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Risk-averse mixed-integer multi-stage stochastic programming forms a class of extremely challenging
problems since the problem size grows exponentially with the number of stages, the problem is non-
convex due to integrality restrictions, and the objective function is nonlinear in general. We propose a
scenario tree decomposition approach, namely group subproblem approach, to obtain bounds for such
problems with an objective of dynamic mean conditional value-at-risk (mean-CVaR). Our approach does
not require any special problem structure such as convexity and linearity, therefore it can be applied to
a wide range of problems. We obtain lower bounds by using different convolution of mean-CVaR risk
measures and different scenario partition strategies. The upper bounds are obtained through the use of
optimal solutions of group subproblems. Using these lower and upper bounds, we propose a solution
algorithm for risk-averse mixed-integer multi-stage stochastic problems with mean-CVaR risk measures.
We test the performance of the proposed algorithm on a multi-stage stochastic lot sizing problem and
compare different choices of lower bounds and partition strategies. Comparison of the proposed algo-
rithm to a commercial solver revealed that, on the average, the proposed algorithm yields 1.13% stronger
bounds. The commercial solver requires additional running time more than a factor of five, on the aver-
age, to reach the same optimality gap obtained by the proposed algorithm.
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1. Introduction

In risk-averse stochastic optimization problems, risk measures
are used to assess the risk involved in the decisions made. Due to
the structural properties of risk measures, risk-averse models are
more challenging than their risk-neutral counterparts. The multi-
stage risk-averse stochastic models are even more complicated due
to their dynamic nature and excessive amount of decision vari-
ables. Both the risk-neutral and risk-averse multi-stage stochastic
problems are non-convex when some of the decision variables are
required to be integer valued. Therefore, the solution methods sug-
gested for convex multi-stage stochastic problems cannot be used
to solve these problems.

In this study, we consider risk-averse mixed-integer multi-stage
stochastic problems with an objective function of dynamic mean
conditional value-at-risk (mean-CVaR). Both CVaR and mean-CVaR
are coherent measures of risk that have been used in the literature
extensively (see, Rockafellar & Uryasev, 2002). Coherent measures
of risk and their axiomatic properties are introduced in the pio-
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neering paper by Artzner, Delbaen, Eber, and Heath (1999). Later,
the theory of coherent risk measures is extended by Ruszczynski
and Shapiro (2006a, 2006b), and references therein.

In a multi-stage decision horizon, risk involved in a stream of
random outcomes is considered. Therefore, dynamic coherent risk
measures are introduced to quantify the risk in multi-stage models
(see, Artzner, Delbaen, Eber, Heath, and Ku, 2007; Kovacevic and
Pflug, 2009; Pflug and Romisch, 2007; Ruszczynski and Shapiro,
2006a; 2006b, and references therein).

For the multi-stage stochastic optimization problems with dy-
namic measures of risk, some exact solution techniques are sug-
gested under the assumption that the decision variables are con-
tinuous. These techniques, such as stochastic dual dynamic pro-
gramming (SDDP), which is first suggested by Pereira and Pinto
(1991) for risk-neutral problems and then extended to risk-averse
problems by Shapiro (2011), Shapiro, Tekaya, da Costa, and Soares
(2013), Philpott, de Matos, and Finardi (2013), and Lagrangian
relaxation of nonanticipativity constraints suggested by Collado,
Papp, and Ruszczynski (2012) rely on the convex structure of the
problem, therefore, they cannot be used to find an exact solution
when some of the decision variables are integer valued. On the
other hand, these methods can be used to obtain lower bounds
on the optimal value of multi-stage stochastic integer problems.
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Bonnans, Cen, and Christel (2012) propose an extension of SDDP
method for the risk-neutral problems with integer variables by re-
laxing the integrality requirements in the backward steps of the
algorithm. Later, Bruno, Ahmed, Shapiro, and Street (2016) extend
this approach to risk-averse integer problems. Zou, Ahmed, and
Sun (2016) consider SDDP method to solve risk-neutral multi-stage
mixed-integer problems with binary state variables. They prove
that SDDP method provides an exact solution to the problem in
finite number of iterations when the cuts satisfy some sufficient
conditions. Similarly, Schultz (2003) uses Lagrangian relaxation
of nonanticipativity constraints to obtain lower bounds within a
branch-and-bound procedure for risk-neutral multi-stage problems
with integer variables. However, these approaches rely on some
restrictive assumptions. SDDP method requires stagewise indepen-
dency of random process and the branch-and-bound procedure re-
quires complete recourse assumptions. Therefore, they cannot be
applicable to a wide range of problems.

A recent stream of research proposes an alternative way of
obtaining bounds for mixed-integer multi-stage stochastic prob-
lems via a scenario tree decomposition. In that approach, the
sample space is partitioned into subspaces called as groups, and
the problem is solved for the scenarios in a group instead of
the original sample space. These smaller problems are called as
group subproblems. Sandik¢i, Kong, and Schaefer (2013) propose
a group subproblem approach for risk-neutral mixed-integer two-
stage stochastic problems. They show that the expected value of
the optimal values of group subproblems gives a lower bound on
the optimal value of the original problem. Later, this approach
is extended to the risk-neutral multi-stage problems by Sandikgi
and Ozaltin (2014), Zenarosa, Prokopyev, and Schaefer (2014),
and Maggioni, Allevi, and Bertocchi (2016). Recently, Maggioni
and Pflug (2016) apply group subproblem approach to risk-averse
mixed-integer multi-stage stochastic problems where the objec-
tive is a concave utility function applied to the total cost over the
planning horizon. Although, group subproblems include less num-
ber of scenarios than the original problem, the length of the deci-
sion horizon in group subproblems and the original problem is the
same. Therefore, one may argue that scalability is a drawback of
this approach when the decision horizon is too long.

In this study, we propose a scenario tree decomposition al-
gorithm for risk-averse mixed-integer multi-stage stochastic prob-
lems with a dynamic objective function defined via mean-CVaR.
The suggested algorithm is based on group subproblem approach
and is used to find lower and upper bounds on the optimal value
of the problem. We propose infinitely many valid lower bounds on
mean-CVaR risk measure that can be used within the frame of the
algorithm. We also investigate the effect of scenario partitioning
strategies on the quality of the different lower bounds by consid-
ering different partitioning strategies based on the structure of the
scenario tree and disparateness of scenario realizations.

As outlined earlier, our approach does not require any special
structural property such as convexity and linearity of the feasible
set. Moreover, it does not require complete recourse or stagewise
independence assumptions, therefore, it can be applied to a wide
range of problems. We conduct computational experiments on a
multi-stage lot sizing problem by considering different choices of
bounds and scenario tree partitions. The experiments reveal that
the obtained bounds are tight and require reasonable CPU times.
Our approach yields 1.13% stronger bounds than solving the prob-
lem with IBM ILOG CPLEX. On the other hand, CPLEX requires more
than 5.45 times of CPU time to obtain the same optimality gaps of
our approach.

The organization of the paper is as follows: In Section 2, we
present problem definition and some preliminaries. Section 3 in-
cludes our main results on obtaining different lower bounds for
mean-CVaR via a scenario grouping approach. We consider the

application of these lower bounds to a risk-averse mixed-integer
multi-stage stochastic problem with a dynamic objective function
defined via mean-CVaR. We also suggest a method to obtain an
upper bound. The computational study conducted on a multi-
stage lot sizing problem and related discussions are presented in
Section 4. Section 5 is devoted to concluding remarks and future
research directions.

2. Risk-averse mixed-integer multi-stage stochastic problems
with dynamic mean-CVaR objective

We consider a multi-stage discrete decision horizon where the
decisions at stage t € {1,...,T} are made based on the available
information up to that stage. Let 2 be a finite sample space and
{0,0} = 71 c #, C --- Cc Fr = Z be a filtration, that is, an ordered
set of sigma algebras on €2, representing gradually increasing in-
formation through stages. We use &; and x; to denote the vector of
problem parameters and decisions at stage t € {1,...,T}, respec-
tively. For each t € {1,2,..., T}, &; and x; are .Z;—measurable. At
first stage, the vector of problem parameters £; and decisions x;
are deterministic, since .#; = {0, #}. At stage t € {2,...,T}, some
or all problem parameters are random.

An element w of € is called as a scenario. A scenario w e 2
corresponds to a realization of a sequence of random parameters
&(w), ..., &r(w) in stages 2,...,T.

Our main interest is a risk-averse mixed-integer multi-stage
stochastic problem with an objective of dynamic risk measure

01, 7(-) over the horizon 1,...,T. The problem can be defined as:
r)gi)?QLT(fl *1), 2(x2,82), ..., fr(xr, 1)), (1)

where X = X7 x Xy (x1,&) x --- x Xp(Xr_1, &r) is the abstract rep-
resentation of possibly nonlinear feasibility set. Let R and Z denote
the set of real numbers and integers, respectively. X; € R™ x Z™
is a mixed-integer deterministic set and, for t e {2,....T}, A;:
RM-1 x ZM-1 x Q = R™ x Z™ are .#;—measurable mixed-integer
point-to-set mappings. The cost in the first stage is determinis-
tic and represented by a possibly nonlinear, real-valued function
fi :RM x Z™ — R. The cost functions f; :R"™ x Z™ x Q > R, t €
{2,.... T} are #;—measurable, real-valued, and may be nonlinear.

Classical solution methods such as SDDP and Lagrangian relax-
ation of nonanticipativity constraints cannot be used to solve prob-
lem (1) due to integrality restrictions of some decision variables.
Therefore, our focus is to obtain bounds on (1) where the objective
function gy, 1(-) is a dynamic risk measure defined via mean-CVaR.

Now, we present some necessary concepts and notation on
coherent, conditional, and dynamic risk measures to exploit the
structure of problem (1).

2.1. Coherent measures of risk

Let Z:= L. (2, .#,P) be the space of bounded and .7-
measurable random variables with respect to sample space 2 and
probability distribution P. Let Z,W € Z represent uncertain out-
comes for which lower realizations are preferable. Also, let Z, be
the value that the random variable Z takes under scenario w € 2.
As defined in Artzner et al. (1999), a function p : Z — R is called
a coherent measure of risk if it satisfies:

(A1) Convexity: p(@Z+ (1 —a)W) <ap(Z)+ (1 —a)p(W)for all
ZWeZzZand @ €[0,1],

(A2) Monotonicity: Z > W implies p(Z) > p(W) for all ZW € Z,

(A3) Translational Equivariance: p(Z+t)=p(Z)+tforallte

Rand Z € Z,
(A4) Positive Homogeneity: p(tZ) =tp(Z) forallt >0and Z e
Z,
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Fig. 1. An example of four-stage scenario tree. (a) €2, §2,, Q3 and 24 are the set of nodes at stages 1, 2, 3 and 4, respectively. (b) C(v) is the set of children nodes of node
v, a(v) is the ancestor node of node v and p,, is the conditional probability of node u given v.

where Z>W indicates pointwise partial ordering such that Z, > W,,
for a.e. we Q.

We assume that cardinality of 2 is finite and .# is the set of all
events defined on 2. Then, the probability of a scenario w € 2 can
be specified as p, > 0. In this case, elements of both Z and its dual
space 2* can be represented as elements of RI®?l since both Z and
2Z* are isomorphic to RIS,

Let ue, be the value that p € Z* takes under scenario w € Q.
For Z € Z and pu € 2*, the scalar product (-, -) is defined as

(n,2) = Z Polole.

we2

The following fact is known as dual representation of coherent
measures of risk (see, Ruszczynski and Shapiro, 2006b, for exam-
ple): if p(.) is a coherent measure of risk, then, under some as-
sumptions, for every random variable Z € Z,

0(Z) = max (i, Z), (2)
neA

where A C Z* is a compact and convex set. We call this set as the
dual set of the risk measure p(-). A coherent measure of risk can be
characterized via its dual set. The reader is referred to Ruszczynski
and Shapiro (2006b) for a detailed discussion on the dual repre-
sentation of coherent measures of risk.

2.2. Conditional and dynamic risk measures

When a multi-stage stochastic process is considered, all real-
izations of the process form a scenario tree in the finite distribu-
tion case. In this section, we follow the notation used by Collado
et al. (2012) to represent the scenario tree. Let €2; be the set
of nodes at stage t € {1,...,T}. At stage t =1, there is only one
node, called as root node and it is represented by v;. The nodes
at stages t € {2,..., T} represent elementary events in .%, that is
Ft =0 (L), a sigma algebra on ;.

The set Qr corresponds to all possible scenarios, that is Qr =
Q. Each node ve ¢, t e{2,...,T} has a unique ancestor at stage
t —1 and this ancestor node is called as a(v). Also, each node
veQte{l,...,T—1} has a set of children nodes C(v) such
that C(v) = {u € Q¢,1 : a(u) = v}. The probability measure P can be
specified by conditional probabilities

pw i=Plulvl,ve Qr,ueCw), tefl,...,T -1},
and probability of a scenario w € Q7 can be computed as

Po = Pviv, Pvyvs - - - Pupqos

where vy, 15, .
node w.

The notation mentioned above is depicted in Fig. 1 for a four-
stage scenario tree.

..,V_1,w is the unique path from root node v; to

For a multi-stage decision horizon with stages t € {1,..., T}, let
Zt i= Lo (2, F, P). The mapping Pz |7 Bl = 2t is called as
one-step conditional risk measure if it satisfies axioms (A1)-(A4)
for corresponding spaces Z; and Z;,q for all t € {1,2,...,T - 1}.

The risk involved in a sequence of random variables Z; € Z;,t
{1,..., T} adopted to the filtration %, t € {1,...,T} can be evalu-
ated by a time consistent dynamic measure of risk ¢, r(-), that is,

0117(Z1. 2, ....2r) =21 + P g, .7, (L2
+,0ff3|92(z3 + Py, (ZT)v--))v (3)

The structure (3) is presented in Ruszczynski and Shapiro (2006a).
Later, Ruszczynski (2010) shows that the representation (3) can be
constructed using monotonicity of conditional risk measures and
the concept of time consistency. A time consistent dynamic risk
measure o7 7(-) is not, in general, law invariant, even in the case
it is a composition of law invariant conditional risk measures (see,
Shapiro, 2012). The reader is referred to Ruszczynski (2010) and
Eckstein, Eskandani, and Fan (2016) for the definition of time con-
sistency and law invariance.

Collado et al. (2012) show that the dual representation of coher-
ent risk measures can be extended to dynamic measures of risk. If
o1, 7(-) is a dynamic risk measure given as in (3), then for every

sequence of random variables {Z; € Zt}L],

011721, 2, ... Zr) = max Gr.Zi+2Z2+ -+ Zr), (4)
where

Or =Ar10---0Ay0 Ay, (5)
and A, t € {2,..., T} is a convex and compact set used in the dual

representation of p Feuil =, (-). The operator “o” defines convolution
of probability measures, that is,

(e o qr) (u) = qe(a(u)) e (a(u), u), Vu € Q.

and

Aio Qr = {roqr : g € Qr, e € A},

for all t € {1,2,...,T — 1}. Recall that a(u) is the ancestor node of
u.

In this study, we use conditional mean-CVaR as one-step con-
ditional risk measure. Therefore, the next section is devoted to the
definition of mean-CVaR.

2.3. CVaR and mean-CVaR

An important and extensively used example of coherent mea-
sures of risk is Conditional Value-at-Risk (CVaR). CVaR of Z € Z at
level o €[0, 1) is defined as (see, Rockafellar & Uryasev, 2002)



598 A.I Mahmutogullan: et al./ European Journal of Operational Research 266 (2018) 595-608

CVaRy (2) := ;relﬂg{m ﬁE[(Z— n)+]}, (6)

where (a); := max{a, 0} for a € R.

Given a level parameter « [0, 1) and a weight parameter
€1 €0, 1], mean-CVaR of Z € Z is defined as
p(2) := (1 - €)E[Z] + €,CVaRy (2). (7)

As seen in (7), despite CVaR, mean-CVaR risk measure conveys the
expected value information of a random variable, as well. As o or
€1 increase, the decision-maker gets more risk-averse.

The expression in (7) can equivalently be represented as follow-
ing linear program for finite probability spaces.

L 1
p(2) = minjmize (1—€1) Y PuZo+ € (n +t1 > pwﬁw)

we2 we2
subject to ¥, >Z, -1, VYoeQ
U, >0, VweQ.

When the sample space is finite, the dual representation
(2) holds for mean-CVaR with the set A represented as (see,
Ruszczynski & Shapiro, 2006b):

A={pezZ":1-€ <pup <1+6,YVo e Q and E[u] =1}, (8)
where

€y =

€ 0
1—0{12’

and E[p] = 3" pcq Polho-

For any Z;,1 € Z;,1, the one-step conditional mean-CVaR risk
measure 0 g, |z, (Zt11) with parameters o e [0, 1) and €1, €10, 1]
and its dual set A; are defined similar to (7) and (8). However, in
(6), the infimum is over n; € Z; and the expectation operators in
(6)-(8) are replaced with conditional expectations with respect to
Tt .

For the remainder of the paper, we will focus on mean-CVaR
risk measure. Hence, we will use p(-) to refer to mean-CVaR and
pgt+1|gt('), te{1,2....,T -1} to refer to one-step conditional
mean-CVaR.

3. Bounds

The main motivation of this section is to propose lower and up-
per bounds for problem (1) with an objective of dynamic mean-
CVaR. Therefore, in Section 3.1, we first propose a continuum of
time consistent lower bounds for mean-CVaR risk measure by
scenario grouping. Some possible lower bounds are presented in
Section 3.2. The application of these time consistent bounds to a
risk-averse mixed-integer multi-stage stochastic problems with an
objective of (3) is presented in Section 3.3 Extension of the pro-
posed lower bounds to other dynamic mean-CVaR risk measures is
discussed in Section 3.4. In Section 3.5, we propose a method for
obtaining an upper bound to the problem. The proposed algorithm
benefits from these results and yields lower and upper bounds for
problem (1).

3.1. Lower bounds for mean-CVaR risk measure

Let p(-) be a mean-CVaR risk measure with dual set 4. We
would like to construct another coherent risk measure p(-) which
provides a time consistent lower bound for p(-). The risk measure
7 (), or equivalently its dual set A, can be constructed in different
ways. When the cardinality of the sample space is large, due to
computational concerns, one may think of dealing with subsets of
sample space separately and then obtaining a lower bound for p(-).
For such construction, we need the definition of scenario groups
and partition.

A subset of scenarios SC2 is called as a group. Let S = {S]-}]j=1
be a collection of groups that forms a partition of €2, that is,
jz]Sj:Q and S;NSj =¢ for all j,j’e{1,2,...,]} such that
j#Jj. Note that the groups may not be necessarily disjoint (see,
Sandiker & Ozaltin, 2014), i.e. S;NSj’ # ¥, but for the ease of rep-
resentation, we partition the sample space into disjoint groups.
Let ¢ be a o —algebra generated by partition S where each group
SjeS.je{l1,2,...,]J} corresponds to an elementary event j of ¢.
The probability of an elementary event j is p; = Zwes}_ Pw Which
is the total probability of scenarios in S;. We also define the ad-
justed probability of each scenario w as pj, = pw/p; for all w €S;
and j e {1,2,....]}. Note that, ¢ is a sub o —algebra of .Z.

Once a partition of the sample space 2 is given, one way to
construct p(-) is to define it as a convolution of a coherent risk
measure Py : Loo(2, %, P) > R with dual set 4y and a one-step
conditional risk measure pg |y : Z - Loo(2,%,P) with dual set
ﬂg‘g. That is, p(-) = (Pw © Pz|e) (), and its dual set is the con-
volution of the sets Ay and Az ¢ such that A=Ay o Agy.

Note that, ,59@(-) can be represented in terms of
ps; (). j € {1.2....]}, that is, [,5%%(‘)]], = ps, () (see, Miller and
Ruszczynski, 2011, for example) where ps; : Loo(£2,0(5j).P) > R
is a coherent risk measure and o (S;) is the o —algebra on §;. Fig. 2
depicts aforementioned notation for a given partition of a scenario
tree with five scenarios.

For mean-CVaR, 5(-) or equivalently its dual set 4, can be ex-
plicitly stated. Let parameters of ¢ be a! €[0, 1), €l €[0,1], and

1?;1611, and parameters of pz 4 be a?€[0, 1), €2 €[0,1]

2 2 2 i ion 5= 5.wod - g
and €5 = ]i‘az €1. Consider the convolution p = pg o 0z : F —
R and its dual set

1 _
€ =

Z=Xﬂ|gojg={M€Z*3M=M10M2,M1 GK%MZGJZ%%}
={ueZ*:M=u‘o,u2,l—e}§u}51+e§,‘v’jel,2...,]
and E[u!]=1,1-€? < pu? <14 €2, Vo € Q and E[u?|¥9] =1},

9)
where E[u'] = ey piit}. [EIWPI9]]; = Yoes, Piot?, for j e
{1,....J}, and 1 is a ¥-measurable random variable that takes

value of one in all realizations. Construction of the set 4 for the
example in Fig. 2 can be seen in Appendix A.

Now, we are ready to prove that a lower bound for mean-CVaR
risk measure o(-) can be obtained by () = (0w © 0.z|) ().

Proposition 1. Let p(-) be a mean-CVaR risk measure with param-
eters a €[0, 1), €1 €[0, 1], €3 = %5 €1 > 0, and dual set A. Also let
P() = (0w o Pgi)(-) where pe is a mean-CVaR risk measure with
parameters «' €[0, 1), €] €[0,1], €] = %e} and dual set Ay;
and 0| is a one-step conditional mean-CVaR risk measure with

2

parameters a2 [0, 1), €2 € [0, 1], €2 = %617

] and dual set ./Zg“g.
Then, p(Z) < p(Z) forall Z € Z if

1-€; < (1-€)(1-¢€?) and

al o, o
<]+1—oﬂ€])<1+1—oﬂ61 =T+ 9

Proof. Let e A= Kg‘g o Ay. Then, from (9), there exist
p' e Ay and p? € Az such that = p'ou? with Elu']=1
and E[u?|¥] = 1. Properties of conditional expectation implies that
E[p] = E[E[u|¥]] = B[E[u! o u2|#]] = E[u! o B[u?|#]] =
Elulo1] =E[ul]=1.

From the definition of €, €l and €2, second part of (10) im-
plies (1+€})(1+€2) <1+€,. Moreover, by (9), (1-€))(1-
€2)<po<(1+e)(1+€2) for all weQ. If 1—€<(1—¢€))

0561' (10)
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Fig. 2. (a) An example partition for a two-stage scenario tree: There are five scenarios 1,2,3,4, and 5 with probabilities p;, py, ps, ps, and ps, respectively. (b) S = {Sq., Sp}
is a partition of  where S, = {1,2,3} and S, = {4, 5}. Nodes a and b correspond to groups S, and S, with probabilities p, = p; + p2 + p3 and p, = p4 + ps, respectively.
(c) p: Z > R is the original risk measure. (d) ¢ is a sub o —algebra of .Z. py : Lo.(R2.%.P) — R is a coherent risk measure and pg |« : Z — L (2, ¥, P) is a one-step
conditional risk measure that can be represented via ps, : £o(£2,0(Sa), P) = R and ps, : L (2,0 (Sp).P) > R as [D.z|% ()]a = ps, (1) and [D.z(e ()], = ps, ().

(1-€?)and (1+€)(1+€2) <1+e, then 1 —¢ < Mo =1+ €,
for all w € 2 which implies, u € A. Since w is arbitrary, A C A.

For any~Z ez, let p(2) = maxﬂej(u,z) and p* € argmax, x
(n,Z). If Ac A, then u*e A and p(Z2) = (u* Z) < maxyea{L,
Z) = p(Z). Since Z is arbitrary, p(Z) < p(Z) forall Ze 2. O

Proposition 1 partially extends Theorem 8 and Corollary 6 of
lancu, Petrik, and Subramanian (2015) to mean-CVaR risk measure.
It implies that, under conditions (10), 5(-) = (P o fz|) (") is a
valid lower bound for p(-) for any partition S of Q. If p(-) is a con-
ditional mean-CVaR risk measure, Proposition 1 still applies. In this
case, the expectations in the proof are replaced with corresponding
conditional expectations.

3.2. Possible lower bounds

We have shown that a lower bound for p(-) can be obtained
by convolutions of mean-CVaR risk measures whose parameters

satisfy condition (10). Due to Proposition 1, we can generate in-
finitely many lower bounds. Under the settings on Proposition 1,
Table 1 presents some special cases of parameters of pe () and
ﬁg‘g(') such that they can be used to obtain a lower bound for
().

Bounds pg o Eg|¢ and Eg o p g represent the extreme cases
where either O« (-) or P4« () is the expectation operator. Bound
Py 0 ,osg‘g is an intermediate case where both py (-) and pz|« (-)
have the same parameters, that is, &' = a?, €] = €7 and €} = €3.
Under these conditions, in order to construct the largest set A, the
inequalities in (10) are forced to hold at equality.

An interesting question is whether one of the possible lower
bounds presented above is always preferable among others. Fol-
lowing example reveals that pf, is not necessarily the
tightest bound among others.

S
°P gy

Example 1. Consider a random variable Z with sample space 2
{a),-};‘:]. All four realizations have equal probabilities, that is, p,, =
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Table 1
Possible choices of pg (-) and pz |« (-) that can be used to obtain lower bound on mean-CVaR risk measure p(-).
Parameters of P Parameters of p.g|4
P 0P|z €l €l ol €? €2 o?
Pz o Egg €1 € o 0 0 0
1+€-1 A 1+€2-1
p%opsylg 1-/1-¢ JV1+e -1 Tre s 1-/1-¢ V1+e -1 e s
Eg o 7|9 0 0 0 €1 € o
Table2 i & ={&}I,. p()) is a mean-CVaR risk measure with parameters
Values of different lower bounds (LB’s) for Example 1. ae [0' ]) and €€ [O, 1]v and o, T() is a dynamic mean-CVaR. Let
LB Choice S s x; and z* be an optimal first stage solution and the optimal value
Py oEzg 35 25 of (P), respectively. . . 4
0y © Py 3.12 3 Recall the partition § = {Sj}L] of Q and sigma algebra ¢ in-
Ee o P79 3 3.5 duced by this partition. Then, the jth group subproblem is just

1/4 for all ie{1, 2, 3, 4}. The value that Z takes under scenario w;
is i, that is, Z,, =i forie{1, 2, 3, 4}.

Let € =1 and o = 0.5, then (7) reduces to CVaR value at « =
0.5 and then p(Z) = 3.5.

Two different partitions of scenarios are S = {{w;,w,},
{ws, w4}} and &' = {{w1, w4}, {wy, w3}}. Values of the three
bounds for partitions S and S’ are given in Table 2.

As seen in Table 2, the tightest bounds for partitions S and S’
are bounds py oE g4 and Eg o p 4|, respectively. Another ob-
servation is the fact that o, o ,of% 1 not necessarily the tight-
est bound among others. In Example 1, although either pg o
Eg|g OF Eg o pg|y can be the tightest bound among others un-
der different scenario partitions, the computational experiments
in Section 4 reveal that Ey o p g is the most promising lower
bound choice.

Although Shapiro, Dentcheva, and Ruszczynski (2009) show
that, under some assumptions, the lower bound py oE g can
be extended to any coherent risk measures, the other bounds pro-
vided in Table 1 may not be applicable for all coherent risk mea-
sures. Example 2 reveals that Eg o p | is not necessarily a valid
lower bound for an arbitrary coherent risk measure.

Example 2. Consider a random variable Z that takes values Z,, =
100, Zy, =0, Zy, =1 and Z,, = 500 with probabilities 0.3, 0.2, 0.4
and 0.1, respectively. We use the first-order mean semi-deviation
as a risk measure, that is:

p(Z) =E[Z] + «E[(Z - E[Z])+]. « €[0.1]. (11)

Let pg|«(-) be the one-step conditional first-order mean semi-
deviation with the same &k value as in (11). Set x =0.5.
For partition S = {{w1, w,}, {ws, w4}}, p(Z) =104.32 but (Eg o
Pz|«)(Z) = 106.36.

Therefore, E4 o p 4| is not necessarily a valid lower bound for
all coherent risk measures.

3.3. Lower bound for optimization problem

In this section, we extend the lower bound proposed in
Proposition 1 to a risk-averse mixed-integer multi-stage stochastic
problem with an objective of dynamic mean-CVaR risk measure.
Using the structure presented in (3), the problem (1) can be writ-
ten as

(P) ;}1&1}(} fix1) +p(Q(x1.8)), (12)
where
Qx1.8) = xte}([fgi{le _____ - 027([2(X2.82). ... fr(xr.&r)). (13)

problem (P) with sample space S; and adjusted probabilities pj,,
w €§;. Additionally, the risk measure p(-) in (12) is replaced by
ps; (). For je{1,2,....]}, let Z be the optimal value of j™ group
subproblem. Also let Z;3 be a ¥-measurable random variable that
takes value of Z with probability p = Zwesj Do-

In Theorem 1, we show that a lower bound for risk-averse
mixed-integer multi-stage stochastic problem (P) can be obtained
by using optimal values of group subproblems.

Theorem 1. Let Py : Loo(2,9,P) — R be a mean-CVaR risk mea-

sure with parameters a'€[0, 1) and €] €[0.1]; and pgy :

Loo(R2,.7,P) - Loo(2,4,P) be a conditional mean-CVaR risk mea-

sure with parameters o? [0, 1) and €? € [0, 1] satisfying 1 —¢€; <
1 2

1 —i%)(l —€2) and (1+ * eha+ 1f‘a2612) <1+ 1% €. Then,

Z* > peg (Z1p).

Proof. Recall that x; is an optimal first stage solution of (P). Note

that, it is a feasible first stage solution for each group subproblem.
By optimality of each group subproblem, we have

fix) +ps,Q(x5.6) =2, Vje{l.....]}

and
[ilx]) + 0719 Q1. §)) = Zip. (14)

The values on the both sides of inequality (14) are ¥—measurable.
Since, p« (-) is a coherent risk measure and it satisfies monotonic-
ity axiom (A2), we get

Pz (f1(X}) + Pz (Q(XG, §))) = Py (Zip). (15)

Note that, f;(xj) is an #—measurable cost. Since ¢ is a sub
o —algebra of .7, f1(x}) is ¥—measurable, as well. Applying trans-
lational equivariance axiom (A3) to the left hand side of (15), we
get

P (D1 (fi (x7) + Q(x7,6))) = P (Zip). (16)

Since conditions in (10) are satisfied, we can apply Proposition 1 to
the left hand side of inequality (16) and obtain:

p(fi(x}) + QX1 8)) = Pey (Z1p).

Finally, using translational equivariance axiom (A3), we get
= fi(x}) + p(Q(x7,§)) = P (Zip).

1

O

Theorem 1 implies that a lower bound on the optimal value of
(P) can be obtained by solving group subproblems and then apply-
ing P« (-) to the optimal values of these group subproblems. Since
group subproblems include smaller number of scenarios compared
to the original problem, they are computationally less challenging.
Moreover, applying p« (-) to the optimal values of group subprob-
lems requires negligible computational effort, since it is only the
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calculation of value of a risk measure py(-) for a given random
cost.

Although the nested structure presented in (3) is widely used
in the literature, there are other risk measures that can be used to
evaluate the risk of a sequence of random variables. We show that
our approach can also be applied to the risk-averse mixed-integer
multi-stage stochastic problems with different dynamic extensions
of mean-CVaR.

3.4. Extension to other dynamic measures of risk

Some examples of dynamic risk measures apart from the
nested structure in (3) are multiperiod mean-CVaR and sum of
mean-CVaR (see, Pflug and Romisch, 2007; Eichhorn and Romisch,
2005, respectively). For a sequence of random variables Z; € Z;,t €
{1,..., T} adopted to the filtration ., t € {1,..., T}, multiperiod
mean-CVaR is defined as

T
pmulti({Zt}Lz) = Z)\,tE[pgt‘gH ()], (17)
t=2

and sum of mean-CVaR is represented as

T
psum({zt}rT:z) = Z)»tpt(ztl (18)

t=2

with YT A =1, >0forte{2,3,...,T}.

Our approach is also applicable for the case where the risk
measure is applied to whole scenario cost as a time inconsistent
objective function, that is,

pWhOle({Z[ {:1) =p(Zi1+Zy+---+Zp). (19)

Although the risk measure (19) can be applied to a sequence of
random variables, it is not a dynamic measure of risk.

The risk measure defined in (17) is a time consistent dynamic
measure of risk whereas the risk measures (18) and (19) are not
time consistent.

In the following three propositions, we show that a lower
bound for these three risk measures can be obtained by scenario
grouping. Therefore, our approach is still valid for Problem (P) with
an objective of one of these risk measures.

Consider an arbitrary sequence of random variables Z; € Z;,t e
{1,...,T} adopted to the filtration %, t € {1,...,T}. To avoid no-
tational ambiguity, expectation operators and risk measures are
given without reference sigma algebras.

Proposition 2. For a multiperiod mean-CVaR risk measure pmulti(.)
as defined in (17), E o p™4ti(.) is a valid lower bound.

Proof. If multiperiod mean-CVaR risk measure (17) is applied to
the sequence Z; € Z;,t e {1, ..., T}, then

T
pmulti({zt}zzz) = Z )\,[[E[pgdgH (Zt)].
t=2

Since p g,z ,() is a conditional mean-CVaR risk measure, the
lower bound Eo p g, &, ,(-) applies for t € {2,3,...,T}. Then,

T
pmulti({zt}fzﬂ > Z)\,tE[E[pgt‘ng (Zt)]]
t=2

Since expectation is a linear operator, we get

T
PMZH D) = E| Y MElp g5, , (2] |-
t=2

or equivalently,

pmulti({zt};rzz) > E[pmulti({zt};rzz)].

Since the sequence Z; € Z,t e {1,..., T} is arbitrary, the desired
result follows. O

Proposition 3. For a sum of mean-CVaR risk measure pS'™(.) as de-
fined in (18), Eo ps“™(.) is a valid lower bound.

Proof. If sum of mean-CVaR risk measure (18) is applied to the
sequence Z; € Z,t € {1,..., T}, then

T
P {Z ) =D ke (Ze).

t=2

Similarly, E o ot (-) applies for t € {2,3,...,T}. Then,

T
oMMz}, = Z)\rE[Pt(Zr)]’

t=2

and

T
P ({Z} ) = Z)\-tpt(zt) ,

t=2
or equivalently,

P ZYL,) = E[p*m (2]

Since the sequence Z; € Z,t € {1,..., T} is arbitrary, the desired
result follows. O

Proposition 4. For the risk measure p*ho'e(.) as defined in (19),
P« o Pz () is a valid lower bound if parameters of pe(-) and
Pz () satisfy conditions in (10).

Proof. Follows from Proposition 1. O

As shown above, our proposed lower bound is quite general and
can be applied to other dynamic mean-CVaR measures.

3.5. Upper bound for optimization problem

Obtaining an upper bound, or equivalently finding a feasible
solution of a minimization problem, is crucial for the instances
where an optimal solution is not available. A good quality feasi-
ble solution gives the decision maker an action to be taken and
measures the quality of obtained lower bound when an optimal
solution is not available.

An upper bound for the optimal value of (P) can be obtained by
using optimal solutions of group subproblems. Once jth group sub-
problem is solved, an optimal solution of it, namely ¥/, is obtained.
Let UB; be the optimal value of (P) where (some of) the variables
appearing in jth group subproblem are set to . We call this prob-
lem as restricted problem. Since some of the problem variables are
fixed, solving the restricted problem is easier than the original one
and the resulting scenario tree can become decomposable.

If the restricted problem does not have a feasible solution, then
corresponding upper bound UB; is set to infinity. The best available
upper bound UB is obtained by taking minimum of UB; values over
all je{1,...,]}, that is,

UB= min UB;. (20)
je{l,..)}

In Algorithm 1, we present how group subproblem approach
can be used to obtain lower and upper bounds for the multi-stage
risk-averse mixed-integer problem (P) with dynamic mean-CVaR

objective. The algorithm can be easily adopted to the other risk
measures given in Section 3.4.
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Algorithm 1 Lower and upper bounds for (P).
Input: A risk-averse mixed-integer multi-stage stochastic prob-
lem (P) and a partition S = {SJ}€'=1 of sample space .
Initialize: LB < —oo and UB « +o0

Lower Bounding:
forall je{1,2,....]} do
Solve the jth group subproblem.
xJ < an optimal solution of jth group subproblem
zJ < optimal value of jth group subproblem
end for
Let Z;5 be a random variable that takes value z/ with probability

pbj= Z(uesj Pw
LB < P (Z1p)

Upper Bounding:

forall je{1,2,...,]} do
UB; « the optimal value of the original problem with the ad-
ditional constraint where (some of) the variables appearing in
jth group subproblem are set to x/.

end for

Return: LB and UB

4. Computational experiments

In this section, we conduct our numerical experiments on
a multi-stage lot sizing problem studied in Guan, Ahmed, and
Nemhauser (2009). All computational experiments are performed
on an Intel(R) Core(TM) i7-4790 CPU@3.60 gigahertz computer
with 8.00 gigabyte of RAM with Java 1.8.0.31 and IBM ILOG CPLEX
12.6. We first introduce risk-averse multi-stage lot sizing problem
(RAMLSP) with dynamic mean-CVaR defined in (3). Then, we com-
pare the results obtained via usage of different scenario partition
strategies and lower bound choices. We also compare the proposed
algorithm and CPLEX in terms of solution quality and required CPU
time.

4.1. Risk-averse multi-stage lot sizing problem with mean-CVaR

The objective of RAMLSP is to minimize the dynamic mean-
CVaR risk measure over T periods subject to demand satisfaction
and capacity constraints. RAMLSP-T-r represents an RAMLSP in-
stance with T stages in which random components can take r dif-
ferent values at each stage. Therefore, total number of scenarios
in an RAMLSP-T-r instance is r'~1. We generate random test in-
stances as in Guan et al. (2009). The same setting of the parame-
ters is also used by Sandik¢i and Ozaltin (2014), that is, hgy, ~ U[O,
10], ary ~U[3.2, 4.8]E[h], B ~ U[320, 480]E[h], dw ~ U[O, 100] and
Mg, ~ U[40T, 60T], where Ula, b] represents uniform distribution
between a and b.

Using the scenario tree representation given in Section 2.2,
RAMLSP can be stated as follows:

(RAMLSP) minimize Z;+ 0g,|, (2
+p93|92(z3+"'+p91|9T71(ZT)"')) 1)

subject to
Ziy = OruXey + ,Btuy[u + th[u, Yu e Qt, te {1, ey T} (22)

s(t—])a(u)+x[u Zd[u + Stu, Yue Q, te {1,,T} (23)

Xeu < MuYtus

YueQ, te{l,...,T} (24)

YueQ, te{l,..., T}
(25)

Xeu, Sty > 0 and integer, yq, € {0, 1},

500(1/1) =0.

Here x; is the production level, y, is the setup indicator
and sp is the inventory level variables at node ue €; in period
tef{l,..., T}. @w, Btu, hw, dw and Mgy, denote unit production
cost, setup cost, inventory holding cost, demand and production
capacity parameters, respectively. Z; is the sum of deterministic
production, setup and inventory holding costs incurred in the first
stage. Similarly, Zg, is the cost incurred at node ue$2; at stage
t €{2,...,T}. Z; represents the random variable that takes values
of Zn, ue; with respective probabilities. The objective (21) is
the dynamic risk value over the planning horizon. Constraint
(22) calculate the cost incurred at each node of the scenario
tree. Constraints (23) and (24) are inventory balance and capacity
constraints, respectively. Constraint (25) are domain constraints.
Unlike Guan et al. (2009) and Sandik¢i and Ozaltin (2014), we
assume that production and inventory levels are required to be
integer valued. Although this assumption increases the problem
complexity, we have a more realistic representation to evaluate
the performance of the algorithm. In order to linearize RAMLSP,
the linearization of mean-CVaR presented in Section 2.3 is used.

For the computational experiments, we use three different val-
ues of weight parameter €; €{0.8, 0.5, 0.3} and level parameter
o €{0.9, 0.8, 0.7} of mean-CVaR. Therefore, we have nine different
risk-aversion settings.

4.2. Choices of scenario partitions and lower bounds

As seen in Example 1, the value of each lower bound highly
depends on chosen scenario partition. We consider four possible
scenario partition strategies obtained by grouping the scenarios in
different ways, namely index1, index2, similar and different. For each
strategy, we can also specify the number of scenarios in each group
as a function of the number of scenarios |2| and the number of
groups J. Let a%b be the remainder after the division of a € R by
beR, [-] be the ceiling function, and |-| be the floor function.
Then, each scenario grouping strategy yields a scenario partition
that has J groups, where |2|%] groups have cardinality [|2|/J] and
J— (|2|%]) groups have cardinality |[|S2|/]|. For example, if |Q2| =
32 and J =5 then the cardinality of two groups will be seven and
the other three groups will have cardinality of six.

Partition strategies index1 and index2 are based on the structure
of scenario tree. In index1, the last stage nodes sharing the high-
est number of common nodes are placed into the same group. On
the other hand, index2 is obtained by placing the last stage nodes
sharing the least number of common nodes into the same group.

If a priori information on the cost of each single scenario un-
der an optimal solution is available, the groups can also be ob-
tained with respect to similarity and diversity of individual sce-
narios. Since this information is not available before solving the
original problem, the deterministic version of the original problem
apriori can be solved for each scenario separately, and the corre-
sponding single scenario costs can be used to obtain two different
scenario partition strategies named as similar and different. Note
that, for both strategies, an additional computational effort is re-
quired to obtain single scenario costs.

In strategy similar, we assign [|€2|/J]] scenarios that have the
largest single scenario costs to the first group. Then, depending
on the cardinality of the second group, [|2|//] or ||€2|/J]] scenar-
ios that have the second largest single scenario costs are assigned
to the second group, and so on.
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Table 3
Different scenario partitions S = {Si, S», S3, S4} for the example scenario tree in Fig. 3.
Partition strategy S S, S3 Sa
index1 {w1, @2, w3, w4} {ws, ws, w7, wg} {wg, w10, w11, w12} {w13, ®14, ®15, W16}

{w2, ws, w10, W14}
{w7, w16, w13, @1}
{w4, w16, W2, W14}

{ws, wg, w12, w16}
{012, ©1, W15, W5}
{ws, w1, w3, ws}

{ws, w7, 011, w15}
{w10, @2, ws, w3}
{on, w3, ws, wis}

index2 {w1, ws, w9, w13}
Similar {ws, w4, w11, wg)}
Different {wg, w7, @10, W12}
Wy
@2
I —— RO
w, 15
ws 1
we 13
w; 12
wg 6
/ wg 16
@ “io 8
w14
Wy, 4
w3z 10
) W14
\‘ wys
w1 11

Fig. 3. An example of three-stage scenario tree with 16 scenarios.

In partition strategy different, each scenario is assigned to one
of J groups by assigning the scenario with the largest single sce-
nario cost to the first group, the scenario with the second largest
single scenario cost to the second group, and so on. This assign-
ment process returns to the first group after assigning the first J
scenarios and the process restarts. It is ended after all scenarios
are placed in a group.

With respect to single scenario cost values, in strategy similar,
the dispersion within each group is low, however, the dispersion
between the groups is high. On the other hand, in partition strat-
egy different, the dispersion within each group is high.

Example 3. Fig. 3 depicts the scenario tree for an RAMLSP-3-4 in-
stance where the numbers near the scenarios indicate the cost of
each individual scenario. The scenarios can be ordered as wg, wy,
w11, We, W7, W16, D13, W1, W19, W2, Wg, W3, W12, W14, W15, W5 Where
the individual scenario costs decrease moving through from wg to
ws. Table 3 presents different scenario partition strategies for this
scenario tree.

In order to observe the quality of bounds obtained by differ-
ent scenario partition strategies and lower bound choices, the pro-
posed algorithm is applied to five RAMLSP-3-30 instances gen-
erated via different random seeds. Total number of scenarios is
900. We consider the number of groups as Je{2, 4, 10}, and
hence each group subproblem includes 450, 225, and 90 scenar-
ios, for the respective value of J. While obtaining upper bounds,
optimal production decisions of group subproblems are fixed in
the restricted problems. As noted before, for strategies similar
and different, single scenario costs are required. The CPU time
needed to obtain these values are also included in the run-
ning time of the algorithm. In order to measure the quality of

lower and upper bounds, an optimality gap information Gap(%) =
100((UB — LB)/UB) is used. All running times are reported in sec-
onds. The results are presented in Table 4, where the gap and
time values are the average values of five randomly generated
instances.

The bolded entries in Table 4 correspond to the smallest opti-
mality gap values among all lower bound choices, partition strate-
gies and number of groups. It can be observed that, the smallest
optimality gap values are obtained with strategy different, lower
bound choice Ey o p g, and J = 2. Regarding to the optimality
gap, Ey o p g is the best lower bound choice. In general, for
Eg o pg|. the partition strategy different provides the smallest
optimality gap for any J value, and the strategy similar is the worst
one. This is a consequence of the fact that group subproblems with
original dynamic risk measure reflect the risk-aversion behavior of
the original problem better when the dispersion within groups is
high.

Moreover, the running time of the algorithm decreases as mov-
ing through lower bound choices py o E z|, 0%, o pf@l% and Ey o
P | in general. For example, with partition strategy different and
J =2, the average running times for lower bound choices py o
Egig, Py o,of%% and Eg o p g are 5718, 37.79 and 14.6 sec-
onds, respectively. On the other hand, no partition strategy is
preferable among others for all lower bound choices with respect
to the running time. The computational experiments summarized
in Table 4 reveal that the partition strategy different and the lower
bound choice E¢ o p & are the most promising choices when the
bound quality and the running time are considered.

Although the upper bounds obtained from different partitions
are incomparable, a hierarchy of lower bounds can be obtained us-
ing refinement chains. Moreover, the lower bound values can be
improved by relaxing the requirement that groups should be dis-
joint. If this requirement is relaxed, some fixed scenarios appear in
each group. We call this as scenario fixing. In the next subsection,
we will discuss refinement chains, scenario fixing, and their impact
on the quality of the lower bound.

4.3. Refinement chains and scenario fixing

Maggioni and Pflug (2016) consider refinement chains and sce-
nario fixing to improve the quality of lower bounds obtained via
scenario grouping. We suggest Proposition 5 to construct a re-
finement chain. We show a relation between two lower bounds
obtained via two different special scenario partitioning with the
lower bound choice Ee o pz . Let LB(S!) and LB(S?) be the
lower bounds E.;: ° P gz |1 and E.» °Pgg2 ON the optimal
value z* of (P), obtained by partitions S! = {Sl,...,S}} and 82 =
{S3.....5%} where ¢! and 2 are the sigma algebras induced by
S' and &2, respectively.

Proposition 5. Let S! and S? be two different partitions of €,
where s}ms}, =0 for j,j’e{1,....J}, j#i and S; NS, =0 for
mm e{1,...,M}, m#m'. If for all S} eS!, je{1,....]} there
exists S} € S%. ke {j1..... ji;} such that S} = Uke{jl.mJKj}Si’ then
LB(S') > LB(S?).



Table 4
Average optimality gap and running time values of the proposed algorithm for five different RAMLSP-3-30 instances with different partition and lower bound choices.
J=2 J=4 J=10
index1 index2 Similar Different index1 index2 Similar Different index1 index2 Similar Different
LB choice o €1 Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time
Py 0B gy 0.8 10.86 71 12.45 165 934 111 1254 134 945 20 13.07 69 771 21 13.71 64 426 7.8 18.54 9.7 510 6.6 16.99 6.0
09 05 764 245 881 248 792 29.6 867 239 6.85 31 9.36 86 797 25 978 85 363 9.7 1193 86 701 7.2 12.73 5.4
03 532 182 579 52,6 6.56 953  5.69 482 491 41 6.33 134 8.29 37 673 1.7 3.01 114 834 79 832 7.3 8.28 7.3
0.8 9.61 132 10.82 219 716 142 1097 240 814 33 1169 96 532 37 1158 101 3.46 82 1555 103 6.89% 89 1443 5.5
08 0.5 6.57 220 720 55.0 6.28 116.0 740 319 581 40 780 1.2 6.05 33 815 114 3.00 9.8 9.89 88 783 72 10.51 5.7
03 444 26.6 475 88.6 5.46 1189 4.88 992 412 50 521 149 701 48 556 13.8  2.59 122 674 80 868 75 6.71 75
0.7 0.8 8.86 212 1011 749 535 242 10.10 444 760 40 1049 120 533 45 1051 126 3.85 77 13.09 9.1 7.82 7.6 12.70 71
0.5 5.90 315 6.56 73.7 511 742  6.62 89.7 524 43 698 163 631 42 735 149 3.08 121 822 85 845 73 917 7.5
03 395 36.4 4.27 114.0 4.73 144.6 4.29 139.9 3.70 56 450 170 708 54 480 172 248 145 5.50 85 891 7.8 5.81 10.6
P 0Pz 09 08 452 7.2 5.52 14.8 757 83 5.10 9.6 4.38 1.6  5.99 6.1 9.83 1.8  6.03 63 420 6.7 895 44 1427 6.8 876 5.2
0.5 3.99 106 443 185 7.80 16.6 4.23 155 3.86 23 491 6.9 10.97 1.7 513 6.2 404 99 718 46 1395 73 7.67 4.1
03 3.08 204 314 215  6.57 66.6 3.02 201 3.04 40 356 74 10.47 32 379 10.6 3.38 105 531 6.0 12.83 74 518 43
08 0.8 3.67 125 445 189 6.16 173 440 199 3.66 41 5.06 85 10.85 22 506 89 335 85 758 55 14.81 87 741 3.8
0.5 3.30 129 352 220 6.68 347 340 593 312 37 401 102 9.91 28  4.09 96  3.09 92 594 54 13.86 74 598 4.8
03 246 211 249 60.9 5.83 166.9 2.41 442 244 42 285 123 9.28 41 2.98 128 2.67 103 4.26 7.0 1241 76  4.07 5.6
0.7 0.8 3.37 21.0 440 19.8 510 220 422 28.6 339 45 468 1.1 10.73 47 490 85 3.80 7.8 6.18 5.1 15.10 7.7 6.53 3.8
05 294 251 3.26 46.0 6.09 525 310 471 282 6.1 3.62 14.7 1017 34 363 13.7 3.06 102 4.72 50 13.80 73 512 49
03 230 219 219 739 5.57 169.8 2.10 958 226 71 2.49 152 9.50 35 257 164 239 124 336 7.0 12.46 79 350 8.8
Egopzig 09 08 115 64 065 56 1178 6.8 0.36 5.8 1.97 29 110 38 2035 1.9 1.00 31 6.81 93  3.80 40  25.67 6.7 431 34
0.5 1.26 48 042 119 954 5.6 0.26 9.1 1.82 24 082 43 1615 1.6 094 44  5.09 74 299 31 20.73 73 292 31
03 116 9.2 043 144 767 14.7  0.29 141 151 31 0.76 6.8 1331 2.0 0.90 6.8 3.88 107 241 41 17.00 74 2.00 33
0.8 0.8 059 10.0 0.25 102 10.95 8.9 0.15 109 123 45 059 69 18.86 28 0.56 74 517 109 254 41 2429 88 210 39
0.5 0.64 1.3 027 153 8.74 16.8 012 123 1.07 32 059 62 14.79 19 052 70 378 92 208 3.6 1949 7.3 1.89 3.2
03 0.60 16,5 0.27 178 713 58.0 0.19 18.8 1.04 35 053 71 1236 25 047 85 294 104 169 44 1595 77 1.36 44
0.7 08 0.74 1.2 0.26 149 10.70 13.0 0.23 132 1.04 43 049 7.6 17.62 45 045 78  4.09 80 172 42 2296 78 1.77 3.7
0.5 0.63 169 0.26 147 847 220 022 182 0.87 34 051 73 14.15 3.0 047 83 3.02 99 135 34 1868 72 1.52 31
03 0.58 408 0.23 282 702 71.0 013 29.0 093 58 047 101 1191 43 040 1.6 237 126 125 54 1547 79 1.27 7.7
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Table 5
A refinement chain for the scenario tree in Example 3 where the partition strategy is different.

Partition ~ Groups

S1 Q

S {wg, w11, w7, W13, W10, Ws, W12, W15}, {Wa, Ws, W15, W1, W2, W3, W3, W14, W5}

Sy {wg, w7, w10, w12} {4, W16, W2, W14}, {W11, ©13, W, W15}, {Ws, W1, W3, Ws}

S {wo, w10}, {wa, w2}, {®n, ws}, {we, w3}, {W7, W12}, {wi6, W14}, (@13, W15}, {01, W5}

St {wo}, {wa}, {wn}, {we} {w7}, {wi6}, {w13}, {@1}, {wro}, {w2}, {ws} {ws}, {w2}, {w1a}, {w1s), {ws)

Table 6
Average lower bound gap and running time for the refinement chain &1, S,, Sa, ..., Sips obtained with partition strategy different for five different RAMLSP-3-32 instances.

o 09 0.8 0.7
€1 0.8 0.5 0.3 0.8 0.5 0.3 0.8 0.5 0.3
Partition # sce LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time
S 1024 - 813 - 32851 - 65039 - 901 - 44964 - 7199.0 - 1693 - 3149.7 - 7272.5
S 512 020% 36 030% 7.2 0.28% 115 034% 71 0.27% 123 023% 164 028% 87 0.24% 461 0.26% 104.0
Sy 256 0.82% 13 094% 1.2 0.80% 23 0.76% 1.8 0.64% 23 0.59% 33 0.58% 1.9 0.65% 3.8 0.63% 5.7
Sg 128 2.60% 04 246% 0.46 199% 0.6 193% 08 1.75% 0.6 147% 09 1.66% 0.6 1.59% 1.0 144% 15
Si6 64 490% 0.2 4.29% 0.2 347% 03 418% 0.3 3.53% 0.2 290% 03 344% 03 3.06% 0.2 266% 03
S32 32 6.81% 0.1 5.99% 0.1 499% 0.1 6.37% 0.1 539% 0.1 447% 0.1 5.84% 0.1 493% 0.1 414% 0.1
Sea 16 910% 0.0 7.84% 0.0 6.58% 0.0 8.68% 0.0 7.25% 0.0 6.03% 0.0 836% 0.0 6.93% 0.0 5.78% 0.0
S128 8 11.25% 0.0 9.58% 0.0 8.10% 0.0 10.89% 0.0 9.03% 0.0 753% 0.0 10.38% 0.0 8.64% 0.0 7.23% 0.0

Proof. For je{1.....J} and ke {ji..... ji;}. let Z and Z* be the
optimal values of group subproblems defined by groups S} €
S! and S e 82, respectively. Also let pj:ZweS} Pw and Py =
Zwesﬁ Po-

Since S,k € {ji..... Jk;} is a partition of S}, Theorem 1 implies
that

Peg. viefl....Jn

By
Pj
. Ji;} given S}. Then, we have

where is the total conditional probability of scenarios in §2, k €

.-

|
keljriey) P

je{1,...]} je{1,...J}

or equivalently,

Yoopd= Y Y B
jeltd) jellmd) ke(1K)

Then, we get

where pm =), ¢ Po and Z" is the optimal value of the group

subproblem S, for m € {1, ..., M}. Hence, LB(S') > LB(S?) by def-
inition of LB(S') and LB(S2). O

A sequence of partitions S',82,83,..., for which LB(S!) >
LB(S8%) > LB(S3) > ---, is called a refinement chain. Table 5 shows
a refinement chain for the scenario tree in Example 3, where the
partition strategy different is used and S; denotes a partition with
J groups. Note that, in partition S;g, each group subproblem is a
deterministic problem with only one scenario.

We conduct a computational experiment where five different
RAMLSP-3-32 instances with 1024 scenarios are used with the re-
finement chain Sy, Sy, Sy, ..., S12g Which is obtained with partition
strategy different. Table 6 presents the number of scenarios in each
group (# sce), the average lower bound gap (LB_Gap) and the aver-
age running time (Time) for each partition of the refinement chain.

LB_Gap values are calculated as
z*—LB
Z*
where z* is the optimal value of our problem.

As expected, the quality of the lower bound obtained by sce-
nario grouping increases when the number of scenarios in each
group subproblem increases with a cost of longer running times.
Another suggestion of Maggioni and Pflug (2016) is relaxing the
disjoint groups assumption to improve lower bound quality. Recall
that w € Q is a scenario with probability p,, and J is the number
of groups. We can relax disjoint groups assumption by placing w
into k € {2,...,]} different groups. In this case, w is replaced with
k identical scenarios each having a probability of p,/k and these
new scenarios are placed into k different groups.

We conduct another set of computational experiments for five
different RAMLSP-3-32 instances where eight scenarios with the
largest single scenario cost appear at each group and we present
the results in Table 7. It is observed that the quality of lower
bounds improves when we allow some scenarios to appear in
all groups. However, the running times may get larger since the
number of scenarios in each group subproblem increases. For ex-
ample, when =2, « =0.7, €1 =0.3, for the case where eight
scenarios are fixed, the LB_Gap decreases by 0.01% but the re-
quired time to obtain lower bound increases to 2749.1 from
104 seconds.

LB_Gap(%) = 100

)

4.4. Computational study results for larger number of stages

Up to now, we have shown that the lower bound choice Ey o
P4, the partition strategy different, and considering disjoint
groups is the most promising combination among all bound and
partition combinations. Therefore, further computational experi-
ments are conducted on the instances with more stages under this
setting. We also conduct a set of computational experiments to
compare the performance of the proposed algorithm with CPLEX
in terms of optimality gap and solution time.

In the upper bounding phase of the proposed algorithm, the re-
stricted problem is solved for each group. When the number of
groups J in a partition is large, the upper bounding phase requires
long CPU times. Therefore, one may solve the restricted problem
for only a subset of groups. Another computational enhancement
for the upper bounding phase is running the restricted problems
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Table 7
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Average lower bound gap and running time for the refinement chain S;, S,, S4, Sg obtained with partition strategy different and eight fixed scenarios for five different

RAMLSP-3-32 instances.

o 0.9 0.8 0.7

€1 0.8 0.5 0.3 0.8 0.5 0.3 0.8 0.5 0.3

Partition # sce LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time

S 1024 - 813 - 32851 - 65039 - 90.13 - 44964 - 7199.0 - 1693 - 3149.7 - 72725

S 516 011% 128 0.23% 276 0.24% 1159 0.22% 99 0.23% 367 0.23% 6913 0.22% 108 0.23% 98.0 0.25% 2749.1

Sy 262 044% 12 0.70% 2.1 0.66% 3.3 059% 19 0.56% 3.1 0.54% 44 049% 23 059% 41 0.59% 6.7

Sg 135 159% 04 1.82% 0.5 1.67% 0.8 1.52% 05 148% 0.6 1.33% 09 1.38% 0.5 144% 038 1.35% 13
Table 8

Average optimality gap and running time values of the proposed algorithm for five different RAMLSP-3-30, RAMLSP-4-8, and RAMLSP-5-4 instances with partition strategy

different and lower bound choice E¢ o 0.z«

J=4 j=38 J=16 J=32
o €1 Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time
RAMLSP-3-64 0.9 0.8 1.02 68.9 2.42 55.8 5.02 44.6 813 82.0
0.5 0.92 132.6 2.07 66.2 427 60.9 6.99 86.1
0.3 0.74 697.4 1.57 1014 333 75.6 5.80 93.1
0.8 0.8 0.71 275 1.67 13.0 3.82 26.3 710 85.2
0.5 0.66 97.4 1.55 25.4 319 39.3 6.03 824
0.3 0.60 376.1 1.20 49.6 2.53 55.6 4.76 86.5
0.7 0.8 0.54 51.8 130 14.5 2.82 376 5.67 829
0.5 0.56 129.2 112 274 2.37 48.2 4.74 81.9
0.3 0.48 3731 0.93 63.7 1.96 576 3.73 84.9
RAMLSP-4-8 0.9 0.8 5.92 10.4 6.05 9.0 9.62 17.6 11.23 375
0.5 5.49 16.9 6.69 19.3 728 26.0 9.18 59.1
0.3 4.06 213 5.87 270 6.45 378 7.76 66.5
0.8 0.8 3.59 13.9 5.03 11.2 6.69 18.8 9.62 50.0
0.5 3.64 18.6 5.53 25.5 6.35 33.2 8.26 63.5
0.3 3.40 223 5.28 29.3 5.86 40.9 7.48 62.0
0.7 0.8 3.48 16.0 4,95 14.5 6.14 22.0 8.38 543
0.5 319 211 5.31 24.4 5.92 337 7.95 61.8
0.3 312 28.3 4.86 322 5.54 411 7.09 65.1
RAMLSP-5-4 0.9 0.8 6.55 8.9 10.25 4.8 13.24 11.7 16.09 29.9
0.5 5.53 13.7 9.09 5.6 11.69 16.0 13.27 43.2
0.3 5.12 171 7.97 8.0 10.02 20.0 11.38 48.2
0.8 0.8 6.83 9.9 10.78 4.7 13.40 11.3 16.16 29.6
0.5 5.70 13.6 9.48 6.2 11.81 14.9 13.40 43.7
0.3 5.28 16.4 8.27 8.6 10.08 17.4 11.53 50.1
0.7 0.8 6.04 103 9.92 6.0 13.04 17.0 14.58 40.5
0.5 5.39 11.7 8.96 6.7 10.96 209 12.49 514
0.3 4.93 15.5 7.94 9.8 9.53 22.5 11.00 56.9

with a prespecified time limit and reporting the objective value
of current incumbent solution as UB;. Since, the optimal value of
the restricted problem is an upper bound for the original problem,
the objective value of any incumbent solution is also a valid upper
bound.

We solve RAMLSP-3-64, RAMLSP-4-8, and RAMLSP-5-4 prob-
lems with 3, 4, and 5 stages, respectively, and for each risk set-
ting, we generate five instances using different random seeds. The
algorithm is applied with lower bound choice E¢ o 0 5| and the
partition strategy different, where number of groups, J, takes values
of 4, 8, 16, and 32. The number of restricted problems to be solved
is [J/5], which are selected randomly. The time limit for each re-
stricted problem is set to 10 seconds. The results are presented in
Table 8.

As seen in Table 8, increasing the number of groups in the par-
tition may not always yield CPU time saving. As J increases, the
optimality gap increases, on the other hand, the CPU time may not
always decrease. Specifically, when J is increased to 32 from 16,
the CPU time increases in all of the instances. As the number of
groups J increases, the subproblems get smaller in size. However,
the number of group subproblems and the restricted problems to
solve increases. Therefore, increasing the number of groups may

not always result in a decrease in the running time of the algo-
rithm.

An interesting question is the comparison of the proposed al-
gorithm with CPLEX in terms of optimality gap and CPU time.
To make a fair comparison, we use RAMLSP-3-64 instances where
CPLEX is run as long as it reaches to the optimality gap or the CPU
time of the proposed algorithm.

When CPLEX is allowed to run with one hour of time limit, it
cannot solve none of the instances optimally. Table 9 presents the
comparison of the proposed algorithm with CPLEX for J = 4.

In Table 9, the column “Gap_CPLEX” corresponds to the opti-
mality gap value reported by CPLEX when it is allowed to run as
long as the running time of the proposed algorithm. Moreover, the
values in the column “GAP difference” is measured as the differ-
ence between CPLEX gap and the gap obtained by the proposed
algorithm. When CPLEX is allowed to run as long as the solution
time of the proposed algorithm, the algorithm yields 1.13% stronger
bounds on the average. For example, when a =0.7 and ¢; = 0.8,
our algorithm terminates with an optimality gap of 0.54% within
51.8 seconds. CPLEX stops with an optimality gap of 1.93% within
the same time limit, that is, the bounds obtained by our algorithm
is 1.39% better than the bounds obtained by CPLEX.
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Table 9
Comparison of optimality gaps and running times of the proposed algorithm with CPLEX.
Proposed algorithm CPLEX
o € Gap (%) Time Gap_CPLEX (%) GAP difference (%) Time_CPLEX Delay
0.9 0.8 1.02 68.9 2.76 174 2483 3.60
0.5 0.92 132.6 347 2.55 2366.7 17.84
0.3 0.74 697.4 139 0.65 719.9 1.03
0.8 0.8 0.71 275 2.04 133 2419 8.79
0.5 0.66 974 148 0.82 403.9 4.15
0.3 0.60 376.1 0.89 0.29 603.0 1.60
0.7 0.8 0.54 51.8 247 193 246.4 4.75
0.5 0.56 129.2 113 0.57 4442 344
0.3 0.48 3731 0.81 0.33 1445.6 3.87

In Table 9, the column “Time_CPLEX” corresponds to the time
in seconds that CPLEX takes to reduce its gap to the level of the
gap obtained by the proposed algorithm. Also, the values in the
column “Delay” is measured as the ratio of Time_CPLEX to the run-
ning time of the proposed algorithm (Time). CPLEX requires 5.45
times longer running time to achieve the optimality gap of the pro-
posed algorithm, on the average. For a = 0.9 and €; = 0.5, CPLEX
requires 2366.7 seconds to achieve the optimality gap of the pro-
posed algorithm, that means CPLEX needs to spend more than 17
times of the running time of the proposed algorithm in order to
reach this optimality gap. These results show that the proposed
algorithm outperforms CPLEX with respect to both optimality gap
and running time.

5. Conclusion

In this paper, we propose a group subproblem approach for
risk-averse mixed-integer multi-stage stochastic problems with a
dynamic risk measure defined by mean-CVaR. To the best of our
knowledge, this is the first study where group subproblem ap-
proach is applied to a risk-averse problem with an objective of a
dynamic risk measure. We show that infinitely many lower bounds
on the optimal value of the problem can be obtained by using dif-
ferent convolution of mean-CVaR risk measures. An upper bound
is obtained through the use of optimal solutions of group subprob-
lems, as well. The results are tested by a computational study on
a multi-stage lot sizing problem. The effect of partition strategies
and lower bound choices on the optimality gap of the proposed al-
gorithm is investigated. Possible computational enhancements such
as refinement chains and scenario fixing are also considered.

It is revealed that, on the average, the optimality gap of the pro-
posed algorithm is 1.13% stronger than the optimality gap of CPLEX
within the same running time. By solving the original problem
with CPLEX, the optimality gaps of our algorithm can be achieved
with additional running time more than a factor of five.

In the lower bounding phase of the proposed algorithm, the
group subproblems can be assigned to different threads of a com-
puter and solved in parallel. Similarly, parallel computing can be
used to solve the restricted problems in the upper bounding phase.
The parallel implementation of the proposed algorithm may de-
crease the running time significantly, especially for large J values.
Therefore, it is considered as a future research direction. Another
possible extension of the study is to find better scenario partition-
ing strategies. Finding optimal grouping strategy is still an interest-
ing research direction.
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Appendix A

Construction of set 4 for the example in Fig. 2.
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Py PF|9

Ay = {(,U«avﬂb) eR?:

1—€l <pa<1+6l,
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