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a b s t r a c t 

Risk-averse mixed-integer multi-stage stochastic programming forms a class of extremely challenging 

problems since the problem size grows exponentially with the number of stages, the problem is non- 

convex due to integrality restrictions, and the objective function is nonlinear in general. We propose a 

scenario tree decomposition approach, namely group subproblem approach, to obtain bounds for such 

problems with an objective of dynamic mean conditional value-at-risk (mean-CVaR). Our approach does 

not require any special problem structure such as convexity and linearity, therefore it can be applied to 

a wide range of problems. We obtain lower bounds by using different convolution of mean-CVaR risk 

measures and different scenario partition strategies. The upper bounds are obtained through the use of 

optimal solutions of group subproblems. Using these lower and upper bounds, we propose a solution 

algorithm for risk-averse mixed-integer multi-stage stochastic problems with mean-CVaR risk measures. 

We test the performance of the proposed algorithm on a multi-stage stochastic lot sizing problem and 

compare different choices of lower bounds and partition strategies. Comparison of the proposed algo- 

rithm to a commercial solver revealed that, on the average, the proposed algorithm yields 1.13% stronger 

bounds. The commercial solver requires additional running time more than a factor of five, on the aver- 

age, to reach the same optimality gap obtained by the proposed algorithm. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In risk-averse stochastic optimization problems, risk measures

re used to assess the risk involved in the decisions made. Due to

he structural properties of risk measures, risk-averse models are

ore challenging than their risk-neutral counterparts. The multi-

tage risk-averse stochastic models are even more complicated due

o their dynamic nature and excessive amount of decision vari-

bles. Both the risk-neutral and risk-averse multi-stage stochastic

roblems are non-convex when some of the decision variables are

equired to be integer valued. Therefore, the solution methods sug-

ested for convex multi-stage stochastic problems cannot be used

o solve these problems. 

In this study, we consider risk-averse mixed-integer multi-stage

tochastic problems with an objective function of dynamic mean

onditional value-at-risk (mean-CVaR). Both CVaR and mean-CVaR

re coherent measures of risk that have been used in the literature

xtensively (see, Rockafellar & Uryasev, 2002 ). Coherent measures

f risk and their axiomatic properties are introduced in the pio-
∗ Corresponding author. 
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eering paper by Artzner, Delbaen, Eber, and Heath (1999) . Later,

he theory of coherent risk measures is extended by Ruszczynski

nd Shapiro (2006a , 2006b) , and references therein. 

In a multi-stage decision horizon, risk involved in a stream of

andom outcomes is considered. Therefore, dynamic coherent risk

easures are introduced to quantify the risk in multi-stage models

see, Artzner, Delbaen, Eber, Heath, and Ku, 2007; Kovacevic and

flug, 2009; Pflug and Römisch, 2007; Ruszczynski and Shapiro,

0 06a; 20 06b , and references therein). 

For the multi-stage stochastic optimization problems with dy-

amic measures of risk, some exact solution techniques are sug-

ested under the assumption that the decision variables are con-

inuous. These techniques, such as stochastic dual dynamic pro-

ramming (SDDP), which is first suggested by Pereira and Pinto

1991) for risk-neutral problems and then extended to risk-averse

roblems by Shapiro (2011) , Shapiro, Tekaya, da Costa, and Soares

2013) , Philpott, de Matos, and Finardi (2013) , and Lagrangian

elaxation of nonanticipativity constraints suggested by Collado,

app, and Ruszczy ́nski (2012) rely on the convex structure of the

roblem, therefore, they cannot be used to find an exact solution

hen some of the decision variables are integer valued. On the

ther hand, these methods can be used to obtain lower bounds

n the optimal value of multi-stage stochastic integer problems.

https://doi.org/10.1016/j.ejor.2017.10.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.10.038&domain=pdf
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Z, 
Bonnans, Cen, and Christel (2012) propose an extension of SDDP

method for the risk-neutral problems with integer variables by re-

laxing the integrality requirements in the backward steps of the

algorithm. Later, Bruno, Ahmed, Shapiro, and Street (2016) extend

this approach to risk-averse integer problems. Zou, Ahmed, and

Sun (2016) consider SDDP method to solve risk-neutral multi-stage

mixed-integer problems with binary state variables. They prove

that SDDP method provides an exact solution to the problem in

finite number of iterations when the cuts satisfy some sufficient

conditions. Similarly, Schultz (2003) uses Lagrangian relaxation

of nonanticipativity constraints to obtain lower bounds within a

branch-and-bound procedure for risk-neutral multi-stage problems

with integer variables. However, these approaches rely on some

restrictive assumptions. SDDP method requires stagewise indepen-

dency of random process and the branch-and-bound procedure re-

quires complete recourse assumptions. Therefore, they cannot be

applicable to a wide range of problems. 

A recent stream of research proposes an alternative way of

obtaining bounds for mixed-integer multi-stage stochastic prob-

lems via a scenario tree decomposition. In that approach, the

sample space is partitioned into subspaces called as groups, and

the problem is solved for the scenarios in a group instead of

the original sample space. These smaller problems are called as

group subproblems. Sandıkçı, Kong, and Schaefer (2013) propose

a group subproblem approach for risk-neutral mixed-integer two-

stage stochastic problems. They show that the expected value of

the optimal values of group subproblems gives a lower bound on

the optimal value of the original problem. Later, this approach

is extended to the risk-neutral multi-stage problems by Sandıkçı

and Özaltın (2014) , Zenarosa, Prokopyev, and Schaefer (2014) ,

and Maggioni, Allevi, and Bertocchi (2016) . Recently, Maggioni

and Pflug (2016) apply group subproblem approach to risk-averse

mixed-integer multi-stage stochastic problems where the objec-

tive is a concave utility function applied to the total cost over the

planning horizon. Although, group subproblems include less num-

ber of scenarios than the original problem, the length of the deci-

sion horizon in group subproblems and the original problem is the

same. Therefore, one may argue that scalability is a drawback of

this approach when the decision horizon is too long. 

In this study, we propose a scenario tree decomposition al-

gorithm for risk-averse mixed-integer multi-stage stochastic prob-

lems with a dynamic objective function defined via mean-CVaR.

The suggested algorithm is based on group subproblem approach

and is used to find lower and upper bounds on the optimal value

of the problem. We propose infinitely many valid lower bounds on

mean-CVaR risk measure that can be used within the frame of the

algorithm. We also investigate the effect of scenario partitioning

strategies on the quality of the different lower bounds by consid-

ering different partitioning strategies based on the structure of the

scenario tree and disparateness of scenario realizations. 

As outlined earlier, our approach does not require any special

structural property such as convexity and linearity of the feasible

set. Moreover, it does not require complete recourse or stagewise

independence assumptions, therefore, it can be applied to a wide

range of problems. We conduct computational experiments on a

multi-stage lot sizing problem by considering different choices of

bounds and scenario tree partitions. The experiments reveal that

the obtained bounds are tight and require reasonable CPU times.

Our approach yields 1.13% stronger bounds than solving the prob-

lem with IBM ILOG CPLEX. On the other hand, CPLEX requires more

than 5.45 times of CPU time to obtain the same optimality gaps of

our approach. 

The organization of the paper is as follows: In Section 2 , we

present problem definition and some preliminaries. Section 3 in-

cludes our main results on obtaining different lower bounds for

mean-CVaR via a scenario grouping approach. We consider the
pplication of these lower bounds to a risk-averse mixed-integer

ulti-stage stochastic problem with a dynamic objective function

efined via mean-CVaR. We also suggest a method to obtain an

pper bound. The computational study conducted on a multi-

tage lot sizing problem and related discussions are presented in

ection 4 . Section 5 is devoted to concluding remarks and future

esearch directions. 

. Risk-averse mixed-integer multi-stage stochastic problems 

ith dynamic mean-CVaR objective 

We consider a multi-stage discrete decision horizon where the

ecisions at stage t ∈ { 1 , . . . , T } are made based on the available

nformation up to that stage. Let � be a finite sample space and

 0 , ∅} = F 1 ⊂ F 2 ⊂ · · · ⊂ F T = F be a filtration, that is, an ordered

et of sigma algebras on �, representing gradually increasing in-

ormation through stages. We use ξ t and x t to denote the vector of

roblem parameters and decisions at stage t ∈ { 1 , . . . , T } , respec-

ively. For each t ∈ { 1 , 2 , . . . , T } , ξ t and x t are F t −measurable. At

rst stage, the vector of problem parameters ξ 1 and decisions x 1 
re deterministic, since F 1 = { 0 , ∅} . At stage t ∈ { 2 , . . . , T } , some

r all problem parameters are random. 

An element ω of � is called as a scenario. A scenario ω ∈ �

orresponds to a realization of a sequence of random parameters

2 (ω) , . . . , ξT (ω) in stages 2 , . . . , T . 

Our main interest is a risk-averse mixed-integer multi-stage

tochastic problem with an objective of dynamic risk measure

1, T ( ·) over the horizon 1 , . . . , T . The problem can be defined as:

in 

x ∈X 
� 1 ,T ( f 1 (x 1 ) , f 2 (x 2 , ξ2 ) , . . . , f T (x T , ξT )) , (1)

here X = X 1 × X 2 (x 1 , ξ2 ) × · · · × X T (x T −1 , ξT ) is the abstract rep-

esentation of possibly nonlinear feasibility set. Let R and Z denote

he set of real numbers and integers, respectively. X 1 ⊆ R 

n 1 × Z 

m 1 

s a mixed-integer deterministic set and, for t ∈ { 2 , . . . , T } , X t :

 

n t−1 × Z 

m t−1 × � ⇒ R 

n t × Z 

m t are F t −measurable mixed-integer

oint-to-set mappings. The cost in the first stage is determinis-

ic and represented by a possibly nonlinear, real-valued function

f 1 : R 

n 1 × Z 

m 1 → R . The cost functions f t : R 

n t × Z 

m t × � → R , t ∈
 2 , . . . , T } are F t −measurable, real-valued, and may be nonlinear. 

Classical solution methods such as SDDP and Lagrangian relax-

tion of nonanticipativity constraints cannot be used to solve prob-

em (1) due to integrality restrictions of some decision variables.

herefore, our focus is to obtain bounds on (1) where the objective

unction ϱ1, T ( ·) is a dynamic risk measure defined via mean-CVaR. 

Now, we present some necessary concepts and notation on

oherent, conditional, and dynamic risk measures to exploit the

tructure of problem (1) . 

.1. Coherent measures of risk 

Let Z := L ∞ 

(�, F , P ) be the space of bounded and F -

easurable random variables with respect to sample space � and

robability distribution P . Let Z, W ∈ Z represent uncertain out-

omes for which lower realizations are preferable. Also, let Z ω be

he value that the random variable Z takes under scenario ω ∈ �.

s defined in Artzner et al. (1999) , a function ρ : Z → R is called

 coherent measure of risk if it satisfies: 

(A1) Convexity: ρ(αZ + (1 − α) W ) ≤ αρ(Z) + (1 − α) ρ(W ) for all

Z, W ∈ Z and α ∈ [0 , 1] , 

(A2) Monotonicity: Z 
 W implies ρ(Z) ≥ ρ(W ) for all Z, W ∈ Z, 

(A3) Translational Equivariance: ρ(Z + t) = ρ(Z) + t for all t ∈
R and Z ∈ Z, 

(A4) Positive Homogeneity: ρ(tZ) = tρ(Z) for all t > 0 and Z ∈
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Fig. 1. An example of four-stage scenario tree. (a) �1 , �2 , �3 and �4 are the set of nodes at stages 1, 2, 3 and 4, respectively. (b) C(v ) is the set of children nodes of node 

v , a (v ) is the ancestor node of node v and p v u is the conditional probability of node u given v . 
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here Z 
W indicates pointwise partial ordering such that Z ω ≥ W ω 

or a.e. ω ∈ �. 

We assume that cardinality of � is finite and F is the set of all

vents defined on �. Then, the probability of a scenario ω ∈ � can

e specified as p ω > 0. In this case, elements of both Z and its dual

pace Z 

∗ can be represented as elements of R 

| �| since both Z and

 

∗ are isomorphic to R 

| �| . 
Let μω be the value that μ ∈ Z 

∗ takes under scenario ω ∈ �.

or Z ∈ Z and μ ∈ Z 

∗, the scalar product 〈·, ·〉 is defined as 

 μ, Z〉 := 

∑ 

ω∈ �
p ω μω Z ω . 

he following fact is known as dual representation of coherent

easures of risk (see, Ruszczynski and Shapiro, 2006b , for exam-

le): if ρ( ·) is a coherent measure of risk, then, under some as-

umptions, for every random variable Z ∈ Z, 

(Z) = max 
μ∈A 

〈 μ, Z〉 , (2)

here A ⊆ Z 

∗ is a compact and convex set. We call this set as the

ual set of the risk measure ρ( ·). A coherent measure of risk can be

haracterized via its dual set. The reader is referred to Ruszczynski

nd Shapiro (2006b) for a detailed discussion on the dual repre-

entation of coherent measures of risk. 

.2. Conditional and dynamic risk measures 

When a multi-stage stochastic process is considered, all real-

zations of the process form a scenario tree in the finite distribu-

ion case. In this section, we follow the notation used by Collado

t al. (2012) to represent the scenario tree. Let �t be the set

f nodes at stage t ∈ { 1 , . . . , T } . At stage t = 1 , there is only one

ode, called as root node and it is represented by v 1 . The nodes

t stages t ∈ { 2 , . . . , T } represent elementary events in F t , that is

 t = σ (�t ) , a sigma algebra on �t . 

The set �T corresponds to all possible scenarios, that is �T =
. Each node v ∈ �t , t ∈ { 2 , . . . , T } has a unique ancestor at stage

 − 1 and this ancestor node is called as a (v ) . Also, each node

 ∈ �t , t ∈ { 1 , . . . , T − 1 } has a set of children nodes C(v ) such

hat C(v ) = { u ∈ �t+1 : a (u ) = v } . The probability measure P can be

pecified by conditional probabilities 

p v u := P [ u | v ] , v ∈ �t , u ∈ C(v ) , t ∈ { 1 , . . . , T − 1 } , 
nd probability of a scenario ω ∈ �T can be computed as 

p ω = p v 1 v 2 p v 2 v 3 . . . p v t−1 ω , 

here v 1 , v 2 , . . . , v t−1 , ω is the unique path from root node v 1 to

ode ω. 

The notation mentioned above is depicted in Fig. 1 for a four-

tage scenario tree. 
For a multi-stage decision horizon with stages t ∈ { 1 , . . . , T } , let

 t := L ∞ 

(�, F t , P ) . The mapping ρF t+1 | F t 
: Z t+1 → Z t is called as

ne-step conditional risk measure if it satisfies axioms (A1)–(A4)

or corresponding spaces Z t and Z t+1 for all t ∈ { 1 , 2 , . . . , T − 1 } . 
The risk involved in a sequence of random variables Z t ∈ Z t , t ∈

 1 , . . . , T } adopted to the filtration F t , t ∈ { 1 , . . . , T } can be evalu-

ted by a time consistent dynamic measure of risk ϱ1, T ( ·), that is, 

 1 ,T (Z 1 , Z 2 , . . . , Z T ) = Z 1 + ρF 2 | F 1 
(Z 2 

+ ρF 3 | F 2 

(
Z 3 + · · · + ρF T | F T−1 

(Z T ) . . . 
)
) . (3) 

he structure (3) is presented in Ruszczynski and Shapiro (2006a) .

ater, Ruszczy ́nski (2010) shows that the representation (3) can be

onstructed using monotonicity of conditional risk measures and

he concept of time consistency. A time consistent dynamic risk

easure ϱ1, T ( ·) is not, in general, law invariant, even in the case

t is a composition of law invariant conditional risk measures (see,

hapiro, 2012 ). The reader is referred to Ruszczy ́nski (2010) and

ckstein, Eskandani, and Fan (2016) for the definition of time con-

istency and law invariance. 

Collado et al. (2012) show that the dual representation of coher-

nt risk measures can be extended to dynamic measures of risk. If

1, T ( ·) is a dynamic risk measure given as in (3) , then for every

equence of random variables { Z t ∈ Z t } T t=1 
, 

 1 ,T (Z 1 , Z 2 , . . . , Z T ) = max 
q T ∈Q T 

〈 q T , Z 1 + Z 2 + · · · + Z T 〉 , (4)

here 

 T = A t−1 ◦ · · · ◦ A 2 ◦ A 1 , (5)

nd A t , t ∈ { 2 , . . . , T } is a convex and compact set used in the dual

epresentation of ρF t+1 | F t 
(·) . The operator “◦” defines convolution

f probability measures, that is, 

(μt ◦ q t )(u ) = q t (a (u )) μt (a (u ) , u ) , ∀ u ∈ �t+1 , 

nd 

 t ◦ Q t = { μt ◦ q t : q t ∈ Q t , μt ∈ A t } , 
or all t ∈ { 1 , 2 , . . . , T − 1 } . Recall that a ( u ) is the ancestor node of

 . 

In this study, we use conditional mean-CVaR as one-step con-

itional risk measure. Therefore, the next section is devoted to the

efinition of mean-CVaR. 

.3. CVaR and mean-CVaR 

An important and extensively used example of coherent mea-

ures of risk is Conditional Value-at-Risk (CVaR). CVaR of Z ∈ Z at

evel α ∈ [0, 1) is defined as (see, Rockafellar & Uryasev, 2002 ) 
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CVaR α(Z) := inf 
η∈ R 

{ 

η + 

1 

1 − α
E [(Z − η) + ] 

} 

, (6)

where (a ) + := max { a, 0 } for a ∈ R . 

Given a level parameter α ∈ [0, 1) and a weight parameter

ε1 ∈ [0, 1], mean-CVaR of Z ∈ Z is defined as 

ρ(Z) := (1 − ε1 ) E [ Z] + ε1 CVaR α(Z) . (7)

As seen in (7) , despite CVaR, mean-CVaR risk measure conveys the

expected value information of a random variable, as well. As α or

ε1 increase, the decision-maker gets more risk-averse. 

The expression in (7) can equivalently be represented as follow-

ing linear program for finite probability spaces. 

ρ(Z) = minimize 
ϑ,η

(1 − ε1 ) 
∑ 

ω∈ �
p ω Z ω + ε1 

( 

η + 

1 

1 − α

∑ 

ω∈ �
p ω ϑ ω 

)
subject to ϑ ω ≥ Z ω − η, ∀ ω ∈ �

ϑ ω ≥ 0 , ∀ ω ∈ �. 

When the sample space is finite, the dual representation

(2) holds for mean-CVaR with the set A represented as (see,

Ruszczynski & Shapiro, 2006b ): 

A = { μ ∈ Z 

∗ : 1 − ε1 ≤ μω ≤ 1 + ε2 , ∀ ω ∈ � and E [ μ] = 1 } , (8)

where 

ε2 := 

α

1 − α
ε1 ≥ 0 , 

and E [ μ] = 

∑ 

ω∈ � p ω μω . 

For any Z t+1 ∈ Z t+1 , the one-step conditional mean-CVaR risk

measure ρF t+1 | F t 
(Z t+1 ) with parameters αt ∈ [0, 1) and ε1 t ∈ [0, 1]

and its dual set A t are defined similar to (7) and (8) . However, in

(6) , the infimum is over ηt ∈ Z t and the expectation operators in

(6) –(8) are replaced with conditional expectations with respect to

F t . 

For the remainder of the paper, we will focus on mean-CVaR

risk measure. Hence, we will use ρ( ·) to refer to mean-CVaR and

ρF t+1 | F t 
(·) , t ∈ { 1 , 2 . . . , T − 1 } to refer to one-step conditional

mean-CVaR. 

3. Bounds 

The main motivation of this section is to propose lower and up-

per bounds for problem (1) with an objective of dynamic mean-

CVaR. Therefore, in Section 3.1 , we first propose a continuum of

time consistent lower bounds for mean-CVaR risk measure by

scenario grouping. Some possible lower bounds are presented in

Section 3.2 . The application of these time consistent bounds to a

risk-averse mixed-integer multi-stage stochastic problems with an

objective of (3) is presented in Section 3.3 Extension of the pro-

posed lower bounds to other dynamic mean-CVaR risk measures is

discussed in Section 3.4 . In Section 3.5 , we propose a method for

obtaining an upper bound to the problem. The proposed algorithm

benefits from these results and yields lower and upper bounds for

problem (1) . 

3.1. Lower bounds for mean-CVaR risk measure 

Let ρ( ·) be a mean-CVaR risk measure with dual set A . We

would like to construct another coherent risk measure ˜ ρ(·) which

provides a time consistent lower bound for ρ( ·). The risk measure˜ ρ(·) , or equivalently its dual set ˜ A , can be constructed in different

ways. When the cardinality of the sample space is large, due to

computational concerns, one may think of dealing with subsets of

sample space separately and then obtaining a lower bound for ρ( ·).
For such construction, we need the definition of scenario groups

and partition. 
A subset of scenarios S ⊆� is called as a group. Let S = { S j } J j=1 

e a collection of groups that forms a partition of �, that is,
 J 
j=1 

S j = � and S j 
⋂ 

S j ′ = ∅ for all j, j ′ ∈ { 1 , 2 , . . . , J} such that

 � = j ′ . Note that the groups may not be necessarily disjoint (see,

andıkçı & Özaltın, 2014 ), i.e. S j 
⋂ 

S j ′ � = ∅ , but for the ease of rep-

esentation, we partition the sample space into disjoint groups.

et G be a σ−algebra generated by partition S where each group

 j ∈ S, j ∈ { 1 , 2 , . . . , J} corresponds to an elementary event j of G .

he probability of an elementary event j is p j = 

∑ 

ω∈ S j p ω which

s the total probability of scenarios in S j . We also define the ad-

usted probability of each scenario ω as p jω = p ω /p j for all ω ∈ S j 
nd j ∈ { 1 , 2 , . . . , J} . Note that, G is a sub σ−algebra of F . 

Once a partition of the sample space � is given, one way to

onstruct ˜ ρ(·) is to define it as a convolution of a coherent risk

easure ˜ ρG 

: L ∞ 

(�, G , P ) → R with dual set ˜ A G 

and a one-step

onditional risk measure ˜ ρF | G 

: Z → L ∞ 

(�, G , P ) with dual set˜ 

 F | G 

. That is, ˜ ρ(·) = ( ̃  ρG 

◦ ˜ ρF | G 

)(·) , and its dual set is the con-

olution of the sets ˜ A G 

and 

˜ A F | G 

such that ˜ A = 

˜ A F | G 

◦ ˜ A G 

. 

Note that, ˜ ρF | G 

(·) can be represented in terms of

S j 
(·) , j ∈ { 1 , 2 . . . , J} , that is, 

[˜ ρF | G 

(·) 
]

j 
= ρS j 

(·) (see, Miller and

uszczy ́nski, 2011 , for example) where ρS j 
: L ∞ 

(�, σ (S j ) , P ) → R

s a coherent risk measure and σ ( S j ) is the σ−algebra on S j . Fig. 2

epicts aforementioned notation for a given partition of a scenario

ree with five scenarios. 

For mean-CVaR, ˜ ρ(·) or equivalently its dual set ˜ A , can be ex-

licitly stated. Let parameters of ˜ ρG 

be α1 ∈ [0, 1), ε1 
1 

∈ [0 , 1] , and

1 
2 

= 

α1 

1 −α1 ε
1 
1 
, and parameters of ˜ ρF | G 

be α2 ∈ [0, 1), ε2 
1 

∈ [0 , 1]

nd ε2 
2 

= 

α2 

1 −α2 ε
2 
1 

. Consider the convolution 

˜ ρ = ̃

 ρG 

◦ ˜ ρF | G 

: F →
 and its dual set 

˜ 

 = 

˜ A F | G 

◦ ˜ A G 

= { μ ∈ Z 

∗ : μ = μ1 ◦ μ2 , μ1 ∈ 

˜ A G 

, μ2 ∈ 

˜ A F | G 

}
= { μ ∈ Z 

∗ : μ = μ1 ◦ μ2 , 1 − ε1 
1 ≤ μ1 

j ≤ 1 + ε1 
2 , ∀ j ∈ 1 , 2 . . . , J 

nd E [ μ1 ] = 1 , 1 − ε2 
1 ≤ μ2 

ω ≤ 1 + ε2 
2 , ∀ ω ∈ � and E [ μ2 | G ] = 1 } ,

(9)

here E [ μ1 ] = 

∑ 

j∈{ 1 , ... ,J} p j μ1 
j 
, 

[
E [ μ2 | G ] 

]
j 
= 

∑ 

ω∈ S j p jω μ
2 
ω for j ∈

 1 , . . . , J} , and 1 is a G -measurable random variable that takes

alue of one in all realizations. Construction of the set ˜ A for the

xample in Fig. 2 can be seen in Appendix A . 

Now, we are ready to prove that a lower bound for mean-CVaR

isk measure ρ( ·) can be obtained by ˜ ρ(·) = ( ̃  ρG 

◦ ˜ ρF | G 

)(·) . 

roposition 1. Let ρ( ·) be a mean-CVaR risk measure with param-

ters α ∈ [0, 1), ε1 ∈ [0, 1], ε2 = 

α
1 −α ε1 ≥ 0 , and dual set A . Also let˜ (·) = ( ̃  ρG 

◦ ˜ ρF | G 

)(·) where ˜ ρG 

is a mean-CVaR risk measure with

arameters α1 ∈ [0, 1), ε1 
1 ∈ [0 , 1] , ε1 

2 = 

α1 

1 −α1 ε
1 
1 , and dual set ˜ A G 

;

nd ˜ ρF | G 

is a one-step conditional mean-CVaR risk measure with

arameters α2 ∈ [0, 1), ε2 
1 

∈ [0 , 1] , ε2 
2 

= 

α2 

1 −α2 ε
2 
1 
, and dual set ˜ A F | G 

.

hen, ˜ ρ(Z) ≤ ρ(Z) for all Z ∈ Z if 

 − ε1 ≤ (1 − ε1 
1 )(1 − ε2 

1 ) and (
1 + 

α1 

1 − α1 
ε1 

1 

)(
1 + 

α2 

1 − α2 
ε2 

1 

)
≤ 1 + 

α

1 − α
ε1 . (10)

roof. Let μ ∈ 

˜ A = 

˜ A F | G 

◦ ˜ A G 

. Then, from (9) , there exist
1 ∈ 

˜ A G 

and μ2 ∈ 

˜ A F | G 

such that μ = μ1 ◦ μ2 with E [ μ1 ] = 1

nd E [ μ2 | G ] = 1 . Properties of conditional expectation implies that

 [ μ] = E [ E [ μ| G ]] = E [ E [ μ1 ◦ μ2 | G ]] = E [ μ1 ◦ E [ μ2 | G ]] = 

 [ μ1 ◦ 1 ] = E [ μ1 ] = 1 . 

From the definition of ε2 , ε
1 
2 

and ε2 
2 
, second part of (10) im-

lies (1 + ε1 
2 )(1 + ε2 

2 ) ≤ 1 + ε2 . Moreover, by (9) , (1 − ε1 
1 )(1 −

2 ) ≤ μω ≤ (1 + ε1 )(1 + ε2 ) for all ω ∈ �. If 1 − ε1 ≤ (1 − ε1 )

1 2 2 1 
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Fig. 2. (a) An example partition for a two-stage scenario tree: There are five scenarios 1,2,3,4, and 5 with probabilities p 1 , p 2 , p 3 , p 4 , and p 5 , respectively. (b) S = { S a , S b } 
is a partition of � where S a = { 1 , 2 , 3 } and S b = { 4 , 5 } . Nodes a and b correspond to groups S a and S b with probabilities p a = p 1 + p 2 + p 3 and p b = p 4 + p 5 , respectively. 

(c) ρ : Z → R is the original risk measure. (d) G is a sub σ−algebra of F . ˜ ρG : L ∞ (�, G , P) → R is a coherent risk measure and ˜ ρF | G : Z → L ∞ (�, G , P) is a one-step 

conditional risk measure that can be represented via ρS a : L ∞ (�, σ (S a ) , P) → R and ρS b : L ∞ (�, σ (S b ) , P) → R as [ ̃  ρF | G (·)] a = ρS a (·) and [ ̃  ρF | G (·)] b = ρS b (·) . 
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{  
(1 − ε2 
1 
) and (1 + ε1 

2 
)(1 + ε2 

2 
) ≤ 1 + ε2 , then 1 − ε1 ≤ μω ≤ 1 + ε2 ,

or all ω ∈ � which implies, μ ∈ A . Since μ is arbitrary, ˜ A ⊆ A . 

For any Z ∈ Z, let ˜ ρ(Z ) = max μ∈ ̃  A 〈 μ, Z 〉 and μ∗ ∈ arg max μ∈ ̃A 
 μ, Z〉 . If ˜ A ⊆ A , then μ∗ ∈ A and 

˜ ρ(Z ) = 〈 μ∗, Z 〉 ≤ max μ∈A 〈 μ,

〉 = ρ(Z) . Since Z is arbitrary, ˜ ρ(Z) ≤ ρ(Z) for all Z ∈ Z . �

Proposition 1 partially extends Theorem 8 and Corollary 6 of

ancu, Petrik, and Subramanian (2015) to mean-CVaR risk measure.

t implies that, under conditions (10) , ˜ ρ(·) = ( ̃  ρG 

◦ ˜ ρF | G 

)(·) is a

alid lower bound for ρ( ·) for any partition S of �. If ρ( ·) is a con-

itional mean-CVaR risk measure, Proposition 1 still applies. In this

ase, the expectations in the proof are replaced with corresponding

onditional expectations. 

.2. Possible lower bounds 

We have shown that a lower bound for ρ( ·) can be obtained

y convolutions of mean-CVaR risk measures whose parameters
atisfy condition (10) . Due to Proposition 1 , we can generate in-

nitely many lower bounds. Under the settings on Proposition 1,

able 1 presents some special cases of parameters of ˜ ρG 

(·) and˜ F | G 

(·) such that they can be used to obtain a lower bound for

( ·). 
Bounds ρG 

◦ E F | G 

and E G 

◦ ρF | G 

represent the extreme cases

here either ˜ ρG 

(·) or ˜ ρF | G 

(·) is the expectation operator. Bound
s 
G 

◦ ρs 
F | G 

is an intermediate case where both 

˜ ρG 

(·) and 

˜ ρF | G 

(·)
ave the same parameters, that is, α1 = α2 , ε1 

1 = ε2 
1 and ε1 

2 = ε2 
2 .

nder these conditions, in order to construct the largest set ˜ A , the

nequalities in (10) are forced to hold at equality. 

An interesting question is whether one of the possible lower

ounds presented above is always preferable among others. Fol-

owing example reveals that ρs 
G 

◦ ρs 
F | G 

is not necessarily the

ightest bound among others. 

xample 1. Consider a random variable Z with sample space � =
 ω i } 4 i =1 

. All four realizations have equal probabilities, that is, p ω i =
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Table 1 

Possible choices of ˜ ρG (·) and ˜ ρF | G (·) that can be used to obtain lower bound on mean-CVaR risk measure ρ( ·). 

Parameters of ˜ ρG Parameters of ˜ ρF | G ˜ ρG ◦ ˜ ρF | G ε1 
1 ε1 

2 α1 ε2 
1 ε2 

2 α2 

ρG ◦ E F | G ε1 ε2 α 0 0 0 

ρs 
G ◦ ρs 

F | G 1 −
√ 

1 − ε1 

√ 

1 + ε2 − 1 

√ 

1+ ε2 −1 √ 

1+ ε2 −
√ 

1 −ε1 

1 −
√ 

1 − ε1 

√ 

1 + ε2 − 1 

√ 

1+ ε2 −1 √ 

1+ ε2 −
√ 

1 −ε1 

E G ◦ ρF | G 0 0 0 ε1 ε2 α

Table 2 

Values of different lower bounds (LB’s) for Example 1 . 

LB Choice S S ′ 

ρG ◦ E F | G 3.5 2.5 

ρs 
G ◦ ρs 

F | G 3.12 3 

E G ◦ ρF | G 3 3.5 
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1 / 4 for all i ∈ {1, 2, 3, 4}. The value that Z takes under scenario ω i

is i , that is, Z ω i = i for i ∈ {1, 2, 3, 4}. 

Let ε1 = 1 and α = 0 . 5 , then (7) reduces to CVaR value at α =
0 . 5 and then ρ(Z) = 3 . 5 . 

Two different partitions of scenarios are S = {{ ω 1 , ω 2 } ,
{ ω 3 , ω 4 }} and S ′ = { { ω 1 , ω 4 } , { ω 2 , ω 3 } } . Values of the three

bounds for partitions S and S ′ are given in Table 2 . 

As seen in Table 2 , the tightest bounds for partitions S and S ′ 
are bounds ρG 

◦ E F | G 

and E G 

◦ ρF | G 

, respectively. Another ob-

servation is the fact that ρs 
G 

◦ ρs 
F | G 

is not necessarily the tight-

est bound among others. In Example 1 , although either ρG 

◦
E F | G 

or E G 

◦ ρF | G 

can be the tightest bound among others un-

der different scenario partitions, the computational experiments

in Section 4 reveal that E G 

◦ ρF | G 

is the most promising lower

bound choice. 

Although Shapiro, Dentcheva, and Ruszczy ́nski (2009) show

that, under some assumptions, the lower bound ρG 

◦ E F | G 

can

be extended to any coherent risk measures, the other bounds pro-

vided in Table 1 may not be applicable for all coherent risk mea-

sures. Example 2 reveals that E G 

◦ ρF | G 

is not necessarily a valid

lower bound for an arbitrary coherent risk measure. 

Example 2. Consider a random variable Z that takes values Z ω 1 =
100 , Z ω 2 = 0 , Z ω 3 = 1 and Z ω 4 = 500 with probabilities 0.3, 0.2, 0.4

and 0.1, respectively. We use the first-order mean semi-deviation

as a risk measure, that is: 

ρ(Z) = E [ Z] + κE [ (Z − E [ Z]) + ] , κ ∈ [0 , 1] . (11)

Let ρF | G 

(·) be the one-step conditional first-order mean semi-

deviation with the same κ value as in (11) . Set κ = 0 . 5 .

For partition S = { { ω 1 , ω 2 } , { ω 3 , ω 4 } } , ρ(Z) = 104 . 32 but (E G 

◦
ρF | G 

)(Z) = 106 . 36 . 

Therefore, E G 

◦ ρF | G 

is not necessarily a valid lower bound for

all coherent risk measures. 

3.3. Lower bound for optimization problem 

In this section, we extend the lower bound proposed in

Proposition 1 to a risk-averse mixed-integer multi-stage stochastic

problem with an objective of dynamic mean-CVaR risk measure.

Using the structure presented in (3) , the problem (1) can be writ-

ten as 

(P) min 

x 1 ∈X 1 
f 1 (x 1 ) + ρ(Q(x 1 , ξ )) , (12)

where 

Q(x 1 , ξ ) = min 

x t ∈X t ,t∈{ 2 , ... ,T } 
� 2 ,T ( f 2 (x 2 , ξ2 ) , . . . , f T (x T , ξT ) ) , (13)
= { ξt } T t=2 , ρ( ·) is a mean-CVaR risk measure with parameters

∈ [0, 1) and ε1 ∈ [0, 1], and ϱ2, T ( ·) is a dynamic mean-CVaR. Let

 

∗
1 

and z ∗ be an optimal first stage solution and the optimal value

f (P) , respectively. 

Recall the partition S = { S j } J j=1 
of � and sigma algebra G in-

uced by this partition. Then, the j th group subproblem is just

roblem (P) with sample space S j and adjusted probabilities p j ω ,

 ∈ S j . Additionally, the risk measure ρ( ·) in (12) is replaced by

S j 
(·) . For j ∈ { 1 , 2 , . . . , J} , let z j be the optimal value of j th group

ubproblem. Also let Z LB be a G -measurable random variable that

akes value of z j with probability p j = 

∑ 

ω∈ S j p ω . 
In Theorem 1 , we show that a lower bound for risk-averse

ixed-integer multi-stage stochastic problem (P) can be obtained

y using optimal values of group subproblems. 

heorem 1. Let ˜ ρG 

: L ∞ 

(�, G , P ) → R be a mean-CVaR risk mea-

ure with parameters α1 ∈ [0, 1) and ε1 
1 

∈ [0 , 1] ; and ˜ ρF | G 

:

 ∞ 

(�, F , P ) → L ∞ 

(�, G , P ) be a conditional mean-CVaR risk mea-

ure with parameters α2 ∈ [0, 1) and ε2 
1 

∈ [0 , 1] satisfying 1 − ε1 ≤
(1 − ε1 

1 )(1 − ε2 
1 ) and (1 + 

α1 

1 −α1 ε
1 
1 )(1 + 

α2 

1 −α2 ε
2 
1 ) ≤ 1 + 

α
1 −α ε1 . Then,

 

∗ ≥ ˜ ρG 

(Z LB ) . 

roof. Recall that x ∗
1 

is an optimal first stage solution of (P) . Note

hat, it is a feasible first stage solution for each group subproblem.

y optimality of each group subproblem, we have 

f 1 (x ∗1 ) + ρS j (Q(x ∗1 , ξ )) ≥ z j , ∀ j ∈ { 1 , . . . , J} 
nd 

f 1 (x ∗1 ) + ̃

 ρF | G 

(Q(x ∗1 , ξ )) 
 Z LB . (14)

he values on the both sides of inequality (14) are G −measurable.

ince, ρG 

(·) is a coherent risk measure and it satisfies monotonic-

ty axiom (A2), we get ˜ G 

( f 1 (x ∗1 ) + ̃

 ρF | G 

(Q(x ∗1 , ξ ))) ≥ ˜ ρG 

(Z LB ) . (15)

ote that, f 1 (x ∗
1 
) is an F −measurable cost. Since G is a sub

−algebra of F , f 1 (x ∗
1 
) is G −measurable, as well. Applying trans-

ational equivariance axiom (A3) to the left hand side of (15) , we

et ˜ G 

( ̃  ρF | G 

( f 1 (x ∗1 ) + Q(x ∗1 , ξ ))) ≥ ˜ ρG 

(Z LB ) . (16)

ince conditions in (10) are satisfied, we can apply Proposition 1 to

he left hand side of inequality (16) and obtain: 

( f 1 (x ∗1 ) + Q(x ∗1 , ξ )) ≥ ˜ ρG 

(Z LB ) . 

inally, using translational equivariance axiom (A3), we get 

 

∗ = f 1 (x ∗1 ) + ρ(Q(x ∗1 , ξ )) ≥ ˜ ρG 

(Z LB ) . 

�

Theorem 1 implies that a lower bound on the optimal value of

P) can be obtained by solving group subproblems and then apply-

ng ˜ ρG 

(·) to the optimal values of these group subproblems. Since

roup subproblems include smaller number of scenarios compared

o the original problem, they are computationally less challenging.

oreover, applying ˜ ρG 

(·) to the optimal values of group subprob-

ems requires negligible computational effort, since it is only the
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alculation of value of a risk measure ˜ ρG 

(·) for a given random

ost. 

Although the nested structure presented in (3) is widely used

n the literature, there are other risk measures that can be used to

valuate the risk of a sequence of random variables. We show that

ur approach can also be applied to the risk-averse mixed-integer

ulti-stage stochastic problems with different dynamic extensions

f mean-CVaR. 

.4. Extension to other dynamic measures of risk 

Some examples of dynamic risk measures apart from the

ested structure in (3) are multiperiod mean-CVaR and sum of

ean-CVaR (see, Pflug and Römisch, 2007; Eichhorn and Römisch,

005 , respectively). For a sequence of random variables Z t ∈ Z t , t ∈
 1 , . . . , T } adopted to the filtration F t , t ∈ { 1 , . . . , T } , multiperiod

ean-CVaR is defined as 

multi ({ Z t } T t=2 ) = 

T ∑ 

t=2 

λt E [ ρF t | F t−1 
(Z t )] , (17)

nd sum of mean-CVaR is represented as 

sum ({ Z t } T t=2 ) = 

T ∑ 

t=2 

λt ρt (Z t ) , (18)

ith 

∑ T 
t=2 λt = 1 , λt ≥ 0 for t ∈ { 2 , 3 , . . . , T } . 

Our approach is also applicable for the case where the risk

easure is applied to whole scenario cost as a time inconsistent

bjective function, that is, 

whole ({ Z t } T t=1 ) = ρ(Z 1 + Z 2 + · · · + Z T ) . (19)

lthough the risk measure (19) can be applied to a sequence of

andom variables, it is not a dynamic measure of risk. 

The risk measure defined in (17) is a time consistent dynamic

easure of risk whereas the risk measures (18) and (19) are not

ime consistent. 

In the following three propositions, we show that a lower

ound for these three risk measures can be obtained by scenario

rouping. Therefore, our approach is still valid for Problem (P) with

n objective of one of these risk measures. 

Consider an arbitrary sequence of random variables Z t ∈ Z t , t ∈
 1 , . . . , T } adopted to the filtration F t , t ∈ { 1 , . . . , T } . To avoid no-

ational ambiguity, expectation operators and risk measures are

iven without reference sigma algebras. 

roposition 2. For a multiperiod mean-CVaR risk measure ρmulti ( ·)
s defined in (17) , E ◦ ρmulti (·) is a valid lower bound. 

roof. If multiperiod mean-CVaR risk measure (17) is applied to

he sequence Z t ∈ Z t , t ∈ { 1 , . . . , T } , then 

multi ({ Z t } T t=2 ) = 

T ∑ 

t=2 

λt E 

[
ρF t | F t−1 

(Z t ) 
]
. 

ince ρF t | F t−1 
(·) is a conditional mean-CVaR risk measure, the

ower bound E ◦ ρF t | F t−1 
(·) applies for t ∈ { 2 , 3 , . . . , T } . Then, 

multi ({ Z t } T t=2 ) ≥
T ∑ 

t=2 

λt E 

[
E 

[
ρF t | F t−1 

(Z t ) 
]]

. 

ince expectation is a linear operator, we get 

multi ({ Z t } T t=2 ) ≥ E 

[ 

T ∑ 

t=2 

λt E [ ρF t | F t−1 
(Z t )] 

] 

, 

r equivalently, 
multi ({ Z t } T t=2 ) ≥ E 

[
ρmulti ({ Z t } T t=2 ) 

]
. 

ince the sequence Z t ∈ Z t , t ∈ { 1 , . . . , T } is arbitrary, the desired

esult follows. �

roposition 3. For a sum of mean-CVaR risk measure ρsum ( ·) as de-

ned in (18) , E ◦ ρsum (·) is a valid lower bound. 

roof. If sum of mean-CVaR risk measure (18) is applied to the

equence Z t ∈ Z t , t ∈ { 1 , . . . , T } , then 

sum ({ Z t } T t=2 ) = 

T ∑ 

t=2 

λt ρt (Z t ) . 

imilarly, E ◦ ρt (·) applies for t ∈ { 2 , 3 , . . . , T } . Then, 

sum ({ Z t } T t=2 ) ≥
T ∑ 

t=2 

λt E [ ρt (Z t ) ] , 

nd 

sum ({ Z t } T t=2 ) ≥ E 

[ 

T ∑ 

t=2 

λt ρt (Z t ) 

] 

, 

r equivalently, 

sum ({ Z t } T t=2 ) ≥ E 

[
ρsum ({ Z t } T t=2 ) 

]
. 

ince the sequence Z t ∈ Z t , t ∈ { 1 , . . . , T } is arbitrary, the desired

esult follows. �

roposition 4. For the risk measure ρwhole (·) as defined in (19) ,˜ G 

◦ ˜ ρF | G 

(·) is a valid lower bound if parameters of ˜ ρG 

(·) and˜ F | G 

(·) satisfy conditions in (10) . 

roof. Follows from Proposition 1 . �

As shown above, our proposed lower bound is quite general and

an be applied to other dynamic mean-CVaR measures. 

.5. Upper bound for optimization problem 

Obtaining an upper bound, or equivalently finding a feasible

olution of a minimization problem, is crucial for the instances

here an optimal solution is not available. A good quality feasi-

le solution gives the decision maker an action to be taken and

easures the quality of obtained lower bound when an optimal

olution is not available. 

An upper bound for the optimal value of (P) can be obtained by

sing optimal solutions of group subproblems. Once j th group sub-

roblem is solved, an optimal solution of it, namely x j , is obtained.

et UB j be the optimal value of (P) where (some of) the variables

ppearing in j th group subproblem are set to x j . We call this prob-

em as restricted problem. Since some of the problem variables are

xed, solving the restricted problem is easier than the original one

nd the resulting scenario tree can become decomposable. 

If the restricted problem does not have a feasible solution, then

orresponding upper bound UB j is set to infinity. The best available

pper bound UB is obtained by taking minimum of UB j values over

ll j ∈ { 1 , . . . , J} , that is, 

B = min 

j∈{ 1 , ... ,J} UB j . (20) 

In Algorithm 1 , we present how group subproblem approach

an be used to obtain lower and upper bounds for the multi-stage

isk-averse mixed-integer problem (P) with dynamic mean-CVaR 

bjective. The algorithm can be easily adopted to the other risk

easures given in Section 3.4 . 
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Algorithm 1 Lower and upper bounds for (P) . 

Input: A risk-averse mixed-integer multi-stage stochastic prob- 

lem (P) and a partition S = { S j } J j=1 
of sample space �. 

Initialize: LB ← −∞ and UB ← + ∞ 

Lower Bounding: 

for all j ∈ { 1 , 2 , . . . , J} do 

Solve the jth group subproblem. 

x j ← an optimal solution of jth group subproblem 

z j ← optimal value of jth group subproblem 

end for 

Let Z LB be a random variable that takes value z j with probability 

p j = 

∑ 

ω∈ S j p ω 
LB ← ̃

 ρG 

(Z LB ) 

Upper Bounding: 

for all j ∈ { 1 , 2 , . . . , J} do 

UB j ← the optimal value of the original problem with the ad- 

ditional constraint where (some of) the variables appearing in 

jth group subproblem are set to x j . 

end for 

UB ← min j∈{ 1 , 2 ... ,J} UB j 

Return: LB and UB 
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4. Computational experiments 

In this section, we conduct our numerical experiments on

a multi-stage lot sizing problem studied in Guan, Ahmed, and

Nemhauser (2009) . All computational experiments are performed

on an Intel(R) Core(TM) i7-4790 CPU@3.60 gigahertz computer

with 8.00 gigabyte of RAM with Java 1.8.0.31 and IBM ILOG CPLEX

12.6. We first introduce risk-averse multi-stage lot sizing problem

(RAMLSP) with dynamic mean-CVaR defined in (3) . Then, we com-

pare the results obtained via usage of different scenario partition

strategies and lower bound choices. We also compare the proposed

algorithm and CPLEX in terms of solution quality and required CPU

time. 

4.1. Risk-averse multi-stage lot sizing problem with mean-CVaR 

The objective of RAMLSP is to minimize the dynamic mean-

CVaR risk measure over T periods subject to demand satisfaction

and capacity constraints. RAMLSP-T-r represents an RAMLSP in-

stance with T stages in which random components can take r dif-

ferent values at each stage. Therefore, total number of scenarios

in an RAMLSP-T-r instance is r T −1 . We generate random test in-

stances as in Guan et al. (2009) . The same setting of the parame-

ters is also used by Sandıkçı and Özaltın (2014) , that is, h tu ∼ U [0,

10], αtu ∼ U [3.2, 4.8] E [ h ], β tu ∼ U [320, 480] E [ h ], d tu ∼ U [0, 100] and

M tu ∼ U [40 T , 60 T ], where U [ a , b ] represents uniform distribution

between a and b . 

Using the scenario tree representation given in Section 2.2 ,

RAMLSP can be stated as follows: 

(RAMLSP) minimize Z 1 + ρF 2 | F 1 
(Z 2 

+ ρF 3 | F 2 

(
Z 3 + · · · + ρF T | F T−1 

(Z T ) . . . 
)
) (21)

subject to 

Z tu = αtu x tu + βtu y tu + h tu s tu , ∀ u ∈ �t , t ∈ { 1 , . . . , T } (22)

s (t−1) a (u ) + x tu = d tu + s tu , ∀ u ∈ �t , t ∈ { 1 , . . . , T } (23)
t

 tu ≤ M tu y tu , ∀ u ∈ �t , t ∈ { 1 , . . . , T } (24)

 tu , s tu ≥ 0 and integer , y tu ∈ { 0 , 1 } , ∀ u ∈ �t , t ∈ { 1 , . . . , T } 
(25)

 0 a (v 1 ) = 0 . 

Here x tu is the production level, y tu is the setup indicator

nd s tu is the inventory level variables at node u ∈ �t in period

 ∈ { 1 , . . . , T } . αtu , β tu , h tu , d tu and M tu denote unit production

ost, setup cost, inventory holding cost, demand and production

apacity parameters, respectively. Z 1 is the sum of deterministic

roduction, setup and inventory holding costs incurred in the first

tage. Similarly, Z tu is the cost incurred at node u ∈ �t at stage

 ∈ { 2 , . . . , T } . Z t represents the random variable that takes values

f Z tu , u ∈ �t with respective probabilities. The objective (21) is

he dynamic risk value over the planning horizon. Constraint

22) calculate the cost incurred at each node of the scenario

ree. Constraints (23) and (24) are inventory balance and capacity

onstraints, respectively. Constraint (25) are domain constraints.

nlike Guan et al. (2009) and Sandıkçı and Özaltın (2014) , we

ssume that production and inventory levels are required to be

nteger valued. Although this assumption increases the problem

omplexity, we have a more realistic representation to evaluate

he performance of the algorithm. In order to linearize RAMLSP ,

he linearization of mean-CVaR presented in Section 2.3 is used. 

For the computational experiments, we use three different val-

es of weight parameter ε1 ∈ {0.8, 0.5, 0.3} and level parameter

∈ {0.9, 0.8, 0.7} of mean-CVaR. Therefore, we have nine different

isk-aversion settings. 

.2. Choices of scenario partitions and lower bounds 

As seen in Example 1 , the value of each lower bound highly

epends on chosen scenario partition. We consider four possible

cenario partition strategies obtained by grouping the scenarios in

ifferent ways, namely index1 , index2 , similar and different . For each

trategy, we can also specify the number of scenarios in each group

s a function of the number of scenarios | �| and the number of

roups J . Let a % b be the remainder after the division of a ∈ R by

 ∈ R , �·� be the ceiling function, and �·� be the floor function.

hen, each scenario grouping strategy yields a scenario partition

hat has J groups, where | �|% J groups have cardinality � | �|/ J � and

 − (| �| % J) groups have cardinality � | �|/ J � . For example, if | �| =
2 and J = 5 then the cardinality of two groups will be seven and

he other three groups will have cardinality of six. 

Partition strategies index1 and index2 are based on the structure

f scenario tree. In index1 , the last stage nodes sharing the high-

st number of common nodes are placed into the same group. On

he other hand, index2 is obtained by placing the last stage nodes

haring the least number of common nodes into the same group. 

If a priori information on the cost of each single scenario un-

er an optimal solution is available, the groups can also be ob-

ained with respect to similarity and diversity of individual sce-

arios. Since this information is not available before solving the

riginal problem, the deterministic version of the original problem

priori can be solved for each scenario separately, and the corre-

ponding single scenario costs can be used to obtain two different

cenario partition strategies named as similar and different . Note

hat, for both strategies, an additional computational effort is re-

uired to obtain single scenario costs. 

In strategy similar , we assign � | �|/ J � scenarios that have the

argest single scenario costs to the first group. Then, depending

n the cardinality of the second group, � | �|/ J � or � | �|/ J � scenar-

os that have the second largest single scenario costs are assigned

o the second group, and so on. 
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Table 3 

Different scenario partitions S = { S 1 , S 2 , S 3 , S 4 } for the example scenario tree in Fig. 3 . 

Partition strategy S 1 S 2 S 3 S 4 

index1 { ω 1 , ω 2 , ω 3 , ω 4 } { ω 5 , ω 6 , ω 7 , ω 8 } { ω 9 , ω 10 , ω 11 , ω 12 } { ω 13 , ω 14 , ω 15 , ω 16 } 

index2 { ω 1 , ω 5 , ω 9 , ω 13 } { ω 2 , ω 6 , ω 10 , ω 14 } { ω 3 , ω 7 , ω 11 , ω 15 } { ω 4 , ω 8 , ω 12 , ω 16 } 

Similar { ω 9 , ω 4 , ω 11 , ω 6 } { ω 7 , ω 16 , ω 13 , ω 1 } { ω 10 , ω 2 , ω 8 , ω 3 } { ω 12 , ω 14 , ω 15 , ω 5 } 

Different { ω 9 , ω 7 , ω 10 , ω 12 } { ω 4 , ω 16 , ω 2 , ω 14 } { ω 11 , ω 13 , ω 8 , ω 15 } { ω 6 , ω 1 , ω 3 , ω 5 } 

Fig. 3. An example of three-stage scenario tree with 16 scenarios. 
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In partition strategy different , each scenario is assigned to one

f J groups by assigning the scenario with the largest single sce-

ario cost to the first group, the scenario with the second largest

ingle scenario cost to the second group, and so on. This assign-

ent process returns to the first group after assigning the first J

cenarios and the process restarts. It is ended after all scenarios

re placed in a group. 

With respect to single scenario cost values, in strategy similar ,

he dispersion within each group is low, however, the dispersion

etween the groups is high. On the other hand, in partition strat-

gy different , the dispersion within each group is high. 

xample 3. Fig. 3 depicts the scenario tree for an RAMLSP-3-4 in-

tance where the numbers near the scenarios indicate the cost of

ach individual scenario. The scenarios can be ordered as ω 9 , ω 4 ,

 11 , ω 6 , ω 7 , ω 16 , ω 13 , ω 1 , ω 10 , ω 2 , ω 8 , ω 3 , ω 12 , ω 14 , ω 15 , ω 5 where

he individual scenario costs decrease moving through from ω 9 to

 5 . Table 3 presents different scenario partition strategies for this

cenario tree. 

In order to observe the quality of bounds obtained by differ-

nt scenario partition strategies and lower bound choices, the pro-

osed algorithm is applied to five RAMLSP-3-30 instances gen-

rated via different random seeds. Total number of scenarios is

00. We consider the number of groups as J ∈ {2, 4, 10}, and

ence each group subproblem includes 450, 225, and 90 scenar-

os, for the respective value of J . While obtaining upper bounds,

ptimal production decisions of group subproblems are fixed in

he restricted problems. As noted before, for strategies similar

nd different , single scenario costs are required. The CPU time

eeded to obtain these values are also included in the run-

ing time of the algorithm. In order to measure the quality of
ower and upper bounds, an optimality gap information Gap(%) =
00 ( (UB − LB ) /UB ) is used. All running times are reported in sec-

nds. The results are presented in Table 4 , where the gap and

ime values are the average values of five randomly generated

nstances. 

The bolded entries in Table 4 correspond to the smallest opti-

ality gap values among all lower bound choices, partition strate-

ies and number of groups. It can be observed that, the smallest

ptimality gap values are obtained with strategy different , lower

ound choice E G 

◦ ρF | G 

, and J = 2 . Regarding to the optimality

ap, E G 

◦ ρF | G 

is the best lower bound choice. In general, for

 G 

◦ ρF | G 

, the partition strategy different provides the smallest

ptimality gap for any J value, and the strategy similar is the worst

ne. This is a consequence of the fact that group subproblems with

riginal dynamic risk measure reflect the risk-aversion behavior of

he original problem better when the dispersion within groups is

igh. 

Moreover, the running time of the algorithm decreases as mov-

ng through lower bound choices ρG 

◦ E F | G 

, ρs 
G 

◦ ρs 
F | G 

and E G 

◦
F | G 

, in general. For example, with partition strategy different and

 = 2 , the average running times for lower bound choices ρG 

◦
 F | G 

, ρs 
G 

◦ ρs 
F | G 

and E G 

◦ ρF | G 

are 57.18, 37.79 and 14.6 sec-

nds, respectively. On the other hand, no partition strategy is

referable among others for all lower bound choices with respect

o the running time. The computational experiments summarized

n Table 4 reveal that the partition strategy different and the lower

ound choice E G 

◦ ρF | G 

are the most promising choices when the

ound quality and the running time are considered. 

Although the upper bounds obtained from different partitions

re incomparable, a hierarchy of lower bounds can be obtained us-

ng refinement chains. Moreover, the lower bound values can be

mproved by relaxing the requirement that groups should be dis-

oint. If this requirement is relaxed, some fixed scenarios appear in

ach group. We call this as scenario fixing. In the next subsection,

e will discuss refinement chains, scenario fixing, and their impact

n the quality of the lower bound. 

.3. Refinement chains and scenario fixing 

Maggioni and Pflug (2016) consider refinement chains and sce-

ario fixing to improve the quality of lower bounds obtained via

cenario grouping. We suggest Proposition 5 to construct a re-

nement chain. We show a relation between two lower bounds

btained via two different special scenario partitioning with the

ower bound choice E G 

◦ ρF | G 

. Let LB (S 1 ) and LB (S 2 ) be the

ower bounds E G 

1 ◦ ρF | G 

1 and E G 

2 ◦ ρF | G 

2 on the optimal

alue z ∗ of (P) , obtained by partitions S 1 = { S 1 
1 
, . . . , S 1 

J 
} and S 2 =

 S 2 1 , . . . , S 
2 
M 

} where G 

1 and G 

2 are the sigma algebras induced by

 

1 and S 2 , respectively. 

roposition 5. Let S 1 and S 2 be two different partitions of �,

here S 1 
j 

⋂ 

S 1 
j ′ = ∅ for j, j ′ ∈ { 1 , . . . , J} , j � = j ′ and S 2 m 

⋂ 

S 2 
m 

′ = ∅ for

, m 

′ ∈ { 1 , . . . , M} , m � = m 

′ . If for all S 1 
j 

∈ S 1 , j ∈ { 1 , . . . , J} there

xists S 2 
k 

∈ S 2 , k ∈ { j 1 , . . . , j K j } such that S 1 
j 

= 

⋃ 

k ∈{ j 1 , ... , j K j 
} S 2 k 

, then

B (S 1 ) ≥ LB (S 2 ) . 
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Table 4 

Average optimality gap and running time values of the proposed algorithm for five different RAMLSP-3-30 instances with different partition and lower bound choices. 

J = 2 J = 4 J = 10 

index1 index2 Similar Different index1 index2 Similar Different index1 index2 Similar Different 

LB choice α ε1 Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time 

ρG ◦ E F | G 0.8 10.86 7.1 12.45 16.5 9.34 11.1 12.54 13.4 9.45 2.0 13.07 6.9 7.71 2.1 13.71 6.4 4.26 7.8 18.54 9.7 5.10 6.6 16.99 6.0 

0.9 0.5 7.64 24.5 8.81 24.8 7.92 29.6 8.67 23.9 6.85 3.1 9.36 8.6 7.97 2.5 9.78 8.5 3.63 9.7 11.93 8.6 7.01 7.2 12.73 5.4 

0.3 5.32 18.2 5.79 52.6 6.56 95.3 5.69 48.2 4.91 4.1 6.33 13.4 8.29 3.7 6.73 11.7 3.01 11.4 8.34 7.9 8.32 7.3 8.28 7.3 

0.8 9.61 13.2 10.82 21.9 7.16 14.2 10.97 24.0 8.14 3.3 11.69 9.6 5.32 3.7 11.58 10.1 3.46 8.2 15.55 10.3 6.89% 8.9 14.43 5.5 

0.8 0.5 6.57 22.0 7.20 55.0 6.28 116.0 7.40 31.9 5.81 4.0 7.80 11.2 6.05 3.3 8.15 11.4 3.00 9.8 9.89 8.8 7.83 7.2 10.51 5.7 

0.3 4.44 26.6 4.75 88.6 5.46 118.9 4.88 99.2 4.12 5.0 5.21 14.9 7.01 4.8 5.56 13.8 2.59 12.2 6.74 8.0 8.68 7.5 6.71 7.5 

0.7 0.8 8.86 21.2 10.11 74.9 5.35 24.2 10.10 44.4 7.60 4.0 10.49 12.0 5.33 4.5 10.51 12.6 3.85 7.7 13.09 9.1 7.82 7.6 12.70 7.1 

0.5 5.90 31.5 6.56 73.7 5.11 74.2 6.62 89.7 5.24 4.3 6.98 16.3 6.31 4.2 7.35 14.9 3.08 12.1 8.22 8.5 8.45 7.3 9.17 7.5 

0.3 3.95 36.4 4.27 114.0 4.73 144.6 4.29 139.9 3.70 5.6 4.50 17.0 7.08 5.4 4.80 17.2 2.48 14.5 5.50 8.5 8.91 7.8 5.81 10.6 

ρs 
G ◦ ρs 

F | G 0.9 0.8 4.52 7.2 5.52 14.8 7.57 8.3 5.10 9.6 4.38 1.6 5.99 6.1 9.83 1.8 6.03 6.3 4.20 6.7 8.95 4.4 14.27 6.8 8.76 5.2 

0.5 3.99 10.6 4.43 18.5 7.80 16.6 4.23 15.5 3.86 2.3 4.91 6.9 10.97 1.7 5.13 6.2 4.04 9.9 7.18 4.6 13.95 7.3 7.67 4.1 

0.3 3.08 20.4 3.14 21.5 6.57 66.6 3.02 20.1 3.04 4.0 3.56 7.4 10.47 3.2 3.79 10.6 3.38 10.5 5.31 6.0 12.83 7.4 5.18 4.3 

0.8 0.8 3.67 12.5 4.45 18.9 6.16 17.3 4.40 19.9 3.66 4.1 5.06 8.5 10.85 2.2 5.06 8.9 3.35 8.5 7.58 5.5 14.81 8.7 7.41 3.8 

0.5 3.30 12.9 3.52 22.0 6.68 34.7 3.40 59.3 3.12 3.7 4.01 10.2 9.91 2.8 4.09 9.6 3.09 9.2 5.94 5.4 13.86 7.4 5.98 4.8 

0.3 2.46 21.1 2.49 60.9 5.83 166.9 2.41 44.2 2.44 4.2 2.85 12.3 9.28 4.1 2.98 12.8 2.67 10.3 4.26 7.0 12.41 7.6 4.07 5.6 

0.7 0.8 3.37 21.0 4.40 19.8 5.10 22.0 4.22 28.6 3.39 4.5 4.68 11.1 10.73 4.7 4.90 8.5 3.80 7.8 6.18 5.1 15.10 7.7 6.53 3.8 

0.5 2.94 25.1 3.26 46.0 6.09 52.5 3.10 47.1 2.82 6.1 3.62 14.7 10.17 3.4 3.63 13.7 3.06 10.2 4.72 5.0 13.80 7.3 5.12 4.9 

0.3 2.30 21.9 2.19 73.9 5.57 169.8 2.10 95.8 2.26 7.1 2.49 15.2 9.50 3.5 2.57 16.4 2.39 12.4 3.36 7.0 12.46 7.9 3.50 8.8 

E G ◦ ρF | G 0.9 0.8 1.15 6.4 0.65 5.6 11.78 6.8 0.36 5.8 1.97 2.9 1.10 3.8 20.35 1.9 1.00 3.1 6.81 9.3 3.80 4.0 25.67 6.7 4.31 3.4 

0.5 1.26 4.8 0.42 11.9 9.54 5.6 0.26 9.1 1.82 2.4 0.82 4.3 16.15 1.6 0.94 4.4 5.09 7.4 2.99 3.1 20.73 7.3 2.92 3.1 

0.3 1.16 9.2 0.43 14.4 7.67 14.7 0.29 14.1 1.51 3.1 0.76 6.8 13.31 2.0 0.90 6.8 3.88 10.7 2.41 4.1 17.00 7.4 2.00 3.3 

0.8 0.8 0.59 10.0 0.25 10.2 10.95 8.9 0.15 10.9 1.23 4.5 0.59 6.9 18.86 2.8 0.56 7.4 5.17 10.9 2.54 4.1 24.29 8.8 2.10 3.9 

0.5 0.64 11.3 0.27 15.3 8.74 16.8 0.12 12.3 1.07 3.2 0.59 6.2 14.79 1.9 0.52 7.0 3.78 9.2 2.08 3.6 19.49 7.3 1.89 3.2 

0.3 0.60 16.5 0.27 17.8 7.13 58.0 0.19 18.8 1.04 3.5 0.53 7.1 12.36 2.5 0.47 8.5 2.94 10.4 1.69 4.4 15.95 7.7 1.36 4.4 

0.7 0.8 0.74 11.2 0.26 14.9 10.70 13.0 0.23 13.2 1.04 4.3 0.49 7.6 17.62 4.5 0.45 7.8 4.09 8.0 1.72 4.2 22.96 7.8 1.77 3.7 

0.5 0.63 16.9 0.26 14.7 8.47 22.0 0.22 18.2 0.87 3.4 0.51 7.3 14.15 3.0 0.47 8.3 3.02 9.9 1.35 3.4 18.68 7.2 1.52 3.1 

0.3 0.58 40.8 0.23 28.2 7.02 71.0 0.13 29.0 0.93 5.8 0.47 10.1 11.91 4.3 0.40 11.6 2.37 12.6 1.25 5.4 15.47 7.9 1.27 7.7 
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Table 5 

A refinement chain for the scenario tree in Example 3 where the partition strategy is different . 

Partition Groups 

S 1 �

S 2 { ω 9 , ω 11 , ω 7 , ω 13 , ω 10 , ω 8 , ω 12 , ω 15 }, { ω 4 , ω 6 , ω 16 , ω 1 , ω 2 , ω 3 , ω 3 , ω 14 , ω 5 } 

S 4 { ω 9 , ω 7 , ω 10 , ω 12 } ,{ ω 4 , ω 16 , ω 2 , ω 14 }, { ω 11 , ω 13 , ω 8 , ω 15 }, { ω 6 , ω 1 , ω 3 , ω 5 } 

S 8 { ω 9 , ω 10 }, { ω 4 , ω 2 }, { ω 11 , ω 8 }, { ω 6 , ω 3 }, { ω 7 , ω 12 }, { ω 16 , ω 14 }, { ω 13 , ω 15 }, { ω 1 , ω 5 } 

S 16 { ω 9 }, { ω 4 }, { ω 11 }, { ω 6 }, { ω 7 }, { ω 16 }, { ω 13 }, { ω 1 }, { ω 10 }, { ω 2 }, { ω 8 }, { ω 3 }, { ω 12 }, { ω 14 }, { ω 15 }, { ω 5 } 

Table 6 

Average lower bound gap and running time for the refinement chain S 1 , S 2 , S 4 , . . . , S 128 obtained with partition strategy different for five different RAMLSP-3-32 instances. 

α 0.9 0.8 0.7 

ε1 0.8 0.5 0.3 0.8 0.5 0.3 0.8 0.5 0.3 

Partition # sce LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time 

S 1 1024 – 81.3 – 3285.1 – 6503.9 – 90.1 – 4496.4 – 7199.0 – 169.3 – 3149.7 – 7272.5 

S 2 512 0.20% 3.6 0.30% 7.2 0.28% 11.5 0.34% 7.1 0.27% 12.3 0.23% 16.4 0.28% 8.7 0.24% 46.1 0.26% 104.0 

S 4 256 0.82% 1.3 0.94% 1.2 0.80% 2.3 0.76% 1.8 0.64% 2.3 0.59% 3.3 0.58% 1.9 0.65% 3.8 0.63% 5.7 

S 8 128 2.60% 0.4 2.46% 0.46 1.99% 0.6 1.93% 0.8 1.75% 0.6 1.47% 0.9 1.66% 0.6 1.59% 1.0 1.44% 1.5 

S 16 64 4.90% 0.2 4.29% 0.2 3.47% 0.3 4.18% 0.3 3.53% 0.2 2.90% 0.3 3.44% 0.3 3.06% 0.2 2.66% 0.3 

S 32 32 6.81% 0.1 5.99% 0.1 4.99% 0.1 6.37% 0.1 5.39% 0.1 4.47% 0.1 5.84% 0.1 4.93% 0.1 4.14% 0.1 

S 64 16 9.10% 0.0 7.84% 0.0 6.58% 0.0 8.68% 0.0 7.25% 0.0 6.03% 0.0 8.36% 0.0 6.93% 0.0 5.78% 0.0 

S 128 8 11.25% 0.0 9.58% 0.0 8.10% 0.0 10.89% 0.0 9.03% 0.0 7.53% 0.0 10.38% 0.0 8.64% 0.0 7.23% 0.0 
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roof. For j ∈ { 1 , . . . , J} and k ∈ { j 1 , . . . , j K j } , let z j and ˜ z k be the

ptimal values of group subproblems defined by groups S 1 
j 

∈
 

1 and S 2 
k 

∈ S 2 , respectively. Also let p j = 

∑ 

ω∈ S 1 
j 

p ω and ˜ p k =
 

ω∈ S 2 
k 

p ω . 

Since S 2 
k 
, k ∈ { j 1 , . . . , j K j } is a partition of S 1 

j 
, Theorem 1 implies

hat 

 

j ≥
∑ 

k ∈{ j 1 , ... , j K j } 

˜ p k 
p j 

˜ z k , ∀ j ∈ { 1 , . . . , J} , 

here 
˜ p k 
p j 

is the total conditional probability of scenarios in S 2 
k 
, k ∈

 j 1 , . . . , j K j } given S 1 
j 
. Then, we have 

∑ 

j∈{ 1 , ... ,J} 
p j z 

j ≥
∑ 

j∈{ 1 , ... ,J} 
p j 

⎛ ⎝ 

∑ 

k ∈{ j 1 , ... , j K j } 

˜ p k 
p j 

˜ z k 

⎞ ⎠ , 

r equivalently, ∑ 

j∈{ 1 , ... ,J} 
p j z 

j ≥
∑ 

j∈{ 1 , ... ,J} 

∑ 

k ∈{ 1 , ... ,K j } 
˜ p k ̃  z k . 

hen, we get ∑ 

j∈{ 1 , ... ,J} 
p j z 

j ≥
∑ 

m ∈{ 1 , ... ,M} 
˜ p m ̃

 z m , 

here ˜ p m 

= 

∑ 

ω∈ S 2 m 
p ω and ˜ z m is the optimal value of the group

ubproblem S 2 m 

for m ∈ { 1 , . . . , M} . Hence, LB (S 1 ) ≥ LB (S 2 ) by def-

nition of LB (S 1 ) and LB (S 2 ) . �

A sequence of partitions S 1 , S 2 , S 3 , . . . , for which LB (S 1 ) ≥
B (S 2 ) ≥ LB (S 3 ) ≥ · · · , is called a refinement chain. Table 5 shows

 refinement chain for the scenario tree in Example 3 , where the

artition strategy different is used and S J denotes a partition with

 groups. Note that, in partition S 16 , each group subproblem is a

eterministic problem with only one scenario. 

We conduct a computational experiment where five different

AMLSP-3-32 instances with 1024 scenarios are used with the re-

nement chain S 1 , S 2 , S 4 , . . . , S 128 which is obtained with partition

trategy different . Table 6 presents the number of scenarios in each

roup (# sce), the average lower bound gap (LB_Gap) and the aver-

ge running time (Time) for each partition of the refinement chain.
B_Gap values are calculated as 

B _ Gap (%) = 100 

z ∗ − LB 

z ∗
, 

here z ∗ is the optimal value of our problem. 

As expected, the quality of the lower bound obtained by sce-

ario grouping increases when the number of scenarios in each

roup subproblem increases with a cost of longer running times.

nother suggestion of Maggioni and Pflug (2016) is relaxing the

isjoint groups assumption to improve lower bound quality. Recall

hat ω ∈ � is a scenario with probability p ω and J is the number

f groups. We can relax disjoint groups assumption by placing ω 

nto k ∈ { 2 , . . . , J} different groups. In this case, ω is replaced with

 identical scenarios each having a probability of p ω / k and these

ew scenarios are placed into k different groups. 

We conduct another set of computational experiments for five

ifferent RAMLSP-3-32 instances where eight scenarios with the

argest single scenario cost appear at each group and we present

he results in Table 7 . It is observed that the quality of lower

ounds improves when we allow some scenarios to appear in

ll groups. However, the running times may get larger since the

umber of scenarios in each group subproblem increases. For ex-

mple, when J = 2 , α = 0 . 7 , ε1 = 0 . 3 , for the case where eight

cenarios are fixed, the LB_Gap decreases by 0.01% but the re-

uired time to obtain lower bound increases to 2749.1 from

04 seconds. 

.4. Computational study results for larger number of stages 

Up to now, we have shown that the lower bound choice E G 

◦
F | G 

, the partition strategy different , and considering disjoint

roups is the most promising combination among all bound and

artition combinations. Therefore, further computational experi- 

ents are conducted on the instances with more stages under this

etting. We also conduct a set of computational experiments to

ompare the performance of the proposed algorithm with CPLEX

n terms of optimality gap and solution time. 

In the upper bounding phase of the proposed algorithm, the re-

tricted problem is solved for each group. When the number of

roups J in a partition is large, the upper bounding phase requires

ong CPU times. Therefore, one may solve the restricted problem

or only a subset of groups. Another computational enhancement

or the upper bounding phase is running the restricted problems
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Table 7 

Average lower bound gap and running time for the refinement chain S 1 , S 2 , S 4 , S 8 obtained with partition strategy different and eight fixed scenarios for five different 

RAMLSP-3-32 instances. 

α 0.9 0.8 0.7 

ε1 0.8 0.5 0.3 0.8 0.5 0.3 0.8 0.5 0.3 

Partition # sce LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time LB_Gap Time 

S 1 1024 – 81.3 – 3285.1 – 6503.9 – 90.13 – 4496.4 – 7199.0 – 169.3 – 3149.7 – 7272.5 

S 2 516 0.11% 12.8 0.23% 27.6 0.24% 115.9 0.22% 9.9 0.23% 36.7 0.23% 691.3 0.22% 10.8 0.23% 98.0 0.25% 2749.1 

S 4 262 0.44% 1.2 0.70% 2.1 0.66% 3.3 0.59% 1.9 0.56% 3.1 0.54% 4.4 0.49% 2.3 0.59% 4.1 0.59% 6.7 

S 8 135 1.59% 0.4 1.82% 0.5 1.67% 0.8 1.52% 0.5 1.48% 0.6 1.33% 0.9 1.38% 0.5 1.44% 0.8 1.35% 1.3 

Table 8 

Average optimality gap and running time values of the proposed algorithm for five different RAML SP-3-30, RAML SP-4-8, and RAML SP-5-4 instances with partition strategy 

different and lower bound choice E G ◦ ρF | G . 

J = 4 J = 8 J = 16 J = 32 

α ε1 Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time 

RAMLSP-3-64 0.9 0.8 1.02 68.9 2.42 55.8 5.02 44.6 8.13 82.0 

0.5 0.92 132.6 2.07 66.2 4.27 60.9 6.99 86.1 

0.3 0.74 697.4 1.57 101.4 3.33 75.6 5.80 93.1 

0.8 0.8 0.71 27.5 1.67 13.0 3.82 26.3 7.10 85.2 

0.5 0.66 97.4 1.55 25.4 3.19 39.3 6.03 82.4 

0.3 0.60 376.1 1.20 49.6 2.53 55.6 4.76 86.5 

0.7 0.8 0.54 51.8 1.30 14.5 2.82 37.6 5.67 82.9 

0.5 0.56 129.2 1.12 27.4 2.37 48.2 4.74 81.9 

0.3 0.48 373.1 0.93 63.7 1.96 57.6 3.73 84.9 

RAMLSP-4-8 0.9 0.8 5.92 10.4 6.05 9.0 9.62 17.6 11.23 37.5 

0.5 5.49 16.9 6.69 19.3 7.28 26.0 9.18 59.1 

0.3 4.06 21.3 5.87 27.0 6.45 37.8 7.76 66.5 

0.8 0.8 3.59 13.9 5.03 11.2 6.69 18.8 9.62 50.0 

0.5 3.64 18.6 5.53 25.5 6.35 33.2 8.26 63.5 

0.3 3.40 22.3 5.28 29.3 5.86 40.9 7.48 62.0 

0.7 0.8 3.48 16.0 4.95 14.5 6.14 22.0 8.38 54.3 

0.5 3.19 21.1 5.31 24.4 5.92 33.7 7.95 61.8 

0.3 3.12 28.3 4.86 32.2 5.54 41.1 7.09 65.1 

RAMLSP-5-4 0.9 0.8 6.55 8.9 10.25 4.8 13.24 11.7 16.09 29.9 

0.5 5.53 13.7 9.09 5.6 11.69 16.0 13.27 43.2 

0.3 5.12 17.1 7.97 8.0 10.02 20.0 11.38 48.2 

0.8 0.8 6.83 9.9 10.78 4.7 13.40 11.3 16.16 29.6 

0.5 5.70 13.6 9.48 6.2 11.81 14.9 13.40 43.7 

0.3 5.28 16.4 8.27 8.6 10.08 17.4 11.53 50.1 

0.7 0.8 6.04 10.3 9.92 6.0 13.04 17.0 14.58 40.5 

0.5 5.39 11.7 8.96 6.7 10.96 20.9 12.49 51.4 

0.3 4.93 15.5 7.94 9.8 9.53 22.5 11.00 56.9 
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with a prespecified time limit and reporting the objective value

of current incumbent solution as UB j . Since, the optimal value of

the restricted problem is an upper bound for the original problem,

the objective value of any incumbent solution is also a valid upper

bound. 

We solve RAML SP-3-64, RAML SP-4-8, and RAML SP-5-4 prob-

lems with 3, 4, and 5 stages, respectively, and for each risk set-

ting, we generate five instances using different random seeds. The

algorithm is applied with lower bound choice E G 

◦ ρF | G 

and the

partition strategy different , where number of groups, J , takes values

of 4, 8, 16, and 32. The number of restricted problems to be solved

is � J /5 � , which are selected randomly. The time limit for each re-

stricted problem is set to 10 seconds. The results are presented in

Table 8 . 

As seen in Table 8 , increasing the number of groups in the par-

tition may not always yield CPU time saving. As J increases, the

optimality gap increases, on the other hand, the CPU time may not

always decrease. Specifically, when J is increased to 32 from 16,

the CPU time increases in all of the instances. As the number of

groups J increases, the subproblems get smaller in size. However,

the number of group subproblems and the restricted problems to

solve increases. Therefore, increasing the number of groups may
ot always result in a decrease in the running time of the algo-

ithm. 

An interesting question is the comparison of the proposed al-

orithm with CPLEX in terms of optimality gap and CPU time.

o make a fair comparison, we use RAMLSP-3-64 instances where

PLEX is run as long as it reaches to the optimality gap or the CPU

ime of the proposed algorithm. 

When CPLEX is allowed to run with one hour of time limit, it

annot solve none of the instances optimally. Table 9 presents the

omparison of the proposed algorithm with CPLEX for J = 4 . 

In Table 9 , the column “Gap_CPLEX ” corresponds to the opti-

ality gap value reported by CPLEX when it is allowed to run as

ong as the running time of the proposed algorithm. Moreover, the

alues in the column “GAP difference ” is measured as the differ-

nce between CPLEX gap and the gap obtained by the proposed

lgorithm. When CPLEX is allowed to run as long as the solution

ime of the proposed algorithm, the algorithm yields 1.13% stronger

ounds on the average. For example, when α = 0 . 7 and ε1 = 0 . 8 ,

ur algorithm terminates with an optimality gap of 0.54% within

1.8 seconds. CPLEX stops with an optimality gap of 1.93% within

he same time limit, that is, the bounds obtained by our algorithm

s 1.39% better than the bounds obtained by CPLEX. 
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Table 9 

Comparison of optimality gaps and running times of the proposed algorithm with CPLEX. 

Proposed algorithm CPLEX 

α ε1 Gap (%) Time Gap_CPLEX (%) GAP difference (%) Time_CPLEX Delay 

0.9 0.8 1.02 68.9 2.76 1.74 248.3 3.60 

0.5 0.92 132.6 3.47 2.55 2366.7 17.84 

0.3 0.74 697.4 1.39 0.65 719.9 1.03 

0.8 0.8 0.71 27.5 2.04 1.33 241.9 8.79 

0.5 0.66 97.4 1.48 0.82 403.9 4.15 

0.3 0.60 376.1 0.89 0.29 603.0 1.60 

0.7 0.8 0.54 51.8 2.47 1.93 246.4 4.75 

0.5 0.56 129.2 1.13 0.57 4 4 4.2 3.44 

0.3 0.48 373.1 0.81 0.33 1445.6 3.87 
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In Table 9 , the column “Time_CPLEX ” corresponds to the time

n seconds that CPLEX takes to reduce its gap to the level of the

ap obtained by the proposed algorithm. Also, the values in the

olumn “Delay ” is measured as the ratio of Time_CPLEX to the run-

ing time of the proposed algorithm ( Time ). CPLEX requires 5.45

imes longer running time to achieve the optimality gap of the pro-

osed algorithm, on the average. For α = 0 . 9 and ε1 = 0 . 5 , CPLEX

equires 2366.7 seconds to achieve the optimality gap of the pro-

osed algorithm, that means CPLEX needs to spend more than 17

imes of the running time of the proposed algorithm in order to

each this optimality gap. These results show that the proposed

lgorithm outperforms CPLEX with respect to both optimality gap

nd running time. 

. Conclusion 

In this paper, we propose a group subproblem approach for

isk-averse mixed-integer multi-stage stochastic problems with a

ynamic risk measure defined by mean-CVaR. To the best of our

nowledge, this is the first study where group subproblem ap-

roach is applied to a risk-averse problem with an objective of a

ynamic risk measure. We show that infinitely many lower bounds

n the optimal value of the problem can be obtained by using dif-

erent convolution of mean-CVaR risk measures. An upper bound

s obtained through the use of optimal solutions of group subprob-

ems, as well. The results are tested by a computational study on

 multi-stage lot sizing problem. The effect of partition strategies

nd lower bound choices on the optimality gap of the proposed al-

orithm is investigated. Possible computational enhancements such

s refinement chains and scenario fixing are also considered. 

It is revealed that, on the average, the optimality gap of the pro-

osed algorithm is 1.13% stronger than the optimality gap of CPLEX

ithin the same running time. By solving the original problem

ith CPLEX, the optimality gaps of our algorithm can be achieved

ith additional running time more than a factor of five. 

In the lower bounding phase of the proposed algorithm, the

roup subproblems can be assigned to different threads of a com-

uter and solved in parallel. Similarly, parallel computing can be

sed to solve the restricted problems in the upper bounding phase.

he parallel implementation of the proposed algorithm may de-

rease the running time significantly, especially for large J values.

herefore, it is considered as a future research direction. Another

ossible extension of the study is to find better scenario partition-

ng strategies. Finding optimal grouping strategy is still an interest-

ng research direction. 
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ppendix A 

Construction of set ˜ A for the example in Fig. 2 . 

˜ 

 G 

= 

{ 

(μa , μb ) ∈ R 

2 : 

 − ε1 
1 ≤ μa ≤ 1 + ε1 

2 , 

 − ε1 
1 ≤ μb ≤ 1 + ε1 

2 , 

(p 1 + p 2 + p 3 ) μa + (p 4 + p 5 ) μb = 1 

} 

. 

˜ 

 F | G 

= 

{ 

(μ1 , μ2 , μ3 , μ4 , μ5 ) ∈ R 

5 : 

 − ε2 
1 ≤ μ1 ≤ 1 + ε2 

2 , 

 − ε2 
1 ≤ μ2 ≤ 1 + ε2 

2 , 

 − ε2 
1 ≤ μ3 ≤ 1 + ε2 

2 , 

 − ε2 
1 ≤ μ4 ≤ 1 + ε2 

2 , 

 − ε2 
1 ≤ μ5 ≤ 1 + ε2 

2 , 

p 1 
p 1 + p 2 + p 3 

μ1 + 

p 2 
p 1 + p 2 + p 3 

μ2 + 

p 3 
p 1 + p 2 + p 3 

μ3 = 1 , 

p 4 
p 4 + p 5 

μ4 + 

p 5 
p 4 + p 5 

μ5 = 1 

} 

. 

˜ 

 = 

˜ A F | G 

◦ ˜ A G 

= 

{ 

(μa μ1 , μa μ2 , μa μ3 , μb μ4 , μb μ5 ) ∈ R 

5 : 

(μa , μb ) ∈ 

˜ A G 

, (μ1 , μ2 , μ3 , μ4 , μ5 ) ∈ 

˜ A F | G 

} 

. 
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