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Abstract—Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and

proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and

decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots

because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural

net classifier was trained to estimate the state of a zipper within a robot’s pinch grasp. A Contextual Multi-Armed Bandit (C-MAB)

reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the

state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while

learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope).

Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as

hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled

environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.

Index Terms—Active touch, contour-following, decision making, haptic perception, manipulation, reinforcement learning
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1 INTRODUCTION

CONTOUR-FOLLOWING is often necessary for tasks requir-
ing fine manipulation skills such as tying shoelaces,

searching pockets, and buttoning shirts. The ability to
perform touch-driven contour-following enables specific
dexterous abilities that are necessary for capable robotic sys-
tems. We present a functional form of contour-following in
which the contour is the zipper on a deformable ziplock bag
to be closed.

Early work in contour-following used contact forces to
track edges [1]. Scene and tactile images of the contacted
interface were filtered to determine edges for vision-based
contour-following [2]. Techniques integrating vision, force
sensing, and accelerometers have also been used to track
contours [3]. The effectiveness of these computer vision
approaches can be limited if target objects are deformable,
occluded, transparent, or otherwise optically ambiguous
[4]. In such scenarios, it becomes necessary to additionally
rely on haptic and proprioceptive feedback in order to

perform functional tasks. Active perception is critical dur-
ing contour-following as it is necessary for closed-loop
repositioning of the manipulator due to error propagation
and changes in the contour [5].

Even with the addition of proprioception, manipulation is
often challenging due to compliance and uncertainty in
robotic systems [6] and inadequate models of the environ-
ment. Robotic systems have various levels of proprioceptive
precision. For instance, lash in tendon-driven systems or static
friction in joints can lead to noisy torque estimates. Compli-
ance in soft robot arms can mask finger-object interactions
that would otherwise be observable with precise, direct-drive
robot arms [7]. As robots become more commonplace they
will begin to interact in ways similar to their human counter-
parts. Interactionswill involve planned and incidental contact
with areas of the robotic system beyond the end-effector [8].
For example, proprioceptive data cannot solely be used to
estimate localized contact information at a fingertip when a
robot’s forearm also interacts with the environment.

In this work, we rely heavily upon tactile percepts that
are localized near regions of finger-object contact, as visual
and proprioceptive feedback can be noisy or intermittent.
In this way, we minimize error propagation in forward cal-
culations from visual and proprioceptive systems, and
reduce uncertainty due to incidental contact of other regions
of the robot with the environment.

Tasks that require contour-following are not limited to
the manipulation of rigid objects. The manipulation of
deformable objects such as rope, cloth, and sponges have
been a focus of extensive research due to their applications
in surgical and service robotics [9], [10], [11], [12].
Both physics-based and model-free approaches have been
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successfully implemented [12], [13], [14], [15], [16]. In the
work presented here, we use a model-free approach in
which the stochastic nature of physical interactions with a
deformable object is learned from action-driven, haptic and
proprioceptive sensory feedback.

To learn a novel manipulation task, it is typically neces-
sary to use physical robot systems as opposed to simula-
tions alone. Models of deformable objects [13], [14], [16] and
friction under soft contact conditions [17], [18] are still
under development. Additionally, no model currently exists
for accurate simulation of the electrical response of the
deformable tactile sensor used in this work [19]. Thus, it is
important to employ efficient learning algorithms, as brute
force approaches that might work in simulation would be
time consuming and induce unnecessary wear on physical
robot systems.

Reinforcement learning has been successfully used to
teach robots complex skills that would be difficult to code
directly (e.g., [20]) in both real-world and simulated environ-
ments. Multi-Armed Bandit (MAB) models, a variant of rein-
forcement learning, have been developed for grasp selection
[21], [22] and rearrangement planning [23] for robot interac-
tions with rigid objects. However, these methods do not
select or adapt actions based on information provided by
real-time sensory feedback. An extension of MAB models
called Contextual MABs can effectively utilize immediate
sensory feedback to select actions [24], [25], [26], [27]. To the
best of our knowledge,we are the first to apply reinforcement
learning with Contextual MABs to robotic systems for hap-
tics-drivenmanipulation. Additionally, the system is the first
real-time hardware implementation of ContextualMABs and
demonstrates a practical advantage for hardware-based
experiments that arewear and time intensive.

2 METHODS

2.1 Functional Contour-Following Task

The closure of a plastic ziplock bag is an everyday task that
presents unique challenges for robotic systems. The task
requires the manipulation of a transparent, deformable
object whose geometric features are visually occluded by
artificial fingertips. Computer vision could be useful for
planning, but will likely be insufficient for task execution
that requires carefully maintained finger-object relation-
ships. While the closure of a plastic bag is typically a biman-
ual task, we simplified the experimental set-up to focus on
the control of a single sensorized robot hand, wrist, and arm.

To successfully complete the task, we will need to deter-
mine the current orientation of the zipper in the grasp and
then take a goal-directed action. Ideally, the action chosen
would result in a new state that brings the system closer to
achieving its goal: zipper closure without losing grasp of
the bag.

2.2 Robot Testbed

The robot testbed consisted of a 7 degree-of-freedom (DOF)
Barrett Whole Arm Manipulator (WAM) with a 4 DOF Bar-
rettHand (Barrett Technology, Cambridge, MA) (Fig. 1).
The BarrettHand can independently flex/extend three dig-
its and adduct/abduct the outer two digits. BioTac sensors
(SynTouch LLC, Los Angeles, CA) were attached to two

opposing digits on the hand for the recording of internal
fluid pressure, vibration, skin deformation, and tempera-
ture [19]. Due to the redundant information from the two
BioTacs in this particular experiment, only a single BioTac
was used for analysis. Electrode impedance was sampled at
100 Hz and internal fluid pressure was sampled at 100 Hz
and 2200 Hz.

To achieve a precision pinch with ample fingerpad con-
tact areas for bag closure, a custom adapter was used to
reduce the BarrettHand-BioTac system to a sensorized par-
allel gripper. The variable adapter enabled the selection of a
task-appropriate fingertip contact angle of 20 degree per
digit (Fig. 1, inset).

For reliable control and sensing, command signals and
sensor sampling were handled by hard real-time modules.
Hard real-time processes were controlled from a Linux
computer running Ubuntu 12.04 modified with a Xenomai
kernel. Computational tasks such as haptic perception,
decision-making, and reinforcement learning were imple-
mented by soft real-time processes on a 2013 MacBook Pro.

Sensory data from the hard real-time module were sent
to the external soft real-time module for processing. MAT-
LAB (MathWorks, Natick, MA) and TensorFlow [28] were
used for the online analysis of tactile (BioTac) and proprio-
ceptive (WAM) data.

2.2.1 Motion Planning and Data Collection

An online motion planner was used to generate joint space
trajectories for each action. The Robot Operating System
[29] was used to communicate between computational
nodes and the motion planner. MoveIt! was used for motion
planning, and collision and self-collision avoidance [30].
MoveIt! incorporates various planning algorithms; we
selected the commonly used sampling-based Optimally
Rapidly-exploring Random Trees (RRT�) planner from the
Open Motion Planning Library [31].

Close-up videos of the artificial fingertips and zipper
were recorded for each action for the training of supervised

Fig. 1. Experimental set-up used to develop online haptic perception and
decision-making capabilities for a functional contour-following task.
Inset: A custom adapter enabled a 20 degree contact angle.
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learning algorithms. A custom iOS application (Apple Inc.,
2014) was developed for an iPhone 5s for video and image
capture during reinforcement learning. In addition to these
videos, synchronized multimodal tactile sensor data, WAM
joint positions, velocities, and torques, were recorded dur-
ing each action.

2.3 Reinforcement Learning

Reinforcement learning is a well-established approach for
learning a policy to select actions in order to maximize
expected rewards. During reinforcement learning, state and
action spaces are explored and goal-directed rewards are
given after each action. The immediate reward is then used
to update the expected reward from the action taken.

2.3.1 Q-Learning

Q-learning was used as a baseline for comparison with the
Contextual Multi-Armed Bandits approach described later.
As a temporal difference method, Q-learning results in
delayed rewards. Q learning will converge to the optimal
policy asymptotically as time goes to infinity, but cannot
provide performance guarantees of optimality for finite
time periods. The policy is in the form of a “Q matrix” that
contains the expected rewards for each “state-action pair”
[32], [33]. Rows and columns of the Q-matrix correspond
to states and actions, respectively. A single entry in the
Q-matrix corresponds to the expected reward of taking an
action given the current state (i.e., the reward for a specific
“state-action pair”). It is necessary for the Q-learning algo-
rithm to comprehensively explore the state space in order
for rewards from goal success to back-propagate through
the system. Given enough exploration, the expected reward
of each state will converge to the optimal solution. How-
ever, exploration and exploitation must be balanced. Exces-
sive exploration to reduce uncertainty wastes time and
increases regret, which is the difference in rewards earned
by an agent acting optimally versus those earned by an
agent that receives rewards randomly.

Designers of Q-learning algorithms must set three
parameters: learning rate a, discount rate g, and exploration
rate ". The learning rate determines how quickly expected
rewards are updated based on the difference in the expected
reward and actual reward observed. If the learning rate is
too high, then stochastic responses can excessively influence
expected rewards. The learning rate was set to 0.25 in order
to account for the fact that rewards will be stochastic and lit-
tle is known about the expected rewards. The discount rate
can be used to specify a decrease in value of future rewards.
A low discount rate causes the learner to behave in a short-
sighted and greedy manner by favoring immediate rewards.
The discount rate is typically below one because future
rewards can be troublesome, as they have the ability to prop-
agate large stochastic errors. Based on the small state space
of the system in this study, the discount rate was set to 1 such
that future rewards were not discounted. The exploration rate
is used to adjust the probability of exploring the state space
to reduce uncertainty versus exploiting current knowledge
and taking the action expected to return the maximum
reward based on the current state. In order to learn more
about unknown expected rewards, the exploration rate was

set to 0.8. While Q-learning does not provide any guarantees
on regret, it is possible to tune performance via an exponen-
tially decaying exploration rate and empirically improve the
rate of convergence to the optimal policy.

While Q-learning will converge to the optimal policy, it
does not provide any guarantees of optimality in balancing
exploration versus exploitation. All tuning of the learning
rate a, discount rate g, and exploration rate e are done man-
ually. Manual tuning could be sidestepped through the
use of more advanced learners, such as Contextual Multi-
Armed Bandits.

2.3.2 Contextual Multi-Armed Bandits

Multi-Armed Bandit algorithms are often explained using
the analogy of a room of slot machines that each return a
random reward from a unique, unknown probability distri-
bution. Given a limited set of resources (e.g., money, hard-
ware life, researcher time), how and when should the
resources be spent on exploration (learning the payout
structure) versus exploitation (playing a specific machine)?
MABs are used to determine the best sequence and choice
of “pulls” on slot machine “arms” (or actions) in order to
maximize cumulative rewards. Learning the optimal policy
(sequence and choice of actions) that maximizes cumulative
rewards requires probability theory.

Early works on MABs include Thompson sampling [34]
and the Gittins index policy [35]. The goal in these works
was to maximize the total expected reward by repeatedly
selecting one of the many finite actions over a sequence of
trials. In general, each action taken in a given state results in
a reward based on the action’s outcome (i.e., new state).
MABs can be designed to maximize the expected total
reward over a certain finite number of trials. Simply put,
MABs balance exploration versus exploitation of the state-
action pairs in order to maximize the total reward. MABs
track the number of pulls per arm (i.e., how frequently each
action has been taken) and estimate the expected reward of
each arm. Once a computed threshold of exploration has
been met, the MAB will begin exploiting its knowledge by
choosing the arm with the highest expected reward.

Contextual Multi-Armed Bandits (C-MABs) are a partic-
ularly useful variant of MABs. C-MABs take advantage of
information encoded in “context vectors” of raw and/or
pre-processed observations that get associated with actions
through experience. The C-MAB problem is well known
and has been an area of comprehensive study [24], [26],
[36], [37]. Most C-MAB algorithms assume access to a simi-
larity metric, which relates the difference between the
expected reward of an action between two neighboring
(related) contexts and the distance between these contexts.
These algorithms are proven to achieve sublinear-in-time
regret with respect to a hypothetical benchmark that selects
its actions based on the complete knowledge of the expected
reward for each action given each context. Sublinear-in-time
regret implies that the C-MAB algorithm is “average reward
optimal,” which implies that the frequency of the expected
number of suboptimal actions converges to zero and, hence,
the algorithm is on par with the hypothetical benchmark
(“ground truth”) in terms of the expected average reward.

The C-MAB algorithm used in this work is called Contex-
tual Learning with Uniform Partition (CLUP), which is
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taken from [27] and adapted for a single agent/learner set-
ting. CLUP can be optimized to maximize the cumulative
rewards given a specific number of trials. Given the inher-
ent cost of collecting haptic data with robotic systems and
an indeterminate number of trials, the maximization of
cumulative rewards seemed appropriate. The C-MAB algo-
rithm allows us to control how we learn and understand
how well we perform over a finite time period. This is
unlike Q-learning, for which there are no bounds on perfor-
mance for a finite period of time.

The parameters of CLUP are defined as follows. Let
each arm f be an element from the set of arms F avail-
able to the learner. CLUP partitions the context set into a
finite number of sets, where each set is composed of sim-
ilar contexts. For simplicity, it is assumed that each set in
the partition is identical in size and shape (e.g., a hyper-
cube with a specific edge length). This is called uniform
partitioning since, given a random sample of tactile data,
the system is equally likely to be in any of the partitions
in a partition set P.

Given uniform partitioning, let pðtÞ be a partition in a
partition set P to which the context xðtÞ belongs. Let Nf;pðtÞ
be the number of “context arrivals” (i.e., how many times
a context has been visited) for a given arm and partition.
In this work, there were five arms (Fig. 4b) and three parti-
tions (Fig. 4a), as will be described in Section 2.4.

For each discrete time step ¼ 1; 2; . . . ; T , the learner
observes a context xðtÞ and then chooses an arm f 2 F
given xðtÞ. The choice of arm f depends on a parameter
DðtÞ, which is a deterministic, increasing function of t called
the control function Eq. (1). The parameter z defines the sim-
ilarity of the partitions and affects the growth of the control
parameter DðtÞ. In this work, z was empirically set to 0.086,
with an assumed similarity between partitions of 0.25 for
a 5-dimensional action space (Fig. 2). The reader is referred
to [27] for a rigorous proof of CLUP, z, and the control func-
tionDðtÞ.

D tð Þ ¼ tz log t (1)

The number of context arrivals is compared to the control
function in order to determine the set of under-explored
arms F ueðtÞ Eq. (2).

F ue :¼ f 2 F : Nf;p tð Þ � D tð Þ� �
(2)

If the set F ue is non-empty, the learner selects an arm
from F ue at random in order to explore. When the set F ue is

empty, the learner enters the exploitation phase and selects
the arm aðtÞ with the highest mean estimated reward �rf;pðtÞ
Eq. (3).

aðtÞ 2 argmax
f

�rf;p tð Þ (3)

�rf;p ¼ �rf;p Nf;p þ r

Nf;p þ 1
(4)

The mean estimated reward is updated for each arm as
context arrivals occur and a reward r is received Eq. (4),
(Fig. 4a). The pseudocode for CLUP for a single agent
learner is shown in Fig. 3.

2.4 State Space, Action Space, and Rewards

For the haptics-intensive task of closing a ziplock bag, we
defined a state space based on the spatial relationship
between the artificial fingerpad and the zipper (contour
to be followed). Based on findings from a pilot study that
used Q-learning only [38], the state space was partitioned
into “high,” “center,” and “low” states that described the
location of the zipper along the length of the fingerpad
(Fig. 4a). Although coarsely defined, the limited size of

Fig. 2. The control function D versus the number of context arrivals Nf;p

for an assumed similarity between partitions of 0.25. If the number of
context arrivals for all actions of a given state exceed the control func-
tion, the action with the highest expected reward is taken (i.e., exploita-
tion is chosen over exploration).

Fig. 3. Pseudocode for the Adapted CLUP algorithm for a single agent
C-MAB learner [27].

Fig. 4. a) The state space was defined according to spatial relationships
between the fingerpad and zipper. The reward is shown for each state.
b) The action space consisted of 0.75 cm trajectories in five directions.
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the state space helps to keep the exploration process
tractable.

The action space consisted of 0.75 cm trajectories in a 135,
155, 180, 225, or 270 degree direction from the current fin-
gertip location (Fig. 4b). Fingertip movements of 0.75 cm
were used to ensure that the elastic, silicone fingerpad
would slip and slide along the zipper under kinetic friction
conditions rather than simply stretching under static fric-
tion conditions. All trajectories were executed with a trape-
zoidal velocity profile with a maximum speed of 0.5 cm/s.

Based on the pilot study [38], the action space was
designed to have trajectories that were not equally spaced
with respect to the proximal and distal directions (Fig. 4b).
During the pilot study, it was observed that the shape of the
round fingertip led to large normal forces for distally
directed actions; these movements tended to squeeze the
zipper out of the robot’s grasp. In this work, the action space
was defined with more aggressive angles of attack in the
distal directions.

The reward structure was designed to provide positive
reinforcement for desired fingerpad-contour relationships,
namely that the contour should ideally remain in the center
of the fingerpad for successful closure of the ziplock bag.
Thus, the “center” state received a þ1 reward while the
“high” and “low” states each received a reward of 0
(Fig. 4a). The state space, action space, and reward structure
were identical for the Q- and C-MAB learners.

2.5 Context Vector for the C-MAB Learner

In defining a context vector for the C-MAB learner, tactile
sensor data were trained with a classifier. Based on prior
work that showed that geometric features could be encoded
in artificial fingerpad deformation [39], [40], we considered
only impedance data from the electrode array on the core of
BioTac tactile sensor.

The classifier takes as input normalized, individual elec-
trode impedance data and returns one of three discrete
states describing the spatial relationship between the finger-
pad and zipper (Fig. 4a). It is assumed that, due to the ran-
dom exploration along the contour, the classifier will return
a state that is equally likely to be in one of the three parti-
tions, as described in Section 2.3.2.

2.6 Training of the State Classifier

2.6.1 Automated Labeling of States

In order to train a classifier to estimate the state of the zipper
along the length of the fingerpad, all tactile sensor data
needed to be labeled as “high,” “center,” or “low”. In the
pilot study, states were manually labeled according to marks
drawn directly on the deformable sensor skin [38]. This
approach was negatively affected by skin strain and was not
representative of zipper position relative to the core of the
tactile sensor that contains the spatial array of electrodes.

In this work, tactile sensor data were autonomously
labeled by a computer vision system developed using
OpenCV [41]. A Python node processed camera images sent
from a custom iPhone 5s iOS application. High contrast col-
ors and strict color thresholding were used to maximize the
accuracy of the automated labeling. The BioTac fingernail
was used to track the position of the sensor’s rigid core

relative to the zipper. To locate the fingernail visually,
red circles were placed over each fingernail screw (Fig. 5).
K-means clustering was used to identify the center of each
red circle (green dots in Fig. 5). The inner surface of the zip-
per was colored blue for visual identification and robustness
to wear over thousands of trials. A best fit line was applied to
the zipper contour (yellow line in Fig. 5). The intersection of
the center line of the fingernail (line connecting the green
dots) and the zipper (yellow line) wasmarked by a blue dot.

The output of the image processing pipeline was a mea-
surement of the offset (shortest distance) between the center
line of the fingernail and the zipper along the center line of
the finger. This offset value was taken as the difference
between the location of the zipper in the grasp (blue dot)
and the center of the fingernail (halfway between the two
green dots).

Tactile sensor data were labeled according to the zipper
offset value according to predefined thresholds. The zipper
was considered to be “high” for an offset value greater than
0 mm (defined at the center of the two red circles) (Fig. 5a).
The label “center” was applied for an offset value less than or
equal to 0 mm and greater than �2.5 mm (Fig. 5b). The label
“low”was used for all other offset values less than or equal to
�2.5 mm (Fig. 5c). Tactile sensor data were excluded from
model training if the fingertip lost contact with the zipper.

2.6.2 Input Vector of Tactile Sensor Data

Each trial was initialized by grasping the ziplock bag and
performing one 180 degree fingertip movement (Fig. 4b),
which initializes the strain in the BioTac skin. A complete
trial was defined as the set of actions from an initialized
grasp to successful zipper closure or loss of grasp of the zip-
per. In the pilot study, sensor data from a no-contact condi-
tion was used for each trial-specific baseline reference prior
to grasp initialization [38]. However, this approach made
the classifier unnecessarily susceptible to stochasticity
inherent in the tactile sensor data from each multi-action
trial. Furthermore, many tactile sensors, including the Bio-
Tac used in this experiment, are susceptible to sensor drift.
Despite using the sensor per the vendor’s instructions,
slight variations in internal fluid volume, external tempera-
ture, and wear of the sensor skin can cause drift in BioTac

Fig. 5. Using image processing techniques, tactile sensor data were
autonomously labeled according to a) “high,” b) “center,” and c) “low”
states that described the location of the zipper along the length of the
fingerpad.
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readings, which can also affect day-to-day classification of
trained algorithms [42].

In this work, in order to regularize classifier inputs, we
focused on changes in sensor data between adjacent fingertip
actions. Each action corresponded with approximately
1.5 seconds of data. Immediately prior to each action, 100 ms
of impedance data (batches of 10 samples) for each of the Bio-
Tac’s 19 electrodeswere collected for use as an action-specific
baseline. After each action, the baseline data were subtracted
from the most recent 100 ms of electrode impedance data.
The L2-Norm of each of these action-generated differences in
electrode impedance values were used to build a 19 x 1 input
vector for the classifier. Thus, the classifier was trained on
changes in tactile sensor data relative to the prior state.

2.6.3 State Classification via Deep Neural Nets

A Deep Neural Net (DNN) was used to learn a mapping
between the tactile sensor data (inputs) and state labels (out-
puts). DNNs consist of multiple layers in which each layer
is comprised of a set of nodes. By applying rectified linear
units (ReLUs) on the inputs of each hidden layer, DNNs are
able to fit nonlinear data, thereby allowing for robust classi-
fication of nonlinear finger-object interactions. The DNN in
this work was comprised of three hidden layers with 512
nodes per hidden layer.

Classifier training and online classification were per-
formed using TensorFlow [28]. Training of the DNN was
accomplished through stochastic gradient descent (SGD)
with an exponentially decaying learning rate, regularization,
and dropout. SGD is a method of adjusting the weights and
biases of each layer of the DNN to minimize a loss function.
Instead of using the full set of training data for every update
to the model, SGD randomly selects a small subset of data,
which significantly reduces training time. Even though each
training step does not use the full set of training data, by sto-
chastically varying the training set the full set is represented.
L2 Regularization [43], which adds terms to the loss function
in order to penalize large weights, was used to reduce over-
fitting of the model to training data. Dropout, a technique for
stochastically turning weights on and off during training
[44], was used to prevent overfitting and distribute activation
weights across the nodes of the DNN. By randomly turning a
set percentage of the weights on and off during training, the
model no longer relies on a single activation node for classifi-
cation. Randomly removing weights ensures that the activa-
tion of nodes are distributed throughout the network. In this
work, a dropout rate of 50 percent was used.

3 RESULTS

3.1 Classifier Training

The multimodal tactile sensor data for a representative
action are shown in Fig. 6. The input to the DNN state clas-
sifier was a 19 x 1 vector of normalized tactile sensor elec-
trode impedance values (Fig. 6a). This vector represents the
change in skin deformation due to the action that has just
been taken. The time histories of the electrode impedance,
internal fluid pressure, and vibration data are shown in
Fig. 6b, 6c, 6d for completeness.

The DNN classifier was trained with 7,200 data samples
(90 percent of 8,000 samples collected). The trained model

was validated with the remaining 800 samples. The model
was trained after approximately 15,000 iterations and an
average training time of less than 10 minutes (2013 Mac-
Book Pro, TensorFlow). The DNN classifier performed with
accuracies of 89 and 86 percent for the training and valida-
tion datasets, respectively.

3.2 Learned Policies (Expected Reward Structures)

Twodifferent reinforcement learning algorithmswere used to
determine the expected reward for each of the 15 state-action
pairs (3 states x 5 actions). Both Q-learning and C-MAB were
run independently for just over 750 actions in order to com-
pare each algorithm’s expected reward structure. Fig. 7 shows
the expected rewards after 757 actions have been taken with
Q-learning and 758 actions have been taken with C-MABs.
All reinforcement learning was performed online so that the
two learning algorithms could be properly compared, as each
learner determines actions sequentially.

Of the three states, only one state (“high”) was associated
with a state-action pair (“high” state, 155 degree action; see
orange pie slices in Fig. 7) that would yield the maximum
expected reward for both learning algorithms. That is, both
the Q- and C-MAB learners arrived at a policy in which a
155 degree action should be taken to maximize rewards if a

Fig. 6. Representative multimodal tactile data for a single action. a) DNN
input vector values are shown as a histogram of the 19 normalized
electrode values. Time histories for tactile sensor data for a complete
action: b) electrode impedance (100 Hz), c) low frequency fluid pressure
(100 Hz), and d) high frequency fluid pressure (2200 Hz).
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“high” state were estimated. The other two states (“center”
and “low”) resulted in similar, but not identical, action poli-
cies for maximizing expected rewards. For instance, for the
“low” state, the Q-learner policy would dictate a 225 degree
action while the C-MAB learner policy would use a
270 degree action to maximize expected rewards.

3.3 Cumulative Reward Performance

To compare the Q-learning and C-MAB reinforcement learn-
ing algorithms, cumulative rewards were plotted for all con-
secutive actions during the supervised learning process
(Fig. 8). Cumulative rewards are the sum of all rewards
received over all actions ever taken. Both reinforcement learn-
ing algorithms have the identical state and action spaces
available to them. What differentiates each learner is how
actions are chosen during exploration and how expected
rewards are updated.

Q-learning initially outperforms C-MAB learning until
approximately 300 actions have been taken. This is because,
based on the control functionD, the C-MAB learner is purely
exploring in order to gather information about the distribu-
tion of expected rewards across the state-action pairs. How-
ever, once the C-MAB learner has sufficient information
about expected rewards, it begins to exploit the policy it is
learning. The trajectories for the cumulative rewards quickly
diverge between the two learners, with the C-MAB learner
significantly outperforming the Q-learner after only 750
actions (Fig. 8). The C-MAB learner continues to earn
rewards at a higher rate than the Q-learner as time passes
(Table 1). The Q-learner reward rate does not improve due to
the fact that it is unable to understand or balance the explora-
tion of the context space before attempting to exploit what is
known about expected rewards. This reflects an underdevel-
opedQ-learner policy for the finite time period shown.

There are also short segments in Fig. 8 where the C-MAB
cumulative reward function appears to be flat. These flat
segments correspond to periods when the time-dependent
control parameter D increases to the next integer value of
context arrivals required for the exploration of the state-
action pairs [27].

3.4 Task Performance

An empty, industrial ziplock bag (Fig. 5) with a closed zip-
per thickness of 1.7 mm was used for classifier training and
reinforcement learning due to the large number of data col-
lection trials required. However, the learned C-MAB policy
was tested on a thinner, more flexible test bag with a closed
zipper thickness of 1.4 mm (Fig. 9). All testing was con-
ducted without computer vision, and with tactile and pro-
prioceptive feedback only. Rewards were still received by
the robot according to the DNN state classifier estimates
resulting from the tactile sensor data.

The C-MAB policy resulted in successful bag closure in all
10 trials with the empty, novel test bag. The average time
required to close the test bag was approximately 2.5 min. Dur-
ing each trial, 80 percent of the timewas spent onmotion plan-
ning. The elapsed time fluctuated by a small amount from trial
to trial due to the efficiency of the actions chosen online.

4 DISCUSSION

4.1 Challenges of Real-Time Haptic Perception
during Task Execution

In order to complete a goal-driven manipulation task, a
robotic system has to perceive the current state and decide

Fig. 7. Expected rewards for each state-action pair for the a) Q-learning
and b) C-MAB learning algorithms after 757 and 758 consecutive
actions, respectively. Each pie chart represents a state (Fig. 4a) while
pie slices correspond to actions (Fig. 4b). As indicated by the scale at
the bottom, colors correspond to the magnitude of the expected reward
for each state-action pair. Numbers next to each slice indicate the num-
ber of context arrivals.

Fig. 8. Cumulative rewards for over 750 consecutive actions per learner.
C-MAB (thick line) outperforms Q-learning (thin line) by optimizing explo-
ration versus exploitation. The inset highlights two flat regions during
which the control function (Fig. 2) dictated additional exploration of the
expected rewards and the C-MAB was forced to select actions that did
not yield rewards.

TABLE 1
Sum of Rewards for Each Quarter of Learning

Quarter 1st 2nd 3rd 4th

Q-Learning 61 49 33 37
C-MAB 48 65 58 70
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on the best action to take based on the task goal and prior
knowledge. Corrective actions can be taken more frequently
by perceiving the state of the system in real-time or by finely
discretizing large movements with extended timescales,
such as exploratory procedures (EPs) [45]. EPs are used to
relate known fingertip trajectories to unknown object prop-
erties, such as texture and shape.

However, many tasks preclude the use of EPs as the sole
method for planning. For instance, there may not always be
time to perform a large suite of exploratory movements. In
the case of closing a ziplock bag with a two-digit grasp, it
would be impractical to perform a single-digit EP to esti-
mate the orientation of the zipper, in the style of [39].

A few challenges arise from real-time haptic perception
during task execution, especially with compliant tactile sen-
sors. First, the initial movement of a sensorized fingertip
may begin with the sensor in free space and not in contact
with any object. When undeformed, the strain in a compli-
ant fingerpad is mechanically reset to baseline conditions.
Once in contact with an object, however, the strain in the
fingerpad at the current state will affect the strain at the
next state when a new action is taken and the finger remains
in contact with the object [46]. As a result, mapping mea-
sured changes in fingerpad strain to known finger-object
relationships is not a straightforward task. Second, drawing
inferences from short fingertip trajectories (for frequent
state updates) makes it difficult to distinguish causal
changes in tactile data from those resulting from noise and/
or transient events.

4.2 Importance of Robust State Classification

The robustness of a state classification model to variations in
the robot (e.g., sensor wear) and the environment is critical
to the success of any reinforcement learning algorithm.
Maximally rewarding actions cannot be identified if the
state itself is uncertain. In this work, the DNN classifier’s
ability to correctly classify the state of the zipper within the
pinch grasp will minimize the stochasticity of the rewards
during reinforcement learning. In turn, this will allow both
Q- and C-MAB learners to more efficiently converge to an
optimal policy.

State classification is challenging when using deformable
tactile sensors. Compliant tactile sensors, such as the

BioTac, feature advantages such as (i) increased contact
area between fingertips and objects, and (ii) the ability to
encode complex finger-object interactions across an entire
fingerpad, including regions of the fingertip that are not in
contact with the object [39], [40]. Such unique advantages
make the use of deformable sensors worth the extra mach-
ine learning effort to achieve robust state classification.

Improving accuracy for compliant tactile sensors contin-
ues to be a challenge [42]. The tactile sensor electrode sig-
nals resulting from deformation of the artificial fingerpad
were highly dependent on the strain induced by the previ-
ous action. Thus, we chose to use an action-specific baseline
reference for the sensor electrode data such that the DNN
classifier was trained on changes in tactile sensor data rela-
tive to the prior state.

All classification accuracies were determined by compar-
ing the DNN classifier estimates with the results of the com-
puter vision labeling process. The trained DNN classifier
had an initial accuracy of 86 percent on out-of-sample data
not used for training. This DNN model was used to classify
states for both reinforcement learning algorithms. Despite
the fact that the DNN classifier was trained on data collected
84 days prior to the reinforcement learning experiments, the
classification accuracy during learning with new data was
71 percent for Q-learning and 74 percent for C-MAB learn-
ing. The state classification accuracy for both Q-learning and
CLUP should be identical, as the trained classifier should
degrade uniformly due to wear of the sensor and systemic
changes in the environment. An average loss in classifier
accuracy of 13.5 percent over an 84 day period suggests that
the DNN classifier was fairly robust over time.

Future work could explore the robustness of DNN classi-
fication accuracy to changes in action variables (e.g., finger-
tip speed, movement distance) and other sensingmodalities.
However, it is unlikely that perturbations of fingertip veloc-
ity would affect the current classifier, as the classifier relies
on action-specific baselines. Instead, providing additional
sensing modalities to the classifier, such as high frequency
vibration, could improve classifier performance. Additional
classifiers could be designed to output local contour orienta-
tion with respect to the fingertip. Such information would
provide additional context and could improve robustness to
variations in contour stiffness, width, and shape.

4.3 Advantages of Contextual Multi-Armed Bandit
Reinforcement Learning

When learning, rewards are stochastically received and the
learner must appropriately update the expected reward
based on the difference between an observed reward and
the current expected reward. While Q-learning will con-
verge to the optimal expected reward, this will only happen
as time goes to infinity. Q-learning also does not provide
any finite guarantees on optimality. The Q-learner param-
eters could likely be manually tuned to improve perfor-
mance beyond that shown in Fig. 8. However, such
laborious manual parameter tuning is avoided altogether
by using the more advanced C-MAB learner. Importantly,
C-MAB learning is characterized by bounded regret and
enables an optimal search of the state-action space in
order to maximize cumulative rewards given the number
of actions already taken.

Fig. 9. The learned C-MAB policy was tested on a thinner, more flexible
ziplock bag than that used during classifier training or policy learning.
The policy was tested with the bag in three ways: a) empty, and contain-
ing 10 g of cereal b) evenly distributed and c) toward the end of the bag.
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C-MABs employ a controlled exploration of the state-
action pairs and are able to hone in on the actions that it
learns to have the maximum expected reward [27]. By
selecting actions purposefully in order to reduce uncer-
tainty, a C-MAB learner is able to increase its confidence in
the expected reward structure. For example, for the “low
state,” the C-MAB learner has spent the majority of its
exploration efforts on the 225 and 270 degree actions (see
context arrival counts of 130 and 47 adjacent to the orange
and yellow pie slices, respectively, in Fig. 7b). In contrast,
the Q-learner has spent more time and effort on randomly
exploring all five actions (see similar context arrival counts
for the “low” state in Fig. 7a); this results in a less efficient
exploration of the state-action space. The relative efficiency
of the C-MAB learner derives from its average reward opti-
mality, which results in the selection of actions that coincide
most of the time with the hypothetical benchmark. Since the
reward structure is stochastic, the C-MAB learner alternates
between beliefs that either the 225 or 270 degree action
could yield the maximum expected reward. Due to the
design of the CLUP-variant of the C-MAB learner, it focuses
its exploration efforts to further differentiate between the
225 and 270 degree actions.

Efficient exploration during learning helps to reduce
uncertainty for actions suspected of returning larger
rewards while not being wasteful of resources (e.g., hard-
ware life, researcher time). Based on the context arrival
counts indicated next to each pie slice, it is apparent that the
C-MAB learner exhibits a more controlled exploratory
behavior than a Q-learner (Fig. 7). If a state-action pair is not
believed to return high rewards, it will only be explored in
order to reduce uncertainty as dictated by the control
parameter DðtÞ in the C-MAB learner algorithm. This con-
trol parameter continues to grow with time (number of
actions), but its growth rate slows. The ever-increasing con-
trol function D (Fig. 2) guarantees that the robot never stops
exploring the state-action pairs, but that it does so less fre-
quently as time passes and both experience and confidence
increase. In contrast, Q-learning randomly chooses arms
during exploration and does not consider the uncertainty of
the expected rewards to refine its exploration efforts.

4.3.1 Importance of Reinforcement Learning for

Hard-to-code Behaviors

To demonstrate that a learned, closed-loop policy was nec-
essary to accomplish the task of ziplock bag closure, na€ıve
fingertip trajectories were tested. For each test, the zipper
was placed at a known angle and assumed to follow a
straight line. Upon grasp initialization (identical to that dur-
ing reinforcement learning, the fingertips were moved in a
straight line without stopping and without the use of
closed-loop haptic perception or decision-making. All com-
binations of three trajectories and three zipper orientations
(5, 0, and -5 degree, relative to the horizontal, for both fin-
gertip trajectories and actual zipper orientations) were
tested twice. With the exception of one trial (zipper and fin-
gertip trajectory both at 0 degree), the robot failed to track
the zipper and seal the bag during these 18 test trials. The
single successful trial occurred when the preplanned trajec-
tory and orientation of the zipper were, apparently, initial-
ized perfectly.

4.4 Generalizability of the Learned C-MAB Policy

4.4.1 Novel Ziplock Bag Scenarios

Given that the system should perform best on the empty
industrial ziplock bag used during training, we tested the
ability of the robot to generalize its learned C-MAB policy to
novel deformable contours. As reported in Section 3.4, the
industrial bag used for training and reinforcement learning
(Fig. 5) was exchanged for a thinner, more flexible bag for
testing (Fig. 9). While the industrial bag lends itself to thou-
sands of classifier training and policy learning trials, the test
bag was the more familiar sandwich bag. The test bag was
successfully closed 10 out of 10 timeswhen empty (Fig. 9a).

The thin test bag was also filled with different distribu-
tions of 10 g of cereal to test the C-MAB policy on a weighted
condition that the robot had never before seen. In one config-
uration, the cereal and its weight were evenly distributed
along the bottom of the bag (Fig. 9b). In another configura-
tion, the weight was forced to the end of the bag (Fig. 9c),
which caused the zipper to slope downward toward the
bulk of the cereal at the start of each trial. The DNN classifier
was able to perceive this downward slope, identify the zip-
per in the “low” state, and take corrective actions to correctly
track the zipper and close the bag. The robot was able to
aggressively correct for the undesirable “low” state due to
the C-MAB policy that dictated a 180 degree action for such
situations (see the orange pie slice in the pie chart corre-
sponding to the “low” state in Fig. 7b).

The C-MAB policy resulted in successful closure of a
weighted bag 5 out of 7 times (71 percent success rate). The
evenly distributed cereal (Fig. 9b) resulted in a zipper shape
that was most similar to that of the empty bag (Fig. 9a) and
had a high success rate. When the cereal was distributed
toward the end of the bag, the success ratewas only 60 percent
(3 out of 5 times). As the robot’s fingertips traveled closer to
the weighted end of the bag, a single misclassification of the
state could lead to an inappropriate action from which the
robot was unable to recover. Failure could have resulted
because the test conditions (e.g., contour flexibility, weight
distribution) were challenging, the robot did not have time or
travel distance to fix its error, the robot was instructed to
abort the trial once grasp of the zipper was lost, or the DNN
classifier was not trained on steep angles of the zipper. Incor-
porating a memory of sequential actions might enable the
learner to make use of the overall shape of the contour. How-
ever, without visual feedback, there is no way to confirm the
accuracy of the estimated shape of the contour.

4.4.2 Wire and Rope

The learned C-MAB policy was also tested on novel,
deformable contours that were not zippers: thick electrical
wire (3.5 mm diam.), thin electrical wire (1.5 mm diam.),
and nylon rope (4 mm diam.) (Fig. 10). The DNN classifier
trained on the industrial ziplock bagwas able to correctly clas-
sify the state of the wire or rope within the pinch grasp. As
such, the C-MAB policy appeared to select appropriate cor-
rective actions. However, the C-MABpolicy for the flat zipper
did not generalize to the roundwires and rope. The robot was
unable to maintain the contours in the desired “center” state
in order to track the wires or rope for any significant distance.
The robot was only able to track the wire and rope for
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approximately three sequential actions before loss of contact.
The failure to follow the wire and rope contours may be due
to a combination of the round contour shapes, low friction (at
least for the wires), and the steep angle of the contour for
which the C-MABpolicywas not learned.

It should be noted that grasp pressure was held constant
for all actions, trials, and contours during classifier training,
policy learning, and testing. The generalizability of the pol-
icy could be improved by increasing the action space to
include the online modulation of grasp pressure, and by
exposing the C-MAB learner to a larger variety of contours
during the online learning process. Even with the addition
of new contexts, the C-MABs are well suited to deal with
continuous and uncountable contexts [47]. The C-MAB pol-
icy in this work could be used to seed the beliefs of the next-
generation policy, thereby reducing the time and cost of
learning a more robust policy.

5 CONCLUSION

In this work, a robot learned how to perform a haptics-
intensive manipulation task through a resource-conscious
reinforcement learning technique called Contextual Multi-
Armed Bandits that improved the speed of learning and
increased the cumulative rewards received over a finite
period. The model-free approach employed a DNN classi-
fier to learn the nonlinear mapping between fingerpad
deformation and the relative location of a deformable con-
tour along the length of the fingerpad. A policy was learned
through trial and error such that exploration of the state-
action space was performed purposefully to reduce uncer-
tainty in the expected reward structure. Such an efficient
use of exploratory effort is particularly important for the
development of new complex skills that require repeated
interactions between the robot and the environment, as
such interactions are costly in terms of both time and wear.

The task of closing a ziplock bag introduced a few inter-
esting twists on the standard contour-following task. Since
the contour was deformable and visually occluded by the
robot’s fingertips, the robot had to learn what it felt like to
interact with the ziplock bag. The robot learned the statistics

of the consequences of its actions through hands-on experi-
ence. We used computer vision to automate the reward pro-
cess during supervised learning, but the contour-following
task could be accomplished through the use of tactile and
proprioceptive feedback alone once the policy was learned.

While minimizing task execution time was not the pri-
mary focus of this work, it is important for systems in the
real world. In this work, significant time delays resulted
from the 3D motion planning performed for the 7 degree-
of-freedom robot arm. A simpler inverse kinematic solver
could have been used to reduce planning time for this
work. However, 3D motion planning was implemented for
scalability to more complex tasks in the future. Calculations
for the DNN classifier and C-MAB learner actually required
very little processor time. Parallelizing the motion planning
process and using graphical processing units could signifi-
cantly reduce the total task execution time.

For reinforcement learning, it was important to define the
state and action spaces in a way that allows the robot learner
to find interesting solutions that might not be apparent to
the human designer. Non-intuitive solutions can be found
by exploring the vast state-action space and minimizing
uncertainty in the distribution of expected rewards. It was
also important to limit the dimensionality of the state-action
space in order to make the exploration problem tractable,
especially given the high cost of collecting tactile sensor
data. Tactile sensor data are difficult to simulate, time con-
suming to collect, and cause wear of the entire hardware
system during collection.

The DNN state classifier was robust to changes in the
sensor over time and generalized to novel contours such as
thin, flexible zippers, wires, and rope. While the learned
C-MAB policy was able to generalize to a novel test bag and
different weight distributions of bag contents, the policy
did not work for low friction, round contours such as the
wires and rope. Potential future improvements include the
expansion of the action space to include online modulation
of grasp pressure, adjustments to fingertip travel length or
velocity based on confidence, and out-of-plane movements
and rotations of the fingertips.

Additional reinforcement learning techniques could also
be considered in order to improve the robustness of the
policy. In this work, uniform partitioning was used, but par-
titions can also be adapted over time. For instance, the parti-
tion set P can be refined over the regions of the context
space with frequent context arrivals. This will result in a
partition set composed of more similar contexts, for which
rewards can be estimated more accurately. Effectively, such
adaptive algorithms can be used to zoom in on high occu-
pancy regions of the state-action space (i.e., those pie slices
with high context arrival counts) in order to refine the action
space and reduce the uncertainty of expected rewards while
keeping the exploration problem tractable [27].
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Fig. 10. The learned C-MAB policy was tested on three novel, deform-
able contours that were not zippers: a) thick electrical wire (3.5 mm
diam.), b) thin electrical wire (1.5mm diam.), and c) nylon rope (4 mm
diam). Each column shows sequential actions during an individual trial.

70 IEEE TRANSACTIONS ON HAPTICS, VOL. 11, NO. 1, JANUARY-MARCH 2018



REFERENCES

[1] N. Chen, H. Zhang, and R. Rink, “Edge tracking using tactile
servo,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. “Hum. Robot
Interact. Coop. Robots”, 1995, vol. 2, pp. 84–89.

[2] D. Nakhaeinia, P. Payeur, and R. Laganiere, “Adaptive robotic
contour following from low accuracy RGB-D surface profiling
and visual servoing,” in Proc. Can. Conf. Comput. Robot Vis., 2014,
pp. 48–55.

[3] H. Koch, A. Konig, A. Weigl-Seitz, K. Kleinmann, and J. Suchy,
“Multisensor contour following with vision, force, and accelera-
tion sensors for an industrial robot,” IEEE Trans. Instrum. Meas.,
vol. 62, no. 2, pp. 268–280, Feb. 2013.

[4] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and
transparent motions,” Int. J. Comput. Vis., vol. 12, no. 1, pp. 5–16,
Feb. 1994.

[5] U. Martinez-Hernandez, G. Metta, T. J. Dodd, T. J. Prescott,
L. Natale, and N. F. Lepora, “Active contour following to explore
object shape with robot touch,” in Proc. World Haptics Conf., 2013,
pp. 341–346.

[6] M. Klingensmith, S. S. Sirinivasa, and M. Kaess, “Articulated
robot motion for simultaneous localization and mapping,” IEEE
Robot. Autom. Lett., vol. 1, no. 2, pp. 1156–1163, Jul. 2016.

[7] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. “Hum. Robot Interact.
Coop. Robots”, 1995, vol. 1, pp. 399–406.

[8] T. Bhattacharjee, A. A. Shenoi, D. Park, J. M. Rehg, and C. C.
Kemp, “Combining tactile sensing and vision for rapid haptic
mapping,” in Proc. IEEE/RSJ Int. Conf. Intell. Rob Syst., 2015,
pp. 1200–1207.

[9] Z. Lazher, B. Belhassen-Chedli, L. Sabourin, and M. Youcef,
“Modeling and analysis of 3D deformable object grasping,” in
Proc. 23rd Int. Conf. Robot. Alpe-Adria-Danube Reg., 2014, pp. 1–8.

[10] M. Salzmann, J. Pilet, S. Ilic, and P. Fua, “Surface deformation
models for nonrigid 3D shape recovery,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 8, pp. 1481–1487, Aug. 2007.

[11] A. Kapusta, W. Yu, T. Bhattacharjee, C. K. Liu, G. Turk, and C. C.
Kemp, “Data-driven haptic perception for robot-assisted
dressing,” in Proc. 25th IEEE Int. Symp. Robot Hum. Interact. Com-
mun., 2016, pp. 451–458.

[12] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable
objects with point clouds,” in Proc. IEEE Int. Conf. Robot. Autom.,
2013, pp. 1130–1137.

[13] D. Berenson, “Manipulation of deformable objects without model-
ing and simulating deformation,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2013, pp. 4525–4532.

[14] T. Bretl and Z. McCarthy, “Mechanics and quasi-static manipula-
tion of planar elastic kinematic chains,” IEEE Trans. Robot., vol. 29,
no. 1, pp. 1–14, Feb. 2013.

[15] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel,
“Cloth grasp point detection based on multiple-view geometric
cues with application to robotic towel folding,” in Proc. IEEE Int.
Conf. Robot. Autom., 2010, pp. 2308–2315.

[16] A. J. Shah and J. A. Shah, “Towards manipulation planning for
multiple interlinked deformable linear objects,” in Proc. IEEE Int.
Conf. Robot. Autom., 2016, pp. 3908–3915.

[17] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 5026–5033.

[18] Robot Locomotion Group at the MIT Computer Science and
Artificial Intelligence Lab, “DRAKE: A planning, control, and
analysis toolbox for nonlinear dynamical systems.” (2016).
[Online]. Available: http://drake.mit.edu/

[19] N. Wettels, V. J. Santos, R. S. Johansson, and G. E. Loeb,
“Biomimetic Tactile Sensor Array,” Adv. Robot., vol. 22, pp. 829–
849, Aug. 2008.

[20] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in
Proc IEEE Int. Conf Robot. Autom., 2011, pp. 3828–3834.

[21] J. Mahler, et al., “Dex-Net 1.0: A cloud-based network of 3D
objects for robust grasp planning using a multi-armed bandit
model with correlated rewards,” presented at the Int. Conf. Robot.
Autom., Stockholm, Sweden, 2016.

[22] M. Laskey, et al., “Multi-armed bandit models for 2D grasp plan-
ning with uncertainty,” in Proc. IEEE Int. Conf. Autom. Sci. Eng.,
2015, 2015, pp. 572–579.

[23] M. C. Koval, J. E. King, N. S. Pollard, and S. S. Srinivasa, “Robust
trajectory selection for rearrangement planning as a multi-armed
bandit problem,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2015, pp. 2678–2685.

[24] M. Dudik, et al., “Efficient optimal learning for contextual
bandits,” arXiv preprint arXiv:1106.2369, Jun. 2011.

[25] J. Langford and T. Zhang, “The Epoch-Greedy algorithm for
multi-armed bandits with side information,” in Advances in Neural
Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer,
and S. T. Roweis, Eds. Red Hook, NY, USA: Curran Associates,
Inc., 2008, pp. 817–824.

[26] A. Slivkins, “Contextual bandits with similarity information,” J.
Mach. Learn. Res., vol. 15, pp. 2533–2568, 2014.

[27] C. Tekin and M. van der Schaar, “Distributed online learning via
cooperative contextual bandits,” IEEE Trans. Signal Process.,
vol. 63, no. 14, pp. 3700–3714, Jul. 2015.

[28] M. Abadi, et al., “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv preprint arXiv:
1603.04467, Mar. 2016.

[29] M. Quigley, et al., “ROS: An open-source robot operating system,”
2009. [Online]. Available: http://www.ros.org/

[30] I. A. Sucan and S. Chitta, “MoveIt!,” Oct. 2015. [Online]. Available:
http://moveit.ros.org

[31] “Open Motion Planning Library (OMPL),” Nov. 2015. [Online].
Available: http://ompl.kavrakilab.org/

[32] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-Learning,”
Mach. Learn., vol. 8, no. 3/4, pp. 279–292, May 1992.

[33] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D.
dissertation, King’s College, Univ. Cambridge, Cambridge, U.K.,
1989.

[34] W. R. Thompson, “On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples,” Bio-
metrika, vol. 25, no. 3/4, pp. 285–294, 1933.

[35] J. Gittins, K. Glazebrook, and R. Weber,Multi-Armed Bandit Alloca-
tion Indices. Hoboken, NJ, USA: Wiley, 2011.

[36] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari, “X-Armed
Bandits,” J. Mach. Learn. Res., vol. 12, pp. 1655–1695, 2011.

[37] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in
metric spaces,” in Proc. Fortieth Annu. ACM Symp. Theory Comput.,
May 2008, pp. 681–690.

[38] R. B. Hellman and V. J. Santos, “Haptic perception and decision-
making for a functional contour-following task,” in presented at
the IEEE Haptics Symp., Work-in-Prog. Paper, Philadelphia, PA,
USA, 2016.

[39] R. D. Ponce Wong, R. B. Hellman, and V. J. Santos, “Spatial asym-
metry in tactile sensor skin deformation aids perception of edge
orientation during haptic exploration,” IEEE Trans. Haptics, vol. 7,
no. 2, pp. 191–202, Apr.-Jun. 2014.

[40] R. D. Ponce Wong, R. B. Hellman, and V. J. Santos, “Haptic
exploration of fingertip-sized geometric features using a
multimodal tactile sensor,” in Proc. SPIE 9116, Next-Generation
Robots and Systems, vol. 9116, Jun. 2014, pp. 1–15, doi: 10.1117/
12.2058238

[41] “Open Computer Vision (OpenCV) Library (SourceForge.net),”
2015. [Online]. Available: http://sourceforge.net/projects/
opencvlibrary/, Accessed on: Oct. 14, 2011.

[42] J. C. T. Hui, A. E. Block, C. J. Taylor, and K. J. Kuchenbecker,
“Robust tactile perception of artificial tumors using pairwise com-
parisons of sensor array readings,” in Proc. IEEE Haptics Symp.,
2016, pp. 305–312.

[43] A. Ng, “Feature selection, L_1 versus L_2 regularization, and rota-
tional invariance,” in Proc. Int. Conf. Mach. Learn., 2004, Art. no. 78.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Sala-
khutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[45] S. J. Lederman and R. L. Klatzky, “Hand movements: A window
into haptic object recognition,” Cogn. Psychol., vol. 19, no. 3,
pp. 342–368, Jul. 1987.

[46] V. Levesque and V. Hayward, “Experimental evidence of lateral
skin strain during tactile exploration,” in Proc. Eurohaptics, 2003,
vol. 2003, pp. 261–275.

[47] C. Tekin and M. van der Schaar, “RELEAF: An algorithm for
learning and exploiting relevance,” IEEE J. Sel. Top. Signal Process.,
special issue on signal processing and big data, vol. 9, no. 4, pp. 716–
727, 2015.

HELLMAN ET AL.: FUNCTIONAL CONTOUR-FOLLOWING VIA HAPTIC PERCEPTION AND REINFORCEMENT LEARNING 71

http://drake.mit.edu/
http://www.ros.org/
http://moveit.ros.org
http://ompl.kavrakilab.org/
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/


Randall B Hellman received the BS degree in
mechanical engineering from Purdue University,
and the MS and PhD degrees in mechanical engi-
neering from Arizona State University, in 2008
and 2016, respectively. He is currently a postdoc-
toral researcher with the University of California,
Los Angeles. His research interests include artifi-
cial haptic perception, decision-making, rein-
forcement learning, manipulation, robotic hands,
tactile sensors, and haptic interfaces for sensory
feedback. He is a member of the IEEE.

Cem Tekin (S’09-M’13) received the PhD degree
in electrical engineering systems from the
University of Michigan, Ann Arbor, in 2013. He is
an assistant professor in Electrical and Electron-
ics Engineering Department, Bilkent University,
Turkey. From 2013 to 2015, he was a postdoc-
toral scholar with the University of California, Los
Angeles. His research interests include big data
stream mining, machine learning, data science,
multi-armed bandit problems, and recommender
systems. He is a member of the IEEE.

Mihaela van der Schaar is Chancellor’s Profes-
sor of electrical engineering with the University of
California, Los Angeles. She was a distinguished
lecturer of the Communications Society from
2011 to 2012, the editor in chief of the IEEE
Transactions on Multimedia from 2011 to 2013,
and a member of the editorial board of the IEEE
Journal on Selected Topics in Signal Processing,
in 2011. Her research interests include engineer-
ing economics and game theory, multi-agent
learning, online learning, decision theory, network

science, multi-user networking, big data and real-time stream mining,
and multimedia. She is a fellow of the IEEE.

Veronica J. Santos received the BS degree in
mechanical engineering with a music minor from
the University of California, Berkeley, in 1999 and
the MS and PhD degrees in mechanical engineer-
ing with a biometry minor from Cornell University,
in 2007. She was a postdoctoral researcher with
the University of Southern California from 2007 to
2008 and an assistant professor of mechanical
and aerospace engineering with Arizona State
University from 2008 to 2014. She is currently an
associate professor of mechanical and aerospace

engineering with the University of California, Los Angeles. She received
the 2010 NSF CAREER Award and currently serves on the editorial
boards for the ASME Journal of Mechanisms and Robotics and the
IEEE International Conference on Robotics and Automation.

72 IEEE TRANSACTIONS ON HAPTICS, VOL. 11, NO. 1, JANUARY-MARCH 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


