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a b s t r a c t 

We introduce a new continuous location-allocation problem where the facilities have both a fixed open- 

ing cost and a coverage distance limitation. The problem has wide applications especially in the spatial 

planning of water and/or energy access networks where the coverage distance might be associated with 

the physical loss constraints. We formulate a mixed integer quadratically constrained problem (MIQCP) 

under the Euclidean distance setting and present a three-stage heuristic algorithm for its solution: In the 

first stage, we solve a planar set covering problem (PSCP) under the distance limitation. In the second 

stage, we solve a discrete version of the proposed problem where the set of candidate locations for the 

facilities is formed by the union of the set of demand points and the set of locations in the PSCP solution. 

Finally, in the third stage, we apply a modified Weiszfeld’s algorithm with projections that we propose 

to incorporate the coverage distance component of our problem for fine-tuning the discrete space solu- 

tions in the continuous space. We perform numerical experiments on three example data sets from the 

literature to demonstrate the performance of the suggested heuristic method. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Source location and allocation problems are the essential com-

onents of strategic planning for sustainable development. Many

roblems have been studied to help decision making in this area.

ome of these studies included a list of predetermined candidate

ocations to locate source facilities, thus solved site-selecting lo-

ation problems in a discrete space. Greenfield development prob-

ems, however, involves undeveloped sites that have no existing in-

rastructure and the facilities can be located at any point on a con-

inuous space. This type of facility location problems are known as

he site-generating problems ( Love et al., 1988 ). 

Motivated by the popularity of the decentralized systems in the

nergy and the water access networks, in this paper, we study

 site-generating location-allocation problem for greenfield infras-

ructure planning. Our aim is to determine the number and the

ocations of the source facilities, which can be, for example, a solar

r a wind power generation system or a water pump serving de-

and points as a stand-alone system. Assuming that the energy or

he water resource availability is even over the field, the location-

llocation decisions are made based on the spatial locations of the

emand points. Our objective is to minimize the sum of the facil-

ty opening costs, which are independent of the locations of the
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acilities, and the connection costs to serve demand points such as

able or pipe installation costs that are linearly increasing in the

istances to the serving facilities. All facilities are assumed to be

ncapacitated; however, they can only serve demand points within

 specified distance. This coverage distance limitation of the facili-

ies can be associated with the constraints on the voltage drop in

he energy systems (due to the resistance on cables) as in Kocaman

t al. (2012) or the pressure loss in the water systems (due to the

riction in the pipes) as in Douglas et al. (1979) that are both lin-

arly increasing with distance. 

We present and study a continuous location-allocation problem

ith a fixed facility opening cost and a limit on the coverage dis-

ance of the facilities. This problem is related to three well-known

roblems in the literature: the planar set covering problem (PSCP),

he uncapacitated multi-source Weber problem (MWP), and the

imple plant location problem (SPLP). In the special case, where

here is no connection costs between the demand points and their

erving facilities, our problem reduces to the PSCP. The original

et covering problem (SCP) considers a finite collection of sets and

heir costs, and determines the lowest cost sub-collection whose

nion equals the union of the collection. This problem is known

o be an NP-hard problem ( Garey and Johnson, 1979 ). Several ex-

ct ( Balas and Carrera, 1996; Beasley, 1987; Beasley and K.Jörnsten,

992; Fisher and Kedia, 1990 ) and heuristic ( Beasley, 1990; Beasley

nd Chu, 1996; Caprara et al., 1999; Haddadi, 1997; Lorena and

opes, 1994 ) methods are proposed to solve the SCP that have

http://dx.doi.org/10.1016/j.cor.2017.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
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applications in fields such as crew scheduling (e.g., Caprara et al.,

1999 ) and locating emergency facilities (e.g., Rajagopalan et al.,

2008; Toregas et al., 1971 ). The algorithms for the SCP are com-

pared in the survey paper ( Caprara et al., 20 0 0 ) by Caprara et al.

After the turn of the century, the work on the SCP concentrate on

heuristic algorithms based on greedy randomized search ( Bautista

and Pereira, 2007; Haouari and Chaouachi, 2002; Lan et al., 2007 ),

local search ( Yagiura et al., 2006 ), genetic algorithm ( Solar et al.,

2002 ) and ant colony optimization ( Ren et al., 2010 ). The PSCP

problem considers a finite number of demand points in the Eu-

clidean space and determines the minimum number of facilities

and their locations in the plane such that each demand point is

within a certain distance to at least one of these facilities. To

solve the PSCP exactly, Church (1984) defined the circle intersec-

tion points set (CIPS) as the locations of all demand points and

the intersection points of all circles centered at the demand points

with a radius of a predetermined coverage distance. Then, for each

point in the CIPS, a set is formed of all demand points that are

within the coverage distance from the point. Considering the col-

lection of all these sets, the original version of the SCP is solved. It

is possible to show that there exists at least one optimal solution

to the PSCP in which all facilities are located in the CIPS ( Eiselt and

Sandblom, 2013 ). 

The MWP is a site-generating location-allocation problem,

which is also known as the continuous p-median problem. It

locates p facilities in the Euclidean plane to serve a finite set of

demand points, each having an associated weight. In this problem,

each demand point is served by the closest facility and the ob-

jective is to minimize the weighted sum of the distances to the

closest facilities. The MWP is known to be an NP-hard problem

( Megiddo and Supowit, 1984 ); therefore, several heuristic solution

methods are proposed in the literature. Cooper’s iterative location-

allocation algorithm ( Cooper, 1963; 1964 ) is a well-known algo-

rithm developed for this problem. Starting at an arbitrary solution

that divides the set of demand points into p almost-equal-sized

subsets, the algorithm alternates between location and allocation

steps until a local optimal solution is found. In the allocation step,

for fixed locations of the facilities, algorithm simply assigns each

demand point to its nearest facility (breaking ties arbitrarily), and

once the allocations are fixed, in the location step, the problem

reduces to p independent single facility location problems that

can be solved by the modified Weiszfeld’s method in Vardi and

Zhang (2001) . As the final solution depends on the initial solution,

a random multi-start version of this algorithm can be applied as

in Drezner et al. (2016) . Another line of work is based on the idea

of starting at a good initial solution. Based on the observation

that the optimal solution of the continuous problem often has

several facilities co-located with the demand points, in Hansen

et al. (1998) proposed the p-median heuristic. This heuristic first

solves the p-median problem, which chooses p facility locations

from the set of demand points to minimize the weighted sum of

distances. Then, p independent single facility location problems

are solved as in the location step of the Cooper’s algorithm.

Recently, Brimberg and Drezner (2013) proposed to overlay the

area containing the demand points with a grid. Then, a p-median

problem is solved over the nodes of the grid to obtain high-quality

starting points for the Cooper’s algorithm. Since there is a sig-

nificant correlation between the qualities of the initial and the

final solutions, starting at the p-median solution improves the

algorithm results. Brimberg et al. (2014) proposed an alternating

solution procedure where a local search is conducted in the con-

tinuous space to obtain a local optimum. The locations from the

continuous problem solution is then augmented in the discrete

space problem, which is solved again to obtain new initial points

for the continuous space problem. This process continues until

no further improvement is observed. Finally, Drezner et al. (2015)
eveloped a distribution-based variable neighborhood search and a

enetic algorithm, and a hybrid algorithm that combines these two

pproaches. The hybrid approach outperformed both approaches.

or other heuristic, metaheuristic and exact approaches for the

WP, readers can refer to a comprehensive review by Brimberg

t al. (2008) . 

The SPLP is a problem in a discrete space, where there are fixed

acility opening costs and a finite set of possible locations for the

acilities. It aims to minimize the sum of the facility opening costs

nd the weighted connection costs. The adjective “simple” in its

ame is to state that the facilities are uncapacitated. This problem

s widely studied in the literature. Krarup and Pruzan (1983) pro-

ided a highly cited survey on this problem. It is stated in that pa-

er that the SPLP is also an NP-hard problem. The version of SPLP

ith distance constraints also appeared in the literature. Berman

nd Yang (1991) introduced the problem and proposed an itera-

ive algorithm starting from the solution of the uncapacitated fa-

ility location problem. Krysta and Solis-Oba. (2001) and Weng

2013) presented integer programming (IP) formulations for the

nweighted problem and proposed approximation algorithms. The

ork on the continuous space version of the SPLP, however, is very

imited. Brimberg et al. (2004) introduced the fixed cost for facili-

ies that is independent of the location. The problem that we con-

ider in this paper reduces to the problem considered in Brimberg

t al. (2004) if the coverage distance limitation is removed. They

roposed a multi-stage heuristic approach for the problem with-

ut the coverage constraint. Following the path in Hansen et al.

1998) of solving the discrete version to obtain an initial solution

or the continuous problem, in the first stage of this heuristic, the

PLP is solved assuming that the demand points are the poten-

ial locations for facilities. Then, in the second stage, a fine tuning

s performed in the continuous space using Weiszfeld’s method.

rimberg and Salhi (2005) introduced zone-dependent fixed costs

or the facilities, where they defined zones as polygons. An effi-

ient exact solution algorithm for the single facility case was pro-

osed, whereas, for the multi-facility case, they proposed heuristic

rocedures. 

Drezner et al. (1991) introduced a Weber problem with lim-

ted distances. In that problem, the cost for a demand point in-

reases linearly with its distance from the facility until a limit is

eached. Afterwards, the cost stays constant at the limiting value.

 possible motivation for this problem is that, after a distance

imit, the service to demand points may be provided with an al-

ernative method. In that case, the distance limit can be viewed

s a break-even point on the cost. In the distance-limited continu-

us location-allocation problem that we present, as opposed to the

onstant cost after the distance limit in Drezner et al. (1991) , we

ssume an infinite cost after the distance limit, so our problem is

uite different than other distance-limited problems considered in

he literature (e.g. in Drezner et al., 2016; 1991; Fernandes et al.,

014 ). 

In our problem, the number of facilities to be opened is a de-

ision variable. For a given number of facilities and without a dis-

ance limitation, our problem becomes the MWP, which is NP-hard.

e propose a multi-stage heuristic solution method, in which we

olve the discrete version of the problem and then adjust facility

ocations in the continuous space for fine-tuning. The final solution

uality highly depends on the initial solution quality we obtain

rom the discrete version of the problem. Employing the demand

oints as the only possible locations for the facilities (as is done

n Brimberg et al., 2004; Brimberg and Salhi, 2005; and Hansen

t al., 1998 ) would limit the solution quality of the discrete prob-

em. Augmenting this set of possible locations with a small num-

er of additional promising locations is the main idea presented in

his paper. Rather than overlaying the area of demand points by a

ne grid, as is done in Brimberg and Drezner (2013) , we propose
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o solve the PSCP under the distance limitation to obtain these ad-

itional locations. 

The stages of our algorithm can be described as follows: In the

rst stage, we solve the PSCP employing the CIPS for the demand

oints to obtain a set of promising locations to augment the set of

emand points. These additional locations provide the minimum

et cover for the demand points under the distance limitation. In

he second stage, we solve the discrete version of the problem de-

ned over the augmented set. Finally, in the third stage of our

euristic algorithm, starting at the solution of the second stage, we

pply Cooper’s iterative location-allocation algorithm. Note that, for

he location step, we propose a modified version of Weizsfeld’s

lgorithm ( Weiszfeld, 1937 ) to incorporate our coverage distance

onstraint. 

The contributions of this paper can be summarized as follows:

e introduce a new problem which has wide applications in the

patial planning of decentralized energy and water distribution

ystems. Then, we provide the mathematical model of this prob-

em in the continuous space. As the problem is NP-hard, we pro-

ose a three-stage heuristic solution algorithm. In order to incor-

orate the distance limitation constraints, we propose a version of

eizsfeld’s algorithm with projections. We conduct computational

xperiments to illustrate how the proposed algorithm works under

ifferent distance limitations and cost parameters for the problem.

The sections of this paper are outlined as follows: A more pre-

ise statement and the mathematical formulation of the problem

re given in Section 2 . Our heuristic solution method for the prob-

em is explained in Section 3 . Computational results along with the

iscussions are provided in Section 4 . We conclude our paper in

ection 5 . 

. Problem formulation 

Consider a rectangular greenfield of L × W dimensions with N

emand points. The demand point i is at location ( a i , b i ) and has

n associated weight w i > 0. Since each demand point is to be

erved by a single facility, we need at most N facilities to serve all

emand points. 

Both the electric voltage and the water pressure drop with dis-

ance from the source. To prevent from exceeding the maximum

llowable drop, there is a limit on the length of each connection.

e incorporate this limit in our model by introducing a circu-

ar coverage region with the radius D max around each facility, and

ssuming that the demand points outside this region cannot be

erved by the facility. In this paper, we assume that the total de-

and in each coverage region can be met by a single facility, so we

reat the facilities as uncapacitated. Each facility j is located at ( x j ,

 j ) and has a fixed opening cost of F if serving any demand points.

Our objective is to determine the number and the location of

pen facilities, and the assignment of demand points to these facil-

ties to minimize the total cost composed of connection (weighted

istance) and facility opening costs. Since the facilities are unca-

acitated, each demand point will be served by the closest open

acility to minimize its connection cost. We assume that all dis-

ances are Euclidean. Let us denote the index set { 1 , . . . , N} by N 

nd define the decision variables 

d i j : Euclidean distance between demand point i ∈ N and facility j ∈ N
δi : Euclidean distance between demand point i ∈ N and closest open facility 

v j = 

{
1 , if facility j ∈ N is open , 

0 , otherwise , 

z i j = 

{
1 , if demand point i ∈ N is served by facility j ∈ N , 

0 , otherwise . 

We propose to solve the following mixed integer quadrat-

cally constrained programming (MIQCP) problem, denoted by
DLim-CLAP): 

in 

∑ 

j∈N 
v j F + 

∑ 

i ∈N 
w i δi (1) 

ubject to 
 

j∈N z i j = 1 i ∈ N ; (2) 

 i j ≤ v j i, j ∈ N ; (3) 

i ≤ D max i ∈ N ; (4) 

i ≥
√ 

L 2 + W 

2 (z i j − 1) + d i j i, j ∈ N ; (5) 

 

x 
i j 

= a i − x j i, j ∈ N ; (6) 

 

y 
i j 

= b i − y j i, j ∈ N ; (7) 

 

2 
i j 

≥ (d x 
i j 
) 2 + (d y 

i j 
) 2 i, j ∈ N ; (8) 

 j , y j ∈ R , j ∈ N ; (9) 

 j ∈ { 0 , 1 } , j ∈ N ; (10) 

 i j ∈ { 0 , 1 } , i, j ∈ N ; (11) 

 

x 
i j 
, d y 

i j 
∈ R , i, j ∈ N ; (12) 

 i j ≥ 0 , i, j ∈ N ; (13) 

i ≥ 0 , i ∈ N . (14) 

We minimize the total distribution cost in (1) that is composed

f facility and connection costs. The constraint set (2) assigns a fa-

ility to each demand point. We guarantee by constraints (3) that

losed facilities are not assigned to any demand points. The dis-

ances of the demand points to their closest facilities are bounded

rom above by D max in the constraint set (4) . The lower bounds on

hese distances are presented in constraints (5) . Constraints (6) and

7) define the x-coordinate difference d x 
i j 

and the y-coordinate dif-

erence d 
y 
i j 
, respectively, between each demand point i and each

acility j . Employing these differences, the set of quadratic con-

traints in (8) define the Euclidean distances between the demand

oints and the facilities. The decision variables of this optimization

roblem are defined in (9) –(14) . 

This optimization problem has N 

2 + N binary and 3 N 

2 + 3 N

ontinuous decision variables, and 6 N 

2 + 3 N constraints. For a

iven number of facilities and without the coverage distance lim-

tations, the DLim-CLAP becomes the MWP which is shown to

e NP-hard by Megiddo and Supowit (1984) . In the next section,

e propose a three-stage heuristic method for the solution of the

Lim-CLAP. 

. A three-stage heuristic algorithm 

We follow the steps of Hansen et al. (1998) , where a heuris-

ic method to solve the MWP was proposed. The discrete coun-

erpart of the MWP is the well studied p-median problem where

he facility locations are chosen from a given set of candidate lo-

ations. While the p-median problem is also an NP-hard problem

 Kariv and Hakimi, 1979 ), solving a p-median problem exactly is a

ot easier than solving a MWP as discussed by Hansen et al. (1998) .

n addition, it was also observed in Hansen et al. (1998) that some

f the optimal facility locations in the MWP coincide with the

emand locations. Motivated by these observations, Hansen et al.

1998) proposed a heuristic solution method for the MWP. This

ethod first solves the p-median problem where the candidate lo-

ations for the facilities are the demand locations. Then, a Weber

roblem (the problem in Weber, 1929 of finding a point minimiz-

ng the sum of weighted distances from given points) is solved

or each cluster of demand points served by the same facility. In
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Fig. 1. Demand points. 
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this study, we adopt a similar approach and propose a three-stage

heuristic method to solve the DLim-CLAP. 

In order to illustrate our solution method graphically, we

present the running example with 14 demand points shown in

Fig. 1 . In this example, the facility cost is given as F = 10 0 0 , the

coverage distance is given as D max = 30 , and the weights are given

as w i = 17 for all i ∈ { 1 , . . . , 14 } . 
In the first stage of our method, we determine the minimum

number of facilities and their locations to cover all demand points

under the given coverage distance. In other words, in this stage,

we are solving the DLim-CLAP problem with w i = 0 for all demand

points i . 

3.1. Stage 1: solving the PSCP 

In order to solve the PSCP defined for our coverage distance,

we first determine the intersection points of all circles centered

at the demand points and with the radius D max . These points are

suggested by Church (1984) to be used to find an optimal solution

to the PSCP by solving a SCP. We show these points for our running

example in Fig. 2 . Note that if the circle of a demand point does

not intersect with any other circle, then the center of the circle, the

demand point itself, is included in the set of the circle intersection

points that we denote by C (see the demand point in the lower

right corner of Fig. 2 ). Let us denote the cardinality of this set by C ,

which is equal to 35 in the running example. Then, we determine

the coverage region for each point in the set of circle intersection

points as in Fig. 3 . 

The demand points in the coverage region of each circle inter-

section point form a set. Considering the collection of all these

sets, we formulate and solve the following set covering problem:

For each demand point i ∈ N and for each circle intersection point

k ∈ C, let us define the coverage parameter 

αik = 

{
1 , if d ik ≤ D max , 

0 , otherwise , 
In this formulation, d ik denotes the Euclidean distance between

he demand point i and the circle intersection point k . Then, we

olve the unicost (SCP) defined as 

in 

∑ 

k ∈C 
v k 

ubject to ∑ 

k ∈C 
αik v k ≥ 1 , i ∈ N ;

 k ∈ { 0 , 1 } , k ∈ C. 

The objective value of the optimal solution will yield the min-

mum number of facilities needed. The PSCP solution (with six fa-

ilities) for our running example is shown in Fig. 4 . Once we ob-

ain the locations of the minimum number of covering facilities

 v ∗
k 

= 1 ), we conclude the first stage of our heuristic. 

.2. Stage 2: determining the number of facilities 

In the second stage, we determine the number of facilities

y solving the discrete version of the DLim-CLAP, which we call

istance-limited “plant” location problem, DLim-PLP, to be consis-

ent with the literature. Rather than limiting the candidate loca-

ions for the facilities to the demand locations as in Brimberg et al.

2004) , Brimberg and Salhi (2005) and Hansen et al. (1998) , we

ugment the set of demand locations with the locations obtained

n the first stage to form the candidate locations for the facilities.

et us denote this augmented set of candidate locations by M and

ts cardinality by M , which is equal to 19 in the running example.

he candidate facility locations in our running example are shown

n Fig. 5 , where the circle intersection points in the PSCP solution

re indicated by the diamonds and the demand points are indi-

ated by the circles. Note that there exists a demand point in the

ower right corner of this figure that is also a circle intersection

oint. 
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Fig. 2. Circle intersection points. 
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Fig. 3. Coverage regions for circle intersection points. 
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Since we provide additional candidate locations to the DLim-

LP, the solution time is expected to increase but in return we

ay obtain a better solution. Our computational results show that

he PSCP solution provides a reasonable number of additional can-

idate locations that improve performance considerably in several

nstances without a major increase in the solution times. 
We formulate and solve the DLim-PLP (i.e, the discrete version

f the DLim-CLAP) as follows: 

in 

∑ 

j∈M 

v j F + 

∑ 

i ∈N 

∑ 

j∈M 

z i j w i d i j (15)
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Fig. 4. The PSCP solution. 
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Fig. 5. Possible facility locations. 

 

 

 

v  
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t  
subject to ∑ 

j∈M 

z i j = 1 , i ∈ N ; (16)

z i j ≤ v j , i ∈ N , j ∈ M ; (17)
∑ 

j∈M 

z i j d i j ≤ D max , i ∈ N ; (18)

t  
 j ∈ { 0 , 1 } , j ∈ M ; (19)

 i j ∈ { 0 , 1 } , i ∈ N , j ∈ M . (20)

In this formulation, d ij indicates the Euclidean distance between

he demand point i and the candidate location j . Since the dis-

ances are no longer decision variables, the objective function in
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Fig. 6. DLim-PLP solution. 
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15) is linear. The constraints (16) and (17) are the constraints

2) and (3) , respectively, rewritten for the augmented candidate

ocation set. The constraints (18) follow from the constraints (4) .

e define the facility opening and the assignment decision vari-

bles in (19) and (20) . Note that Krysta and Solis-Oba. (2001) and

eng (2013) have similar formulations for the problem without

ny weights associated with the demand points. 

The solution of this model yields the number of facilities

 = 

∑ 

j∈M 

v j and the assignments z ij of these facilities to the de-

and points. The solution for our running example with seven

acilities is presented in Fig. 6 , where the locations of the facili-

ies are shown by the squares. Note that there are five facilities in

his figure that are co-located with the demand points. The rest of

he demand points are connected to the facilities in a star topol-

gy. Note also that the two demand points in the upper right cor-

er can be served by a single facility as in Fig. 4 . However, the

istance between these two demand points times the minimum

eight among them exceeds the cost of a facility. Therefore, a sec-

nd facility is opened and both facilities are co-located with these

emand points. 

The second stage of the heuristic method results with a number

f facilities, some co-located with the demand points and others

ossibly at the circle intersection points, and the assignments of

hese facilities to the demand points. Let us denote the cluster of

emand points for each facility k by C k defined as 

 k = { i | z ik = 1 } 
or k ∈ { 1 , . . . , V } . Next, we adjust the facility locations in the con-

inuous space to decrease the total cost. 

.3. Stage 3: determining the facility locations in the continuous 

pace 

In the third stage, starting with the facility locations obtained

n the second stage, we apply Cooper’s alternating location and
llocation algorithm described in Cooper (1964) . This algorithm it-

ratively re-allocates demand points to the closest facilities so that

lusters are updated and then relocates the facility for each clus-

er to minimize the weighted distance cost from each cluster, until

o changes are observed in the demand point allocations and the

acility locations. 

At each location step of Cooper’s algorithm, we solve the opti-

ization problem below, denoted by DLim-Geom, to find the loca-

ion of the facility for each cluster C k : 

in 

∑ 

i ∈ C k 
w i d ik 

ubject to 

 ik ≤ D max , i ∈ C k ; (21) 

 

x 
ik = a i − x k , i ∈ C k ; (22) 

 

y 

ik 
= b i − y k , i ∈ C k ; (23) 

 

2 
ik ≥ (d x ik ) 

2 + (d y 
ik 
) 2 , i ∈ C k ; (24) 

 k , y k ∈ R , (25) 

 

x 
ik , d 

y 

ik 
∈ R , i ∈ C k ; (26) 

 ik ≥ 0 , i ∈ C k . (27) 

Constraints (21) –(24) and the variable definitions (25) –(27) are

he constraints (4), (6) –(8) and the variable definitions (9), (12),

13) , respectively, written for the cluster C k . Without the set of

onstraints in (21) , the DLim-Geom reduces to the Weber problem

n Weber (1929) , which aims to find a point that minimizes the

um of the weighted distances from the points within the clus-

er. Vardi and Zhang proposed a modified Weiszfeld algorithm in
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Fig. 7. Feasible region for the facility. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Projection. 
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Vardi and Zhang (2001) for the Weber problem. The constraints

(21) limit the feasible region for the facility location as in Fig. 7 ,

where we zoom in to the cluster in the upper left corner of Fig. 6 .

In this figure, the facility that serves the four demand points (indi-

cated by the little circles) has to be located within the gray area to

satisfy the constraints (21) . Since the feasible region for the facility

location is the intersection of overlapping circles, it is always con-

vex. The algorithm proposed by Vardi and Zhang may locate the

facility outside this region, i.e., it may return an infeasible solution

for the DLim-Geom. Next, we present an iterative heuristic method

with projections to solve the DLim-Geom. 
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0

20

40

60

80

100

120

140

160

180

200

Fig. 9. Final s
.3.1. An iterative heuristic method with projections 

Let ( x 0 , y 0 ) and r be the center and the radius, respectively,

f the minimum circle enclosing all points in the cluster C k . In

he following discussion, we assume that r ≤ D max , otherwise the

Lim-Geom would be infeasible. We start our algorithm at ( x 0 , y 0 ),

hich is a guaranteed feasible location for the DLim-Geom, as all

emand points are within a D max distance from this location. 

Our modification to the iterative algorithm by Vardi and Zhang

s to project each proposed location to the convex feasible set of

he DLim-Geom at every iteration, so that feasibility is always pre-

erved. Let ( x t , y t ) be the location at iteration t . We assume that
150 200 250

olution. 
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Fig. 10. Demand locations in example data sets. 
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his location is feasible for the DLim-Geom as we start from a fea-

ible location (center of the minimum enclosing circle) and apply

he projection at every iteration to preserve feasibility. Let ( x p , y p )

e the location proposed by Vardi and Zhang’s algorithm for the

ext iteration (see Vardi and Zhang, 2001 for details on how a new

ocation is proposed). If the proposed location is also feasible, i.e., if

he constraints (21) are already satisfied by ( x p , y p ) for all demand

oints in the cluster, then we accept it as the location for the next

teration so that (x t+1 , y t+1 ) = (x p , y p ) . If, on the other hand, the

roposed location is not feasible, i.e., if there are demand points

hat are more than D max away from ( x p , y p ), then we project the

acility’s location onto the feasible region as follows: Consider the

ine segment between ( x t , y t ) and ( x p , y p ). Our projection method

ocates facility at the intersection point of this line segment and

he boundary of the feasible region. Let A ⊂ C k denote the set of

emand points whose distances to the proposed location ( x p , y p )

xceeds D max . For each demand point ( a i , b i ) in A , we determine

he location ( x i , y i ) that is both D max away from the demand point

nd on the line segment whose end points are ( x t , y t ) and ( x p , y p )

see ( x i , y i ) and ( x j , y j ) in Fig. 8 associated with the demand points

 and j , respectively). As the points on the line segment can be de-

cribed by the equation (x t , y t ) + β(x p − x t , y p − y t ) for β ∈ [0, 1],

e determine the corresponding β i ∈ [0, 1] for ( x i , y i ) as the solu-

ion to the second order polynomial equation: 

x t + βi (x p − x t ) − a i 
)2 + 

(
y t + βi (y p − y t ) − b i 

)2 = D 

2 
max 

or all i ∈ A . 
Since the circular regions are convex, for demand points that

re in C k �A , all points on the line segment are within the D max 

istance. For demand points i ∈ A , however, only the points on the

ine segment with β ∈ [0, β i ] are within the D max distance. There-

ore, we determine βmin = min i ∈ A βi and set the facility location for

he next iteration as 

(x (t+1) , y (t+1) ) = (x t , y t ) + βmin (x p − x t , y p − y t ) 

his is the point of intersection of the line segment between

 x t , y t ) and ( x p , y p ), and the boundary of the feasible region.

ince we project locations outside the feasible region onto the

oundary of the feasible region, we preserve feasibility at each

teration. 

We repeat the location updates until the decrease in the ob-

ective value falls below an ε threshold. Since the objective value

annot decrease forever with an amount larger than ε, the al-

orithm stops in a number of iterations that depends on the

value. 

Applying the third stage on our running example, we obtain the

olution shown in Fig. 9 with a cost of 10,228. The diamonds and

he squares show the locations of the facilities at the beginning (as

n Fig. 6 ) and at the end of the third stage, respectively. If we solve

he DLim-CLAP for this small example under a time limit of ten

ours, we obtain the same solution as the best feasible solution

ith an optimality gap of 12%. 
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Table 1 

The PSCP solutions. 

Data D max C Solution Time 

W287 5 34,025 14 1 

10 71,642 6 25 

15 80,516 3 22 

20 81,719 2 27 

25 82,048 2 27 

U654 200 50,905 36 1 

400 74,520 17 2 

600 86,969 13 5 

800 97,854 9 3 

10 0 0 126,614 7 7 

U1060 200 8016 301 0 

400 22,645 127 13 

600 45,104 73 28 

800 75,651 50 180 

10 0 0 111,934 35 102 
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Table 2 

Comparison of methods on W287 and U654. 

w/o PSCP 

Data F D max V 2S Cost 2S Time 3S Cost 

W287 50 5 53 4157 1 4157 

10 46 3951 8 3951 

15 44 3890 11 3889 

20 44 3890 14 3889 

25 43 3885 16 3884 

W287 100 5 42 6511 1 6499 

10 34 5932 11 5932 

15 32 5770 12 5770 

20 32 5770 17 5770 

25 31 5717 18 5717 

W287 200 5 32 10,236 1 10,220 

10 23 8746 8 8741 

15 20 8359 18 8357 

20 20 8313 22 8305 

25 19 8171 21 8157 

W287 500 5 23 17,964 1 17,905 

10 13 13,609 16 13,609 

15 10 12,312 28 12,290 

20 9 12,134 28 12,113 

25 8 11,635 23 11,635 

W287 5K 5 19 106,815 2 106,008 

10 8 53,214 38 52,903 

15 4 35,713 35 35,670 

20 3 31,455 54 31,217 

25 2 26,837 41 26,837 

U654 1K 200 47 81,100 11 80,545 

400 41 77,453 17 77,099 

600 33 75,131 12 74,687 

800 32 74,408 19 73,968 

10 0 0 32 74,408 17 73,968 

U654 2K 200 43 125,833 13 125,297 

400 36 115,774 30 115,451 

600 27 104,678 19 103,794 

800 25 103,328 22 102,660 

10 0 0 24 103,063 18 102,246 

U654 5K 200 39 252,164 19 251,681 

400 28 212,407 23 212,154 

600 19 171,390 33 170,441 

800 15 163,722 39 163,174 

10 0 0 13 156,104 22 155,456 

U654 10K 200 39 447,164 11 446,681 

400 28 352,407 17 352,154 

600 17 256,687 39 255,742 

800 15 238,722 47 238,174 

10 0 0 12 220,776 24 219,752 

U654 15K 200 39 642,164 11 641,681 

400 28 492,407 17 492,154 

600 16 337,128 44 336,046 

800 15 313,722 61 313,174 

10 0 0 11 280,637 28 279,641 
. Computational results 

In this section, we perform experiments on three sets of data

hat are widely used for studying the MWP ( Brimberg et al., 2008 ).

hese data sets include the 287 node example from Bongartz et al.

1994) , and 654 and 1060 customer problems from the TSP library

 Reinelt, 1991 ). We denote these sets by W287, U654, and U1060,

nd present their demand locations in Fig. 10 . W287 has 287 de-

and points with weights w i ranging between 1 and 698. U654

nd U1060, on the other hand, have 654 and 1060 demand points,

espectively, each with a unit weight w i = 1 . These data sets are

lso used in Brimberg et al. (2004) for the multi-source Weber

roblem with constant opening costs. 

In our experiments, the cost of deploying a facility F

akes values from {50, 10 0, 20 0, 50 0, 50 0 0}, { 10 0 0 , 20 0 0 , 50 0 0 ,

0 , 0 0 0 , 15 , 0 0 0 } , and { 10 0 0 , 20 0 0 , 50 0 0 , 10 , 0 0 0 , 15 , 0 0 0 } for data

ets W287, U654, and U1060, respectively. Distance limits D max are

elected from {5, 10, 15, 20, 25} for W287 and from {20 0, 40 0,
w/ PSCP % Cost Diff. 

V 2S Cost 2S Time 3S Cost 2S 3S 

50 4055 1 4033 2.45% 2.98% 

45 3926 10 3926 0.63% 0.63% 

44 3890 16 3889 0.00% 0.00% 

44 3890 17 3889 0.00% 0.00% 

43 3885 18 3884 0.00% 0.00% 

39 6285 1 6272 3.48% 3.49% 

33 5857 8 5857 1.27% 1.27% 

32 5770 15 5770 0.00% 0.00% 

32 5770 20 5770 0.00% 0.00% 

31 5717 29 5717 0.00% 0.00% 

29 9643 1 9632 5.80% 5.75% 

22 8621 12 8619 1.43% 1.39% 

20 8359 21 8357 0.00% 0.00% 

20 8313 24 8305 0.00% 0.00% 

19 8171 23 8157 0.00% 0.00% 

18 16,026 1 16,004 10.79% 10.62% 

12 13,228 24 13,228 2.80% 2.80% 

10 12,312 36 12,290 0.00% 0.00% 

9 12,060 30 12,024 0.61% 0.74% 

8 11,635 26 11,635 0.00% 0.00% 

14 83,889 1 82,867 21.46% 21.83% 

7 48,453 32 48,453 8.95% 8.41% 

4 35,665 37 35,603 0.13% 0.19% 

2 27,618 58 27,555 12.20% 11.73% 

2 26,837 43 26,837 0.00% 0.00% 

44 79,485 18 78,661 1.99% 2.34% 

36 76,403 9 75,292 1.36% 2.34% 

33 75,131 16 74,686 0.00% 0.00% 

32 74,408 21 73,968 0.00% 0.00% 

32 74,408 18 73,968 0.00% 0.00% 

40 121,218 24 120,412 3.67% 3.90% 

30 109,233 11 108,167 5.65% 6.31% 

27 104,678 25 103,794 0.00% 0.00% 

25 103,328 17 102,660 0.00% 0.00% 

24 103,016 18 102,246 0.05% 0.00% 

36 238,549 22 237,796 5.40% 5.52% 

21 185,612 26 184,653 12.62% 12.96% 

19 170,729 35 169,336 0.39% 0.65% 

14 163,194 43 161,454 0.32% 1.05% 

13 156,097 20 155,456 0.00% 0.00% 

36 418,549 20 417,796 6.40% 6.47% 

20 285,793 27 284,128 18.90% 19.32% 

16 252,261 52 249,352 1.72% 2.50% 

13 232,923 50 229,700 2.43% 3.56% 

12 220,776 28 219,752 0.00% 0.00% 

36 598,549 22 597,796 6.79% 6.84% 

18 382,015 62 378,753 22.42% 23.04% 

15 327,703 58 324,656 2.80% 3.39% 

12 295,492 82 295,492 5.81% 5.65% 

11 280,637 24 279,641 0.00% 0.00% 
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Table 3 

Comparison of methods on U1060. 

w/o PSCP w/ PSCP % Cost Diff. 

F D max V 2S Cost 2S Time 3S Cost V 2S Cost 2S Time 3S Cost 2S 3S 

1K 200 481 553,562 29 552,619 302 447,350 14 434,834 19.19% 21.31% 

400 198 376,053 4 373,288 186 373,462 5 370,294 0.69% 0.80% 

600 160 365,149 5 363,314 160 365,056 5 363,270 0.03% 0.01% 

800 153 363,597 5 362,127 153 363,597 5 362,127 0.00% 0.00% 

10 0 0 153 363,596 8 362,120 153 363,596 14 362,120 0.00% 0.00% 

2K 200 481 1,034,562 53 1,033,619 301 748,398 4 735,787 27.66% 28.81% 

400 177 559,957 5 551,734 140 533,047 6 522,706 4.81% 5.26% 

600 109 492,413 5 489,537 103 490,971 6 487,723 0.29% 0.37% 

800 96 485,267 6 483,083 96 485,267 6 483,083 0.00% 0.00% 

10 0 0 96 484,954 11 483,009 96 484,954 12 483,009 0.00% 0.00% 

5K 200 481 2,477,562 15 2,476,619 301 1,651,398 4 1,638,787 33.35% 33.83% 

400 176 1,088,244 5 1,079,885 127 921,786 3 906,563 15.30% 16.05% 

600 94 786,118 18 776,513 81 754,884 7 746,502 3.97% 3.86% 

800 67 718,496 13 712,808 66 717,161 12 712,080 0.19% 0.10% 

10 0 0 61 707,735 18 705,568 61 707,735 19 705,568 0.00% 0.00% 

10K 200 481 4,882,562 14 4,881,619 301 3,156,398 4 3,143,787 35.35% 35.60% 

400 176 1,968,244 6 1,959,885 127 1,556,786 3 1,541,563 20.90% 21.34% 

600 92 1,248,060 41 1,236,696 76 1,144,656 7 1,134,379 8.29% 8.27% 

800 59 1,026,556 21 1,015,782 56 1,015,107 376 1,005,689 1.12% 0.99% 

10 0 0 48 969,852 215 966,652 45 964,999 208 960,718 0.50% 0.61% 

15K 200 481 7,287,562 16 7,286,619 301 4,661,398 4 4,648,787 36.04% 36.20% 

400 176 2,848,244 7 2,839,885 127 2,191,786 4 2,176,563 23.05% 23.36% 

600 92 1,708,060 27 1,696,696 73 1,513,525 6 1,497,946 11.39% 11.71% 

800 59 1,321,556 2645 1,310,782 52 1,285,008 47 1,275,138 2.77% 2.72% 

10 0 0 44 1,197,085 9505 1,191,986 41 1,175,122 370 1,170,384 1.83% 1.81% 

Table 4 

Minimum number of facilities. 

Data D max w/o CIPS w/ CIPS %Diff

W287 5 19 14 26.32% 

10 7 6 14.29% 

15 4 3 25.00% 

20 3 2 33.33% 

25 2 2 0.00% 

U654 200 39 36 7.69% 

400 28 17 39.29% 

600 15 13 13.33% 

800 11 9 18.18% 

10 0 0 8 7 12.50% 

U1060 200 481 301 37.42% 

400 176 127 27.84% 

600 92 73 20.65% 

800 59 50 15.25% 

10 0 0 43 35 18.60% 

6  

p  

w  

f  

6  

R  

3  

o

4

 

t  

s  

t  

f  

o  

c  

s  

t  

t  

n  

s  

u  

P

4

 

s  

d

 

s  

s  

s  

i  

i  

W  

t  

o  

o  

l  

l  

c  

c  

T  

t  

d

 

d  

l  

c  

v  

d  

t  

f

 

c  

m  
0 0, 80 0, 10 0 0} for both U654 and U1060. The ε threshold em-

loyed in the stopping criterion of the iterative method in Stage 3

ith projections is 0.0 0 01. Our computational experiments are per-

ormed on a dual 2.4 GHz Intel Xeon E5-2630 v3 CPU server with

4GB RAM. The optimization problems that are formed in Matlab

2016a are solved using CPLEX 12.7 in parallel mode using up to

2 threads. We enforce a CPU time limit of ten hours on all our

ptimization models. 

.1. Solving the PSCP 

In this section, we present some implementation details about

he first stage of our algorithm on the three data sets. The first

et of columns in Table 1 present the details of each instance. In

his set, we also report the cardinality C of the corresponding CIPS

or each instance. The second set of columns present the results

btained by solving the SCP, namely the minimum number of fa-

ilities needed to cover all demand points when their locations are

elected from the CIPS and the solution CPU times in seconds. Note

hat some of the demand points may also be included in the CIPS;

herefore, the minimum number presents an upper bound on the
umber of additional points supplied by the PSCP to the second

tage. Since the exact solution times are each less than three min-

tes, we do not propose to implement a heuristic method for the

SCP. 

.2. Effect of augmenting with the PSCP locations 

In this section, we demonstrate the benefit of adding the PSCP

olutions to the set of demand points while forming the set of can-

idate locations for the discrete problem DLim-PLP. 

In Table 2 , we present our results for the instances of the data

ets W287 and U654. This table is organized as follows: The first

et of columns presents the details of each instance. The second

et of columns presents the number of facilities V , the correspond-

ng costs in the DLim-PLP, and the CPU times in seconds for solv-

ng the discrete problem defined over the set of demand points.

e also report the cost of the continuous solution obtained at

he end of the third stage. The third stage takes less than a sec-

nd; therefore, we do not report its solution times. The third set

f columns presents the same set of results for the discrete prob-

em defined over the set consisting of the demand and the PSCP

ocations, and its corresponding final solution. In the last set of

olumns, we show the cost improvements due to the additional

andidate locations for both the second and third stage solutions.

hese improvements are calculated as the difference between the

wo methods’ costs divided by the cost of the former method that

oes not employ the additional locations from the PSCP solution. 

Table 2 indicates that including the PSCP locations in the can-

idate locations set may lower the number of facilities in the so-

utions of the DLim-PLP. The decrease in the number of facilities

ause substantial improvements in the cost, especially for large F

alues. Note that augmenting the problem with the additional can-

idate locations that are obtained from the PSCP resulted with up

o 23% improvements in both the second and the third stage costs

or the instances of W287 and U654. 

Since the number of additional candidate locations is small

ompared to the number of demand points, we did not observe a

ajor change in the computation time for the DLim-PLP. The CPU
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Table 5 

Third-stage costs and solution times of U1060 instances. 

Baseline PSCP 40x100 Grid Nodes 40 0 0 Random CIPS Elements 

F Dmax Cost Added Cost % Diff Time Cost % Diff Time Min Cost % Diff Time 

10 0 0 200 552,619 301 434,834 21.31% 14 488,931 11.52% 1029 469,237 15.09% 32,486 

10 0 0 400 373,288 127 370,294 0.80% 18 367,943 1.43% 52 372,400 0.24% 879 

10 0 0 600 363,314 73 363,270 0.01% 33 362,901 0.11% 138 363,157 0.04% 1037 

10 0 0 800 362,127 50 362,127 0.00% 186 361,978 0.04% 158 362,008 0.03% 1156 

10 0 0 10 0 0 362,120 35 362,120 0.00% 116 361,971 0.04% 146 361,958 0.04% 8476 

20 0 0 200 1,033,619 301 735,787 28.81% 4 881,931 14.68% 1398 825,649 20.12% 39,434 

20 0 0 400 551,734 127 522,706 5.26% 19 526,165 4.63% 31 550,138 0.29% 1041 

20 0 0 600 489,537 73 487,723 0.37% 34 486,904 0.54% 169 489,043 0.10% 1278 

20 0 0 800 483,083 50 483,083 0.00% 187 482,963 0.02% 192 483,082 0.00% 1707 

20 0 0 10 0 0 483,009 35 483,009 0.00% 114 482,960 0.01% 189 482,997 0.00% 8472 

50 0 0 200 2,476,619 301 1,638,787 33.83% 4 2,060,931 16.78% 1007 1,893,649 23.54% 48,199 

50 0 0 400 1,079,885 127 906,563 16.05% 16 970,005 10.18% 1120 1,055,923 2.22% 6 84 9 

50 0 0 600 776,513 73 746,502 3.86% 35 756,631 2.56% 1730 770,880 0.73% 29,508 

50 0 0 800 712,808 50 712,080 0.10% 193 709,349 0.49% 182 712,803 0.00% 4256 

50 0 0 10 0 0 705,568 35 705,568 0.00% 121 704,611 0.14% 237 705,417 0.02% 11,297 

10 0 0 0 200 4,881,619 301 3,143,787 35.60% 4 4,025,931 17.53% 1080 3,673,649 24.75% 45,252 

10 0 0 0 400 1,959,885 127 1,541,563 21.34% 16 1,705,005 13.00% 15,465 1,900,923 3.01% 6097 

10 0 0 0 600 1,236,696 73 1,134,379 8.27% 35 1,175,393 4.96% 36,0 0 0 1,221,063 1.26% 33,724 

10 0 0 0 800 1,015,782 50 1,005,689 0.99% 557 997,056 1.84% 492 1,011,628 0.41% 8873 

10 0 0 0 10 0 0 966,652 35 960,718 0.61% 310 958,732 0.82% 710 966,301 0.04% 93,303 

150 0 0 200 7,286,619 301 4,648,787 36.20% 4 5,990,931 17.78% 1174 5,453,649 25.16% 31,398 

150 0 0 400 2,839,885 127 2,176,563 23.36% 17 2,440,005 14.08% 36,0 0 0 2,745,923 3.31% 3996 

150 0 0 600 1,696,696 73 1,497,946 11.71% 34 1,595,861 5.94% 36,0 0 0 1,671,063 1.51% 38,096 

150 0 0 800 1,310,782 50 1,275,138 2.72% 228 1,265,060 3.49% 26,673 1,301,628 0.70% 488,856 

150 0 0 10 0 0 1,191,986 35 1,170,384 1.81% 472 1,166,401 2.15% 22,454 1,187,091 0.41% 1,317,529 
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times of both models were comparable. We report the solutions

for the data set U1060 in Table 3 , which is organized in the same

way as Table 2 . 

Table 3 also indicates that the solution times of both models are

comparable. As also observed in the instances of W287 and U654,

assuming the PSCP solutions as possible locations for the facilities

decreased the number of facilities needed considerably. In the in-

stances of U1060 that we present, we observe cost differences of

up to 36% in both the second and the third stages. 

To explain such big differences in the cost, we present in

Table 4 the minimum number of facilities needed to cover all de-

mand points under both candidate location sets. As the F value is

increased, the cost difference percentages approach to the differ-

ence percentages presented in this table. Hence, we view the de-

crease in the number of facilities as the main reason for the cost

improvements. 

4.3. Effect of augmenting with arbitrary locations 

Additional candidate locations in the DLim-PLP is expected to

lower the cost as we work with a larger feasible set. In the fol-

lowing analysis, we show that the number of additional locations

obtained from the PSCP solution is small; however, the cost im-

provement is substantial compared to the size of the additional lo-

cations set. 

In Table 5 , we compare three different sets of additional candi-

date locations in terms of the third-stage cost improvements and

the solution times on the instances of U1060. Our baseline has no

additional candidate locations. The first set is formed of the loca-

tions in the PSCP solution. For the second set, we overlay a grid

of 40 × 100 on the area containing the demand points and form

the set composed of the 40 0 0 grid nodes. The last set is com-

posed of 40 0 0 random elements from the set of circle intersection

points. Since the result would depend on the selected random lo-

cations, we form 100 such random sets and report the best cost

obtained for each instance. Since 40 0 0 additional candidate loca-

tions increase the size of the problem considerably, we implement

a CPU time limit of 10 h for each CPLEX solution. 
Table 5 is organized as follows: The first set of columns

resents the parameters of the instances. The third column

resents the baseline cost, which is determined by solving the

Lim-PLP with the demand locations as the only candidate lo-

ations for the facilities and then by fine-tuning the facility lo-

ations using our method with projections that we employ in

he third stage of our heuristic method. The third set of columns

resent the number of additional candidate locations, the resulting

osts, the percentage improvements, and the total solution times of

ur method. The number of additional candidate locations for the

ther two methods are 40 0 0 for each instance, hence we do not

nclude this information in the table. In the fourth and fifth sets of

olumns, we present the costs, the percentage improvements and

he solution times for the methods adding the random locations

nd the grid nodes, respectively. Note that the fine-tuning method

s also applied to the methods with the random locations and the

rid nodes. The percentage improvements are calculated as the de-

rease in the cost divided by the cost in the third column. For each

nstance, we indicate the best method by a boldface entry. 

Table 5 indicates that, even though the number of additional

andidate locations is a lot smaller, our proposed method out-

erforms the other two alternatives when D max is small and F is

arge. In these instances, the facility costs are dominant and our

ethod picks the locations to minimize the number of facilities,

hile the other two alternatives cannot. Moreover, our method’s

olution times are substantially smaller for these instances. In the

nstances where the other methods outperform our method, their

osts are at most 1% lower. 

.4. Performance of our iterative heuristic method with projections 

In the third stage of our heuristic solution method, we apply

ooper’s alternating location and allocation algorithm. In the loca-

ion step of this algorithm, instead of solving the DLim-Geom, we

mploy an iterative heuristic method with projections. To demon-

trate the performance of this method, we also obtained results

or the instances reported in Tables 2 and 3 by solving the DLim-
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Table 6 

Heuristic performance on W287 and U654. 

w/o PSCP w/ PSCP 

DLim-Geom Heuristic Cost DLim-Geom Heuristic Cost 

Data F D max Cost Time Cost Time Diff Cost Time Cost Time Diff

W287 50 5 4144 32.93 4157 0.24 0.30% 4022 24.16 4033 0.13 0.27% 

50 10 3946 22.91 3951 0.03 0.13% 3921 18.94 3926 0.03 0.14% 

50 15 3885 20.90 3889 0.03 0.11% 3885 19.27 3889 0.02 0.11% 

50 20 3885 18.73 3889 0.03 0.11% 3885 16.45 3889 0.02 0.11% 

50 25 3880 18.68 3884 0.04 0.11% 3880 19.60 3884 0.02 0.11% 

W287 100 5 6492 24.36 6499 0.03 0.11% 6255 19.06 6272 0.02 0.27% 

100 10 5925 20.65 5932 0.01 0.10% 5850 21.60 5857 0.03 0.11% 

100 15 5764 16.45 5770 0.03 0.11% 5764 16.52 5770 0.01 0.11% 

100 20 5764 21.48 5770 0.02 0.11% 5764 20.92 5770 0.03 0.11% 

100 25 5710 21.40 5717 0.02 0.11% 5710 19.86 5717 0.02 0.11% 

W287 200 5 10,197 23.91 10,220 0.02 0.23% 9608 19.09 9632 0.02 0.25% 

200 10 8724 12.75 8741 0.02 0.19% 8608 8.17 8619 0.02 0.14% 

200 15 8348 11.36 8357 0.02 0.11% 8348 10.20 8357 0.02 0.11% 

200 20 8296 13.35 8305 0.03 0.10% 8296 11.32 8305 0.02 0.10% 

200 25 8147 10.85 8157 0.02 0.12% 8147 9.86 8157 0.02 0.12% 

W287 500 5 17,876 18.28 17,905 0.03 0.16% 15,986 15.21 16,004 0.01 0.11% 

500 10 13,587 10.67 13,609 0.01 0.16% 13,206 9.55 13,228 0.01 0.17% 

500 15 12,283 7.41 12,290 0.03 0.05% 12,283 7.11 12,290 0.02 0.05% 

500 20 12,107 8.64 12,113 0.01 0.05% 12,001 8.32 12,024 0.01 0.19% 

500 25 11,617 6.20 11,635 0.02 0.15% 11,617 5.59 11,635 0.01 0.15% 

W287 50 0 0 5 105,933 18.40 106,008 0.02 0.07% 82,867 9.85 82,867 0.02 0.00% 

50 0 0 10 52,851 10.35 52,903 0.02 0.10% 48,384 7.54 48,453 0.01 0.14% 

50 0 0 15 35,581 13.77 35,670 0.02 0.25% 35,555 7.07 35,603 0.02 0.14% 

50 0 0 20 31,203 11.19 31,217 0.02 0.05% 27,484 32.41 27,555 0.04 0.26% 

50 0 0 25 26,638 13.91 26,837 0.01 0.75% 26,638 14.17 26,837 0.01 0.75% 

U654 10 0 0 200 80,547 29.72 80,545 0.17 0.00% 78,576 22.78 78,661 0.24 0.11% 

10 0 0 400 77,099 27.60 77,099 0.04 0.00% 75,289 20.44 75,292 0.06 0.00% 

10 0 0 600 74,680 26.08 74,687 0.05 0.01% 74,678 20.06 74,686 0.04 0.01% 

10 0 0 800 73,968 26.73 73,968 0.06 0.00% 73,968 20.18 73,968 0.06 0.00% 

10 0 0 10 0 0 73,968 24.65 73,968 0.05 0.00% 73,968 21.05 73,968 0.04 0.00% 

U654 20 0 0 200 125,298 17.11 125,297 0.03 0.00% 120,328 15.79 120,412 0.04 0.07% 

20 0 0 400 115,451 15.62 115,451 0.02 0.00% 108,164 14.59 108,167 0.05 0.00% 

20 0 0 600 103,787 15.13 103,794 0.04 0.01% 103,787 14.49 103,794 0.04 0.01% 

20 0 0 800 102,613 14.64 102,660 0.04 0.05% 102,613 14.57 102,660 0.05 0.05% 

20 0 0 10 0 0 102,219 14.19 102,246 0.04 0.03% 102,217 14.36 102,246 0.04 0.03% 

U654 50 0 0 200 251,682 17.71 251,681 0.04 0.00% 237,712 13.75 237,796 0.01 0.04% 

50 0 0 400 212,154 11.51 212,154 0.01 0.00% 184,566 11.63 184,653 0.03 0.05% 

50 0 0 600 170,321 13.23 170,441 0.02 0.07% 169,115 13.47 169,336 0.03 0.13% 

50 0 0 800 163,070 12.12 163,174 0.02 0.06% 161,339 13.56 161,454 0.02 0.07% 

50 0 0 10 0 0 155,345 11.31 155,456 0.04 0.07% 155,343 16.44 155,456 0.03 0.07% 

U654 10 0 0 0 200 446,682 21.97 446,681 0.03 0.00% 417,712 14.05 417,796 0.01 0.02% 

10 0 0 0 400 352,154 13.76 352,154 0.02 0.00% 283,890 14.17 284,128 0.04 0.08% 

10 0 0 0 600 255,562 16.25 255,742 0.02 0.07% 248,812 13.35 249,352 0.03 0.22% 

10 0 0 0 800 238,070 11.74 238,174 0.02 0.04% 228,612 15.78 229,700 0.04 0.48% 

10 0 0 0 10 0 0 219,636 11.13 219,752 0.03 0.05% 219,636 9.05 219,752 0.03 0.05% 

U654 150 0 0 200 641,682 21.06 641,681 0.04 0.00% 597,712 13.61 597,796 0.02 0.01% 

150 0 0 400 492,154 13.22 492,154 0.03 0.00% 378,473 15.86 378,753 0.03 0.07% 

150 0 0 600 335,754 16.10 336,046 0.02 0.09% 324,004 14.04 324,656 0.04 0.20% 

150 0 0 800 313,070 11.86 313,174 0.02 0.03% 294,209 9.44 295,492 0.01 0.44% 

150 0 0 10 0 0 279,525 11.07 279,641 0.02 0.04% 279,525 10.57 279,641 0.04 0.04% 
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eom at the location steps of Cooper’s algorithm. The ε threshold

s again taken as 0.0 0 01. 

Tables 6 and 7 present the results for the data sets W287, U654,

nd U1060. In these tables, the first set of columns present the de-

ails of the instance. The next set of columns present the solutions

rom both solving the DLim-Geom and applying the heuristic in

he location steps along with the solution times in CPU seconds

or the method not employing the PSCP solutions. The last column

f this set presents the increase in the cost due to employing the

euristic instead of solving DLim-Geom. The last set of columns

resent the same information for the our solution method employ-

ng the PSCP solutions. 

Tables 6 and 7 demonstrate that employing our iterative

ethod with projections instead of solving the DLim-Geom in-

reases the final cost by at most 0.75%. Moreover, the heuristic

ethod obtains these solutions hundreds of times faster than solv-

o  
ng the DLim-Geom. Hence, we propose this heuristic method as a

ecent alternative to solving the DLim-Geom. Note that when the

Lim-Geom is solved at the location steps, the longest solution

ime of the third stage over all the instances of these three data

ets is a little over four minutes, which may also be acceptable for

lanning purposes. 

. Conclusion 

We introduced a new continuous location-allocation problem

ith a distance limitation that is applicable to water and energy

istribution systems. We presented a MIQCP formulation and pro-

osed a heuristic solution method. Our heuristic method is based

n solving a discrete version of the problem to obtain an initial

olution for the Cooper’s algorithm that obtains a local optimum

olution in the continuous space. The candidate facility locations

f discrete version of the problem included not only the demand
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Table 7 

Heuristic performance on U1060. 

w/o PSCP w/ PSCP 

DLim-Geom Heuristic Cost DLim-Geom Heuristic Cost 

F D max Cost Time Cost Time Diff Cost Time Cost Time Diff

10 0 0 200 552,579 188.87 552,619 0.38 0.01% 434,618 184.04 434,834 0.33 0.05% 

10 0 0 400 373,234 164.23 373,288 0.21 0.01% 370,021 80.52 370,294 0.16 0.07% 

10 0 0 600 363,308 77.29 363,314 0.11 0.00% 363,261 71.97 363,270 0.14 0.00% 

10 0 0 800 362,125 85.08 362,127 0.14 0.00% 362,125 71.27 362,127 0.12 0.00% 

10 0 0 10 0 0 362,118 84.49 362,120 0.14 0.00% 362,118 71.43 362,120 0.11 0.00% 

20 0 0 200 1,033,579 215.68 1,033,619 0.25 0.00% 735,546 188.54 735,787 0.15 0.03% 

20 0 0 400 551,577 145.70 551,734 0.20 0.03% 521,935 84.45 522,706 0.11 0.15% 

20 0 0 600 489,413 60.06 489,537 0.06 0.03% 487,278 63.69 487,723 0.06 0.09% 

20 0 0 800 483,082 56.15 483,083 0.07 0.00% 483,082 59.33 483,083 0.06 0.00% 

20 0 0 10 0 0 483,009 59.86 483,009 0.07 0.00% 483,009 60.01 483,009 0.09 0.00% 

50 0 0 200 2,476,579 243.58 2,476,619 0.18 0.00% 1,638,546 223.74 1,638,787 0.13 0.01% 

50 0 0 400 1,079,720 175.33 1,079,885 0.17 0.02% 905,200 82.16 906,563 0.07 0.15% 

50 0 0 600 776,492 87.40 776,513 0.09 0.00% 745,148 49.89 746,502 0.06 0.18% 

50 0 0 800 712,719 65.93 712,808 0.07 0.01% 712,002 48.35 712,080 0.07 0.01% 

50 0 0 10 0 0 705,501 49.94 705,568 0.07 0.01% 705,501 37.62 705,568 0.07 0.01% 

10 0 0 0 200 4,881,579 244.54 4,881,619 0.25 0.00% 3,143,546 172.2 3,143,787 0.13 0.01% 

10 0 0 0 400 1,959,720 174.74 1,959,885 0.20 0.01% 1,540,200 75.44 1,541,563 0.06 0.09% 

10 0 0 0 600 1,235,705 85.01 1,236,696 0.07 0.08% 1,132,724 46.98 1,134,379 0.08 0.15% 

10 0 0 0 800 1,014,142 106.08 1,015,782 0.06 0.16% 1,005,410 66.6 1,005,689 0.1 0.03% 

10 0 0 0 10 0 0 966,356 33.20 966,652 0.04 0.03% 960,403 28.31 960,718 0.05 0.03% 

150 0 0 200 7,286,579 243.34 7,286,619 0.24 0.00% 4,648,546 160.81 4,648,787 0.14 0.01% 

150 0 0 400 2,839,720 176.44 2,839,885 0.19 0.01% 2,175,200 97.86 2,176,563 0.11 0.06% 

150 0 0 600 1,695,705 85.16 1,696,696 0.10 0.06% 1,496,223 67.95 1,497,946 0.07 0.12% 

150 0 0 800 1,309,142 106.14 1,310,782 0.05 0.13% 1,273,352 49.23 1,275,138 0.08 0.14% 

150 0 0 10 0 0 1,191,263 51.17 1,191,986 0.06 0.06% 1,169,890 43.09 1,170,384 0.04 0.04% 
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locations but also the locations in the PSCP solution under the dis-

tance limitation. Even though the number of additional candidate

locations is small, we observed substantial drops in the costs of

the instances with tight distance constraints, as it was feasible to

serve all demand points with fewer facilities. As the coverage dis-

tance gets larger, the number of additional candidate locations gets

smaller; therefore, the benefit of the method diminishes. 

The location step of Cooper’s algorithm, which utilized

Weiszfeld’s method, was also modified to incorporate the distance

limitation. We proposed a projection method to preserve feasibility

at every iteration. 

The first two stages of our three-stage heuristic method yield

clusters of demand points and a facility location for each cluster.

Rather than solving two IP problems, these two stages can be re-

placed by a clustering method. Alternative heuristic methods based

on clustering are currently under investigation. Another research

direction is to consider facilities with limited capacities. The ad-

ditional capacity constraint may be handled by modifying the IP

problem in the second stage, and modifying the allocation step of

Cooper’s algorithm. A final possible research direction is to change

the type of the facilities from decentralized to centralized. In that

case, a two-level network design problem will be considered and

the heuristic solutions can be built upon the foundation presented

in this paper. 
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