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Abstract
Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images
superparamagnetic tracers with high image contrast and sensitivity approaching nuclear
medicine techniques—but without ionizing radiation. Since its inception, the MPI research field
has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications.
Here, we describe the history and field of MPI, outline pressing challenges to MPI technology
and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS
MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We
invite interested investigators to join the MPI Interest Group and contribute new insights and
innovations to the MPI field.
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Introduction
Magnetic particle imaging (MPI) is an emerging biomedical
imaging technique using completely new hardware that
directly images superparamagnetic iron oxide (SPIO) tracers
(Fig. 1a, b). The signal contrast in MPI is only generated by
SPIOs introduced to the body; biological tissues neither
generate nor attenuate MPI signals [4–6] (Fig. 1c–e). This
high image contrast and contrast-to-noise ratio for SPIO
tracers in MPI result in sensitive detection and positive
contrast for imaging magnetic particles. These features of
MPI make this modality comparable to nuclear medicine
clinical techniques like positron emission tomography (PET)

and single-photon emission computed tomography
(SPECT), but without the use of ionizing radiation. The
nonradioactive SPIO tracers used in MPI are safe for
injection into the body even at the significant doses required
to treat iron deficiency (anemia) [7–10]. Detecting and
staging diseases with molecular contrast can add to
anatomical imaging modalities such as magnetic resonance
imaging (MRI) or X-ray computed tomography (CT) [11].
Given that in vivo MPI is relatively new to the field of
molecular imaging, and that there is a need to further
develop the hardware, reagents, and software, we reasoned
that an interest group for MPI as part of the World
Molecular Imaging Society would be an excellent forum
for exchanging information that would advance this emerg-
ing imaging modality. Here, we provide a description and
history of MPI, outline some of the most pressing chal-
lenges, highlight unique applications, and discuss how theCorrespondence to: Bo Zheng; e-mail: bozheng@berkeley.edu
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MPI Interest Group will work to advance the field and fully
integrate MPI into the molecular imaging arena.

MPI was invented and first demonstrated experimentally
in 2005 by Philips Research in Hamburg, Germany [4].
Since then, there have been significant efforts toward
bringing this new modality into preclinical and eventually
clinical imaging environments. These include improving
system hardware to increase resolution and sensitivity [1,
12–15]; developing the underlying system theory for MPI
(akin to the development of k-space techniques and pulse
sequences for MRI) [5, 16–20]; producing SPIO nanoparti-
cles specifically for MPI to achieve higher resolution, greater
sensitivity, and controlled circulation time [21, 22]; devel-
oping preclinical applications for MPI [6, 23–26]; and
exploring safety and scalability for building human-sized
MPI systems [27–30]. In 2010, the first International
Workshop on Magnetic Particle Imaging was held in
Lübeck, Germany with 70 attendees. This number has
increased to over 200 recently and continues to grow each
year. We feel that by highlighting some of the advances
through MPI targeted sessions at the WMIC, we can build
bridges between groups working on hardware, chemistry,
biology, and medicine to work together to address those
biological problems that are particularly well suited for MPI.

How MPI Works
The physics governing MPI is completely different from MRI,
and it is not possible to perform MPI in an MRI scanner. The
MPI signal is generated from SPIO tracers as they respond to

applied magnetic fields. SPIOs, described by Langevin
physics, magnetically align with applied magnetic fields until
they reach superparamagnetic saturation. For spatial encoding
of the MPI signal, we use a strong gradient field to
magnetically saturate all SPIOs outside a central field-free
region (FFR) [4]. Shifting this FFR through the imaging
volume causes SPIOs in the FFR to rapidly and nonlinearly
change magnetization, which produces a detectable voltage
signal. This allows for straightforward image reconstruction
where the instantaneous detector voltage signal is directly
gridded to a 3D image space through knowledge of the FFR
trajectory. Importantly, the induced signal is linearly propor-
tional to the quantity of the SPIO tracer (Fig. 2e), enabling a
linear and shift-invariant imaging method with a well-defined
point spread function (PSF) [5, 18, 33].

The FFR used in MPI can be in the shape of a field-free
point (FFP), which produces inherently 3D images, or a
field-free line (FFL), which produces projection images akin
to projection X-ray images. As in X-ray CT, these
projections can be used to make high-resolution 3D images
using standard projection reconstruction algorithms. In MPI,
the FFL approach can achieve up to orders of magnitude
higher speed for projection imaging or SNR for projection
reconstruction over FFP scanning [1, 19, 34].

State of the Art
There are currently more than seven groups in the world with
operational custom-built MPI scanners [6, 15, 16, 35–37]. Two

Fig. 1. Recent innovations in magnetic particle imaging. a Small-animal MPI scanners developed at UC Berkeley include a 7-
T/m 3D field-free point (FFP) scanner and b a 6.5-T/m field-free line (FFL) scanner capable of producing 3D images via the
filtered back-projection algorithm [1]. c Recent advances in MPI theory have also led to a significant reduction in image
anisotropy and improvement in image conspicuity [2]. d Advances in detector electronics have enabled up to tenfold
improvement in MPI detection sensitivity [3]. e The MPI signal is linear and quantitative with respect to the amount of SPIO
tracer in the FOV, and MPI has image contrast comparable to PET and SPECT imaging.
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recent UC Berkeley MPI scanners are shown in Fig. 1a, b. As
the MPI field is nascent and a standardized MPI system theory
is yet to be adopted, each group uses differing and rapidly
evolving scanner designs, pulse sequences, and reconstruction
schemes. The dominant MPI scanning theories include the
system matrix [4] and the x-space [18] approaches, which use
different methods of image acquisition and reconstruction but
are similar in their analysis of the fundamental MPI signal-
encoding mechanism [17, 33].

Most existing MPI systems are limited to small animal-
sized bores with free bores up to around 119 mm [38] and
magnetic gradient strengths up to 7 T/m [39]. Image
acquisition times with these scanners have been shown to
be as low as 20 ms per acquisition for smaller fields of view
[38]. As a demonstration of the sensitivity of detection for
labeled cells, our scanners have achieved as low as 200-cell
(5.4 ng) iron detection in a voxel [24]. This translates to
roughly 130 nM tracer concentration. Given this level of
sensitivity, MPI may soon compete with nuclear medicine in
Bdose-limited sensitivity^ for cell tracking. MPI sensitivity
and contrast are already competitive with MRI cell tracking
applications [40]. This sensitivity has not yet achieved the
true physics limit, and further optimization of the detector
coil and electronics could lead to the sensitivity potentially
reaching a detection limit of picograms of iron per voxel
with scan times of only seconds to minutes [38]. Figure 1a, b
provides a sense of the geometry, size, and components of
MPI scanners developed at UC Berkeley. The systems in

academic labs are functional but lack the esthetics of
commercial systems.

Commercial scanners have only recently become avail-
able from two companies: Bruker Biospin [41] and Magnetic
Insight, Inc. [42]. Both of these systems are currently being
evaluated in academic labs in the USA and Europe. Clinical
translation of MPI systems is feasible but has not yet been
achieved commercially, with several remaining challenges
outlined below.

Recent Challenges in MPI
Being a relatively new imaging modality, there are several
key areas in which improvements to MPI can have a
significant impact. These include engineering in hardware,
scanning, and image reconstruction, and here, we highlight
three current and recent challenges:

1. Direct feedthrough interference: Unlike in MRI, where the
detected nuclear precession signal is acquired microseconds
to milliseconds after the RF excitation pulse, in MPI, the
transmit and receive signals occur simultaneously. The
applied drive field is typically an extremely pure tone, with
ultra-low harmonic content. Any harmonics observed in the
signal must be generated by the tracer. However, the
receiver coil can also pick up a strong feedthrough
interference at the fundamental frequency. Indeed, this

Fig. 2. Selected preclinical applications where magnetic particle imaging excels and can address unmet needs in biomedicine.
a MPI/CT of a human breast tumor xenograft in rat shows enhanced image contrast 6 h after SPIO injection, compared to
bioluminescent imaging of the tumor [31]. b MPI/CT images of intravenously injected stem cells trapped in the lungs (at day 1)
and then cleared to the liver (at day 12) [25]. c Maximum-intensity projection MPI shows image contrast from hemorrhage-
inducing traumatic brain injury (right) compared to control (left) after SPIO administration. d MPI imaging of lung capillary
perfusion using custom SPIO-macroprotein tracers. e The MPI signal is directly proportional to SPIO tracer in each voxel [32].
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direct feedthrough interference can be over six orders of
magnitude larger than the signals from the SPIO tracer. To
address this issue, all MPI scanners today remove the direct
feedthrough interference via a strong bandstop filter [14,
43]. But this also removes the first harmonic of the SPIO
signal spectrum, which hurts SNR and complicates image
reconstruction. Fortunately, this can be recovered via a
robust continuity algorithm, which preserves image linearity
and shift-invariance [33]. Obviating the direct feedthrough
filter would be an advance in MPI.

2. Isotropic resolution: The PSF in MPI is well defined
analytically but is strongly asymmetric; that is, the PSF is
wider in the axes perpendicular to the drive field scanning
trajectory [18]. This results in directional blurring that
makes image interpretation difficult (see Fig. 1c). We
have recently shown that a simple combination of MPI
signals acquired using orthogonal drive fields is sufficient
to achieve isotropic resolution in MPI, and a subsequent
equalization filter can de-emphasize low spatial frequen-
cies and successfully remove background image haze [2].

3. Detector noise matching: Typical MPI scanners use
detector coils with a signal bandwidth from 20 kHz to
1 MHz [14, 38]. In this bandwidth, it is difficult to
achieve patient-noise dominance due to the relatively
higher thermal noise of the detector system [44].
Moreover, it is difficult even to achieve wideband
detector coil-noise dominance over the noise of the
preamplifier due to the reactance of the detector coil.
Thus, several signal amplification techniques, including
transformer-coupling and parallel amplification, have
been implemented to achieve exceptionally low amplifier
noise for MPI (Fig. 1d) [3, 44].

MPI Applications
As a molecular and cellular imaging technique, MPI is well
suited for preclinical and clinical applications that require
high image contrast with little background tissue signal. One
of the first applications of MPI described in the literature is
for vascular and blood pool imaging [16, 38], where the high
temporal resolution of MPI was used to visualize cardiac
dynamics in real time [6]. Other applications of MPI toward
vascular and blood pool imaging include angiography,
pulmonary perfusion [32], and traumatic brain injury (see
Fig. 2c, d). The ability to image dynamics without tissue
background signal in MPI may also make it well suited for
applications in assessing functional brain physiology using
optimized long-circulating SPIO tracers [21, 45].

Another area of application in MPI is for tracking specific
cell populations, such as cell-based therapies, as they redistrib-
ute and localize in vivo. Our group and others have recently
shown the ability to track exogenously labeled human stem
cells both in the murine brain and systemically for weeks to
months [24, 25, 46], with a detection sensitivity as low as 200
cells in a voxel. The capability to image quantitatively,

sensitively, and longitudinally makes MPI uniquely well suited
for cell tracking applications where monitoring the long-term
localization and persistence of small cell populations is desired,
both for preclinical research and in the clinic. Although MPI is
still subject to the constraints of nanoparticle-based contrast,
the fact that MPI images the particle directly and not its effect
on water means that there are a greater range of particle
configurations that could be developed with improved imaging
characteristics. This chemical space has not been fully explored
and is an area of development that would lead to a diverse
range of unexplored imaging opportunities with multiplexing
color-contrast capability.

Sensitive cancer diagnosis, staging, and treatment mon-
itoring may also be facilitated by the availability of an
ionizing-radiation-free imaging modality like MPI. Recently,
we used MPI to image the vascular dynamics of a xenograft
tumor model by exploiting the EPR effect (Fig. 2a, [31]).
For future clinical applications, we anticipate the use of MPI
in concert with biologically targeted approaches or immu-
notherapeutic approaches by, for example, labeling activated
immune cells or immune checkpoint markers with SPIO
tracers. Such approaches may allow for sensitive, real-time
monitoring feedback on the efficacy of immunotherapies for
both solid and diffuse tumors.

WMIS MPI Interest Group Addresses
the Emerging Challenges and
Opportunities
The rapidly developing MPI field is well poised for
expansion to many more technical and preclinical molecular
imaging research groups. The volume of literature in seminal
MPI research already available, combined with the avail-
ability of commercial preclinical scanners from Magnetic
Insight and Bruker, makes it feasible for other molecular
imaging researchers to jump into the MPI field quickly.

There remain many unsolved challenges in MPI research,
which today is similar in maturity to the state of MRI
research in the early 1980s. For groups interested in
developing MPI technology, challenges include (a) improv-
ing the spatial resolution of MPI, which is determined by
SPIO tracer size and composition, applied magnetic fields,
and SPIO relaxation times [47, 48]; (b) improving the
detection sensitivity in MPI; (c) robust multi-color imaging
[49, 50]; (d) theranostic MPI for guidance and real-time
feedback on hyperthermia heating [51–53]; (e) improving
tracer circulation time and image contrast [21, 45, 54]; (f)
optimal combination of MPI with anatomic imaging modal-
ities like CT or MRI for multi-modal imaging; (g) targeting
SPIOs with great specificity to pathophysiology including
cancer, cardiovascular disease, and stroke; and (h) scaling up
preclinical MPI hardware to human MPI, while observing
FDA and EU biosafety restrictions, including peripheral
nerve stimulation (PNS) and tissue heating specific absorp-
tion rate (SAR) limits [27, 29]. These areas are the focus of
the activities of the MPI interest group.
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Conclusion
In summary, there has been significant progress in the
hardware, MPI-tailored SPIOs, and reconstruction algo-
rithms for magnetic particle imaging over the past 10 years.
Preclinical applications have really only begun within the
past 5 years as commercial MPI scanners became available.
The advent of commercial scanners presents new opportu-
nities for WMIS investigators that were not previously
possible. To this end, we invite interested molecular imaging
researchers to the WMIS MPI Interest Group. We look
forward to hearing about your contributions of new
techniques and your valuable insights to the magnetic
particle imaging field.
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