposed algorithm incurs 102 times less communication load 
compared to the baseline, where the number of transmitted bits 
is significantly reduced. The magnitude of this reduction is of a 
smaller scale compared to the non-high dimensional case, on the 
other hand, mainly due to the extra bits required to encode the 
higher dimensions for multiple level crossings in the LC quantiza-
tion.

In the third part of the experiments, in order to observe the 
possible effects of number of quantization levels, we simulate the 
algorithms within an identical experimental setup – except that 
the number of quantization levels are no longer optimized as in 
the previous cases. To this end, we have arbitrarily chosen 25 
quantization levels for the LC algorithm and again 25 levels for 
the conventional algorithm. We use the same distributed network 
connections given in Fig. 3c. We have used a step size of μ = 0.05
and the results are averaged over 100 independent trials.
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Fig. 6. The global MSD curves of the proposed algorithm, displayed with the la-
bel ‘LC’, in comparison with the conventional quantization and the scalar diffusion 
algorithms over high dimensional data (N = 10, M = 100). Magnified figure pro-
vides the transient performance of the algorithms. Source statistics change at time 
t = 104.

Fig. 7. Time evolution of the number of bits transmitted by the algorithms across 
network over high dimensional data (N = 10, M = 100). Sudden increase in the ‘LC’ 
curve corresponds to the time at which the source statistics are changed.

We present the MSD performances of the algorithms in Fig. 8. 
We observe that when sub-optimal quantization levels are used, 
the compared algorithms exhibit superior performance compared 
to the proposed algorithm both in terms of the convergence rate 
and the steady-state MSD. We also note that the quantized algo-
rithms could not reach the steady-state performance of the scalar 
diffusion due to the deliberate poor selection of the number of 
quantization levels.

These results are observed due to a failure on the system’s part 
to satisfy the assumed quantization error model. The statistical 
model that we used for the quantization error φq

i assumes that 
it has zero mean such that E[φq

i ] = 0 [24]. However, when such a 
low number of quantization levels are selected, this model ceases 
to be applicable and the quantized algorithms are no longer guar-
Fig. 8. The global MSD curves of the proposed algorithm, displayed with the label 
‘LC’, in comparison with the conventional quantization and the scalar diffusion al-
gorithms with sub-optimal quantization levels (N = 10, M = 10). Source statistics 
change at time t = 104.

Fig. 9. Time evolution of the number of bits transmitted by the algorithms across 
network with sub-optimal quantization levels (N = 10, M = 10). Sudden increase in 
the ‘LC’ curve corresponds to the time at which the source statistics are changed.

anteed to converge to the steady-state MSD values of the scalar 
diffusion algorithm.

In Fig. 9, we present the communication load of the algorithms 
over the network for the case of a sub-optimal level selection. We 
again observe a similar behavior where the proposed algorithm 
diffuses more than 103 times less bits through network compared 
to the baseline. We note that the difference in the number of bits 
exchanged between the two algorithms is larger compared with 
the previous results. This can be explained by the fact that we use 
fewer quantization levels for the LC algorithm, which makes the 
occurrence of multiple level crossings a rarer phenomenon. Thus, 
it becomes less likely for each node to send our more than two 
bits of information for a given iteration. Ultimately, this particu-
lar experiment illustrates the existence of a trade-off between the 
estimation performance and the communication load imposed on 
the network.
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Fig. 10. The global MSD curve of the proposed algorithm, displayed with the label 
‘LC’, in comparison with the theoretical MSD results over M = 7, N = 2 system.

In the last part of the experiments, in order to demonstrate the 
theoretical consistency of the proposed algorithm, we simulated 
the MSD performance of an M = 7, N = 2 network and compared 
it with the expected theoretical results. We have used 53 quantiza-
tion levels for the simulations. Due to the analytical intractability 
brought about by the terms E

[
αt+1φ̃

T
t+1

]
and E

[
αt+1αT

t+1

]
within 

our framework, we have decided to illustrate the transient behav-
ior predicted by the theoretical analysis by replacing these terms 
by their empirically obtained counterparts. In addition, we have 
reduced both the data dimension and the number of nodes in the 
network due to the memory requirements imposed by the theoret-
ical calculations. Throughout, we use a step size of μ = 0.05 and 
all the results are averaged over 10 independent trials. In Fig. 10, 
we present the MSD performance of the proposed algorithm along-
side the response predicted by our theoretical analysis. We observe 
that the simulation results exhibit a consistent behavior with re-
spect to the derived theoretical results. The slight differences in 
the initial convergence behavior can be explained by the stochas-

tic nature of our estimates for the E
[
αt+1φ̃

T
t+1

]
and E

[
αt+1αT

t+1

]
terms.

8. Conclusion

We introduced an event-triggered distributed estimation algo-
rithm with level-crossing quantization for distributed applications, 
where an unknown parameter is cooperatively learned by a group 
of nodes in an adaptive network. We proposed a diffusion-LMS 
algorithm where at each time instant, a node initiates communica-
tion with its neighbors only if the parameter to be communicated 
goes through a level crossing, which is signified by a single bit that 
indicates the direction of the level crossing. Consequently, the pro-
posed algorithm required data transfers between the nodes that 
are much more sparse across time, as compared to a continuous 
stream of information at each instant. This translated into a much 
diminished load on available communication resources, which is 
of crucial importance in applications such as big data, where these 
resources are constrained, set against the sheer volume of the data. 
By theoretical analysis and simulations, we showed that the pro-
posed algorithm is convergent in the mean sense, and we demon-
strated that it provides up to a 103 fold reduction in the commu-
nication load imposed on the network.
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