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Risk measures for multivariate financial positions are studied in a utility-based frame-
work. Under a certain incomplete preference relation, shortfall and divergence risk mea-
sures are defined as the optimal values of specific set minimization problems. The dual
relationship between these two classes of multivariate risk measures is constructed via a
recent Lagrange duality for set optimization. In particular, it is shown that a shortfall
risk measure can be written as an intersection over a family of divergence risk mea-
sures indexed by a scalarization parameter. Examples include set-valued versions of the
entropic risk measure and the average value at risk. As a second step, the minimization
of these risk measures subject to trading opportunities is studied in a general convex
market in discrete time. The optimal value of the minimization problem, called the mar-
ket risk measure, is also a set-valued risk measure. A dual representation for the market
risk measure that decomposes the effects of the original risk measure and the frictions
of the market is proved.
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1. Introduction

Risk measures for random vectors have recently gained interest in the financial
mathematics community. Introduced in the pioneering work Jouini et al. (2004),
set-valued risk measures have been used to quantify financial risk in markets with
frictions such as transaction costs or illiquidity effects. These risk measures are
functions which assign to an m-dimensional random vector X a set R(X) ⊆ Rm

whose elements can be used as risk compensating portfolios. Here, X denotes a
financial position in m assets whose components are in terms of physical units
rather than values with respect to a specific numéraire. More recently, set-valued
risk measures have also been used to quantify systemic risk in financial networks;
see Feinstein et al. (2015), Ararat & Rudloff (2016). In this case, m is the num-
ber of financial institutions and the components of X denote the corresponding
magnitudes of a random shock (equity/loss) for these institutions.

The coherent set-valued risk measures in Jouini et al. (2004) have been extended
to the convex case in Hamel & Heyde (2010) and to random market models in
Hamel et al. (2011). These extensions were possible by an application of the duality
theory and, in particular, the Moreau–Fenchel biconjugation theorem for set-valued
functions developed in Hamel (2009). Extensions to the dynamic framework have
been studied in Feinstein & Rudloff (2013, 2015a, 2015b), Ben Tahar & Lepinette
(2014) and to set-valued portfolio arguments in Cascos & Molchanov (2013). Scalar
risk measures for multivariate random variables, which can be interpreted as scalar-
izations of set-valued risk measures (see Feinstein & Rudloff 2015b, Sec. 2.4), have
been studied in Jouini & Kallal (1995), Burgert & Rüschendorf (2006), Weber et al.
(2013) (financial risk) as well as in Chen et al. (2013), Biagini et al. (2015) (systemic
risk).

Set-valued generalizations of some well-known scalar coherent risk measures
have already been studied such as the set-valued version of the average value at
risk in Hamel et al. (2013), Feinstein & Rudloff (2015a), Hamel et al. (2014), or
the set of superhedging portfolios in markets with transaction costs in Hamel et al.
(2011), Löhne & Rudloff (2013), Feinstein & Rudloff (2013). Other examples of
coherent risk measures for multivariate claims can be found in Ben Tahar (2006),
Cascos & Molchanov (2013). To the best of our knowledge, apart from superhedging
with certain trading constraints in markets with frictions, which leads to set-valued
convex risk measures (see Hamel et al. 2014), no other examples have been studied
in the convex case yet.

This paper introduces utility-based convex risk measures for random vectors.
The basic assumption is that the investor has a complete risk preference towards
each asset which has a numerical representation in terms of a von Neumann–
Morgenstern loss (utility) function. However, her risk preference towards multi-
variate positions is incomplete and it can be represented in terms of the vector
of individual loss functions. Based on this incomplete preference, the shortfall risk
of the random vector X is defined as the collection of all portfolios z ∈ Rm for
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which X + z is preferred to a benchmark portfolio z0 ∈ Rm. As an example, when
the individual loss functions are exponential, we obtain set-valued versions of the
well-known entropic risk measure (see Föllmer & Schied 2002, 2011).

We formulate the computation of the shortfall risk measure as a constrained
set optimization problem and apply recent tools from the set optimization liter-
ature to obtain a dual formulation. In particular, using the Lagrange duality in
Hamel & Löhne (2014), another type of convex risk measures, called divergence risk
measures, are obtained in the dual problem. A divergence risk measure is defined
based on the trade-off between consuming a deterministic amount z ∈ Rm of the
position today and realizing the expected loss of the remaining amount X − z at
terminal time. The decision making problem is bi-objective: The investor wants to
choose a portfolio z so as to maximize z and minimize the (vector-valued) expected
loss due to X−z at the same time, both of which are understood in the sense of set
optimization (see Sec. 3.3). The two objectives are combined by means of a relative
weight (scalarization) parameter r ∈ Rm

+ and the divergence risk of X is defined
as an unconstrained set optimization problem over the choices of the deterministic
consumption z. As special cases, we obtain the definition of the set-valued average
value at risk given in Hamel et al. (2013) as well as a convex version of it.

One of the main results of this paper is that a shortfall risk measure can be
written as the intersection of divergence risk measures indexed by their relative
weights and, in general, the intersection is not attained by a unique relative weight.
Hence, the shortfall risk measure is a (much) more conservative risk measure than
a divergence risk measure. While the shortfall risk measure is more difficult to
compute as a constrained optimization problem, we show that the computation of
a divergence risk measure can be reduced to the computation of scalar divergence
risk measures (optimized certainty equivalents in Ben Tal & Teboulle 1986, 2007).
On the flip side, and in contrast to shortfall risk measures, to be able to use a
divergence risk measure, the decision maker has to specify the relative weight of her
loss with respect to her consumption for each asset.

While shortfall and divergence risk measures are defined based on the prefer-
ences of the investor, they do not take into account how the market frictions affect
the riskiness of a position. In Sec. 5, we propose a method for incorporating these
frictions in the computation of risk. We generalize the notion of market risk mea-
sure (see Hamel et al. 2013 with the name market-extension) by including trading
constraints modeled by convex random sets, and considering issues of liquidation
into a certain subcollection of the assets. In contrast to Hamel et al. (2013), we
allow for a convex (and not necessarily conical) market model to include temporary
illiquidity effects in which the bid-ask prices depend on the magnitude of the trade,
and thus, are given by the shape of the limit order book; see Astic & Touzi (2007),
Pennanen & Penner (2010), for instance. Letting R be a (market-free) risk measure
such as a shortfall or divergence risk measure, its induced market risk measure is
defined as the minimized value of R over the set of all financial positions that are
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attainable by trading in the market. As the second main result of the paper, we
prove a dual representation theorem for the market risk measure (Theorem 5.1).
In particular, we show that the penalty (Fenchel conjugate) function of the market
risk measure is the sum of the penalty function of the base risk measure R and the
supporting halfspaces of the convex regions of the market.

The rest of this paper is organized as follows. In Sec. 2, we review the scalar the-
ory of shortfall and divergence risk measures. However, we generalize the standard
results in the literature as we allow for extended real-valued loss functions and we
do not impose any growth conditions on the loss functions as in Föllmer & Schied
(2002), Ben Tal & Teboulle (2007). The main part of the paper is Sec. 3, where
set-valued shortfall and divergence risk measures are studied. In Sec. 4, set-valued
entropic risk measures are studied as examples of shortfall risk measures and set-
valued average value at risks are recalled as examples of divergence risk measures.
Market risk measures in a general convex market model with liquidation and trading
constraints are studied in Sec. 5. All proofs are collected in Sec. 6.

2. Scalar Shortfall and Divergence Risk Measures

In this section, we summarize the theory of (utility/loss-based) shortfall and
divergence risk measures for univariate financial positions. Shortfall risk measures
are introduced in Föllmer & Schied (2002). Divergence risk measures are intro-
duced in Ben Tal & Teboulle (1986), and analyzed further in Ben Tal & Teboulle
(2007) with the name optimized certainty equivalents and in Cherny & Kupper
(2007) with the name divergence utilities for their negatives. The dual relation-
ship between shortfall and divergence risk measures is pointed out in Schied (2007)
and Ben Tal & Teboulle (2007). In terms of the assumptions on the underlying loss
function, we generalize the results of these papers by dropping growth conditions;
see Sec. 6.2 for a comparison.

The proofs of the results of this section are given in Sec. 6.1 and most of them
inherit the convex duality arguments in Ben Tal & Teboulle (2007) rather than the
analytic arguments in Föllmer & Schied (2002).

Definition 2.1. A lower semicontinuous, convex function f : R → R∪ {+∞} with
effective domain dom f = {x ∈ R | f(x) < +∞} is said to be a loss function if it
satisfies the following properties:

(1) f is nondecreasing with infx∈R f(x) > −∞.
(2) 0 ∈ dom f .
(3) f is not identically constant on dom f .

Throughout this section, let ℓ : R → R∪{+∞} be a loss function. Definition 2.1
above guarantees that int ℓ(R) ̸= ∅, where int denotes the interior operator. Let
us fix a threshold level x0 ∈ int ℓ(R) for expected loss values. Without loss of
generality, we assume x0 = 0. Based on the loss function ℓ, we define the shortfall
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risk measure on the space L∞ of essentially bounded real-valued random variables
of a probability space (Ω,F , P), where random variables are identified up to almost
sure equality.

Definition 2.2. The function ρℓ : L∞ → R ∪ {±∞} defined by

ρℓ(X) = inf{s ∈ R |E[ℓ(−X − s)] ≤ 0} (2.1)

is called the shortfall risk measure.

Proposition 2.1. The function ρℓ is a (weak∗-)lower semicontinuous convex risk
measure in the sense of Föllmer & Schied (2011, Definitions 4.1 and 4.4). In
particular, ρℓ takes values in R.

Remark 2.1. Since infx∈R ℓ(x) > −∞, it holds E[ℓ(−X − s)] > −∞ for every
X ∈ L∞, s ∈ R. Hence, the expectation in (2.1) is always well-defined. Moreover,
the assumption x0 = 0 ∈ int ℓ(R) is essential for the finiteness of ρℓ(X) as shown in
the proof of Proposition 2.1; see Sec. 6.1.

According to Definition 2.2, the number, ρℓ(X) can be seen as the optimal value
of a convex minimization problem. The next proposition computes ρℓ(X) as the
optimal value of the corresponding Lagrangian dual problem. Its proof in Sec. 6.1
is an easy application of strong duality.

Proposition 2.2. For every X ∈ L∞,

ρℓ(X) = sup
λ∈R+

δℓ,λ(X), (2.2)

where

δℓ,λ(X) := inf
s∈R:E[ℓ(−X−s)]<+∞

(s + λE[ℓ(−X − s)])

=

{
infs∈R(s + λE[ℓ(−X − s)]), if λ > 0,

−ess inf X − sup dom ℓ, if λ = 0.
(2.3)

Note that δℓ,λ is a monotone and translative function on L∞ for each λ ∈
R+. Our aim is to determine the values of λ for which this function is a lower
semicontinuous convex risk measure with values in R. To that end, we define the
Legendre–Fenchel conjugate g : R → R ∪ {±∞} of the loss function by

g(y) := ℓ∗(y) = sup
x∈R

(xy − ℓ(x)). (2.4)

In the following, we will adopt the convention (+∞) · 0 = 0 as usual in con-
vex analysis, see Rockafellar & Wets (1998). We will also use 1

+∞ = 0 as well as
1
0 = +∞.

Definition 2.3. A proper, convex, lower semicontinuous function ϕ : R →
R ∪ {+∞} with effective domain dom ϕ = {y ∈ R |ϕ(y) < +∞} is said to be a
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divergence function if it satisfies the following properties:

(1) 0 ∈ dom ϕ ⊆ R+.
(2) ϕ attains its infimum over R.
(3) ϕ is not of the form y *→ +∞ · 1{y<0} + (ay + b) · 1{y≥0} with a ∈ R+ ∪ {+∞}

and b ∈ R.

Proposition 2.3. Legendre–Fenchel conjugation furnishes a bijection between loss
and divergence functions.

Remark 2.2. Let λ > 0. If f is a loss function, then λf is also a loss function.
If ϕ is a divergence function, then the function y *→ ϕλ(y) := λϕ( y

λ) on R is also
a divergence function. The functions f and ϕ are conjugates of each other if and
only if λf and ϕλ are. In this case, we also define the recession function ϕ0 : R →
R ∪ {+∞} of ϕ by

ϕ0(y) := sup
λ>0

(ϕλ(y) − λϕ(0)) = lim
λ↓0

ϕλ(y) =

{
y sup dom f, if y ≥ 0,

+∞, if y < 0,
(2.5)

for each y ∈ R. Here, λ *→ ϕλ(y) − λg(0) is a nonincreasing convex function on
R++ for each y ∈ R. Moreover, the second equality holds thanks to the assumption
0 ∈ dom ϕ, see Rockafellar (1970, Theorem 8.5, Corollary 8.5.2). The last equality
is due to the fact that the support function of the effective domain of the proper
convex function f coincides with the recession function ϕ0 of its conjugate, see
Rockafellar (1970, Theorem 13.3).

We next recall the notion of divergence. To that end, let M(P) be the
set of all probability measures on (Ω,F) that are absolutely continuous with
respect to P.

Definition 2.4. Let ϕ be a divergence function with the corresponding loss func-
tion f . For λ ∈ R+ and Q ∈ M(P), the quantity

Iϕ,λ(Q |P) := E
[
ϕλ

(
dQ
dP

)]
=

⎧
⎪⎪⎨

⎪⎪⎩

λE
[
ϕ

(
1
λ

dQ
dP

)]
if λ > 0,

supdom f if λ = 0

(2.6)

is called the (ϕ, λ)-divergence of Q with respect to P.

Remark 2.3. Iϕ,1 is the usual ϕ-divergence in the sense of Csiszár (1967). It is
a notion of “distance” between probability measures and includes the well-known
relative entropy as a special case, see (4.12).

Note that g = ℓ∗ is a divergence function, and dom g is an interval of the
form [0, β) or [0, β] for some β ∈ R++ ∪ {+∞}. Here, we have dom g ̸= {0} since
otherwise g would be of the form y *→ +∞ · 1{y<0} + (ay + b) · 1{y≥0} for a = +∞
and b = g(0). For each λ > 0, y *→ gλ(y) := λg( y

λ) on R is a divergence function
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with dom gλ = [0, λβ) or dom gλ = [0, λβ] by Remark 2.2, and the corresponding
(g, λ)-divergence is defined according to Definition 2.4. In the case λ = 0, y *→
g0(y) = +∞ · 1{y<0} + (sup dom ℓ)y · 1{y≥0} on R is not a divergence function.
Moreover, we have dom g0 = {0} if dom ℓ = R, and dom g0 = R+ if dom ℓ ̸= R.

Theorem 2.1. For every λ ∈ R+ and X ∈ L∞,

δℓ,λ(X) = sup
Q∈M(P)

(EQ[−X ] − Ig,λ(Q |P)). (2.7)

Moreover, δℓ,λ is a lower semicontinuous convex risk measure if 1 ∈ dom gλ, and
δℓ,λ(X) = −∞ for every X ∈ L∞ otherwise. Hence,

ρℓ(X) = sup
λ∈R+:1∈dom gλ

δℓ,λ(X). (2.8)

In particular, if dom ℓ = R, then

ρℓ(X) = sup
λ>0: 1

λ∈dom g

δℓ,λ(X). (2.9)

Definition 2.5. For λ ∈ R+ with 1 ∈ dom gλ, the function δℓ,λ : L∞ → R is called
the divergence risk measure with weight λ.

In (2.7), note that a divergence risk measure is represented in terms of proba-
bility measures. More generally, by Föllmer & Schied (2011, Theorem 4.33), every
lower semicontinuous convex risk measure ρ : L∞ → R has a dual representation
in the sense that it is characterized by its so-called penalty function αρ : M(P) →
R ∪ {+∞} by the following relationships:

ρ(X) = sup
Q∈M(P)

(EQ[−X ] − αρ(Q)), αρ(Q) = sup
X∈L∞

(EQ[−X ] − ρ(X)). (2.10)

In Proposition 2.4, we check that (2.7) is indeed the dual representation of the
divergence risk measure δℓ,λ. We also compute the penalty function of the shortfall
risk measure in terms of the penalty functions of divergence risk measures.

Proposition 2.4. Let λ ∈ R+ with 1 ∈ dom gλ. For each Q ∈ M(P), it holds

αδℓ,λ(Q) = Ig,λ(Q |P), (2.11)

and moreover,

αρℓ(Q) = inf
λ∈R+

Ig,λ(Q |P) = inf
λ∈R+:1∈dom gλ

αδℓ,λ(Q). (2.12)

3. Set-Valued Shortfall and Divergence Risk Measures

In this section, we introduce utility-based shortfall and divergence risk measures
for multivariate financial positions, the central objects of this paper. The proofs are
presented in Sec. 6.4.

Let us introduce some notation that will be used frequently throughout the
rest of the paper. Let m ≥ 1 be an integer and | · | an arbitrary fixed norm on Rm.
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By Rm
+ and Rm

++, we denote the set of elements of Rm with nonnegative and strictly
positive components, respectively.

Throughout, we consider a probability space (Ω,F , P). We denote by L0
m :=

L0
m(Ω,F , P) the linear space of random variables taking values in Rm, where two

elements are identified if they are equal P-almost surely; and we define

L1
m = {X ∈ L0

m |E[|X |] < +∞},

L∞
m = {X ∈ L0

m | ess sup |X | < +∞},

Lp
m,+ = {X ∈ Lp

m |P{X ∈ Rm
+} = 1}, p ∈ {1, +∞}.

(3.1)

Componentwise ordering of vectors is denoted by ≤, that is, for x, z ∈ Rm, it
holds x ≤ z if and only if xi ≤ zi for each i ∈ {1, . . . , m}. The Hadamard product
of x, z ∈ Rm is defined by x · z := (x1z1, . . . , xmzm)T. We denote by P(Rm) the
power set of Rm, that is, the set of all subsets of Rm including the empty set ∅.
On P(Rm), the Minkowski addition and multiplication with scalars are defined by
A + B = {a + b | a ∈ A, b ∈ B} and sA = {sa | a ∈ A} for A, B ⊆ Rm and s ∈ R
with the conventions A+∅ = ∅+B = ∅+∅ = ∅, s∅ = ∅ (s ̸= 0), and 0∅ = {0} ⊆ Rm.
We also use the shorthand notations A − B = A + (−1)B and z + A = {z} + A.
For x ∈ Rm and a nonempty set A ⊆ Rm, we set x · A := {x · a | a ∈ A}. These
operations can be defined on the power set P(Lp

m) of Lp
m, p ∈ {0, 1,∞}, in a similar

way. (In)equalities between random variables are understood in the P-almost sure
sense.

3.1. The incomplete preference relation

Let m ≥ 1 be an integer denoting the number of assets in a financial market. The
linear space Rm is called the space of eligible portfolios. This means that every
z ∈ Rm is a potential deposit to be used at initial time in order to compensate for
the risk of a financial position.

We model a financial position as an element X ∈ L∞
m , where Xi(ω) represents

the number of physical units in the ith asset for i ∈ {1, . . . , m} when the state of
the world ω ∈ Ω occurs. We assume that the investor has a (possibly) incomplete
preference relation for multivariate financial positions in L∞

m . Its numerical repre-
sentation is in terms of the individual loss functions for the assets and a comparison
rule for the vectors of expected losses:

(1) Loss functions for assets: We assume that the investor has a complete pref-
erence relation ≽i on L∞ corresponding to each asset i ∈ {1, . . . , m} and this
preference relation has a von Neumann–Morgenstern representation given by
a (scalar) loss function ℓi : R → R ∪ {+∞} (see Definition 2.1). That is, for
Xi, Zi ∈ L∞,

Xi ≽i Zi ⇔ E[ℓi(−Xi)] ≤ E[ℓi(−Zi)]. (3.2)
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(2) Vector loss function: Let ℓ : Rm → Rm ∪ {+∞} be the vector loss function
defined by

ℓ(x) =

⎧
⎨

⎩
(ℓ1(x1), . . . , ℓm(xm))T, if x ∈×m

i=1 dom ℓi,

+∞, else,
(3.3)

for x ∈ Rm. Similarly, the expected loss vector corresponding to a random
position X ∈ L∞

m is E[ℓ(−X)] := (E[ℓ1(−X1)], . . . , E[ℓm(−Xm)])T if P{−Xi ∈
dom ℓi} = 1 for each i ∈ {1, . . . , m}, and E[ℓ(−X)] := +∞ otherwise.

(3) Comparison rule: Let C ⊆ Rm be a closed convex set such that C + Rm
+ ⊆ C

and 0 ∈ Rm is a boundary point of C. Expected loss vectors will be compared
according to the relation ≤C on Rm defined by

x ≤C z ⇔ z ∈ x + C. (3.4)

As Rm
+ ⊆ C, the relation ≤C provides a definition for a “smaller” expected loss

vector by generalizing the componentwise comparison of expected loss vectors
with ≤Rm

+
. Some examples of the set C are discussed in Example 3.1 below.

Finally, the incomplete preference relation ≽ of the investor on L∞
m is assumed to

have the following numerical representation: For X, Z ∈ L∞
m ,

X ≽ Z ⇔ E[ℓ(−X)] ≤C E[ℓ(−Z)]. (3.5)

Remark 3.1. In (3.4) and (3.5), the element +∞ is added to Rm as a top element
with respect to ≤C , that is, z ≤C +∞ for every z ∈ Rm ∪ {+∞}. The addition
on Rm is extended to Rm ∪ {+∞} by z + (+∞) = (+∞) + z = +∞ for every
z ∈ Rm ∪ {+∞}.

Remark 3.2. Note that ≤C (and hence ≽) is reflexive (since 0 ∈ C), transitive if
C + C ⊆ C and antisymmetric if C ∩ (−C) = {0} (C is “pointed.”). In particular,
if C is a pointed convex cone, then ≤C is a partial order which is compatible with
the linear structure on Rm.

Remark 3.3. It is easy to check that ≽ respects the complete preferences ≽1

, . . . ,≽m on individual assets described in (1). In other words, for every i ∈
{1, . . . , m}, X ∈ L∞

m , and Zi ∈ L∞,

Xi ≽i Zi ⇒ X ≽ (X1, . . . , Xi−1, Zi, Xi+1, . . . , Xm). (3.6)

This is thanks to Rm
+ ⊆ C.

Remark 3.4. The choice of the componentwise structure of the vector loss function
in (3.3) is justified by the following reasons.

(1) For each asset i, one could consider a more general loss function ℓi that depends
on the vector x ∈ Rm but not only on the component xi. However, the intercon-
nectedness of the components of a portfolio x = X(ω) at time t will be modeled
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in Sec. 5 by the prevailing exchange rates Ct(ω) and trading constraints Dt(ω),
and thus, will be included in the market risk measure.

(2) One could also consider vector loss functions ℓ : Rd → Rm with d > m. The
dimension reduction, which is motivated by allowing only m of the d assets to be
used as eligible assets for risk compensation, is modeled by forcing liquidation
into L∞

m in Definition 5.2 of the market risk measure. This includes the case
where a large number of assets d are denoted in a few (m < d) currencies, the
currencies are used as eligible assets, and the loss functions are just defined for
each of the m currencies (but not for each asset individually).

(3) On the other hand, the use of a vector loss function in the present paper is
already more general than working under the assumption that there is a com-
plete risk preference for multivariate positions (as in Burgert & Rüschendorf
2006) which even has a von Neumann–Morgenstern representation given by
a real-valued loss function on Rm as in Campi & Owen (2011) (see Exam-
ple 3.1(2)).

Example 3.1. We consider the following examples of comparison rules for different
choices of C.

(1) If C = Rm
+ , then ≤C=≤ corresponds to the componentwise ordering of the

expected loss vectors. In this case, we simply have ≽=≽1 × · · ·× ≽m.
(2) If C is a halfspace of the form C = {x ∈ Rm |wTx ≥ 0} for some w ∈ Rm

+\{0},
then

X ≽ Z ⇔ E[L(−X)] ≤ E[L(−Z)], (3.7)

where x *→ L(x) :=
∑m

i=1 wiℓi(xi) is a multivariate real-valued loss function as
in Campi & Owen (2011, Example 2.10). In this case, ≽ is a complete preference
relation.

(3) If C is a polyhedral convex set of the form C = {x ∈ Rm |Ax ≥ b} for some
A ∈ Rn×m

+ , b ∈ Rn, n ≥ 1 (with bj = 0 for some j ∈ {1, . . . , n}), then

X ≽ Z ⇔ E[A(ℓ(−X) − ℓ(−Z))] ≤Rn
+

b (3.8)

which is a system of linear inequalities.

3.2. The shortfall risk measure and its set optimization
formulation

Based on the incomplete preference relation ≽ described in Sec. 3.1, we define the
shortfall risk measure next. To that end, for each i ∈ {1, . . . , m}, let z0

i ∈ R such
that x0

i := ℓi(−z0
i ) ∈ int ℓi(R). The point z0 = (z0

1 , . . . , z
0
m)T will be used as a

deterministic benchmark for multivariate random positions and x0 = (x0
1, . . . , x

0
m)T

is the corresponding threshold value for expected losses. Throughout, we assume
that x0 = 0. This is without loss of generality as otherwise one can shift the loss
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function and work with x *→ ℓ̃(x) = ℓ(x) − x0. Recalling (3.4) and (3.5), note that

X ≽ z0 ⇔ E[ℓ(−X)] ≤C 0 ⇔ 0 ∈ E[ℓ(−X)] + C ⇔ E[ℓ(−X)] ∈ −C. (3.9)

The shortfall risk of a multivariate position X ∈ L∞
m is defined as the set of all

deterministic portfolio vectors z ∈ Rm that make X + z preferable to the bench-
mark z0.

Definition 3.1. The function Rℓ : L∞
m → P(Rm) defined by

Rℓ(X) = {z ∈ Rm |X + z ≽ z0} = {z ∈ Rm |E[ℓ(−X − z)] ∈ −C} (3.10)

is called the shortfall risk measure (on L∞
m with comparison rule C).

In other words, the shortfall risk of X ∈ L∞
m is the set of all vectors z ∈ Rm for

which X + z has a “small enough” expected loss vector.

Proposition 3.1. The shortfall risk measure Rℓ satisfies the following properties:

(1) Monotonicity : Z ≥ X implies Rℓ(Z) ⊇ Rℓ(X) for every X, Z ∈ L∞
m .

(2) Translativity : Rℓ(X + z) = Rℓ(X) − z for every X ∈ L∞
m , z ∈ Rm.

(3) Finiteness at 0: Rℓ(0) /∈ {∅, Rm}.
(4) Convexity : Rℓ(λX +(1−λ)Z) ⊇ λRℓ(X)+(1−λ)Rℓ(Z) for every X, Z ∈ L∞

m ,
λ ∈ (0, 1).

(5) Weak∗-closedness: The set graphRℓ := {(X, z) ∈ L∞
m × Rm | z ∈ Rℓ(X)}

is closed with respect to the product of the weak∗ topology σ(L∞
m , L1

m) and the
usual topology on Rm.

Remark 3.5. The properties in Proposition 3.1 make Rℓ a sensible measure of
risk for multivariate positions in the sense that every portfolio z ∈ Rℓ(X) can com-
pensate for the risk of X ∈ L∞

m . Let us comment on the financial interpretations
of these properties. Monotonicity ensures that a larger position (with respect to
componentwise ordering) is less risky, that is, it has a larger set of risk compen-
sating portfolios. Translativity is the requirement that a deterministic increment
to a position reduces each of its risk compensating portfolios by the same amount.
Finiteness at 0 guarantees that the risk of the zero position can be compensated
by at least one but not all eligible portfolios. With the former two properties, it
even guarantees finiteness everywhere in the sense that Rℓ(X) /∈ {∅, Rm} for every
X ∈ L∞

m . Convexity can be interpreted as the reduction of risk by diversification.
Finally, weak∗-closedness is the set-valued version of the weak∗-lower semicontinuity
property (as in Föllmer & Schied 2011) for scalar risk measures.

Set-valued functions satisfying the properties in Proposition 3.1 are called (set-
valued) (weak∗-) closed convex risk measures and are studied in Hamel & Heyde
(2010), Hamel et al. (2011). An immediate consequence of these properties is that
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the values of a closed convex risk measure belong to the collection

Gm := G(Rm, Rm
+ ) := {A ⊆ Rm |A = cl co(A + Rm

+ )}, (3.11)

where cl and co denote the closure and convex hull operators, respectively. It turns
out that Gm is a convenient image spacea to study set optimization, see Hamel
(2009). In particular, it is an order complete lattice when equipped with the usual
superset relation ⊇. We have the following infimum and supremum formulae for
every nonempty subset A of Gm:

inf
(Gm,⊇)

A = cl co
⋃

A∈A
A, sup

(Gm,⊇)
A =

⋂

A∈A
A. (3.12)

The infimum formula is motivated by the fact that the union of closed (convex) sets
is not necessarily closed (convex). We also use the conventions inf(Gm,⊇) ∅ = ∅ and
sup(Gm,⊇) ∅ = Rm.

Note that C ∈ Gm with 0 being a boundary point of it. If C = Rm
+ , then the

shortfall risk measure Rℓ becomes a trivial generalization of the scalar shortfall risk
measure (see Definition 2.2) in the sense that

Rℓ(X) = (ρℓ1(X1), . . . , ρℓm(Xm))T + Rm
+ , (3.13)

for every X ∈ L∞
m . In general, such an explicit representation of Rℓ may not exist.

However, given X ∈ L∞
m , one may write

Rℓ(X) = inf
(Gm,⊇)

{z + Rm
+ | 0 ∈ E[ℓ(−X − z)] + C, z ∈ Rm}, (3.14)

that is, Rℓ(X) is the optimal value of the set minimization problem

minimize Φ(z) subject to 0 ∈ Ψ(z), z ∈ Rm, (3.15)

where Φ : Rm → Gm and Ψ : Rm → Gm are the (set-valued) objective function and
constraint function, respectively, defined by

Φ(z) = z + Rm
+ , Ψ(z) = E[ℓ(−X − z)] + C. (3.16)

Here, it is understood that Ψ(z) = ∅ whenever E[ℓ(−X − z)] = +∞.
A Lagrange duality theory for problems of the form (3.15) is developed in

Hamel & Löhne (2014). Using this theory, we will compute the Lagrangian dual
problem for Rℓ(X). It will turn out that, after a change of variables, the dual objec-
tive function gives rise to another class of set-valued convex risk measures, called
divergence risk measures. We introduce these risk measures separately in Sec. 3.3
first, and the duality results are deferred to Sec. 3.4.

aThe phrase “image space” for a set-valued function refers to the set (subset of a power set) where
the function maps into. This set is not a linear space in general. In particular, Gm is a conlinear
space in the sense of Hamel (2009). It is closed under the closure of the Minkowski addition, and
it is closed under multiplication by nonnegative scalars (with the convention 0∅ = Rm

+ ).
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3.3. Divergence risk measures

In this section, we introduce divergence risk measures as decision-making problems
of the investor about the level of consumption of a multivariate random position.
The relationship between shortfall and divergence risk measures will be formulated
in Sec. 3.4.

Suppose that the investor with random portfolio X ∈ L∞
m wants to choose a

deterministic portfolio z ∈ Rm to be received at initial time. Hence, she will hold
X − z at terminal time. She has two competing objectives:

(1) Maximizing consumption: The investor wants to maximize her immediate
consumption z, or equivalently, minimize −z. The optimization is simply with
respect to the componentwise ordering of portfolio vectors.

(2) Minimizing loss: The investor wants to minimize the expected loss E[ℓ(−X +
z)] of the remaining random position X − z. In this case, the expected loss
vectors are compared with respect to the set C as in (3) of Sec. 3.1.

These two objectives can be summarized as the following set minimization problem
where the objective function maps into G2m

minimize

(
−z + Rm

+

E[ℓ(−X + z)] + C

)
subject to z ∈ Rm. (3.17)

Here and in Definition 3.2, the value of the objective function is understood to be
∅ if E[ℓ(−X − z)] /∈ Rm. On the other hand, the investor combines these com-
peting objectives by means of a relative weight vector r ∈ Rm

+ : For each asset
i ∈ {1, . . . , m}, ri is the relative weight of the expected loss E[ℓi(−Xi + zi)] with
respect to −zi. As a result, she solves the “partially scalarized” problem

minimize −z + Rm
+ + r · (E[ℓ(−X + z)] + C) subject to z ∈ Rm. (3.18)

The optimal value of this problem is defined as the divergence risk of X .

Definition 3.2. Let r ∈ Rm
+ . The function Dℓ,r : L∞

m → Gm defined by

Dℓ,r(X) = inf
(Gm,⊇)

{−z + r · (E[ℓ(−X + z)] + C) | z ∈ Rm}, (3.19)

is called the divergence risk measure with relative weight vector r.

Apparently, for some values of r ∈ Rm
+ , the optimization problem is unbounded

and one has Dℓ,r(X) = Rm for every X ∈ L∞
m . In Proposition 3.2, we will charac-

terize the set of all values of r for which Dℓ,r has finite values and indeed is a closed
convex risk measure, that is, it satisfies the five properties in Proposition 3.1.

Remark 3.6. In the one-dimensional (1D) case m = 1, one has Dℓ,r(X) =
δℓ,r(X) + R+, where δℓ,r(X) = infz∈R:E[ℓ(−X+z)]<+∞(−z + rE[ℓ(−X + z)])
is the divergence risk measure as in Definition 2.5. In the literature (see
Ben Tal & Teboulle 1986, 2007), only the case r = 1 is considered in the definition
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of divergence risk measure (or optimized certainty equivalent for −δℓ,1). In
Ben Tal & Teboulle (2007), the general case r > 0 is simply treated with a scaled
loss function rℓ since δℓ,r = δrℓ,1. (This simplification is not possible in the multi-
dimensional case m > 1 as r ∈ Rm

+ is multiplied by the set E[ℓ(−X + z)] + C but
not only the vector E[ℓ(−X + z)].)

However, in our treatment, δℓ,r is interpreted as a weighted sum scalarization of
a bi-objective optimization problem and this problem is, in turn, characterized by
the whole family (δℓ,r)r∈R+ of divergence risk measures. This interpretation is an
original contribution of the present paper to the best of our knowledge.

3.4. The Lagrange dual formulation of the shortfall risk measure

This section formulates one of the main results of the paper, Theorem 3.1. The
shortfall risk measure can be written as the intersection, that is, the set-valued
supremum (see (3.12)), of divergence risk measures indexed by their relative weight
vectors.

The result is derived in Sec. 6.4 using the recent Lagrange duality in
Hamel & Löhne (2014) applied to the shortfall risk measure as the primal problem.
The Lagrange duality is reviewed in Sec. 6.3. The result of its direct application
to the shortfall risk measure is stated in Lemma 6.1, followed by a change of vari-
ables provided in Lemma 6.2. This additional latter step is essential in obtaining
divergence risk measures in the (reformulated) dual problem.

Recall that the conjugate function of ℓi is denoted by gi, which is a divergence
function in the sense of Definition 2.3. The vector divergence function g : Rm →
Rm ∪ {+∞} is defined by

g(y) =

⎧
⎨

⎩
(g1(y1), . . . , gm(ym))T, if y ∈ dom g :=×m

i=1 dom gi,

+∞, else.
(3.20)

In view of Remark 2.2, given r ∈ Rm
+ , we define

gr(y) = ((g1)r1(y1), . . . , (gm)rm(ym))T (3.21)

for each y ∈ Rm and set dom gr = ×m

i=1 dom(gi)ri . Moreover, for r ∈ Rm
++, we

write 1
r := ( 1

r1
, . . . , 1

rm
)T.

Theorem 3.1. For every X ∈ L∞
m ,

Rℓ(X) = sup
(Gm,⊇)

{Dℓ,r(X) | r ∈ Rm
+ , 1 ∈ dom gr} =

⋂

r∈Rm
+ :1∈dom gr

Dℓ,r(X). (3.22)

In particular, if dom ℓ :=×m

i=1 dom ℓi = Rm, then

Rℓ(X) = sup
(Gm,⊇)

{
Dℓ,r(X) | r ∈ Rm

++,
1
r
∈ dom g

}
=

⋂

r∈Rm
++: 1r ∈dom g

Dℓ,r(X).

(3.23)
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Remark 3.7. Theorem 3.1 shows that the shortfall risk measure can be computed
as a set-valued supremum over divergence risk measures. However, in general, there
is no single r ∈ Rm

+ with 1 ∈ dom gr which yields this supremum, that is, the
supremum is not attained at a single argument. Instead, one could look for a set
Γ ⊆ Rm

+ with 1 ∈ dom gr for every r ∈ Γ that satisfies the following two conditions:
(3.22) holds with the intersection running through all r ∈ Γ, and each Dℓ,r(X)
with r ∈ Γ is a maximal element of the set {Dℓ,r(X) | r ∈ Rm

+ , 1 ∈ dom gr} with
respect to ⊇. This corresponds to the solution concept for set optimization problems
introduced in Heyde & Löhne (2011) (see also Hamel & Löhne 2014, Definition 3.3)
and will be discussed for the entropic risk measure in Sec. 4.1 together with the
precise definition of a maximal element.

For every r ∈ Rm
+ , define a function δℓ,r : L∞

m → Rm ∪ {−∞} by

δℓ,r(X) = (δℓ1,r1(X1), . . . , δℓm,rm(Xm))T (3.24)

whenever the right-hand side is in Rm and δℓ,r(X) = −∞ otherwise. Recall that
δℓi,ri is given by

δℓi,ri(Xi) = inf
zi∈R

(zi + riE[ℓi(−Xi − zi)]). (3.25)

If ri > 0, and we have δℓi,0(Xi) = −ess inf Xi − sup dom ℓi; see (2.3). If 1 ∈
dom(gi)ri , then δℓi,ri is the scalar (ℓi, ri)-divergence risk measure according to
Definition 2.5.

As a byproduct of Theorem 3.1, we show that a divergence risk measure has a
much simpler form in terms of scalar divergence risk measures.

Proposition 3.2. Let r ∈ Rm
+ .

(1) If 1 ∈ dom gr, then Dℓ,r is a closed convex risk measure with the representation

Dℓ,r(X) = δℓ,r(X) + r · C. (3.26)

(2) Otherwise, Dℓ,r(X) = Rm for every X ∈ L∞
m .

In particular, if dom ℓ = Rm, then Dℓ,r is a closed convex risk measure if and only
if r ∈ Rm

++ with 1
r ∈ dom g.

Note that, in the representation in Proposition 3.2, the dependence on X ∈ L∞
m

is only through the vector part δℓ,r(X); however, the choice of the relative weight
vector r still affects the distortion on the set C through r · C.

Remark 3.8. Let us comment on the trade-off between using a shortfall risk mea-
sure and a divergence risk measure. According to the representation in Proposi-
tion 3.2(1), the divergence risk measure with relative weight vector r ∈ Rm

+ (with
1 ∈ dom gr) has the simple structure Dℓ,r(X) = δℓ,r(X) + r · C, where the depen-
dence on X is solely on the vector δℓ,r(X) of scalar divergence risk measures. Hence,
the computation of the divergence risk measure reduces to the computation of m
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scalar risk measures. However, the shortfall risk measure does not possess such a
simple representation as a constrained optimization problem. It is a (much) more
conservative notion of set-valued risk as Rℓ(X) ⊆ Dℓ,r(X). On the other hand, the
divergence risk measure has the additional parameter r. For each asset, the investor
has to specify how many units of her expected loss is comparable with one unit of
the consumption at initial time.

3.5. Dual representations

In this section, we state representations of shortfall and divergence risk measures
in terms of vector probability measures and weight vectors. Such representations of
convex risk measures are called dual representations.

In Hamel & Heyde (2010) and Hamel et al. (2011), it is shown that a closed
convex risk measure is indeed characterized by a halfspace-valued function that
shows up in its dual representation. We recall this result first. To that end, let
Q = (Q1, . . . , Qm)T be an m-dimensional vector probability measure in the sense
that Qi is a probability measure on (Ω,F) for each i ∈ {1, . . . , m}. We define
EQ[X ] = (EQ1 [X1], . . . , EQm [Xm])T for every X ∈ L0

m such that the components
exist in R. We denote by Mm(P) the set of all m-dimensional vector probability
measures on (Ω,F) whose components are absolutely continuous with respect to P.
For Q ∈ Mm(P), we set dQ

dP = (dQ1
dP , . . . , dQm

dP )T, where, for each i ∈ {1, . . . , m}, dQi

dP
denotes the Radon–Nikodym derivative of Qi with respect to P. For w ∈ Rm

+\{0},
we define the halfspace

G(w) := {z ∈ Rm |wTz ≥ 0}. (3.27)

Proposition 3.3 (Hamel et al. 2011, Theorem 4.2). A function R : L∞
m → Gm

is a closed convex risk measure if and only if, for every X ∈ L∞
m ,

R(X) =
⋂

(Q,w)∈Mm(P)×(Rm
+ \{0})

(−αR(Q, w) + EQ[−X ]), (3.28)

where −αR : Mm(P) × (Rm
+\{0}) → Gm is the penalty function of R defined by

−αR(Q, w) = cl
⋃

X∈L∞
m

[R(X) + (EQ[X ] + G(w))], (3.29)

for each (Q, w) ∈ Mm(P) × (Rm
+\{0}).

As in the scalar case, the penalty function of a closed convex risk measure
basically coincides with its Fenchel conjugate. In the set-valued case, the trans-
formation from the set-valued conjugate with dual variables L1

m × (Rm
+ \{0}) to a

penalty function with dual variables in Mm(P) × (Rm
+\{0}) requires some extra

care; this procedure is described in detail in Hamel & Heyde (2010), Hamel et al.
(2011).
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In Propositions 3.4 and 3.5, we present the penalty functions of divergence and
shortfall risk measures, respectively. To that end, we define a divergence for a vector
probability measure.

Definition 3.3. Let r ∈ Rm
+ and Q ∈ Mm(P). For each i ∈ {1, . . . , m}, let

Igi,ri(Qi |P) :=

⎧
⎪⎪⎨

⎪⎪⎩

riE
[
gi

(
1
ri

dQi

dP

)]
, if ri > 0,

sup dom ℓi, if ri = 0.

(3.30)

The element Ig,r(Q |P) ∈ Rm ∪ {+∞} defined by

Ig,r(Q |P) := (Ig1,r1(Q1 |P), . . . , Igm,rm(Qm |P))T (3.31)

if Igi,ri(Q1 |P) ∈ R for each i ∈ {1, . . . , m}, and by Ig,r(Q |P) := +∞ otherwise is
called the vector (g, r)-divergence of Q with respect to P.

Note that Igi,ri(Qi |P) is the (scalar) (gi, ri)-divergence of Qi with respect to P,
see Definition 2.4.

Proposition 3.4. Let r ∈ Rm
+ with 1 ∈ dom gr. The penalty function of the diver-

gence risk measure Dℓ,r is given by

−αDℓ,r (Q, w) = −Ig,r(Q |P) + r · C + G(w) (3.32)

for each (Q, w) ∈ Mm(P) × (Rm
+ \{0}) with the convention −αDℓ,r(Q, w) = Rm if

Ig,r(Q |P) = +∞.

Proposition 3.5. The penalty function of the shortfall risk measure Rℓ is given by

−αRℓ(Q, w) =

{
z ∈ Rm |wTz ≥ sup

r∈Rm
+

(
−wTIg,r(Q |P) + inf

x∈C
wT(r · x)

)}

=
⋂

r∈Rm
+ :1∈dom gr

−αDℓ,r(Q, w), (3.33)

for each (Q, w) ∈ Mm(P) × Rm
++ with the convention −αDℓ,r(Q, w) = Rm if

Ig,r(Q |P) = +∞. In particular, if dom ℓ = Rm, then

−αRℓ(Q, w) =
⋂

r∈Rm
++: 1r ∈dom g

−αDℓ,r(Q, w). (3.34)

4. Examples

4.1. Set-valued entropic risk measures

In this section, we assume that the vector loss function ℓ of Sec. 3 is the vector
exponential loss function with constant risk aversion vector β ∈ Rm

++, that is, for
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each i ∈ {1, . . . , m} and x ∈ R,

ℓi(x) =
eβix − 1

βi
, (4.1)

which satisfies the conditions in Definition 2.1. The corresponding vector divergence
function g is given by

gi(y) =
y

βi
log y − y

βi
+

1
βi

, (4.2)

for each i ∈ {1, . . . , m} and y ∈ R. Here and elsewhere, we make the convention
log y = −∞ for every y ≤ 0.

For convenience, we sometimes use the notation [xi]mi=1 for x = (x1, . . . , xm)T ∈
Rm. Let us also define x−1 := (x−1

1 , . . . , x−1
m )T and log x := (log x1, . . . , log xm)T

for x ∈ Rm
++, and log[A] := {logx |x ∈ A} for A ⊆ Rm

++. We will also use 1 :=
(1, . . . , 1)T as an element of Rm.

Note that int ℓ(dom ℓ) = ℓ(dom ℓ) = ℓ(R) = −β−1 + Rm
++ so that 0 ∈

int ℓ(dom ℓ). Let C ∈ Gm with 0 ∈ Rm being a boundary point of C. We call
the corresponding shortfall risk measure Rent := Rℓ the entropic risk measure. The
next proposition shows that Rent has the simple form of “a vector-valued function
plus a fixed set”, which is, in general, not the case for an arbitrary loss function.
Note that the functional ρent in Proposition 4.1 is the vector of scalar entropic risk
measures.

Proposition 4.1. For every X ∈ L∞
m ,

Rent(X) = ρent(X) + Cent, (4.3)

where

ρent(X) :=
[

1
βi

log E[e−βiXi ]
]m

i=1

,

Cent := −β−1 · log[(1 − β · C) ∩ Rm
++].

(4.4)

Note that the set dom g defined in (3.20) becomes Rm
+ . Since dom ℓ = Rm,

by Proposition 3.2, Dent
r := Dℓ,r is a closed convex risk measure (divergence risk

measure) if r ∈ Rm
++ and Dℓ,r(X) = Rm for every X ∈ L∞

m if r ∈ Rm
+\Rm

++.

Proposition 4.2. For every r ∈ Rm
++ and X ∈ L∞

m ,

Dent
r (X) = ρent(X) + β−1 · (1 − r + log r) + r · C, (4.5)

where ρent(X) is defined by (4.4).

Recall from (3.23) that Rent(·) is the supremum of all Dent
r (·) with r ∈ Rm

++,
that is, for X ∈ L∞

m ,

Rent(X) = sup
r∈Rm

++

Dent
r (X) =

⋂

r∈Rm
++

Dent
r (X). (4.6)
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If m = 1, then the only choice for C is R+. In this case, one can check that, for
X ∈ L∞,

Rent(X) = Dent
1 (X) = ρent(X) + R+. (4.7)

In other words, the supremum in (4.6) is attained at r = 1. In general, when
m ≥ 2, we may not be able to find some r̄ ∈ R++ for which Rent(X) = Dent

r̄ (X).
Instead, we will compute a solution to this set maximization problem in the sense
of Hamel & Löhne (2014, Definition 3.3), that is, we will find a set Γ ⊆ Rm

++ such
that

(1) Rent(X) =
⋂

r∈Γ Dent
r (X),

(2) for each r̄ ∈ Γ, Dent
r̄ (X) is a maximal element of the collection {Dent

r (X) | r ∈
Rm

++} in the following sense:

∀ r ∈ Rm
++ : Dent

r (X) ⊆ Dent
r̄ (X) ⇒ r = r̄. (4.8)

Moreover, the set Γ will be independent of the choice of X . To that end, by Propo-
sition 4.2, we can rewrite Dent

r (X) as

Dent
r (X) = ρent(X) +

⋂

w∈Rm
+ \{0}

{z ∈ Rm |wTz ≥ −(fw(r) + hw(r))}, (4.9)

where, for w ∈ Rm
+\{0}, r ∈ Rm

++,

fw(r) := wT(−β−1 · (1 − r + log r)),

hw(r) := − inf
x∈C

wT(r · x) = sup
x∈−C

wT(r · x).
(4.10)

Lemma 4.1. Let w ∈ Rm
+\{0}. The function fw + hw on Rm

++ is either identically
+∞ or else it attains its infimum at a unique point rw ∈ Rm

++ which is determined
by the following property: rw is the only vector r ∈ Rm

++ for which C is supported
at the point β−1 · (1 − r−1) by the hyperplane with normal direction r · w.

Proposition 4.3. Using the notation in Lemma 4.1, the set

Γ := {rw |w ∈ Rm
+\{0}, fw + hw is proper} (4.11)

is a solution to the maximization problem in (4.6) for every X ∈ L∞
m .

Finally, we compute the penalty function of Rent in terms of the vector relative
entropies

H(Q |P) :=
[
EQi

[
log

dQi

dP

]]m

i=1

(4.12)

of vector probability measures Q ∈ Mm(P). Thus, the penalty function for the
entropic risk measure is of the form “negative vector relative entropy plus a nonho-
mogeneous halfspace” (except for the trivial case).
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Ç. Ararat, A. H. Hamel & B. Rudloff

Proposition 4.4. For every (Q, w) ∈ Mm(P) × (Rm
+\{0}), we have −αRent(Q,

w) = Rm if hw(r) = +∞ for every r ∈ Rm
++, and

−αRent(Q, w) = −β−1 · H(Q |P) − β−1 · log[(1 − β · C) ∩ Rm
++] + G(w) (4.13)

if hw is a proper function.

4.2. Set-valued average values at risks

In this section, we assume that the vector loss function ℓ of Sec. 3 is the (vector)
scaled positive part function with scaling vector α ∈ (0, 1]m, that is, for each i ∈
{1, . . . , m} and x ∈ R,

ℓi(x) =
x+

αi
(4.14)

which satisfies the conditions in Definition 2.1. The corresponding vector divergence
function g is given by

gi(y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if y ∈
[
0,

1
αi

]
,

+∞ else,

(4.15)

for each i ∈ {1, . . . , m} and y ∈ R.
Note that 0 ̸∈ int ℓ(dom ℓ) = Rm

++ in this example. Hence, let us fix x0 ∈ Rm
++

and C ∈ Gm with 0 being a boundary point of C. We will apply the definitions and
results of Sec. 3 to the shifted loss function ℓ̃(x) = ℓ(x) − x0. The corresponding
shortfall risk measure is given by

Rℓ̃(X) = {z ∈ Rm |E[(z − X)+] ∈ α · (x0 − C)}, (4.16)

where the positive part function is applied componentwise.
Note that the set dom g defined in (3.20) becomes ×m

i=1[0, 1
αi

]. Since dom ℓ̃ =
Rm, by Proposition 3.2, Dℓ̃,r is a closed convex risk measure (divergence risk mea-

sure) if r ∈×m

i=1[αi, +∞) and Dℓ̃,r(X) = Rm for every X ∈ L∞
m if r ∈ Rm

+\×m

i=1

[αi, +∞). In the former case, the divergence risk measure with relative weight vec-
tor r ∈ ×m

i=1[αi, +∞) is given by Dℓ̃,r(X) = δℓ̃,r(X) + r · C for X ∈ L∞
m , where,

for each i ∈ {1, . . . , m},

δℓ̃i,ri
(Xi) = inf

zi∈R

(
−zi +

ri

αi
E[(zi − Xi)+]

)
− rix

0
i . (4.17)

When r = (1, . . . , 1)T and C = Rm
+ , we obtain the set-valued average value at risk

in the sense of Hamel et al. (2013, Definition 2.1 for M = Rm), which is given by

AV@Rα(X) := Dℓ̃,1(X) + x0 =
[

inf
zi∈R

(
−zi +

1
αi

E[(zi − Xi)+]
)]m

i=1

+ Rm
+ .

(4.18)
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Hence, our framework offers the following generalization of the set-valued average
value at risk as a convex risk measure:

AV@Rα,r(X) := Dℓ̃,r(X) + r · x0

=
[

inf
zi∈R

(
−zi +

ri

αi
E[(zi − Xi)+]

)]m

i=1

+ r · C. (4.19)

As in the scalar case, this definition even works for X ∈ L1
m.

5. Market Risk Measures

The purpose of this section is to propose a method to incorporate the frictions of
the market into the quantification of risk. As the first step of the method, it is
assumed that there is a “pure” risk measure R that represents the attitude of the
investor towards the assets of the market. This could be one of the utility-based risk
measures introduced in Sec. 3. Since the risk measure R does not take into account
the frictions of the market, the second step consists of minimizing risk subject to
the trading opportunities of the market. More precisely, we minimize (in the sense
of set optimization) the value of R over the set of financial positions that can be
reached with the given position by trading in the so-called convex market model.
The result of the risk minimization, as a function of the given position, is called the
market risk measure induced by R.

In the literature, minimization of scalar risk measures subject to trading con-
straints are considered in Barrieu & El Karoui (2008). In the multivariate case,
market risk measures are introduced in Hamel et al. (2011) and Hamel et al. (2013)
for the special case of a conical market model. Here, this notion is considered for
an arbitrary convex risk measure with the more general convex market model of
Pennanen & Penner (2010) and the possibility of trading constraints and liquida-
tion into fewer assets. The market is described in Sec. 5.1. The dual representation
result, Theorem 5.1 in Sec. 5.2, is one of the main contributions of this paper.
Finally, in Sec. 5.3, we present sufficient conditions under which Theorem 5.1 can
be applied to shortfall and divergence risk measures.

5.1. The convex market model with trading constraints

Consider a financial market with d ∈ {1, 2, . . .} assets. We assume that the market
has convex transaction costs or nonlinear illiquidities in finite discrete time. Fol-
lowing Pennanen & Penner (2010), we use convex solvency regions to model such
frictions. To that end, let T ∈ {1, 2, . . .}, T = {0, . . . , T}, and (Ft)t∈T a filtration
of (Ω,F , P) augmented by the P-null sets of F . The number T denotes the time
horizon, and (Ft)t∈T represents the evolution of information over time. We sup-
pose that there is no information at time 0, that is, every F0-measurable function
is deterministic P-almost surely; and there is full information at time T , that is,
FT = F . For p ∈ {0, 1, +∞} and t ∈ T, we denote by Lp

d(Ft) the linear subspace of
all Ft-measurable random variables in Lp

d.
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Let t ∈ T. By the Ft-measurability of a set-valued function D : Ω → P(Rd),
it is meant that the graph {(ω, y) ∈ Ω × Rd | y ∈ D(ω)} is Ft ⊗ B(Rd)-
measurable, where B(Rd) denotes the Borel σ-algebra on Rd. For such func-
tion D, define the set Lp

d(Ft, D) :={Y ∈ Lp
d(Ft) |P{ω ∈ Ω |Y (ω) ∈ D(ω)} = 1} for

p ∈ {0, 1, +∞}.
We recall the convex market model of Pennanen & Penner (2010) next. For each

t ∈ T, let Ct : Ω → Gd be an Ft-measurable function such that Rd
+ ⊆ Ct(ω) and

−Rd
+ ∩ Ct(ω) = {0} for each t ∈ {0, . . . , T} and ω ∈ Ω. The set Ct is called the

(random) solvency region at time t; see Astic & Touzi (2007), Pennanen & Penner
(2010). It models the bid and ask prices as a function of the magnitude of a trade, for
instance, as in Çetin et al. (2004), Çetin & Rogers (2007), Rogers & Singh (2010);
and thus, directly relates to the shape of the order book. More precisely, Ct(ω) is the
set of all portfolios which can be exchanged into ones with nonnegative components
at time t when the outcome is ω. Convex solvency regions allow for the modeling
of temporary illiquidity effects in the sense that they cover nonlinear illiquidities;
however, they assume that agents have no market power, and thus, their trades do
not affect the costs of subsequent trades.

Example 5.1. An important special case is the conical market model introduced
in Kabanov (1999). Suppose that Ct(ω) is a (closed convex) cone for each t ∈ T
and ω ∈ Ω. In this case, the transaction costs are proportional to the size of the
orders.

From a financial point of view, it is possible to have additional constraints on the
trading opportunities at intermediate times. For instance, trading may be allowed
only up to a (possibly state- and time-dependent) threshold level for the assets
(Example 5.2), or it may be the case that a certain linear combination of the
trading units should not exceed a threshold level (Example 5.3). Such constraints
are modeled via convex random sets. Given t ∈ {0, . . . , T − 1}, let Dt : Ω → P(Rd)
be an Ft-measurable function such that Dt(ω) is a closed convex set and 0 ∈
Ct(ω) ∩ Dt(ω) for every ω ∈ Ω. Note that Dt does not necessarily map into Gd,
and this is why we prefer to work with Ct ∩ Dt instead of replacing Ct by Ct ∩ Dt.
For convenience, let us also set DT (ω) = Rd for every ω ∈ Ω.

Example 5.2. For each t ∈ {0, . . . , T − 1}, suppose that Dt = Ȳt − Rd
+, for some

Ȳt ∈ L0
d(Ft, Rd

+). In this case, trading in asset i ∈ {1, . . . , d} at time t ∈ {0, . . . ,
T − 1} may not exceed the level (Ȳt)i.

Example 5.3. For each t ∈ {0, . . . , T−1}, suppose that Dt = {y ∈ Rd |AT
t y ≤ Bt},

for some At ∈ L0
d(Ft, Rd

+\{0}) and Bt ∈ L0
1(Ft, R+). In this case, trading in each

asset is unlimited but the linear combination of the trading units with the weight
vector At cannot exceed the level Bt.
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The set of all financial positions that can be obtained by trading in the market
starting with the zero position is

K := −
T∑

t=0

L∞
d (Ft, Ct ∩Dt). (5.1)

Hence, an investor with a financial position Y ∈ L∞
d can ideally reach any element

of the set Y + K by trading in the market. However, it may be the case that the
risk of the resulting position is evaluated only through a (small) selection of the d
assets, in other words, trading has to be done in such a way that the only possibly
nonzero components of the resulting position can be in some selected subset of
the d assets. Without loss of generality, suppose that liquidation is made into the
first m ≤ d of the assets. The idea of liquidation is made precise by the notion
of liquidation function introduced in Definition 5.1. Let us introduce the linear
operator B : Rm → Rd defined by

Bz = (z1, . . . , zm, 0, . . . , 0)T. (5.2)

We will use the composition of B with random variables in L0
m. Given X ∈ L0

m,
BX denotes the element in L0

d defined by (BX)(ω) = B(X(ω)) for ω ∈ Ω. The
adjoint B∗ : Rd → Rm of B is given by

B∗y = (y1, . . . , ym)T. (5.3)

Similarly, B∗ can be composed with random variables in L0
d. With a slight abuse of

notation, we will also use B∗ in the context of vector probability measures. Given
Q ∈ Md(P), we define B∗Q = (Q1, . . . , Qm)T ∈ Mm(P).

Definition 5.1. The function Λm : L∞
d → P(L∞

m ) defined by

Λm(Y ) = {X ∈ L∞
m |BX ∈ Y + K} (5.4)

is called the liquidation function associated with K.

Hence, given Y ∈ L∞
d , the set Λm(Y ) consists of all possible resulting positions

in Y + K that are already liquidated into the first m assets.

5.2. Market risk measures and their dual representations

Let us consider a closed convex risk measure R : L∞
m → Gm which is used for risk

evaluation after liquidating the resulting positions into the first m assets. As all the
positions in Λm(Y ) are accessible to the investor with position Y ∈ L∞

d , the value
of R is to be minimized over the set Λm(Y ) as the following definition suggests.

Definition 5.2. The function Rmar : L∞
d → P(Rm) defined by

Rmar(Y ) := inf
(Gm,⊇)

{R(X) |X ∈ Λm(Y )} = cl co
⋃

X∈Λm(Y )

R(X) (5.5)

is called the market risk measure induced by R.
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Remark 5.1. In the case of the conical market model described in Example 5.1,
when Dt(ω) = Rd for each ω ∈ Ω and t ∈ {0, . . . , T}, and no liquidation at t = T
is considered (m = d), Definition 5.2 recovers the notion of market-extension (with
closed values) given in Hamel et al. (2013, Definition 2.8, Remark 2.9).

Recall that a closed convex risk measure R : L∞
m → Gm is defined by the five

properties in Proposition 3.1. For the market risk measure, these properties need
to be rewritten with obvious changes as the function is now defined on L∞

d . (For
instance, the translativity of Rmar reads as Rmar(Y + Bz) = Rmar(Y )− z for every
Y ∈ L∞

d and z ∈ Rm.) The next proposition shows that the market risk measure is
a closed convex risk measure except for a finiteness condition and weak∗-closedness.

Proposition 5.1. The market risk measure Rmar is monotone, translative and
convex, and it satisfies Rmar(0) ̸= ∅. In addition, the convex hull operator can be
dropped from Definition 5.2, that is, for Y ∈ L∞

d ,

Rmar(Y ) = cl
⋃

X∈Λm(Y )

R(X). (5.6)

To recover weak∗-closedness, we define the closed version of Rmar via the notion
of closed hull.

Definition 5.3. The closed hull cl F of a function F : L∞
d → Gm is the pointwise

greatest weak∗-closed function minorizing it, that is, if F ′ : L∞
d → Gm is a weak∗-

closed function such that F (Y ) ⊆ F ′(Y ) for all Y ∈ L∞
d , then we have (cl F )(Y ) ⊆

F ′(Y ) for every Y ∈ L∞
d . The closed hull cl Rmar of Rmar is called the closed market

risk measure induced by R.

One can check that monotonicity, translativity and convexity are preserved
under taking the closed hull. Hence, in view of Proposition 5.1, the closed mar-
ket risk measure induced by a closed convex risk measure R : L∞

m → Gm is a closed
convex risk measure if (cl Rmar)(0) ̸= Rm. Theorem 5.1 below gives a dual repre-
sentation of the closed market risk measure in terms of the penalty function of the
original risk measure R under the assumption of finiteness at zero. The special case
of no trading constraints in a convex (conical) market model is given in Corollary 5.1
(Corollary 5.2). The set of dual variables to be used in the results below is given by

Wm,d := Md(P) × ((Rm
+\{0})× Rd−m

+ ). (5.7)

We will also make use of the homogeneous halfspaces G(w) := {y ∈ Rd |wTy ≥ 0}
for w ∈ Rd

+\{0}.

Theorem 5.1. Suppose that R : L∞
m → Gm is a closed convex risk measure with

penalty function −αR : Mm(P) × (Rm
+\{0}) → Gm, see Proposition 3.3. Assume

that (cl Rmar)(0) ̸= Rm. Then the closed market risk measure cl Rmar : L∞
d → Gm
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is also a closed convex risk measure, and it has the following dual representation:
For every Y ∈ L∞

d ,

(cl Rmar)(Y ) =
⋂

(Q,w)∈Wm,d

[−αclRmar(Q, w) + B∗((EQ[−Y ] + G(w)) ∩ B(Rm))],

(5.8)

where −αclRmar : Wm,d → Gm is defined by

αcl Rmar(Q, w) = −αR(B∗Q, B∗w)

+
T∑

t=0

cl
⋃

Ut∈L∞
d (Ft,Ct∩Dt)

B∗((EQ[U t] + G(w)) ∩ B(Rm)). (5.9)

Recall that the recession cone of a nonempty convex set C ⊆ Rd is the convex
cone 0+C := {y ∈ Rd | y + C ⊆ C} and the positive dual cone of a nonempty
convex cone K ⊆ Rd is the convex cone K+ := {y ∈ Rd | ∀ k ∈ K : yTk ≥ 0}; see
Rockafellar (1970, Sec. 8, p. 61) and Zalinescu (2002, Sec. 1.1, p. 7), for instance.

Corollary 5.1. Under the assumptions of Theorem 5.1, suppose that Dt(ω) = Rd

for each ω ∈ Ω and t ∈ T. Then −αcl Rmar given by (5.9) is concentrated on the set

Wconvex
m,d :=

{
(Q, w) ∈ Wm,d | ∀ t ∈ T : w · E

[
dQ
dP

∣∣∣∣Ft

]
∈ L1

d(Ft, (0+Ct)+)
}

, (5.10)

where, for each t ∈ T, (0+Ct)+ : Ω → Gd is the measurable function defined by
(0+Ct)+(ω) := (0+Ct(ω))+.

In other words, we have −αclRmar(Q, w) = Rm for (Q, w) ∈ Wm,d\Wconvex
m,d

within the setting of the previous result.

Corollary 5.2. Under the assumptions of Theorem 5.1 suppose that Dt(ω) = Rd

for each ω ∈ Ω and t ∈ T, and that the market model is conical as in Example 5.1.
Consider the set

Wcone
m,d :=

{
(Q, w) ∈ Wm,d | ∀ t ∈ T : w · E

[
dQ
dP

∣∣∣∣Ft

]
∈ L1

d(Ft, C+
t )
}

, (5.11)

where, for each t ∈ T, C+
t : Ω → Gd is the measurable function defined by C+

t (ω) :=
(Ct(ω))+. Then, (5.9) reduces to

−αclRmar(Q, w) =

{
−αR(B∗Q, B∗w) if (Q, w) ∈ Wcone

m,d ,

Rm else,
(5.12)

for each (Q, w) ∈ Wm,d; hence, for every Y ∈ L∞
d ,

(cl Rmar)(Y ) =
⋂

(Q,w)∈Wcone
m,d

[−αR(B∗Q, B∗w) + B∗((EQ[−Y ] + G(w)) ∩ B(Rm))].

(5.13)
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The proofs of Theorem 5.1, Corollaries 5.1 and 5.2 above are given in Sec. 6.6.
They rely on the observation that, roughly speaking, the market risk measure
is the (set-valued) infimal convolution of the original risk measure and the (set-
valued) indicator functions of the convex sets L∞

d (Ft, Ct ∩ Dt), t ∈ T. This tech-
nical observation is discussed in Sec. 6.6, where the definitions of these notions
are also given.

5.3. Market risk measures induced by shortfall and divergence
risk measures

In this section, we present sufficient conditions that guarantee the finite-valuedness
condition (clRmar)(0) ̸= Rm for the closed market risk measures induced by shortfall
and divergence risk measures. Once this property is established, these closed market
risk measures are closed convex risk measures and their dual representations are
provided by Theorem 5.1. For simplicity, we assume that the market model is conical
in the sense of Example 5.1.

Assumption 5.1. Suppose that the solvency cones of the market model share a
common supporting halfspace in the sense that there exists w̄ ∈ Rd

+\{0} such that
for P-almost every ω ∈ Ω and every t ∈ T, infy∈Ct(ω) w̄Ty > −∞, or equivalently,
w̄ ∈ (Ct(ω))+.

Remark 5.2. Assumption 5.1 states the existence of a halfspace G(w̄) = {z ∈
Rd | w̄Tz ≥ 0} for some w̄ ∈ Rd

+ which satisfies G(w̄) ⊇ Ct(ω) for P-almost every
ω ∈ Ω and t ∈ T. In particular, when the solvency cones are constructed from
bid-ask prices (see Kabanov 1999), this is equivalent to the ask prices having a
uniform (in time and outcome) lower bound, or equivalently, the bid prices hav-
ing a uniform (in time and outcome) upper bound. That is, w̄j ≤ πij(ω, t)w̄i for
every i, j ∈ {1, . . . , d}, every t ∈ T, and P-almost every ω ∈ Ω, where πij(ω, t)
is the number of units of asset i for which an agent can buy one unit of asset
j at time t and state ω, and thus, denotes the ask price of asset j in terms of
asset i.

Proposition 5.2. Suppose that Assumption 5.1 holds and dom ℓ = Rm.

(1) Let r ∈ Rm
++ with 1

r ∈ dom g. If

inf
x∈C

w̄T(r · x) > −∞, (5.14)

then (cl Dmar
ℓ,r )(0) ̸= Rm. In particular, cl Dmar

ℓ,r is a closed convex risk measure
with a dual representation provided by Theorem 5.1.

(2) If there exists r ∈ Rm
++ with 1

r ∈ dom g such that (5.14) holds, then
(cl Rmar

ℓ )(0) ̸= Rm. In particular, clRmar
ℓ is a closed convex risk measure with

a dual representation provided by Theorem 5.1.
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6. Proofs and Technical Remarks

6.1. Proofs of the results in Sec. 2

Proof of Proposition 2.1. Monotonicity, translativity and convexity are trivial.
Let X ∈ L∞. It holds ℓ(−ess supX − s) ≤ E[ℓ(−X − s)] ≤ ℓ(−ess inf X − s) for
every s ∈ R. Note that ℓ is strictly increasing on ℓ−1(int ℓ(R)) := {x ∈ R | ℓ(x) ∈
int ℓ(R)} = (a, b), where a := inf{x ∈ R | ℓ(x) > infy∈R ℓ(y)} ∈ R ∪ {−∞} and
b := sup{x ∈ R | ℓ(x) < +∞} ∈ R ∪ {+∞}. Hence, the inverse ℓ−1 is well-
defined as a function from int ℓ(R) to (a, b). It holds E[ℓ(−X − s)] ≤ 0 for each
s ≥ −ess inf X − ℓ−1(0), and E[ℓ(−X − s)] > 0 for each s < −ess supX − ℓ−1(0).
So ρℓ(X) ∈ R. Besides, E[ℓ(−X − ρℓ(X))] ≤ 0 since the restriction of ℓ on dom ℓ
is a continuous function. To show (weak∗-)lower semicontinuity, let (Xn)n∈N be
a bounded sequence in L∞ converging to some X ∈ L∞ P-almost surely. Then,
using Fatou’s lemma together with the fact that the restriction of ℓ on dom ℓ is
nondecreasing and continuous, we have

E
[
ℓ
(
−X − lim inf

n→∞
ρℓ(Xn)

)]
= E

[
ℓ
(
lim inf
n→∞

(−Xn − ρℓ(Xn))
)]

≤ lim inf
n→∞

E[ℓ(−Xn − ρℓ(Xn))] ≤ 0. (6.1)

This implies the so-called Fatou property of ρℓ, namely, that ρℓ(X) ≤
lim infn→∞ ρℓ(Xn). By Föllmer & Schied (2011, Theorem 4.33), this is equivalent
to the lower semicontinuity of ρℓ.

Proof of Proposition 2.2. Note that s *→ E[ℓ(−X − s)] is a proper convex
function on R. Hence, by Definition 2.2, ρℓ(X) is the optimal value of a convex
minimization problem. The corresponding Lagrangian dual objective function h on
R+ is given by

h(λ) = inf
s∈R:E[ℓ(−X−s)]<+∞

(s + λE[ℓ(−X − s)]). (6.2)

Clearly, h(λ) = δℓ,λ(X) if λ > 0 since λE[ℓ(−X − s)] = +∞ if E[ℓ(−X − s)] = +∞.
On the other hand, note that E[ℓ(−X − s)] < +∞ if and only if P{−X − s ∈
dom ℓ} = 1. It follows that

h(0) = inf{s ∈ R |E[ℓ(−X − s)] < +∞} = −ess inf X − sup dom ℓ. (6.3)

Therefore, the optimal value of the dual problem equals the right-hand side of
(2.2). Finally, the two sides of (2.2) are equal since the usual Slater’s condition
holds: There exists s̄ ∈ R such that E[ℓ(−X − s̄)] < 0. This is because we have
E[ℓ(−X − s)] < 0 for each s > −ess inf X − ℓ−1(0), where ℓ−1 is the inverse
function on int ℓ(R) as in the proof of Proposition 2.1.

Proof of Proposition 2.3. Let f be a loss function and f∗ : R → R ∪
{+∞} its conjugate function. Note that dom f∗ ⊆ R+ since, for each y < 0,
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we have

f∗(y) ≥ sup
n∈N

(−ny − f(−n)) ≥ sup
n∈N

(−ny) − f(0) = +∞, (6.4)

where we use the monotonicity of f for the second inequality. Moreover, 0 ∈ dom f∗

since f∗(0) = −infx∈R f(x) < +∞. Clearly, f∗(y) ≥ −f(0) for each y ∈ R. Besides,
by Rockafellar (1970, Theorem 23.3), the subdifferential ∂f(0) of f at 0 is nonempty
and, by Rockafellar (1970, Theorem 23.5), we have f∗(y) = −f(0) for every y ∈
∂f(0). Hence, f∗ attains its infimum. Finally, f∗ is not of the form y *→ +∞ ·
1{y<0} + (ay + b) · 1{y≥0} for some a ∈ R+ ∪ {+∞} and b ∈ R as otherwise we
would get f(x) = (f∗)∗(x) = +∞ · 1{x>a} − b · 1{x≤a}, x ∈ R, so that f would be
identically constant on dom f . Hence, f∗ is a divergence function. Conversely, let
ϕ be a divergence function and ϕ∗ : R → R ∪ {+∞} its conjugate function. Let
x1, x2 ∈ R with x1 ≥ x2. Since domϕ ⊆ R+, we have x1y − ϕ(y) ≥ x2y − ϕ(y) for
each y ∈ domϕ so that ϕ∗(x1) ≥ ϕ∗(x2). Hence, ϕ∗ is nondecreasing. Moreover,
infx∈R ϕ∗(x) = −ϕ(0) > −∞ since ϕ = (ϕ∗)∗ and 0 ∈ dom ϕ. Clearly, ϕ∗(0) =
−infy∈R ϕ(y) ∈ R so that 0 ∈ dom ϕ∗. Finally, ϕ∗ is not identically constant on
dom ϕ∗ as otherwise ϕ = (ϕ∗)∗ would fail to satisfy property (3) in Definition 2.3.
Hence, ϕ∗ is a loss function.

Proof of Theorem 2.1. If λ = 0, then Ig,λ(Q |P) = supdom ℓ for every Q ∈ M(P)
and we have

δℓ,0(X) = −ess inf X − sup dom ℓ = sup
Q∈M(P)

EQ[−X ] − sup dom ℓ (6.5)

by the dual representation of the worst-case risk measure X *→ −ess inf X ; see
Föllmer & Schied (2011, Example 4.39), for instance. Hence, (2.7) holds in the case
λ = 0. Moreover, by Remark 2.2, sup dom ℓ < +∞ if and only if 1 ∈ dom g0. Hence,
δℓ,0 is a lower semicontinuous convex risk measure if 1 ∈ dom g0, and δℓ,0(X) = −∞
for every X ∈ L∞ otherwise.

Suppose λ > 0. Note that the right-hand side of (2.7) can be rewritten as
a maximization problem on the space L1

+ of integrable nonnegative real-valued
random variables on (Ω,F , P) (identified up to almost sure equality):

sup
Q∈M(P)

(EQ[−X ] − Ig,λ(Q |P))

= sup
V ∈L1

+

{
E[−XV ] − λE

[
g

(
1
λ

V

)] ∣∣∣∣E[V ] = 1
}

. (6.6)

The optimal value of the corresponding Lagrangian dual problem is computed as

qX := inf
s∈R

sup
V ∈L1

+

(
E[−XV ] − λE

[
g

(
1
λ

V

)]
+ s(1 − E[V ])

)

= inf
s∈R

(
s + sup

V ∈L1
+

E
[
(−X − s)V − λg

(
1
λ

V

)])
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= inf
s∈R

(
s + E

[
sup

z∈R+

(
(−X − s)z − λg

(
1
λ

z

))])

= inf
s∈R

(s + E[g∗λ(−X − s)]), (6.7)

where the third equality is due to Rockafellar & Wets (1998, Theorem 14.60), and
g∗λ is the conjugate of the divergence function gλ; see Remark 2.2. Hence, g∗λ = λℓ
and qX equals the left-hand side of (2.7). Finally, to conclude (2.7), we consider the
following cases:

(1) Suppose that 1 ∈ int dom gλ, that is, 1
λ < β. (Recall that int dom gλ = (0, λβ),

see Definition 2.4 et seq.) Then the following constraint qualification holds, for
instance, with V̄ ≡ 1:

∃ V̄ ∈ L1
+ : E[V̄ ] = 1, V̄ ∈ int dom gλ P-almost surely. (6.8)

By Borwein & Lewis (1992, Corollary 4.8), (6.8) suffices to conclude (2.7). Note
that we have

−E[X ] − λg

(
1
λ

)
≤ sup

V ∈L1
+

{
E[−XV ] − λE

[
g

(
1
λ

V

)] ∣∣∣∣E[V ] = 1
}

≤ −ess inf X − λ inf
x∈R

g(x) (6.9)

so that both sides of (2.7) are in R.
(2) Suppose that λβ = 1 and dom gλ = [0, λβ] = [0, 1], that is, dom g = [0, β] =

[0, 1
λ ]. In this case, the only V ∈ L1

+ with E[V ] = 1 and P{V ∈ dom gλ} = 1 is
V ≡ 1, and hence, the right-hand side of (2.7) gives −E[X ] − λg( 1

λ) ∈ R. Note
that (6.8) fails to hold here. Using (2.7) for the previous case, we have

inf
s∈R

(s + λE[ℓ(−X − s)]) = lim
ε↓0

inf
s∈R

(s + (λ + ε)E[ℓ(−X − s)])

= lim
ε↓0

sup
Q∈M(P)

(
EQ[−X ]− (λ + ε)E

[
g

(
1

λ + ε

dQ
dP

)])
,

(6.10)

where the first equality follows since the proper, concave, upper semicontinuous
function

R ∋ γ *→ inf
s∈R

(s + γEℓ(−X − s)) ∈ R ∪ {−∞} (6.11)

is right-continuous at γ = λ. Finally, we have

lim
ε↓0

sup
Q∈M(P)

(
EQ[−X ] − (λ + ε)E

[
g

(
1

λ + ε

dQ
dP

)])

= lim
ε↓0

sup
Q∈M(P)

(
EQ[−X ]− (λ + ε)E

[
g

(
1

λ + ε

dQ
dP

)
− g(0)

])

− lim
ε↓0

(λ + ε)g(0) (6.12)
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= inf
γ∈[λ,λ+ε′]

sup
Q∈M(P)

(
EQ[−X ] − γE

[
g

(
1
γ

dQ
dP

)
− g(0)

])
− λg(0)

= sup
Q∈M(P)

inf
γ∈[λ,λ+ε′]

(
EQ[−X ] − γE

[
g

(
1
γ

dQ
dP

)
− g(0)

])
− λg(0)

= sup
Q∈M(P)

(
EQ[−X ]− λE

[
g

(
1
λ

dQ
dP

)])

= −E[X ]− λg

(
1
λ

)
∈ R, (6.13)

where ε′ > 0 is some fixed number. Here, the second equality follows since the
function γ *→ γ(g( y

γ )−g(0)) is a nonincreasing function on R++ for each y ∈ R;
see Remark 2.2. The third equality is due to a classical minimax theorem and
it uses the compactness of the interval [λ, λ+ε′], see Sion (1958, Corollary 3.3).
The fourth equality follows by monotone convergence theorem and the mono-
tonicity of the function γ *→ γ(g( y

γ )−g(0)) on R++. The last equality is already
discussed above. Finally, the first equality follows since the two limits in (6.13)
are shown to be finite by the succeeding equalities. Hence, we obtain (2.7).

(3) Suppose 1 /∈ dom gλ, that is, either dom gλ = [0, λβ) and λβ ≥ 1, or, dom gλ =
[0, λβ] and λβ > 1. In this case, there is no Y ∈ L1

+ with E[Y ] = 1 and
P{Y ∈ dom gλ} = 1. Hence, the right-hand side of (2.7) gives −∞. On the
other hand, we have

inf
s∈R

(s + λE[ℓ(−X − s)]) ≤ inf
s∈R

(s + λℓ(−ess inf X − s))

= −ess inf X − sup
s∈R

(s − λℓ(s))

= −ess inf X − λg

(
1
λ

)
= −∞. (6.14)

Hence, (2.7) holds. In the first two cases where 1 ∈ dom gλ, we observe that
δℓ,λ(0) ∈ R. Moreover, (2.3) guarantees monotonicity, translativity, convexity and
lower semicontinuity directly, which makes δℓ,λ a lower semicontinuous convex risk
measure. In the last case where 1 /∈ dom gλ, δℓ,λ(X) = −∞ for every X ∈ L∞.

Proof of Proposition 2.4. Let Q ∈ M(P) and λ ∈ R+ with 1 ∈ dom gλ. If λ = 0,
then it follows from Definition 2.3 and the proof of Theorem 2.1 that αδℓ,0(Q) =
sup dom ℓ = Ig,0(Q |P). Suppose λ > 0. Using (2.3) and the definition of penalty
function in (2.10),

αδℓ,λ(Q) = sup
s∈R

(
−s + sup

X∈L∞
E
[
−dQ

dP X − λℓ(−X − s)
])

= sup
s∈R

(
−s + E

[
sup
x∈R

(
−dQ

dP x − λℓ(−x − s)
)])
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= sup
s∈R

(
−s + E

[
dQ
dP s + gλ

(
dQ
dP

)])

= Ig,λ(Q |P), (6.15)

where the second equality follows from Rockafellar & Wets (1998, Theorem 14.60)
and the third equality follows from Remark 2.2. For the penalty function of ρℓ, note
that

αρℓ(Q) = sup
X∈L∞

(
EQ[−X ]− inf

s∈R
(s + I(−∞,0](E[ℓ(−X − s)]))

)

= sup
X∈L∞

(EQ[X ] − I(−∞,0](E[ℓ(X)]))

= sup
X∈L∞

{EQ[X ] |E[ℓ(X)] ≤ 0}. (6.16)

For the last maximization problem, the corresponding Lagrangian dual objective
function h on R+ is given by

h(λ) = sup
X∈L∞:E[ℓ(X)]<+∞

(EQ[X ] − λE[ℓ(X)]). (6.17)

Note that E[ℓ(X)] < +∞ if and only if P{X ∈ dom ℓ} = 1. If λ = 0, then

h(0) = sup
X∈L∞:E[ℓ(X)]<+∞

EQ[X ] = supdom ℓ = Ig,0(Q |P). (6.18)

On the other hand, if λ > 0, then

h(λ) = sup
X∈L∞:E[ℓ(X)]<+∞

(EQ[X ] − λE[ℓ(X)])

= E
[
sup
x∈R

(
dQ
dP x − λℓ(x)

)]
= Ig,λ(Q |P), (6.19)

where we use Rockafellar & Wets (1998, Theorem 14.60) for the second equality and
Remark 2.2 for the third equality. Hence, the optimal value of the dual problem is
given by

q(Q) := inf
λ∈R+

h(λ) = inf
λ∈R+

Ig,λ(Q |P). (6.20)

Note that Slater’s condition holds, that is, there exists X̄ ∈ L∞ such that
E[ℓ(X̄)] < 0; take, for example, X̄ ≡ ℓ−1(0) − 1, where ℓ−1 is the inverse func-
tion on int ℓ(R) as in the proof of Proposition 2.1. Therefore, αρℓ(Q) = q(Q). Note
that Ig,λ(Q |P) = +∞ for every λ ∈ R+ with 1 /∈ dom gλ, see case (3) in the proof
of Theorem 2.1. Hence, we also have q(Q) = infλ∈R+ : 1∈dom gλ αδℓ,λ(Q).

6.2. A remark about the scalar loss functions

In Föllmer & Schied (2002, Theorem 10) and Föllmer & Schied (2011, Theo-
rem 4.115), the second part of Proposition 2.4 is proved with the additional
assumption that ℓ maps into R. This assumption implies that the ℓ-shortfall risk
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measure is continuous from below and the first supremum in (2.10) is attained
(Föllmer & Schied 2011, Proposition 4.113). Besides, the same assumption implies
the so-called superlinear growth condition on g, namely, that limy→∞

g(y)
y = +∞

(Föllmer & Schied 2002, Lemma 11). The analytic proof for Proposition 2.4 in
Föllmer & Schied (2002) makes use of this property instead of the dual relationship
with divergence risk measures. Using this proposition and assuming that 1 ∈ dom g,
Theorem 2.1 is proved for λ = 1 (Föllmer & Schied 2011, Theorem 4.122), in which
case δℓ,1 is guaranteed to be a risk measure (it has finite values). In our treatment,
while 1 may not be in dom g, there exists some λ̄ > 0 with 1 ∈ dom gλ̄ and hence
δℓ,λ̄ is a risk measure.

In Ben Tal & Teboulle (2007), on the other hand, the divergence function g
is of central importance. In addition to the assumptions here, it is assumed in
Ben Tal & Teboulle (2007) that g attains its infimum at 1 with value 0, which is
equivalent to assuming that ℓ(0) = 0 and 1 ∈ ∂ℓ(0). These assumptions make g a
natural divergence function in the sense that the function Q *→ E[g(dQ

dP )] on M(P)
has nonnegative values and takes the value 0 if Q = P; E[g(dQ

dP )] can be interpreted
as the distance between some “subjective” measure Q ∈ M(P) and the physical
measure P. On the other hand, the additional assumptions on the loss function ℓ
may be considered as restrictive. Here, we take ℓ as the central object by dropping
these assumptions and use the convex duality approach as in Ben Tal & Teboulle
(2007). Note that Theorem 2.1 (Ben Tal & Teboulle 2007, Theorem 4.2) and the
first part of Proposition 2.4 (Ben Tal & Teboulle 2007, Theorem 4.4) are proved
in Ben Tal & Teboulle (2007) for the case λ = 1. Here, we generalize this proof,
basically, by considering the cases where the constraint qualification (6.8), which is
also used in the proof of Ben Tal & Teboulle (2007, Theorem 4.2), fails to hold.

6.3. Lagrange duality for set optimization : A quick review

The proofs of Theorem 3.1 and Proposition 3.5 rely on the application of the recent
Lagrange duality in Hamel & Löhne (2014). We quickly review the definition of the
dual problem here. Let X be a locally convex topological linear space. Consider a
set minimization problem of the form (3.15), where Φ : X → Gm is an arbitrary
objective function and Ψ : X → Gm is an arbitrary constraint function. The optimal
value of this problem is p := inf(Gm,⊇){Φ(x) | 0 ∈ Ψ(x), x ∈ X}.

The halfspace-valued functions Sλ,v : Rm → Gm for λ ∈ Rm, v ∈ Rm
+\{0}

defined by

Sλ,v(z) = {η ∈ Rm | vTη ≥ λTz} (6.21)

will be used as set-valued substitutes for the (continuous) linear functionals of the
scalar duality theory as in Hamel (2009), Hamel & Löhne (2014). Here, there are
two types of dual variables: The variable λ ∈ Rm is the usual vector of Lagrange
multipliers which is used to scalarize the values of Ψ whereas the variable v ∈ Rm

+

is the weight vector which is used to scalarize the values of Φ. The set-valued
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Lagrangian L : X × Rm × (Rm
+\{0}) → Gm and the objective function H : Rm ×

(Rm
+\{0}) → Gm of the dual problem for (3.15) are defined by

L(x, λ, v) = cl
(
Φ(x) + inf

(Gm,⊇)
{Sλ,v(z) | z ∈ Ψ(x)}

)
,

H(λ, v) = inf
(Gm,⊇)

{L(x, λ, v) |x ∈ X}.
(6.22)

The optimal value q of the dual problem is the supremum of the dual objective
function over the dual variables:

q := sup
(Gm,⊇)

{H(λ, v) |λ ∈ Rm, v ∈ Rm
+\{0}}. (6.23)

Proposition 6.1 (Hamel & Löhne 2014, Theorem 6.1). Assume that Φ and
Ψ are convex functions and p ̸= Rm. Strong duality holds, that is, p = q if the
following set-valued version of Slater’s condition holds: There exists x̄ ∈ X such
that Φ(x̄) ̸= ∅ and Ψ(x̄) ∩ −Rm

++ ̸= ∅.

6.4. Proofs of the results in Sec. 3

Proof of Proposition 3.1. Monotonicity, translativity and convexity are trivial.
To show finiteness at 0, using the proof of Proposition 2.1, we can find z1 ∈ Rm

with ℓ(−z1) ∈ −Rm
+ and z2 ∈ Rm with ℓ(−z2) ∈ Rm

++. By the properties of C, it
follows that Rℓ(0) ̸∈ {∅, Rm}. To show weak∗-closedness, let (Xn)n∈N be a bounded
sequence in L∞

m converging to some X ∈ L∞
m P-almost surely. Let z ∈ Rm and

suppose that there exists zn ∈ Rℓ(Xn), for each n ∈ N, such that (zn)n∈N converges
to z. Using dominated convergence theorem, the closedness of −C, and the fact
that the restriction of ℓ on dom ℓ := {x ∈ Rm | ℓ(x) ∈ Rm} =×m

i=1 dom ℓi ⊆ Rm is
continuous, we have

E[ℓ(−X − z)] = E
[
ℓ
(

lim
n→∞

(−Xn − zn)
)]

= lim
n→∞

E[ℓ(−Xn − zn)] ∈ −C,

(6.24)

that is, z ∈ Rℓ(X). This shows the so-called Fatou property of Rℓ, namely, that

lim inf
n→∞

Rℓ(Xn) :=
{
z ∈ Rm | ∀n ∈ N ∃ zn ∈ Rℓ(Xn) : lim

n→∞
zn = z

}
⊆ Rℓ(X).

(6.25)

By Hamel & Heyde (2010, Theorem 6.2), this is equivalent to the weak∗-closedness
of Rℓ.

For the proof of Theorem 3.1, we will need the following lemmata.

Lemma 6.1. For every X ∈ L∞
m ,

Rℓ(X) =
⋂

λ∈Rm
+ ,

v∈Rm
+ \{0}

{
η ∈ Rm | vTη ≥ inf

z∈Rm:
E[ℓ(−X−z)]∈Rm

fλ,v(z) + inf
x∈C

λTx

}
, (6.26)
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where

fλ,v(z) := vTz + λTE[ℓ(−X − z)]. (6.27)

Proof. Let X ∈ L∞
m . Using (6.22) and (3.12), the Lagrangian for the problem

(3.14) is computed as

L(z, λ, v) = cl
(

z + Rm
+ + cl

⋃

x∈(E[ℓ(−X−z)]+C)∩Rm

Sλ,v(x)
)

=

{
{η ∈ Rm | vTη ≥ fλ,v(z) + infx∈C λTx} if E[ℓ(−X − z)] ∈ Rm,

∅ if E[ℓ(−X − z)] /∈ Rm

(6.28)

for z ∈ Rm, λ ∈ Rm, v ∈ Rm
+\{0}. Hence, the dual objective function is given by

H(λ, v) =
{
η ∈ Rm | vTη ≥ inf

z∈Rm:E[ℓ(−X−z)]∈Rm
fλ,v(z) + inf

x∈C
λTx

}
(6.29)

for λ ∈ Rm, v ∈ Rm
+\{0}. Suppose λ ̸∈ Rm

+ . Since C + Rm
+ ⊆ C, there exists x̄ ∈ C

such that, for every n ∈ N, we have nx̄ ∈ C and λTx̄ < 0. Hence, infx∈C λTx = −∞
and H(λ, v) = Rm for every v ∈ Rm

+\{0}. Therefore, by (6.23) and (3.12), the
optimal value of the dual problem is given by the right-hand side of (6.26). Finally,
the two sides of (6.26) are equal by Proposition 6.1 since Slater’s condition holds:
There exists z̄ ∈ Rm such that (E[ℓ(−X − z̄)] + C)∩−Rm

++ ̸= ∅. This follows as for
the scalar version, see the proof of Proposition 2.2.

Lemma 6.2. Set wT(−∞) = −∞ whenever w ∈ Rm
+\{0}. Then, for every X ∈

L∞
m ,

Rℓ(X) =
⋂

r∈Rm
+ ,w∈Rm

+ \{0}

{
z ∈ Rm |wTz ≥ wTδℓ,r(X) + inf

x∈C
wT(r · x)

}
. (6.30)

Proof. With (6.29) in view, for r, w ∈ Rm
+\{0}, we define

M(r, w) :=
{

η ∈ Rm |wTη ≥ wTδℓ,r(X) + inf
x∈C

wT(r · x)
}
, (6.31)

and we will show
⋂

λ∈Rm
+ ,

v∈Rm
+ \{0}

H(λ, v) =
⋂

r∈Rm
+ ,

w∈Rm
+ \{0}

M(r, w). (6.32)

First, if r ∈ Rm
+ , w ∈ Rm

+ \{0}, then we define λi = riwi and vi = wi for i ∈
{1, . . . , m}. Then, λ ∈ Rm

+ , v ∈ Rm
+\{0} as well as H(λ, v) = M(r, w); see (3.24)

and (3.25). This means that the intersection on the left-hand side runs over at least
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as many sets as the one on the right-hand side; hence, “⊆” holds true. Conversely,
if λ ∈ Rm

+ , v ∈ Rm
+\{0}, then we define, for each n ∈ N and i ∈ {1, . . . , m},

(rn
i , wn

i ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λi

vi
, vi

)
if vi > 0,

(1, vi) if vi = 0, λi = 0,
(

nλi,
1
n

)
if vi = 0, λi > 0.

(6.33)

Then rn ∈ Rm
+ , wn ∈ Rm

+\{0} and λi = rn
i wn

i . Let η be a point in the right-hand
side of (6.32). If there is no i ∈ {1, . . . , m} satisfying vi = 0 and λi > 0, then v = wn

and H(λ, v) = M(rn, wn) for every n ∈ N; hence, η ∈ H(λ, v). Next, assume there
is some j ∈ {1, . . . , m} with vj = 0, λj > 0. Since η ∈ M(rn, wn) for every n ∈ N,
it follows

∑

i:vi>0
i:vi=λi=0

viηi +
∑

i:vi=0,λi>0

ηi

n

≥
∑

i:vi>0
i:vi=λi=0

inf
zi∈R:E[ℓ(−Xi−zi)]<+∞

(vizi + λiE[ℓi(−Xi − zi)])

+
∑

i:vi=0,λi>0

1
n

inf
zi∈R

(zi + nλiE[ℓi(−Xi − zi)]) + inf
x∈C

λTx. (6.34)

If j ∈ {1, . . . , m} such that vi = 0, λj > 0, then we obtain, for each n ∈ N,

−ess supXj − nλjgj

(
1

nλj

)
≤ inf

zj∈R
(zj + nλjE[ℓj(−Xj − zj)])

≤ −ess inf Xj − nλjgj

(
1

nλj

)
. (6.35)

This can be checked by a similar calculation to the one in (6.14). Since gj is convex
and lower semicontinuous, the restriction of gj to cl dom gj is a continuous function,
see Zalinescu (2002, Proposition 2.1.6), so that

lim
n→∞

1
n

inf
zj∈R

(zj + nλjE[ℓj(−Xj − zj]) = − lim
n→∞

λjgj

(
1

nλj

)
= −λjgj(0).

(6.36)

On the other hand,

inf
zj∈R

(vjzj + λiE[ℓi(−Xj − zj)]) = λj inf
zj∈R

E[ℓj(−Xj − zj)]

= λj inf
y∈R

ℓj(y) = −λjgj(0) (6.37)
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since ℓj is nondecreasing and Xj ∈ L∞. Taking the limit in (6.34) as n → ∞, we
finally obtain

vTη ≥
m∑

i=1

inf
zi∈R:E[ℓi(−Xi−zi)]<+∞

(vizi + λiE[ℓi(−Xi − zi)]) + inf
x∈C

λTx, (6.38)

that is, η ∈ H(λ, v). Hence, (6.32) follows.

Proof of Theorem 3.1. Let r ∈ Rm
+ and define

gw,r(z) := wT(−z + r · E[ℓ(−X + z)]) (6.39)

for each w ∈ Rm
+\{0} and z ∈ Rm with E[ℓ(−X − z)] ∈ Rm. Note that

Dℓ,r(X) =
⋂

w∈Rm
+ \{0}

{
η ∈ Rm |wTη ≥ inf

z∈Rm:
E[ℓ(−X−z)]∈Rm

gw,r(z) + inf
x∈C

wT(r · x)
}

=
⋂

w∈Rm
+ \{0}

{
η ∈ Rm |wTη ≥ wTδℓ,r(X) + inf

x∈C
wT(r · x)

}
, (6.40)

which follows from Definition 3.2, (3.24), (3.25), and the fact that a closed convex
set is the intersection of all of its supporting halfspaces; see Hamel & Löhne (2014,
(5.2)). By Theorem 2.1, we have δℓ,r(X) ∈ Rm if and only if 1 ∈ dom gr. Hence,
Dℓ,r(X) = Rm if and only if 1 /∈ dom gr. The result follows directly from Lemma 6.2.

Proof of Proposition 3.2. If 1 ∈ dom gr, then δℓ,r(X) ∈ Rm and the computation
in the proof of Theorem 3.1 can be concluded as

Dℓ,r(X) = δℓ,r(X) +
⋂

w∈Rm
+ \{0}

{
z ∈ Rm |wTz ≥ inf

x∈C
wT(r · x)

}

= δℓ,r(X) + r · C. (6.41)

With this representation, it is easy to check that Dℓ,r is a closed convex risk
measure since δℓi,ri is a lower semicontinuous convex scalar risk measure for each
i ∈ {1, . . . , m}. If 1 /∈ dom gr, then δℓ,r(X) = −∞ and hence Dℓ,r(X) = Rm due to
the convention wT(−∞) = −∞ in Lemma 6.2.

Proof of Proposition 3.4. Let w ∈ Rm
+\{0} and M(r, w) as in (6.31). For the

moment, let us denote by −α the function defined by the right-hand side of (3.32).
Using the dual representation of scalar divergence risk measures provided by The-
orem 2.1, we have

M(r, w)

=

{
z ∈ Rm |wTz ≥

m∑

i=1

sup
Qi∈M(P)

wi(EQi [−Xi] − Igi,ri(Qi |P)) + inf
x∈C

wT(r · x)

}
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=
⋂

Q∈Mm(P)

{
z ∈ Rm |wTz ≥ wT(EQ[−X ]− Ig,r(Q |P)) + inf

x∈C
wT(r · x)

}

=
⋂

Q∈Mm(P)

(−α(Q, w) + EQ[−X ]). (6.42)

Hence,

Dℓ,r(X) =
⋂

w∈Rm
+ \{0}

M(r, w)

=
⋂

(Q,w)∈Mm(P)×(Rm
+ \{0})

(−α(Q, w) + EQ[−X ]). (6.43)

Finally, we show that −α = −αDℓ,r . Using (3.29) for Q ∈ Mm(P), w ∈ Rm
+\{0},

we obtain

−αDℓ,r (Q, w) = cl
⋃

X∈L∞
m

(EQ[X ] + δℓ,r(X) + r · C + G(w))

=
{
z ∈ Rm |wTz ≥ inf

X∈L∞
m

wT(EQ[X ] + δℓ,r(X)) + inf
x∈C

wT(r · x)
}

=

{
z ∈ Rm |wTz ≥ −

m∑

i=1

wiIgi,ri(Qi |P) + inf
x∈C

wT(r · x)

}

= −α(Q, w), (6.44)

where the third equality follows from the analogous scalar result established in
Proposition 2.4. Hence, −αDℓ,r = −α and (3.32) holds.

Proof of Proposition 3.5. Using (3.29) for Q ∈ Mm(P), w ∈ Rm
++, we obtain

−αRℓ(Q, w)

= cl
⋃

X∈L∞
m

(
EQ[X ] + G(w) + cl

⋃

z∈Rm:
E[ℓ(−X−z)]∈Rm

{z + Rm
+ | 0 ∈ E[ℓ(−X − z)] + C}

)

= cl
⋃

z∈Rm

⋃

X∈L∞
m :

E[ℓ(−X−z)]∈Rm

{z + EQ[X ] + G(w) | 0 ∈ E[ℓ(−X − z)] + C}

= cl
⋃

X∈L∞
m

{EQ[−X ] + G(w) | 0 ∈ E[ℓ(X)] + C}

= inf
(Gm,⊇)

{EQ[−X ] + G(w) | 0 ∈ E[ℓ(X)] + C, X ∈ L∞
m}, (6.45)

where E[ℓ(X)] + C is understood to be ∅ whenever E[ℓ(X)] = +∞. Next, we com-
pute the optimal value of the dual problem for this convex set-valued minimization
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problem. By (6.22), for X ∈ L∞
m , λ ∈ Rm

+ , v ∈ Rm
+\{0}, we have L(X, λ, v) = Rm if

v ̸∈ {sw | s > 0}. Moreover, if v = sw for some s > 0, then

L(X, λ, v) = EQ[−X ] + G(sw) +
{
z ∈ Rm | swTz ≥ λTE[ℓ(X)] + inf

x∈C
λTx

}

=
{
z ∈ Rm | swTz ≥ swTEQ[−X ] + λTE[ℓ(X)] + inf

x∈C
λTx

}
, (6.46)

whenever E[ℓ(X)] ∈ Rm and L(X, λ, v) = ∅ otherwise. Observe G(sw) = G(w) for
every s > 0. Hence,

H(λ, sw) =

{
z ∈ Rm |wTz ≥ inf

X∈L∞
m :

E[ℓ(X)]∈Rm

(
wTEQ[−X ] +

1
s
λTE[ℓ(X)]

)
+ inf

x∈C

1
s
λTx

}

= H

(
λ

s
, w

)
(6.47)

for λ ∈ Rm
+ , s > 0. The optimal value of the dual problem is

sup
{

H

(
λ

s
, w

)∣∣∣∣ s > 0, λ ∈ Rm
+

}
= sup{H(λ, w) |λ ∈ Rm

+}. (6.48)

Since wi > 0 for every i ∈ {1, . . . , m} by assumption, we have

H(λ, w)

=
{
z ∈ Rm |wTz ≥ inf

X∈L∞
m

(wTEQ[−X ] + wT(r · E[ℓ(X)])) + inf
x∈C

wT(r · x)
}
,

(6.49)

where ri := λi
wi

, i ∈ {1, . . . , m}. Note that

inf
X∈L∞

m

(wTEQ[−X ] + wT(r · E[ℓ(X)]))

=
m∑

i=1

wi inf
Xi∈L∞

(
wiE

[
−dQi

dP Xi

]
+ riE[ℓi(Xi)]

)

=
m∑

i=1

wiE
[

inf
xi∈R

(
−dQi

dP xi + riℓi(xi)
)]

= wTIg,r(Q |P). (6.50)

Therefore, the optimal value of the dual problem equals the middle term in
(3.33). Note that Slater’s condition holds, that is, there exists X̄ ∈ L∞

m such that
(E[ℓ(X̄)] + C) ∩ −Rm

++ ̸= ∅. This is immediate from the scalar version as in the
proof of Proposition 2.4. Hence, the first equality in (3.33) holds by Hamel & Löhne
(2014, Theorem 6.6). Since Ig,r(Q |P) ̸∈ Rm if 1 /∈ dom gr, we also have the second
equality in (3.33).
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6.5. Proofs of the results in Sec. 4

Proof of Proposition 4.1. Using the definitions, we have

Rent(X) =
{

z ∈ Rm | ∃ c ∈ C ∀ i ∈ {1, . . . , m} :
E[eβi(−Xi−zi)] − 1

βi
= −ci

}

=
{

z ∈ Rm | ∃ c ∈ C ∀ i ∈ {1, . . . , m} : zi =
1
βi

log
E[e−βiXi ]
1 − βici

, 1 > βici

}

= ρent(X) + Cent. (6.51)

Proof of Proposition 4.2. For each i ∈ {1, . . . , m}, note that

δℓi,ri(Xi) = inf
zi∈R

(zi + riE[ℓi(−Xi − zi)])

=
1
βi

log E[e−βiXi ] +
1
βi

(1 − ri + log ri) ∈ R. (6.52)

The result follows from Proposition 3.2.

Proof of Lemma 4.1. First, we extend fw and hw from Rm
++ to Rm with their

original definitions so that we have infr∈Rm
++

(fw(r) + hw(r)) = infr∈Rm(fw(r) +
hw(r)). Note that fw is a proper, strictly convex, continuous function and has a
unique minimum point. Hence, by Rockafellar (1970, Theorem 27.1(d)), fw has no
directions of recession, that is, the recession function fw0+ of fw always takes strictly
positive values; see Rockafellar (1970, pp. 66 and 69) for definitions. Besides, hw is
a proper, convex, lower semicontinuous function. If hw ≡ +∞, then the infimum
of fw + hw is +∞. Suppose that hw is a proper function. Since 0 is a boundary
point of −C, hw always takes nonnegative values. Hence, the infimum of hw is
finite. By Rockafellar (1970, Theorem 27.1(a), (i)), this implies that the recession
function hw0+ of hw always takes nonnegative values. Therefore, fw + hw has no
directions of recession since (fw + hw)0+ = fw0+ + hw0+ by Rockafellar (1970,
Theorem 9.3). Hence, by Rockafellar (1970, Theorem 27.1(b), (d)) and the strict
convexity of fw + hw, this function has a unique minimum point rw ∈ Rm

++ which
is determined by the first-order condition

0 ∈ ∂(fw + hw)(rw)

=
[
wi

βi
− wi

βirw
i

]m

i=1

+
{

w · x̄ | x̄ ∈ −C, sup
x∈−C

wT(rw · x) = wT(rw · x̄)
}
, (6.53)

that is,
[

1
βi

(
1 − 1

rw
i

)]m

i=1

∈ C, inf
x∈C

wT(rw · x) =
m∑

i=1

wirw
i

βi

(
1 − 1

rw
i

)
, (6.54)

which is the claimed property of rw.
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Proof of Proposition 4.3. By Lemma 4.1, it is clear that, for each w ∈ Rm
+\{0},

we have infr∈Rm
++

(fw(r) + hw(r)) = infr∈Γ(fw(r) + hw(r)) = fw(rw) + hw(rw).
Hence,

Rent(X) = ρent(X) +
⋂

w∈Rm
+ \{0},

r∈Rm
++

{z ∈ Rm |wTz ≥ −(fw(r) + hw(r))}

= ρent(X) +
⋂

w∈Rm
+ \{0}

{
z ∈ Rm |wTz ≥ − inf

r∈Γ
(fw(r) + hw(r))

}

=
⋂

r∈Γ

Dent
r (X). (6.55)

Let w ∈ Rm
+\{0} such that fw + hw is proper and let r ∈ Rm

++. Suppose
that Dent

r (X) ⊆ Dent
rw (X). Then, −(fw(r) + hw(r)) = infz∈Dent

r (X) wTz ≥
infz∈Dent

rw (X) wTz = −(fw(rw)+hw(rw)), that is, fw(r)+hw(r) ≤ fw(rw)+hw(rw).
By Lemma 4.1, this implies that r = rw .

Proof of Proposition 4.4. Proposition 3.5 and Lemma 4.1 give

−αRℓ(Q, w)

=
⋂

r∈1/dom g

{
z ∈ Rm |wTz ≥ −wTIg,r(Q |P) + inf

x∈C
wT(r · x)

}

= −β−1 · H(Q |P)

+
⋂

r∈Rm
++

{
z ∈ Rm |wTz ≥

m∑

i=1

wi

βi
(1 − ri + log ri) + inf

x∈C
wT(r · x)

}

= −β−1 · H(Q |P) +
⋂

r∈Rm
++

{z ∈ Rm |wTz ≥ −(fw(r) + hw(r))}

= −β−1 · H(Q |P) + {z ∈ Rm |wTz ≥ −(fw(rw) + hw(rw))}

= −β−1 · H(Q |P)

+

{
z ∈ Rm |wTz ≥

m∑

i=1

wi

βi
(1 − rw

i + log rw
i ) + inf

x∈C
wT(rw · x)

}
, (6.56)

assuming that hw is not identically +∞ (otherwise −αRℓ(Q, w) = Rm). The passage
from the last line to the claimed formula is by (6.54).

6.6. Proofs of the results in Sec. 5

Proof of Proposition 5.1. Clearly, Rmar(0) ̸= ∅ since 0 ∈ Λm(0) and R(0) ̸= ∅.
We prove the monotonicity and translativity of the function Y *→ R̃(Y ) :=⋃

X∈Λm(Y ) R(X) first. For monotonicity, consider Y 1, Y 2 ∈ L∞
d with Y 1 ≤ Y 2.
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Let X ∈ Λm(Y 1). With Ỹ := Y 2 − Y 1 ∈ L∞
d,+, it holds

BX ∈ Y 1 + K = Y 2 − Ỹ + K

= Y 2 −
T−1∑

t=0

L∞
d (Ft, Ct ∩Dt) − (Ỹ + L∞

d (FT , CT ))

⊆ Y 2 −
T−1∑

t=0

L∞
d (Ft, Ct ∩Dt) − (L∞

d,+ + L∞
d (FT , CT ))

⊆ Y 2 + K, (6.57)

where the last inclusion holds since L∞
d,+ + L∞

d (FT , CT ) = L∞
d (FT , Rd

+) + L∞
d (FT ,

CT ) = L∞
d (FT , CT ) due to CT (ω) ∈ Gd for every ω ∈ Ω. Hence, X ∈ Λm(Y 2). There-

fore, Λm(Y 1) ⊆ Λm(Y 2), which implies R̃(Y 1) ⊆ R̃(Y 2). To prove translativity, let
Y ∈ L∞

d , z ∈ Rm. For every X ∈ L∞
m , it holds

X ∈ Λm(Y + Bz) ⇔ BX ∈ Y + Bz + K

⇔ B(X − z) ∈ Y + K

⇔ X − z ∈ Λm(Y ). (6.58)

Hence,

R̃(Y + Bz) =
⋃

X∈Λm(Y +Bz)

R(X) =
⋃

X−z∈Λm(Y )

R(X)

=
⋃

X∈Λm(Y )

R(X + z) = R̃(Y ) − z (6.59)

from which translativity follows. It is easy to check that the last two properties are
preserved under the closure and convex hull operators. Hence, Rmar is monotone
and translative. It is also easy to check that R̃ and Rmar are convex since R is
convex. Finally, since R̃ has convex values and this property is preserved under the
closure operator, (5.6) follows.

As a preparation for the proof of Theorem 5.1, we establish a link between
the notions of market risk measure and set-valued infimal convolution. We begin
by introducing two key concepts from (complete lattice-based) set-valued convex
analysis, the reader is referred to Hamel (2009) for details.

Definition 6.1 (Hamel 2009, Example 1). Let Y ⊆ L∞
d . The indicator function

of the set Y is the function Im
Y : L∞

d → Gm defined by

Im
Y (Y ) =

{
Rm

+ if Y ∈ Y,

∅ else.
(6.60)
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Definition 6.2 (Hamel 2009, Sec. 4.4(C)). Let N ≥ 1 be an integer. For each
n ∈ {1, . . . , N}, let Fn : L∞

d → Gm be a function. The function !N
n=1F

n : L∞
d → Gm

defined by

(!N
n=1F

n)(Y ) = cl co
⋃

Y 1,...,Y N∈L∞
d

{
N∑

n=1

Fn(Y n) |Y 1 + · · · + Y N = Y

}
, (6.61)

is called the infimal convolution of F 1, . . . , FN .

Recall the linear operator B : Rm → Rd defined by (5.2): Bx = (x1, . . . , xm,
0, . . . , 0)T for x ∈ Rm. Its adjoint B∗ : Rd → Rm is defined by (5.3): B∗y =
(y1, . . . , ym)T for y ∈ Rd.

The next lemma shows that the market risk measure is basically the infimal
convolution of the original risk measure and the indicator function of the negative
of the set K of all freely available portfolios defined by (5.1).

Lemma 6.3. Let R : L∞
m → Gm be a closed convex risk measure and define R̃ :

L∞
d → Gm by

R̃(Y ) =

{
R(B∗Y ), if Y ∈ B(L∞

m ),

∅, else.
(6.62)

Then, for each Y ∈ L∞
d ,

Rmar(Y ) = (R̃ ! Im
−K)(Y )

= (R̃ ! Im
L∞

d (F0,C0∩D0)
! · · ·! Im

L∞
d (FT ,CT ∩DT ))(Y ). (6.63)

Proof. For each Y ∈ L∞
d , we have

Rmar(Y )

= cl
⋃

{X∈L∞
m |BX∈Y +K}

R(X) = cl
⋃

U∈Y +K
R̃(U)

= cl
⋃

U,U ′∈L∞
d

{R̃(U) + Im
−K(U ′) |U + U ′ = Y }

= cl
⋃

U,U0,...,UT ∈L∞
d

{
R̃(U) +

T∑

t=0

Im
L∞

d (Ft,Ct∩Dt)(U
t) |U + U0 + · · · + UT = Y

}
.

(6.64)

Since each of the functions in the infimal convolution is convex, we can omit the
convex hull operator in Definition 6.2; and the result follows.

By Lemma 6.3, the market risk measure can be formulated as an infimal con-
volution. As in the scalar theory, the Legendre–Fenchel conjugate of the infimal
convolution of finitely many convex functions is the sum of the Legendre–Fenchel

1750026-42



July 26, 2017 5:51 WSPC/S0219-0249 104-IJTAF SPI-J071 1750026

Set-Valued Shortfall and Divergence Risk Measures

conjugates of these convex functions; see Hamel (2009, Lemma 2). The application
of this result is the main step of the proof of Theorem 5.1. For completeness, we
begin with the definition of conjugate for set-valued functions.

Definition 6.3 (Hamel 2009, Definition 5). Let F : L∞
d → Gm be a function.

The (Fenchel) conjugate of F is the function −F ∗ : L1
d × (Rm

+\{0}) defined by

−F ∗(V, v) = cl
⋃

Y ∈L∞
d

(F (Y ) + {z ∈ Rm | vTz ≥ E[−V TY ]}). (6.65)

Proof of Theorem 5.1. Since clRmar has closed values, Lemma 6.3 implies that,
for each Y ∈ L∞

d ,

(R̃ ! Im
L∞

d (F0,C0∩D0)
! · · ·! Im

L∞
d (FT ,CT∩DT ))(Y ) = Rmar(Y ) ⊆ (cl Rmar)(Y ).

(6.66)

By Hamel (2009, Remark 6, Lemma 2), Rmar and clRmar have the same conjugate
on L1

d × (Rm
+\{0}) given by

−(R̃ ! Im
L∞

d (F0,C0∩D0)
! · · · ! Im

L∞
d (FT ,CT ∩DT ))

∗

= −R̃∗ +
T∑

t=0

−(Im
L∞

d (Ft,Ct∩Dt))
∗. (6.67)

Note that this is the set-valued version of the rule “the conjugate of the infimal
convolution of finitely many convex functions is the sum of their conjugates”. Let
(V, v) ∈ L1

d × (Rm
+ \{0}). By Hamel et al. (2011, Proposition 6.7) on the conjugate

of a risk measure, for every (V, v) ∈ L1
d × (Rm

+ \{0}), we have −(cl(Rmar(·)))∗(V,
v) = Rm unless we have V ∈ −L1

d,+ and v = E[−B∗V ].
Next, we pass from L1

d × (Rm
+\{0}) to Wm,d = Md(P) × ((Rm

+\{0}) × Rd−m
+ )

using the “change of variables formula” (Hamel et al. 2011, Lemma 3.4). One
obtains that for every V ∈ −L1

d,+ with v = E[−B∗V ], there exists (Q, w) ∈ Wm,d

such that, for every Y ∈ L∞
d ,

{z ∈ Rm | vTz ≥ E[(−V )TY ]} = B∗((EQ[Y ] + G(w)) ∩ B(Rm)), (6.68)

and conversely, every (Q, w) ∈ Wm,d can be obtained by some V ∈ −L1
d,+ with

v = E[−B∗V ] such that (6.68) holds for every Y ∈ L∞
d . Note that B∗(Rd) =

Rm × {0 ∈ Rd−m}. For such corresponding pairs (V, v) and (Q, w), using (6.68), we
first observe that

−R̃∗(V, v) = cl
⋃

Y ∈L∞
d

(R̃(Y ) + {z ∈ Rm | vTz ≥ E[−V TY ]})

= cl
⋃

Y ∈L∞
d

(R̃(Y ) + B∗((EQ[Y ] + G(w)) ∩ B(Rm)))
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= cl
⋃

Y ∈B(L∞
m )

(R(B∗Y ) + EB∗Q[B∗Y ] + G(B∗w))

= cl
⋃

X∈L∞
m

(R(X) + EB∗Q[X ] + G(B∗w)) = −αR(B∗Q, B∗w).

(6.69)

Next, let t ∈ T. For the same pairs (V, v) and (Q, w), by Definitions 6.1 and 6.3, we
have

−(Im
L∞

d (Ft,Ct∩Dt)
)∗(V, v) = cl

⋃

Ut∈L∞
d (Ft,Ct∩Dt)

{z ∈ Rm | vTz ≥ E[(−V )TU t]}

= cl
⋃

Ut∈L∞
d (Ft,Ct∩Dt)

B∗((EQ[U t] + G(w)) ∩ B(Rm)).

(6.70)

Finally, note that clRmar is a closed convex set-valued function that is finite at
zero by assumption. Hence, by biconjugation for set-valued functions, see (Hamel
2009, Theorem 2), we have

(cl Rmar)(Y ) =
⋂

V ∈−L1
d,+,

v=E[−B∗V ]

[−(clRmar)∗(V, v) + {z ∈ Rm | vTz ≥ E[V TY ]}], (6.71)

for every Y ∈ L∞
d , and the above calculations allow for a passage to vector proba-

bility measures:

(cl Rmar)(Y ) =
⋂

(Q,w)∈Wm,d

[−αclRmar(Q, w) + B∗((EQ[−Y ] + G(w)) ∩ B(Rm))],

(6.72)

where, for (Q, w) ∈ Wm,d,

−αclRmar(Q, w) = −αR(B∗Q, B∗w)

+
T∑

t=0

cl
⋃

Ut∈L∞
d (Ft,Ct∩Dt)

B∗((EQ[U t] + G(w)) ∩ B(Rm)). (6.73)

Proof of Corollary 5.1. Let (Q, w) ∈ Wm,d\Wconvex
m,d . So there exist t ∈ T and

A ∈ Ft such that P(A) > 0 and w · E[dQ
dP | Ft](ω) /∈ (0+Ct(ω))+ for each ω ∈ A.

Using the fact that the effective domain of the support function of a nonempty closed
convex set in Rd is a subset of its recession cone, which is an easy consequence of
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Rockafellar (1970, Corollary 14.2.1), we see that infyt∈Ct(ω)(w ·E[dQ
dP
∣∣Ft](ω))Tyt =

−∞ for each ω ∈ A. Note that

cl
⋃

Ut∈L∞
d (Ft,Ct)

B∗((EQ[U t] + G(w)) ∩ B(Rm))

=
{
z ∈ Rm |wT(Bz) ≥ inf

Ut∈L∞
d (Ft,Ct)

wTEQ[U t]
}

=

{
z ∈ Rm | (B∗w)Tz ≥ E

[
inf

yt∈Ct

(
w · E

[
dQ
dP

∣∣∣∣Ft

])T

yt

]}
, (6.74)

where the last equality is by Rockafellar & Wets (1998, Theorem 14.60). Note that
the passage to conditional expectations in the third line is necessary for the appli-
cation of this theorem. Since P(A) > 0, this implies cl

⋃
Ut∈L∞

d (Ft,Ct)
B∗((EQ[U t] +

G(w)) ∩ B(Rm)) = Rm. By the computation in the proof of Proposition 5.1, it
follows that −αclRmar(Q, w) = Rm.

Proof of Corollary 5.2. Let t ∈ T. For each ω ∈ Ω, we have

inf
yt∈Ct(ω)

(
w · E

[
dQ
dP

∣∣∣∣Ft

]
(ω)
)T

yt =

⎧
⎪⎨

⎪⎩
0 if w · E

[
dQ
dP

∣∣∣∣Ft

]
(ω) ∈ (Ct(ω))+,

−∞ else
(6.75)

since Ct(ω) is a nonempty closed convex cone. Similar to the calculation in the proof
of Corollary 5.1, we have

cl
⋃

Ut∈L∞
d (Ft,Ct)

B∗((EQ[U t] + G(w)) ∩ B(Rm))

=

{
z ∈ Rm | (B∗w)Tz ≥ E

[
inf

yt∈Ct

(
w · E

[
dQ
dP

∣∣∣∣Ft

])T

yt

]}
(6.76)

from which the result follows immediately.

Proof of Proposition 5.2. For the first part, let i ∈ {1, . . . , m}. From Remark 2.2,
recall that riℓi(s) = supy∈R(sy − rigi( y

ri
)) ≥ s − rigi( 1

ri
) for every s ∈ R. Hence,

given X ∈ L∞
m ,

δℓi,ri(Xi) = inf
y∈R

(y + riE[ℓi(−Xi − y)]) ≥ −E[Xi] − rigi

(
1
ri

)
(6.77)

for every i ∈ {1, . . . , m}. Then,
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inf
z∈Dmar

ℓ,r (0)
(B∗w̄)Tz

= inf
X∈Λm(0)

inf
z∈Dℓ,r(X)

(B∗w̄)Tz

= inf
X∈Λm(0)

(B∗w̄)Tδℓ,r(X) + inf
x∈C

(B∗w̄)T(r · x)

≥ inf
X∈Λm(0)

(B∗w̄)TE[−X ] −
m∑

i=1

w̄irigi

(
1
ri

)
+ inf

x∈C
(B∗w̄)T(r · x)

= inf
X∈Λm(0)

w̄TE[−BX ] −
m∑

i=1

w̄irigi

(
1
ri

)
+ inf

x∈C
(B∗w̄)T(r · x)

≥ inf
Y ∈K

w̄TE[−Y ] −
m∑

i=1

w̄irigi

(
1
ri

)
+ inf

x∈C
(B∗w̄)T(r · x)

=
T∑

t=0

inf
U∈L∞

d (Ft,Ct∩Dt)
E[w̄TU ] −

m∑

i=1

w̄irigi

(
1
ri

)
+ inf

x∈C
(B∗w̄)T(r · x)

≥
T∑

t=0

inf
U∈L∞

d (Ft,Ct)
E[w̄TU ] −

m∑

i=1

w̄irigi

(
1
ri

)
+ inf

x∈C
(B∗w̄)T(r · x) =: a,

(6.78)

where the first inequality follows from (6.77), the second inequality follows since
Λm(0) = {X ∈ L∞

m |BX ∈ K}, and the last inequality follows since L∞
d (Ft, Ct ∩

Dt) ⊆ L∞
d (Ft, Ct) for each t ∈ {0, . . . , T}. By the same arguments as in the proofs

of Corollary 5.1 and Corollary 5.2, the hypotheses guarantee that a > −∞. Hence,

Dmar
ℓ,r (0) ⊆

{
η ∈ Rm | (B∗w̄)Tη ≥ inf

z∈Dmar
ℓ,r (0)

(B∗w̄)Tz
}

⊆ {η ∈ Rm | (B∗w̄)Tη ≥ a} ̸= Rm. (6.79)

Note that L∞
m ∋ X *→ {η ∈ Rm | (B∗w̄)Tη ≥ a} ∈ Gm is a weak*-closed convex

function. Hence, the desired finiteness condition follows since Remark 5.3 yields

(cl Dmar
ℓ,r )(0) ⊆ {η ∈ Rm | (B∗w̄)Tη ≥ a} ̸= Rm. (6.80)

For the second part, (3.23) yields Rℓ(X) ⊆ Dℓ,r(X) for every X ∈ L∞
m ; hence,

by Definition 5.3, (clRmar
ℓ )(Y ) ⊆ (cl Dmar

ℓ,r )(Y ) for every Y ∈ L∞
d . The result follows

now from the previous part.
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U. Çetin & L. C. G. Rogers (2007) Modeling liquidity effects in discrete time, Mathematical
Finance 17 (1), 15–29.

C. Chen, G. Iyengar & C. Moallemi (2013) An axiomatic approach to systemic risk,
Management Science 59 (6), 1373–1388.

A. Cherny & M. Kupper (2007) Divergence utilities. SSRN:1023525.
I. Csiszár (1967) On topological properties of f-divergence, Studia Scientiarum Mathemati-

carum Hungarica 2 (1), 329–339.
Z. Feinstein & B. Rudloff (2013) Time consistency of dynamic risk measures in markets

with transaction costs, Quantitative Finance 13 (9), 1473–1489.
Z. Feinstein & B. Rudloff (2015a) Multi-portfolio time consistency for set-valued convex

and coherent risk measures, Finance and Stochastics 19 (1), 67–107.
Z. Feinstein & B. Rudloff (2015b) A comparison of techniques for dynamic risk measures

with transaction costs. In: Set Optimization and Applications — The State of the
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