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We introduce a new continuous location-allocation problem where the facilities have both a fixed open-
ing cost and a coverage distance limitation. The problem has wide applications especially in the spatial
planning of water and/or energy access networks where the coverage distance might be associated with
the physical loss constraints. We formulate a mixed integer quadratically constrained problem (MIQCP)
under the Euclidean distance setting and present a three-stage heuristic algorithm for its solution: In the
first stage, we solve a planar set covering problem (PSCP) under the distance limitation. In the second
stage, we solve a discrete version of the proposed problem where the set of candidate locations for the
facilities is formed by the union of the set of demand points and the set of locations in the PSCP solution.
Finally, in the third stage, we apply a modified Weiszfeld's algorithm with projections that we propose
to incorporate the coverage distance component of our problem for fine-tuning the discrete space solu-
tions in the continuous space. We perform numerical experiments on three example data sets from the
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literature to demonstrate the performance of the suggested heuristic method.
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1. Introduction

Source location and allocation problems are the essential com-
ponents of strategic planning for sustainable development. Many
problems have been studied to help decision making in this area.
Some of these studies included a list of predetermined candidate
locations to locate source facilities, thus solved site-selecting lo-
cation problems in a discrete space. Greenfield development prob-
lems, however, involves undeveloped sites that have no existing in-
frastructure and the facilities can be located at any point on a con-
tinuous space. This type of facility location problems are known as
the site-generating problems (Love et al., 1988).

Motivated by the popularity of the decentralized systems in the
energy and the water access networks, in this paper, we study
a site-generating location-allocation problem for greenfield infras-
tructure planning. Our aim is to determine the number and the
locations of the source facilities, which can be, for example, a solar
or a wind power generation system or a water pump serving de-
mand points as a stand-alone system. Assuming that the energy or
the water resource availability is even over the field, the location-
allocation decisions are made based on the spatial locations of the
demand points. Our objective is to minimize the sum of the facil-
ity opening costs, which are independent of the locations of the
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facilities, and the connection costs to serve demand points such as
cable or pipe installation costs that are linearly increasing in the
distances to the serving facilities. All facilities are assumed to be
uncapacitated; however, they can only serve demand points within
a specified distance. This coverage distance limitation of the facili-
ties can be associated with the constraints on the voltage drop in
the energy systems (due to the resistance on cables) as in Kocaman
et al. (2012) or the pressure loss in the water systems (due to the
friction in the pipes) as in Douglas et al. (1979) that are both lin-
early increasing with distance.

We present and study a continuous location-allocation problem
with a fixed facility opening cost and a limit on the coverage dis-
tance of the facilities. This problem is related to three well-known
problems in the literature: the planar set covering problem (PSCP),
the uncapacitated multi-source Weber problem (MWP), and the
simple plant location problem (SPLP). In the special case, where
there is no connection costs between the demand points and their
serving facilities, our problem reduces to the PSCP. The original
set covering problem (SCP) considers a finite collection of sets and
their costs, and determines the lowest cost sub-collection whose
union equals the union of the collection. This problem is known
to be an NP-hard problem (Garey and Johnson, 1979). Several ex-
act (Balas and Carrera, 1996; Beasley, 1987; Beasley and K.Jornsten,
1992; Fisher and Kedia, 1990) and heuristic (Beasley, 1990; Beasley
and Chu, 1996; Caprara et al., 1999; Haddadi, 1997; Lorena and
Lopes, 1994) methods are proposed to solve the SCP that have
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applications in fields such as crew scheduling (e.g., Caprara et al.,
1999) and locating emergency facilities (e.g., Rajagopalan et al.,
2008; Toregas et al., 1971). The algorithms for the SCP are com-
pared in the survey paper (Caprara et al., 2000) by Caprara et al.
After the turn of the century, the work on the SCP concentrate on
heuristic algorithms based on greedy randomized search (Bautista
and Pereira, 2007; Haouari and Chaouachi, 2002; Lan et al., 2007),
local search (Yagiura et al., 2006), genetic algorithm (Solar et al.,
2002) and ant colony optimization (Ren et al, 2010). The PSCP
problem considers a finite number of demand points in the Eu-
clidean space and determines the minimum number of facilities
and their locations in the plane such that each demand point is
within a certain distance to at least one of these facilities. To
solve the PSCP exactly, Church (1984) defined the circle intersec-
tion points set (CIPS) as the locations of all demand points and
the intersection points of all circles centered at the demand points
with a radius of a predetermined coverage distance. Then, for each
point in the CIPS, a set is formed of all demand points that are
within the coverage distance from the point. Considering the col-
lection of all these sets, the original version of the SCP is solved. It
is possible to show that there exists at least one optimal solution
to the PSCP in which all facilities are located in the CIPS (Eiselt and
Sandblom, 2013).

The MWP is a site-generating location-allocation problem,
which is also known as the continuous p-median problem. It
locates p facilities in the Euclidean plane to serve a finite set of
demand points, each having an associated weight. In this problem,
each demand point is served by the closest facility and the ob-
jective is to minimize the weighted sum of the distances to the
closest facilities. The MWP is known to be an NP-hard problem
(Megiddo and Supowit, 1984); therefore, several heuristic solution
methods are proposed in the literature. Cooper’s iterative location-
allocation algorithm (Cooper, 1963; 1964) is a well-known algo-
rithm developed for this problem. Starting at an arbitrary solution
that divides the set of demand points into p almost-equal-sized
subsets, the algorithm alternates between location and allocation
steps until a local optimal solution is found. In the allocation step,
for fixed locations of the facilities, algorithm simply assigns each
demand point to its nearest facility (breaking ties arbitrarily), and
once the allocations are fixed, in the location step, the problem
reduces to p independent single facility location problems that
can be solved by the modified Weiszfeld’s method in Vardi and
Zhang (2001). As the final solution depends on the initial solution,
a random multi-start version of this algorithm can be applied as
in Drezner et al. (2016). Another line of work is based on the idea
of starting at a good initial solution. Based on the observation
that the optimal solution of the continuous problem often has
several facilities co-located with the demand points, in Hansen
et al. (1998) proposed the p-median heuristic. This heuristic first
solves the p-median problem, which chooses p facility locations
from the set of demand points to minimize the weighted sum of
distances. Then, p independent single facility location problems
are solved as in the location step of the Cooper’s algorithm.
Recently, Brimberg and Drezner (2013) proposed to overlay the
area containing the demand points with a grid. Then, a p-median
problem is solved over the nodes of the grid to obtain high-quality
starting points for the Cooper’s algorithm. Since there is a sig-
nificant correlation between the qualities of the initial and the
final solutions, starting at the p-median solution improves the
algorithm results. Brimberg et al. (2014) proposed an alternating
solution procedure where a local search is conducted in the con-
tinuous space to obtain a local optimum. The locations from the
continuous problem solution is then augmented in the discrete
space problem, which is solved again to obtain new initial points
for the continuous space problem. This process continues until
no further improvement is observed. Finally, Drezner et al. (2015)

developed a distribution-based variable neighborhood search and a
genetic algorithm, and a hybrid algorithm that combines these two
approaches. The hybrid approach outperformed both approaches.
For other heuristic, metaheuristic and exact approaches for the
MWP, readers can refer to a comprehensive review by Brimberg
et al. (2008).

The SPLP is a problem in a discrete space, where there are fixed
facility opening costs and a finite set of possible locations for the
facilities. It aims to minimize the sum of the facility opening costs
and the weighted connection costs. The adjective “simple” in its
name is to state that the facilities are uncapacitated. This problem
is widely studied in the literature. Krarup and Pruzan (1983) pro-
vided a highly cited survey on this problem. It is stated in that pa-
per that the SPLP is also an NP-hard problem. The version of SPLP
with distance constraints also appeared in the literature. Berman
and Yang (1991) introduced the problem and proposed an itera-
tive algorithm starting from the solution of the uncapacitated fa-
cility location problem. Krysta and Solis-Oba. (2001) and Weng
(2013) presented integer programming (IP) formulations for the
unweighted problem and proposed approximation algorithms. The
work on the continuous space version of the SPLP, however, is very
limited. Brimberg et al. (2004) introduced the fixed cost for facili-
ties that is independent of the location. The problem that we con-
sider in this paper reduces to the problem considered in Brimberg
et al. (2004) if the coverage distance limitation is removed. They
proposed a multi-stage heuristic approach for the problem with-
out the coverage constraint. Following the path in Hansen et al.
(1998) of solving the discrete version to obtain an initial solution
for the continuous problem, in the first stage of this heuristic, the
SPLP is solved assuming that the demand points are the poten-
tial locations for facilities. Then, in the second stage, a fine tuning
is performed in the continuous space using Weiszfeld’s method.
Brimberg and Salhi (2005) introduced zone-dependent fixed costs
for the facilities, where they defined zones as polygons. An effi-
cient exact solution algorithm for the single facility case was pro-
posed, whereas, for the multi-facility case, they proposed heuristic
procedures.

Drezner et al. (1991) introduced a Weber problem with lim-
ited distances. In that problem, the cost for a demand point in-
creases linearly with its distance from the facility until a limit is
reached. Afterwards, the cost stays constant at the limiting value.
A possible motivation for this problem is that, after a distance
limit, the service to demand points may be provided with an al-
ternative method. In that case, the distance limit can be viewed
as a break-even point on the cost. In the distance-limited continu-
ous location-allocation problem that we present, as opposed to the
constant cost after the distance limit in Drezner et al. (1991), we
assume an infinite cost after the distance limit, so our problem is
quite different than other distance-limited problems considered in
the literature (e.g. in Drezner et al., 2016; 1991; Fernandes et al.,
2014).

In our problem, the number of facilities to be opened is a de-
cision variable. For a given number of facilities and without a dis-
tance limitation, our problem becomes the MWP, which is NP-hard.
We propose a multi-stage heuristic solution method, in which we
solve the discrete version of the problem and then adjust facility
locations in the continuous space for fine-tuning. The final solution
quality highly depends on the initial solution quality we obtain
from the discrete version of the problem. Employing the demand
points as the only possible locations for the facilities (as is done
in Brimberg et al., 2004; Brimberg and Salhi, 2005; and Hansen
et al.,, 1998) would limit the solution quality of the discrete prob-
lem. Augmenting this set of possible locations with a small num-
ber of additional promising locations is the main idea presented in
this paper. Rather than overlaying the area of demand points by a
fine grid, as is done in Brimberg and Drezner (2013), we propose
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to solve the PSCP under the distance limitation to obtain these ad-
ditional locations.

The stages of our algorithm can be described as follows: In the
first stage, we solve the PSCP employing the CIPS for the demand
points to obtain a set of promising locations to augment the set of
demand points. These additional locations provide the minimum
set cover for the demand points under the distance limitation. In
the second stage, we solve the discrete version of the problem de-
fined over the augmented set. Finally, in the third stage of our
heuristic algorithm, starting at the solution of the second stage, we
apply Cooper’s iterative location-allocation algorithm. Note that, for
the location step, we propose a modified version of Weizsfeld’s
algorithm (Weiszfeld, 1937) to incorporate our coverage distance
constraint.

The contributions of this paper can be summarized as follows:
We introduce a new problem which has wide applications in the
spatial planning of decentralized energy and water distribution
systems. Then, we provide the mathematical model of this prob-
lem in the continuous space. As the problem is NP-hard, we pro-
pose a three-stage heuristic solution algorithm. In order to incor-
porate the distance limitation constraints, we propose a version of
Weizsfeld's algorithm with projections. We conduct computational
experiments to illustrate how the proposed algorithm works under
different distance limitations and cost parameters for the problem.

The sections of this paper are outlined as follows: A more pre-
cise statement and the mathematical formulation of the problem
are given in Section 2. Our heuristic solution method for the prob-
lem is explained in Section 3. Computational results along with the
discussions are provided in Section 4. We conclude our paper in
Section 5.

2. Problem formulation

Consider a rectangular greenfield of L x W dimensions with N
demand points. The demand point i is at location (a;, b;) and has
an associated weight w; > 0. Since each demand point is to be
served by a single facility, we need at most N facilities to serve all
demand points.

Both the electric voltage and the water pressure drop with dis-
tance from the source. To prevent from exceeding the maximum
allowable drop, there is a limit on the length of each connection.
We incorporate this limit in our model by introducing a circu-
lar coverage region with the radius Dpax around each facility, and
assuming that the demand points outside this region cannot be
served by the facility. In this paper, we assume that the total de-
mand in each coverage region can be met by a single facility, so we
treat the facilities as uncapacitated. Each facility j is located at (x;,
y;) and has a fixed opening cost of F if serving any demand points.

Our objective is to determine the number and the location of
open facilities, and the assignment of demand points to these facil-
ities to minimize the total cost composed of connection (weighted
distance) and facility opening costs. Since the facilities are unca-
pacitated, each demand point will be served by the closest open
facility to minimize its connection cost. We assume that all dis-
tances are Euclidean. Let us denote the index set {1,...,N} by ;
and define the decision variables

d;j : Euclidean distance between demand point i € A" and facility j e V'
§; : Euclidean distance between demand point i € A" and closest open facility
v — {1, if facility j e A is open,
7710, otherwise,
z;; = {]’
0,

We propose to solve the following mixed integer quadrat-
ically constrained programming (MIQCP) problem, denoted by

if demand point i € N is served by facility j e NV,
otherwise.

(DLim-CLAP):
minZijJrZWi& (1)

jen ieN
subject to

Yjenzij =1 feN; (2)
Zij < V; i,jeN; 3)
8; < Dinax ieN; (4)
§i = VIZ+W2(z; — 1) + dj; i,jeN; (5)
¥ = a; - x; i,jeN: (6)
& =bi—y; i,jeN; (7
42 > (d)? + (d)))? ijeN; (8)
X, yj R, jenN: (9)
v € {0, 1}, je N; (10)
zij € {0, 1}, i,jeN: (11)
ds. d e R, i,jeN; (12)
dij > 0. i,jeN; (13)
5> 0. e N, (14)

We minimize the total distribution cost in (1) that is composed
of facility and connection costs. The constraint set (2) assigns a fa-
cility to each demand point. We guarantee by constraints (3) that
closed facilities are not assigned to any demand points. The dis-
tances of the demand points to their closest facilities are bounded
from above by Dmax in the constraint set (4). The lower bounds on
these distances are presented in constraints (5). Constraints (6) and
(7) define the x-coordinate difference dl’fj and the y-coordinate dif-
ference df; respectively, between each demand point i and each
facility j. Employing these differences, the set of quadratic con-
straints in (8) define the Euclidean distances between the demand
points and the facilities. The decision variables of this optimization
problem are defined in (9)-(14).

This optimization problem has N2+ N binary and 3N? + 3N
continuous decision variables, and 6N2 + 3N constraints. For a
given number of facilities and without the coverage distance lim-
itations, the DLim-CLAP becomes the MWP which is shown to
be NP-hard by Megiddo and Supowit (1984). In the next section,
we propose a three-stage heuristic method for the solution of the
DLim-CLAP.

3. A three-stage heuristic algorithm

We follow the steps of Hansen et al. (1998), where a heuris-
tic method to solve the MWP was proposed. The discrete coun-
terpart of the MWP is the well studied p-median problem where
the facility locations are chosen from a given set of candidate lo-
cations. While the p-median problem is also an NP-hard problem
(Kariv and Hakimi, 1979), solving a p-median problem exactly is a
lot easier than solving a MWP as discussed by Hansen et al. (1998).
In addition, it was also observed in Hansen et al. (1998) that some
of the optimal facility locations in the MWP coincide with the
demand locations. Motivated by these observations, Hansen et al.
(1998) proposed a heuristic solution method for the MWP. This
method first solves the p-median problem where the candidate lo-
cations for the facilities are the demand locations. Then, a Weber
problem (the problem in Weber, 1929 of finding a point minimiz-
ing the sum of weighted distances from given points) is solved
for each cluster of demand points served by the same facility. In
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Fig. 1. Demand points.

this study, we adopt a similar approach and propose a three-stage
heuristic method to solve the DLim-CLAP.

In order to illustrate our solution method graphically, we
present the running example with 14 demand points shown in
Fig. 1. In this example, the facility cost is given as F = 1000, the
coverage distance is given as Dmax = 30, and the weights are given
asw; =17 for allie {1,...,14}.

In the first stage of our method, we determine the minimum
number of facilities and their locations to cover all demand points
under the given coverage distance. In other words, in this stage,
we are solving the DLim-CLAP problem with w; = 0 for all demand
points i.

3.1. Stage 1: solving the PSCP

In order to solve the PSCP defined for our coverage distance,
we first determine the intersection points of all circles centered
at the demand points and with the radius Dpyax. These points are
suggested by Church (1984) to be used to find an optimal solution
to the PSCP by solving a SCP. We show these points for our running
example in Fig. 2. Note that if the circle of a demand point does
not intersect with any other circle, then the center of the circle, the
demand point itself, is included in the set of the circle intersection
points that we denote by C (see the demand point in the lower
right corner of Fig. 2). Let us denote the cardinality of this set by C,
which is equal to 35 in the running example. Then, we determine
the coverage region for each point in the set of circle intersection
points as in Fig. 3.

The demand points in the coverage region of each circle inter-
section point form a set. Considering the collection of all these
sets, we formulate and solve the following set covering problem:
For each demand point i € A" and for each circle intersection point
k € C, let us define the coverage parameter
o — {1, if dj < Dinax,

k=10, otherwise,

In this formulation, d;;, denotes the Euclidean distance between
the demand point i and the circle intersection point k. Then, we
solve the unicost (SCP) defined as

min ) "

keC
subject to
Zaikvkzh ieN;
keC
v, € {0, 1}, ke C.

The objective value of the optimal solution will yield the min-
imum number of facilities needed. The PSCP solution (with six fa-
cilities) for our running example is shown in Fig. 4. Once we ob-
tain the locations of the minimum number of covering facilities
(v; = 1), we conclude the first stage of our heuristic.

3.2. Stage 2: determining the number of facilities

In the second stage, we determine the number of facilities
by solving the discrete version of the DLim-CLAP, which we call
distance-limited “plant” location problem, DLim-PLP, to be consis-
tent with the literature. Rather than limiting the candidate loca-
tions for the facilities to the demand locations as in Brimberg et al.
(2004), Brimberg and Salhi (2005) and Hansen et al. (1998), we
augment the set of demand locations with the locations obtained
in the first stage to form the candidate locations for the facilities.
Let us denote this augmented set of candidate locations by M and
its cardinality by M, which is equal to 19 in the running example.
The candidate facility locations in our running example are shown
in Fig. 5, where the circle intersection points in the PSCP solution
are indicated by the diamonds and the demand points are indi-
cated by the circles. Note that there exists a demand point in the
lower right corner of this figure that is also a circle intersection
point.
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Since we provide additional candidate locations to the DLim-
PLP, the solution time is expected to increase but in return we
may obtain a better solution. Our computational results show that
the PSCP solution provides a reasonable number of additional can-
didate locations that improve performance considerably in several
instances without a major increase in the solution times.

250

19

We formulate and solve the DLim-PLP (i.e, the discrete version

of the DLim-CLAP) as follows:

min Z UjF + Z Z Z,‘jW,‘dij

Jjem

ieN jem

(15)



20

subject to
YjemZij=1,
Zjj = Vj,

>jem Zijd;ij < Dmax,
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vj {0, 1}, jeM; (19)
ZijE{O,l}, iEN,jEM. (20)

In this formulation, d;; indicates the Euclidean distance between
the demand point i and the candidate location j. Since the dis-
tances are no longer decision variables, the objective function in
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Fig. 6. DLim-PLP solution.

(15) is linear. The constraints (16) and (17) are the constraints
(2) and (3), respectively, rewritten for the augmented candidate
location set. The constraints (18) follow from the constraints (4).
We define the facility opening and the assignment decision vari-
ables in (19) and (20). Note that Krysta and Solis-Oba. (2001) and
Weng (2013) have similar formulations for the problem without
any weights associated with the demand points.

The solution of this model yields the number of facilities
V =3 icmV; and the assignments z; of these facilities to the de-
mand points. The solution for our running example with seven
facilities is presented in Fig. 6, where the locations of the facili-
ties are shown by the squares. Note that there are five facilities in
this figure that are co-located with the demand points. The rest of
the demand points are connected to the facilities in a star topol-
ogy. Note also that the two demand points in the upper right cor-
ner can be served by a single facility as in Fig. 4. However, the
distance between these two demand points times the minimum
weight among them exceeds the cost of a facility. Therefore, a sec-
ond facility is opened and both facilities are co-located with these
demand points.

The second stage of the heuristic method results with a number
of facilities, some co-located with the demand points and others
possibly at the circle intersection points, and the assignments of
these facilities to the demand points. Let us denote the cluster of
demand points for each facility k by C defined as

Ce = {ilzyw = 1}
for k € {1,...,V}. Next, we adjust the facility locations in the con-

tinuous space to decrease the total cost.

3.3. Stage 3: determining the facility locations in the continuous
space

In the third stage, starting with the facility locations obtained
in the second stage, we apply Cooper’s alternating location and

allocation algorithm described in Cooper (1964). This algorithm it-
eratively re-allocates demand points to the closest facilities so that
clusters are updated and then relocates the facility for each clus-
ter to minimize the weighted distance cost from each cluster, until
no changes are observed in the demand point allocations and the
facility locations.

At each location step of Cooper’s algorithm, we solve the opti-
mization problem below, denoted by DLim-Geom, to find the loca-
tion of the facility for each cluster Cj:

min " widy

ieG
subject to

di < Dmax, ieGg (21)
di = a; — Xy, ieC (22)
&} = bi — Yk, ieCg (23)
43 > (d3)? + (d))?, ieCs (24)
X, Vi € R, (25)
di. d) € R, ieCg (26)
dy > 0, ieC. (27)

Constraints (21)-(24) and the variable definitions (25)-(27) are
the constraints (4), (6)-(8) and the variable definitions (9), (12),
(13), respectively, written for the cluster C,. Without the set of
constraints in (21), the DLim-Geom reduces to the Weber problem
in Weber (1929), which aims to find a point that minimizes the
sum of the weighted distances from the points within the clus-
ter. Vardi and Zhang proposed a modified Weiszfeld algorithm in
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Vardi and Zhang (2001) for the Weber problem. The constraints
(21) limit the feasible region for the facility location as in Fig. 7,
where we zoom in to the cluster in the upper left corner of Fig. 6.
In this figure, the facility that serves the four demand points (indi-
cated by the little circles) has to be located within the gray area to
satisfy the constraints (21). Since the feasible region for the facility
location is the intersection of overlapping circles, it is always con-
vex. The algorithm proposed by Vardi and Zhang may locate the
facility outside this region, i.e., it may return an infeasible solution
for the DLim-Geom. Next, we present an iterative heuristic method
with projections to solve the DLim-Geom.
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Fig. 8. Projection.

3.3.1. An iterative heuristic method with projections

Let (x°, y9) and r be the center and the radius, respectively,
of the minimum circle enclosing all points in the cluster Cj. In
the following discussion, we assume that r < Dpax, otherwise the
DLim-Geom would be infeasible. We start our algorithm at (x°, y9),
which is a guaranteed feasible location for the DLim-Geom, as all
demand points are within a Dpax distance from this location.

Our modification to the iterative algorithm by Vardi and Zhang
is to project each proposed location to the convex feasible set of
the DLim-Geom at every iteration, so that feasibility is always pre-
served. Let (x{, y*) be the location at iteration t. We assume that
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Fig. 9. Final solution.
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Fig. 10. Demand locations in example data sets.

this location is feasible for the DLim-Geom as we start from a fea-
sible location (center of the minimum enclosing circle) and apply
the projection at every iteration to preserve feasibility. Let (xP, yP)
be the location proposed by Vardi and Zhang's algorithm for the
next iteration (see Vardi and Zhang, 2001 for details on how a new
location is proposed). If the proposed location is also feasible, i.e., if
the constraints (21) are already satisfied by (xP, yP) for all demand
points in the cluster, then we accept it as the location for the next
iteration so that (x!*+1,y'*+1) = (xP,yP). If, on the other hand, the
proposed location is not feasible, i.e., if there are demand points
that are more than Dpax away from (xP, yP), then we project the
facility’s location onto the feasible region as follows: Consider the
line segment between (xf, y') and (xP, y?). Our projection method
locates facility at the intersection point of this line segment and
the boundary of the feasible region. Let Ac C denote the set of
demand points whose distances to the proposed location (xP, yP)
exceeds Dmax. For each demand point (a;, b;) in A, we determine
the location (x;, ¥;) that is both Dpax away from the demand point
and on the line segment whose end points are (x{, y*) and (xP, yP)
(see (x;, y;) and (x;, y;) in Fig. 8 associated with the demand points
i and j, respectively). As the points on the line segment can be de-
scribed by the equation (x',y*) + B(xP —xt, yP —yt) for B € [0, 1],
we determine the corresponding 8; € [0, 1] for (x;, y;) as the solu-
tion to the second order polynomial equation:

2
(X +BixP —x) — @) + (V' + B —y) - ) = Djax
for all i € A.

Since the circular regions are convex, for demand points that
are in Ci\A, all points on the line segment are within the Dmax
distance. For demand points i € A, however, only the points on the
line segment with 8 € [0, ;] are within the Dp,x distance. There-
fore, we determine B,;, = min;.4 B; and set the facility location for
the next iteration as

XDy Dy = (X Y1) + Brnin (8F — X, yP = ¥")

This is the point of intersection of the line segment between
(xt, y') and (xP, yP), and the boundary of the feasible region.
Since we project locations outside the feasible region onto the
boundary of the feasible region, we preserve feasibility at each
iteration.

We repeat the location updates until the decrease in the ob-
jective value falls below an € threshold. Since the objective value
cannot decrease forever with an amount larger than €, the al-
gorithm stops in a number of iterations that depends on the
€ value.

Applying the third stage on our running example, we obtain the
solution shown in Fig. 9 with a cost of 10,228. The diamonds and
the squares show the locations of the facilities at the beginning (as
in Fig. 6) and at the end of the third stage, respectively. If we solve
the DLim-CLAP for this small example under a time limit of ten
hours, we obtain the same solution as the best feasible solution
with an optimality gap of 12%.
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Table 1 4. Computational results
The PSCP solutions.
Data Dmax C Solution  Time In this section, we perform experiments on three sets of data
w287 5 34,025 14 1 that are widely used for studying the MWP (Brimberg et al., 2008).
10 71,642 6 25 These data sets include the 287 node example from Bongartz et al.
15 80516 3 22 (1994), and 654 and 1060 customer problems from the TSP library
20 8719 2 2 (Reinelt, 1991). We denote these sets by W287, U654, and U1060,
U654 5(5)0 gé:ggg gs f7 and present their demand locations in Fig. 10. W287 has 287 de-
400 74,520 17 2 mand points with weights w; ranging between 1 and 698. U654
600 86969 13 5 and U1060, on the other hand, have 654 and 1060 demand points,
800 97854 9 3 respectively, each with a unit weight w; = 1. These data sets are
1000 126614 7 7 also used in Brimberg et al. (2004) for the multi-source Weber
U1060 200 8016 301 0 . .
400 22645 127 13 problem with constant opening costs.
600 45104 73 28 In our experiments, the cost of deploying a facility F
800 75,651 50 180 takes values from {50, 100, 200, 500, 5000}, {1000, 2000, 5000,
1000 111,934 35 102 10, 000, 15,000}, and {1000, 2000, 5000, 10, 000, 15, 000} for data
sets W287, U654, and U1060, respectively. Distance limits Dpax are
selected from {5, 10, 15, 20, 25} for W287 and from {200, 400,
Table 2
Comparison of methods on W287 and U654.
w/o PSCP w/ PSCP % Cost Diff.
Data F Dmax " 2S Cost 2S Time 3S Cost Vv 2S Cost 2S Time 3S Cost 2S 3S
w287 50 5 53 4157 1 4157 50 4055 1 4033 2.45%  2.98%
10 46 3951 3951 45 3926 10 3926 0.63%  0.63%
15 44 3890 1 3889 44 3890 16 3889 0.00%  0.00%
20 44 3890 14 3889 44 3890 17 3889 0.00%  0.00%
25 43 3885 16 3884 43 3885 18 3884 0.00%  0.00%
w287 100 5 42 6511 1 6499 39 6285 1 6272 3.48%  3.49%
10 34 5932 1 5932 33 5857 8 5857 1.27% 1.27%
15 32 5770 12 5770 32 5770 15 5770 0.00%  0.00%
20 32 5770 17 5770 32 5770 20 5770 0.00%  0.00%
25 31 5717 18 5717 31 5717 29 5717 0.00%  0.00%
W287 200 5 32 10,236 1 10,220 29 9643 1 9632 5.80% 5.75%
10 23 8746 8 8741 22 8621 12 8619 1.43% 1.39%
15 20 8359 18 8357 20 8359 21 8357 0.00%  0.00%
20 20 8313 22 8305 20 8313 24 8305 0.00%  0.00%
25 19 8171 21 8157 19 8171 23 8157 0.00%  0.00%
w287 500 5 23 17964 1 17,905 18 16,026 1 16,004 10.79%  10.62%
10 13 13,609 16 13,609 12 13,228 24 13,228 2.80%  2.80%
15 10 12312 28 12,290 10 12,312 36 12,290 0.00%  0.00%
20 9 12,134 28 12,113 9 12,060 30 12,024 0.61% 0.74%
25 8 11,635 23 11,635 8 11,635 26 11,635 0.00%  0.00%
w287 5K 5 19 106815 2 106,008 14 83,889 1 82,867 2146%  21.83%
10 8 53,214 38 52,903 7 48,453 32 48,453 895%  8.41%
15 4 35,713 35 35,670 4 35,665 37 35,603 0.13% 0.19%
20 3 31,455 54 31,217 2 27,618 58 27,555 12.20%  11.73%
25 2 26,837 41 26,837 2 26,837 43 26,837 0.00%  0.00%
U654 1K 200 47 81,100 11 80,545 44 79,485 18 78,661 1.99% 2.34%
400 41 77453 17 77,099 36 76,403 9 75292 1.36% 2.34%
600 33 75131 12 74,687 33 75131 16 74,686 0.00%  0.00%
800 32 74,408 19 73,968 32 74,408 21 73,968 0.00%  0.00%
1000 32 74,408 17 73,968 32 74,408 18 73,968 0.00%  0.00%
U654 2K 200 43 125833 13 125297 40 121218 24 120412 3.67%  3.90%
400 36 115774 30 115451 30 109,233 11 108,167  5.65%  631%
600 27 104678 19 103,794 27 104,678 25 103,794  0.00%  0.00%
800 25 103328 22 102,660 25 103,328 17 102,660  0.00%  0.00%
1000 24 103,063 18 102,246 24 103,016 18 102,246 0.05%  0.00%
U654 5K 200 39 252164 19 251681 36 238,549 22 237,796  5.40% 5.52%
400 28 212,407 23 212154 21 185612 26 184,653  12.62%  12.96%
600 19 171,390 33 170,441 19 170,729 35 169,336 0.39%  0.65%
800 15 163,722 39 163174 14 163,194 43 161,454  0.32% 1.05%
1000 13 156,104 22 155456 13 156,097 20 155456  0.00%  0.00%
U654 10K 200 39 447164 11 446681 36 418,549 20 417,796  6.40%  6.47%
400 28 352,407 17 352,154 20 285793 27 284128  18.90%  19.32%
600 17 256,687 39 255742 16 252,261 52 249352  1.72% 2.50%
800 15 238722 47 238174 13 232,923 50 229,700  243%  3.56%
1000 12 220,776 24 219,752 12 220,776 28 219,752 0.00%  0.00%
U654 15K 200 39 642164 11 641,681 36 598,549 22 597,796  6.79%  6.84%
400 28 492407 17 492154 18 382,015 62 378,753  22.42%  23.04%
600 16 337128 44 336,046 15 327703 58 324,656  2.80%  3.39%
800 15 313,722 61 313,174 12 295492 82 295492  5.81% 5.65%
1000 11 280,637 28 279641 11 280,637 24 279,641  0.00%  0.00%
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Comparison of methods on U1060.

25

w/o PSCP w/ PSCP % Cost Diff.
F Dmax 14 2S Cost 2S Time 3S Cost "4 2S Cost 2S Time 3S Cost 2S 3S
1K 200 481 553,562 29 552,619 302 447,350 14 434,834 1919%  21.31%
400 198 376,053 4 373,288 186 373,462 5 370,294 0.69%  0.80%
600 160 365,149 5 363,314 160 365,056 5 363,270 0.03% 0.01%
800 153 363,597 5 362,127 153 363,597 5 362,127 0.00%  0.00%
1000 153 363,596 8 362,120 153 363,596 14 362,120 0.00%  0.00%
2K 200 481 1034562 53 1,033,619 301 748,398 4 735,787 27.66%  28.81%
400 177 559,957 5 551,734 140 533,047 6 522,706 481%  5.26%
600 109 492413 5 489,537 103 490,971 6 487,723 0.29% 0.37%
800 96 485267 6 483,083 96 485,267 6 483,083 0.00%  0.00%
1000 96 484,954 1 483,009 96 484,954 12 483,009 0.00%  0.00%
5K 200 481 2477562 15 2476619 301 1651398 4 1,638,787  3335%  33.83%
400 176 1,088,244 5 1,079,885 127 921,786 3 906,563 15.30%  16.05%
600 94 786,118 18 776,513 81 754,884 7 746,502 3.97% 3.86%
800 67 718,496 13 712,808 66 717,161 12 712,080 0.19% 0.10%
1000 61 707,735 18 705,568 61 707,735 19 705,568 0.00%  0.00%
10K 200 481 4882562 14 4,881,619 301 3156398 4 3,143,787  3535%  35.60%
400 176 1968244 6 1,959,885 127 1,556,786 3 1541563  20.90%  21.34%
600 92 1,248,060 41 1,236,696 76 1,144,656 7 1134379  829%  8.27%
800 59 1,026,556 21 1,015782 56 1,015,107 376 1,005,689  1.12% 0.99%
1000 48 969,852 215 966,652 45 964,999 208 960,718 0.50% 0.61%
15K 200 481 7287562 16 7286619 301 4661398 4 4648787  36.04%  36.20%
400 176 2,848244 7 2,839,885 127 2191786 4 2176563  23.05%  23.36%
600 92 1,708,060 27 1,696,696 73 1,513,525 6 1497946  1139%  11.71%
800 59 1,321556 2645 1,310,782 52 1,285,008 47 1275138  2.77% 2.72%
1000 44 1,197,085 9505 1,191,986 41 1175122 370 1170384  1.83% 1.81%
Table 4 number of additional points supplied by the PSCP to the second
Minimum number of facilities. stage. Since the exact solution times are each less than three min-
Data Dmax ~ WJo CIPS  w/ CIPS  %Diff utes, we do not propose to implement a heuristic method for the
w287 5 19 14 26.32% PSCP.
10 7 6 14.29%
15 4 3 25.00% ) ) )
20 3 2 33.33% 4.2. Effect of augmenting with the PSCP locations
25 2 2 0.00%
ues4 200 39 36 7.69% In this section, we demonstrate the benefit of adding the PSCP
400 28 17 39.29% - . . .
600 15 13 13.33% solutions to the set of demand points while forming the set of can-
300 1 9 18.18% didate locations for the discrete problem DLim-PLP.
1000 8 7 12.50% In Table 2, we present our results for the instances of the data
u1060 200 481 301 37.42% sets W287 and U654. This table is organized as follows: The first
ggg ;;5 ;57 %’86‘5; set of columns presents the details of each instance. The second
300 59 50 15:25%‘: set of columns presents the number of facilities V, the correspond-
1000 43 35 18.60% ing costs in the DLim-PLP, and the CPU times in seconds for solv-

600, 800, 1000} for both U654 and U1060. The € threshold em-
ployed in the stopping criterion of the iterative method in Stage 3
with projections is 0.0001. Our computational experiments are per-
formed on a dual 2.4 GHz Intel Xeon E5-2630 v3 CPU server with
64GB RAM. The optimization problems that are formed in Matlab
R2016a are solved using CPLEX 12.7 in parallel mode using up to
32 threads. We enforce a CPU time limit of ten hours on all our
optimization models.

4.1. Solving the PSCP

In this section, we present some implementation details about
the first stage of our algorithm on the three data sets. The first
set of columns in Table 1 present the details of each instance. In
this set, we also report the cardinality C of the corresponding CIPS
for each instance. The second set of columns present the results
obtained by solving the SCP, namely the minimum number of fa-
cilities needed to cover all demand points when their locations are
selected from the CIPS and the solution CPU times in seconds. Note
that some of the demand points may also be included in the CIPS;
therefore, the minimum number presents an upper bound on the

ing the discrete problem defined over the set of demand points.
We also report the cost of the continuous solution obtained at
the end of the third stage. The third stage takes less than a sec-
ond; therefore, we do not report its solution times. The third set
of columns presents the same set of results for the discrete prob-
lem defined over the set consisting of the demand and the PSCP
locations, and its corresponding final solution. In the last set of
columns, we show the cost improvements due to the additional
candidate locations for both the second and third stage solutions.
These improvements are calculated as the difference between the
two methods’ costs divided by the cost of the former method that
does not employ the additional locations from the PSCP solution.

Table 2 indicates that including the PSCP locations in the can-
didate locations set may lower the number of facilities in the so-
lutions of the DLim-PLP. The decrease in the number of facilities
cause substantial improvements in the cost, especially for large F
values. Note that augmenting the problem with the additional can-
didate locations that are obtained from the PSCP resulted with up
to 23% improvements in both the second and the third stage costs
for the instances of W287 and U654.

Since the number of additional candidate locations is small
compared to the number of demand points, we did not observe a
major change in the computation time for the DLim-PLP. The CPU
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Table 5
Third-stage costs and solution times of U1060 instances.

Baseline PSCP 40x100 Grid Nodes 4000 Random CIPS Elements
F Dmax  Cost Added  Cost % Diff Time  Cost % Diff Time Min Cost % Diff Time
1000 200 552,619 301 434,834 21.31% 14 488,931 11.52% 1029 469,237 15.09% 32,486
1000 400 373,288 127 370,294 0.80% 18 367,943 1.43% 52 372,400 0.24% 879
1000 600 363,314 73 363,270 0.01% 33 362,901 0.11% 138 363,157 0.04% 1037
1000 800 362,127 50 362,127 0.00% 186 361,978 0.04% 158 362,008 0.03% 1156
1000 1000 362,120 35 362,120 0.00% 116 361,971 0.04% 146 361,958 0.04% 8476
2000 200 1,033,619 301 735,787 2881% 4 881,931 14.68% 1398 825,649 20.12% 39,434
2000 400 551,734 127 522,706 5.26% 19 526,165 4.63% 31 550,138 0.29% 1041
2000 600 489,537 73 487,723 0.37% 34 486,904 0.54% 169 489,043 0.10% 1278
2000 800 483,083 50 483,083 0.00% 187 482,963 0.02% 192 483,082 0.00% 1707
2000 1000 483,009 35 483,009 0.00% 114 482,960 0.01% 189 482,997 0.00% 8472
5000 200 2,476,619 301 1,638,787 3383% 4 2,060,931 16.78% 1007 1,893,649  23.54% 48,199
5000 400 1,079,885 127 906,563 16.05% 16 970,005 10.18% 1120 1,055,923 2.22% 6849
5000 600 776,513 73 746,502 3.86% 35 756,631 2.56% 1730 770,880 0.73% 29,508
5000 800 712,808 50 712,080 0.10% 193 709,349 0.49% 182 712,803 0.00% 4256
5000 1000 705,568 35 705,568 0.00% 121 704,611 0.14% 237 705,417 0.02% 11,297
10000 200 4,881,619 301 3,143,787 35.60% 4 4,025,931 17.53% 1080 3,673,649  24.75% 45,252
10000 400 1,959,885 127 1,541,563 21.34% 16 1,705,005 13.00% 15,465 1,900,923  3.01% 6097
10000 600 1,236,696 73 1,134,379 8.27% 35 1,175,393 4.96% 36,000 1,221,063 1.26% 33,724
10000 800 1,015,782 50 1,005,689  0.99% 557 997,056 1.84% 492 1,011,628 0.41% 8873
10000 1000 966,652 35 960,718 0.61% 310 958,732 0.82% 710 966,301 0.04% 93,303
15000 200 7,286,619 301 4,648,787 36.20% 4 5,990,931 17.78% 1174 5,453,649  25.16% 31,398
15000 400 2,839,885 127 2,176,563 2336% 17 2,440,005  14.08% 36,000 2,745923  3.31% 3996
15000 600 1,696,696 73 1,497,946 11.71% 34 1,595,861 5.94% 36,000 1,671,063 1.51% 38,096
15000 800 1,310,782 50 1,275,138 2.72% 228 1,265,060  3.49% 26,673 1,301,628 0.70% 488,856
15000 1000 1,191,986 35 1,170,384 1.81% 472 1,166,401 2.15% 22,454 1,187,091 0.41% 1,317,529

times of both models were comparable. We report the solutions
for the data set U1060 in Table 3, which is organized in the same
way as Table 2.

Table 3 also indicates that the solution times of both models are
comparable. As also observed in the instances of W287 and U654,
assuming the PSCP solutions as possible locations for the facilities
decreased the number of facilities needed considerably. In the in-
stances of U1060 that we present, we observe cost differences of
up to 36% in both the second and the third stages.

To explain such big differences in the cost, we present in
Table 4 the minimum number of facilities needed to cover all de-
mand points under both candidate location sets. As the F value is
increased, the cost difference percentages approach to the differ-
ence percentages presented in this table. Hence, we view the de-
crease in the number of facilities as the main reason for the cost
improvements.

4.3. Effect of augmenting with arbitrary locations

Additional candidate locations in the DLim-PLP is expected to
lower the cost as we work with a larger feasible set. In the fol-
lowing analysis, we show that the number of additional locations
obtained from the PSCP solution is small; however, the cost im-
provement is substantial compared to the size of the additional lo-
cations set.

In Table 5, we compare three different sets of additional candi-
date locations in terms of the third-stage cost improvements and
the solution times on the instances of U1060. Our baseline has no
additional candidate locations. The first set is formed of the loca-
tions in the PSCP solution. For the second set, we overlay a grid
of 40 x 100 on the area containing the demand points and form
the set composed of the 4000 grid nodes. The last set is com-
posed of 4000 random elements from the set of circle intersection
points. Since the result would depend on the selected random lo-
cations, we form 100 such random sets and report the best cost
obtained for each instance. Since 4000 additional candidate loca-
tions increase the size of the problem considerably, we implement
a CPU time limit of 10 h for each CPLEX solution.

Table 5 is organized as follows: The first set of columns
presents the parameters of the instances. The third column
presents the baseline cost, which is determined by solving the
DLim-PLP with the demand locations as the only candidate lo-
cations for the facilities and then by fine-tuning the facility lo-
cations using our method with projections that we employ in
the third stage of our heuristic method. The third set of columns
present the number of additional candidate locations, the resulting
costs, the percentage improvements, and the total solution times of
our method. The number of additional candidate locations for the
other two methods are 4000 for each instance, hence we do not
include this information in the table. In the fourth and fifth sets of
columns, we present the costs, the percentage improvements and
the solution times for the methods adding the random locations
and the grid nodes, respectively. Note that the fine-tuning method
is also applied to the methods with the random locations and the
grid nodes. The percentage improvements are calculated as the de-
crease in the cost divided by the cost in the third column. For each
instance, we indicate the best method by a boldface entry.

Table 5 indicates that, even though the number of additional
candidate locations is a lot smaller, our proposed method out-
performs the other two alternatives when D,y is small and F is
large. In these instances, the facility costs are dominant and our
method picks the locations to minimize the number of facilities,
while the other two alternatives cannot. Moreover, our method’s
solution times are substantially smaller for these instances. In the
instances where the other methods outperform our method, their
costs are at most 1% lower.

4.4. Performance of our iterative heuristic method with projections

In the third stage of our heuristic solution method, we apply
Cooper’s alternating location and allocation algorithm. In the loca-
tion step of this algorithm, instead of solving the DLim-Geom, we
employ an iterative heuristic method with projections. To demon-
strate the performance of this method, we also obtained results
for the instances reported in Tables 2 and 3 by solving the DLim-
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Table 6
Heuristic performance on W287 and U654.
w/o PSCP w/ PSCP
DLim-Geom Heuristic Cost DLim-Geom Heuristic Cost
Data F Dmax Cost Time Cost Time  Diff Cost Time Cost Time  Diff
w287 50 5 4144 3293 4157 0.24 0.30% 4022 24.16 4033 0.13 0.27%
50 10 3946 2291 3951 0.03 0.13% 3921 18.94 3926 0.03 0.14%
50 15 3885 2090 3889 0.03 0.11% 3885 19.27 3889 0.02 0.11%
50 20 3885 18.73 3889 0.03 0.11% 3885 1645 3889 0.02 0.11%
50 25 3880 18.68 3884 0.04 0.11% 3880 19.60 3884 0.02 0.11%
w287 100 5 6492 2436 6499 0.03 0.11% 6255 19.06 6272 0.02 0.27%
100 10 5925 20.65 5932 0.01 0.10% 5850 21.60 5857 0.03 0.11%
100 15 5764 16.45 5770 0.03 0.11% 5764 16.52 5770 0.01 0.11%
100 20 5764 2148 5770 0.02 0.11% 5764 2092 5770 0.03 0.11%
100 25 5710 2140 5717 0.02 0.11% 5710 19.86 5717 0.02 0.11%
w287 200 5 10,197 23.91 10,220 0.02 0.23% 9608 19.09 9632 0.02 0.25%
200 10 8724 1275 8741 0.02 0.19% 8608 8.17 8619 0.02 0.14%
200 15 8348 11.36 8357 0.02 0.11% 8348 10.20 8357 0.02 0.11%
200 20 8296 13.35 8305 0.03 0.10% 8296 11.32 8305 0.02 0.10%
200 25 8147 1085 8157 0.02 0.12% 8147 9.86 8157 0.02 0.12%
w287 500 5 17,876 18.28 17,905 0.03 0.16% 15,986 15.21 16,004 0.01 0.11%
500 10 13,587 10.67 13,609 0.01 0.16% 13,206 9.55 13,228 0.01 0.17%
500 15 12,283 7.41 12,290 0.03 0.05% 12,283 711 12,290 0.02 0.05%
500 20 12,107 8.64 12,113 0.01 0.05% 12,001 8.32 12,024 0.01 0.19%
500 25 11,617 6.20 11,635 0.02 0.15% 11,617 5.59 11,635 0.01 0.15%
w287 5000 5 105,933 18.40 106,008  0.02 0.07% 82,867 9.85 82,867 0.02 0.00%
5000 10 52,851 10.35 52,903 0.02 0.10% 48,384 754 48,453 0.01 0.14%
5000 15 35,581 13.77 35,670 0.02 0.25% 35,555 7.07 35,603 0.02 0.14%
5000 20 31,203 1119 31,217 0.02 0.05% 27484 3241 27,555 0.04 0.26%
5000 25 26,638 13.91 26,837 0.01 0.75% 26,638 14.17 26,837 0.01 0.75%
U654 1000 200 80,547 29.72 80,545 0.17 0.00% 78,576 2278 78,661 0.24 0.11%
1000 400 77,099 27.60 77,099 0.04 0.00% 75,289 2044 75,292 0.06 0.00%
1000 600 74,680 26.08 74,687 0.05 0.01% 74,678 2006 74,686 0.04 0.01%
1000 800 73,968 26.73 73,968 0.06 0.00% 73,968 20.18 73,968 0.06 0.00%
1000 1000 73,968 2465 73,968 0.05 0.00% 73,968 21.05 73,968 0.04 0.00%
U654 2000 200 125,298 1711 125,297 0.03 0.00% 120,328 15.79 120,412 0.04 0.07%
2000 400 115,451 15.62 115,451 0.02 0.00% 108,164 14.59 108,167 0.05 0.00%
2000 600 103,787 15.13 103,794  0.04 0.01% 103,787 14.49 103,794  0.04 0.01%
2000 800 102,613 1464 102,660 0.04 0.05% 102,613 14.57 102,660  0.05 0.05%
2000 1000 102,219 14.19 102,246 0.04 0.03% 102,217 14.36 102,246  0.04 0.03%
U654 5000 200 251,682 17.71 251,681 0.04 0.00% 237,712 13.75 237,796 0.01 0.04%
5000 400 212,154 11.51 212,154 0.01 0.00% 184,566 11.63 184,653  0.03 0.05%
5000 600 170,321 13.23 170,441 0.02 0.07% 169,115 13.47 169,336  0.03 0.13%
5000 800 163,070 1212 163,174 0.02 0.06% 161,339 13.56 161,454 0.02 0.07%
5000 1000 155,345 11.31 155,456  0.04 0.07% 155,343 16.44 155456  0.03 0.07%
U654 10000 200 446,682 2197 446,681 0.03 0.00% 417,712 14.05 417,796 0.01 0.02%
10000 400 352,154 13.76 352,154 0.02 0.00% 283,890 14.17 284,128 0.04 0.08%
10000 600 255,562 1625 255,742 0.02 0.07% 248,812 1335 249352  0.03 0.22%
10000 800 238,070 1174 238,174 0.02 0.04% 228,612 15.78 229,700  0.04 0.48%
10000 1000 219,636 1113 219,752 0.03 0.05% 219,636 9.05 219,752 0.03 0.05%
U654 15000 200 641,682 21.06 641,681 0.04 0.00% 597,712 13.61 597,796  0.02 0.01%
15000 400 492,154 1322 492,154 0.03 0.00% 378,473 1586 378,753  0.03 0.07%
15000 600 335,754  16.10 336,046  0.02 0.09% 324,004 14.04 324656 0.04 0.20%
15000 800 313,070 11.86 313,174 0.02 0.03% 294209 9.44 295492  0.01 0.44%
15000 1000 279,525 11.07 279,641 0.02 0.04% 279,525 10.57 279,641 0.04 0.04%

Geom at the location steps of Cooper’s algorithm. The € threshold
is again taken as 0.0001.

Tables 6 and 7 present the results for the data sets W287, U654,
and U1060. In these tables, the first set of columns present the de-
tails of the instance. The next set of columns present the solutions
from both solving the DLim-Geom and applying the heuristic in
the location steps along with the solution times in CPU seconds
for the method not employing the PSCP solutions. The last column
of this set presents the increase in the cost due to employing the
heuristic instead of solving DLim-Geom. The last set of columns
present the same information for the our solution method employ-
ing the PSCP solutions.

Tables 6 and 7 demonstrate that employing our iterative
method with projections instead of solving the DLim-Geom in-
creases the final cost by at most 0.75%. Moreover, the heuristic
method obtains these solutions hundreds of times faster than solv-

ing the DLim-Geom. Hence, we propose this heuristic method as a
decent alternative to solving the DLim-Geom. Note that when the
DLim-Geom is solved at the location steps, the longest solution
time of the third stage over all the instances of these three data
sets is a little over four minutes, which may also be acceptable for
planning purposes.

5. Conclusion

We introduced a new continuous location-allocation problem
with a distance limitation that is applicable to water and energy
distribution systems. We presented a MIQCP formulation and pro-
posed a heuristic solution method. Our heuristic method is based
on solving a discrete version of the problem to obtain an initial
solution for the Cooper’s algorithm that obtains a local optimum
solution in the continuous space. The candidate facility locations
of discrete version of the problem included not only the demand
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Table 7
Heuristic performance on U1060.
w/o PSCP w/ PSCP
DLim-Geom Heuristic Cost DLim-Geom Heuristic Cost

F Dmax Cost Time Cost Time Diff Cost Time Cost Time Diff

1000 200 552,579 188.87 552,619 0.38 0.01% 434,618 184.04 434834 0.33 0.05%
1000 400 373,234 164.23 373,288 0.21 0.01% 370,021 80.52 370,294 0.16 0.07%
1000 600 363,308 77.29 363,314 0.11 0.00% 363,261 71.97 363,270 0.14 0.00%
1000 800 362,125 85.08 362,127 0.14 0.00% 362,125 71.27 362,127 0.12 0.00%
1000 1000 362,118 84.49 362,120 0.14 0.00% 362,118 7143 362,120 0.11 0.00%
2000 200 1,033,579 215.68 1,033,619 0.25 0.00% 735,546 188.54 735,787 0.15 0.03%
2000 400 551,577 145.70 551,734 0.20 0.03% 521935 84.45 522,706 0.11 0.15%
2000 600 489,413 60.06 489,537 0.06 0.03% 487278 63.69 487,723 0.06 0.09%
2000 800 483,082 56.15 483,083 0.07 0.00% 483,082 59.33 483,083 0.06 0.00%
2000 1000 483,009 59.86 483,009 0.07 0.00% 483,009 60.01 483,009 0.09 0.00%
5000 200 2,476,579 24358 2,476,619 0.18 0.00% 1,638,546 223.74 1,638,787 0.13 0.01%
5000 400 1,079,720 175.33 1,079,885 0.17 0.02% 905,200 82.16 906,563 0.07 0.15%
5000 600 776,492 87.40 776,513 0.09 0.00% 745,148 49.89 746,502 0.06 0.18%
5000 800 712,719 65.93 712,808 0.07 0.01% 712,002 48.35 712,080 0.07 0.01%
5000 1000 705,501 49.94 705,568 0.07 0.01% 705,501 37.62 705,568 0.07 0.01%
10000 200 4,881,579 24454 4,881,619 0.25 0.00% 3,143,546 172.2 3,143,787 0.13 0.01%
10000 400 1,959,720 174.74 1,959,885 0.20 0.01% 1,540,200  75.44 1,541,563 0.06 0.09%
10000 600 1,235,705 85.01 1,236,696  0.07 0.08% 1,132,724 46.98 1,134,379 0.08 0.15%
10000 800 1,014,142 106.08 1,015,782 0.06 0.16% 1,005,410 66.6 1,005,689 0.1 0.03%
10000 1000 966,356 33.20 966,652 0.04 0.03% 960,403 28.31 960,718 0.05 0.03%
15000 200 7,286,579 24334 7,286,619 0.24 0.00% 4648546  160.81 4,648,787 0.14 0.01%
15000 400 2,839,720 176.44 2,839,885 0.19 0.01% 2,175,200 97.86 2,176,563 0.11 0.06%
15000 600 1,695,705 85.16 1,696,696  0.10 0.06% 1,496,223 67.95 1,497,946 0.07 0.12%
15000 800 1,309,142 106.14 1,310,782 0.05 0.13% 1,273,352 49.23 1,275,138 0.08 0.14%
15000 1000 1,191,263 5117 1,191,986 0.06 0.06% 1,169,890 43.09 1,170,384 0.04 0.04%

locations but also the locations in the PSCP solution under the dis-
tance limitation. Even though the number of additional candidate
locations is small, we observed substantial drops in the costs of
the instances with tight distance constraints, as it was feasible to
serve all demand points with fewer facilities. As the coverage dis-
tance gets larger, the number of additional candidate locations gets
smaller; therefore, the benefit of the method diminishes.

The location step of Cooper’s algorithm, which utilized
Weiszfeld’s method, was also modified to incorporate the distance
limitation. We proposed a projection method to preserve feasibility
at every iteration.

The first two stages of our three-stage heuristic method yield
clusters of demand points and a facility location for each cluster.
Rather than solving two IP problems, these two stages can be re-
placed by a clustering method. Alternative heuristic methods based
on clustering are currently under investigation. Another research
direction is to consider facilities with limited capacities. The ad-
ditional capacity constraint may be handled by modifying the IP
problem in the second stage, and modifying the allocation step of
Cooper’s algorithm. A final possible research direction is to change
the type of the facilities from decentralized to centralized. In that
case, a two-level network design problem will be considered and
the heuristic solutions can be built upon the foundation presented
in this paper.
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