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and modify our algorithms to handle these extensions.
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1 Introduction

The split delivery vehicle routing problem (SDVRP) is a relaxation of the classical
capacitated vehicle routing problem (CVRP), where the demand of a customer can
be split and delivered by multiple vehicles. The task is to find a set of least cost
delivery routes for a vehicle fleet starting and ending at the depot so that each cus-
tomer belongs to at least one route, the demand of every customer is fully satisfied,
and the total demand assigned to any (vehicle) route does not exceed the vehicle
capacity. The SDVRP is formally defined by Dror and Trudeau (1989) with the moti-
vation that permitting split deliveries can result in considerable transportation cost
savings. The problem is shown to be NP-hard by Dror and Trudeau (1990), and
despite being a relaxation of the classical CVRP, it is not easier to tackle as the
amounts to be delivered to each customer by each vehicle is also unknown. In the
past 25 years, several different exact and heuristic solution approaches as well as
complexity-related analyses are proposed, and real-life problems are modeled and
solved as variants of SDVRP. The first heuristic method is a two-stage local search
algorithm developed by Dror and Trudeau (1989). The subsequent studies (Archetti
et al. 2006; Boudia et al. 2007; Mota et al. 2007; Chen et al. 2007; Jin et al. 2008;
Khmelev and Kochetov 2015; Aleman et al. 2010; Aleman and Hill 2010; Wilck
IV and Cavalier 2012a, b; Silva et al. 2015; Berbotto et al. 2014) focus on hybrid
methods and metaheuristics. Archetti and Speranza (2012) provides a comprehen-
sive discussion on heuristics. Various other heuristic methods exist in the literature
that are used for solving more special routing problems incorporating the split deliv-
ery option within their framework such as Yi and Kumar (2007), Gulczynski et al.
(2010), Ozdamar and Demir (2012), Sahin et al. (2013), Chen et al. (2014), Wang
et al. (2014).

The first exact algorithm to solve the SDVRP is a constraint relaxation branch-
and-bound algorithm due to Dror et al. (1994). The problem is formulated as an
integer linear program, and effective valid inequalities are derived. Branch and bound
is used for achieving integrality, while the valid inequalities are added to cut off the
solutions that are inadmissible for the SDVRP. In Sierksma and Tijssen (1998), the
problem of scheduling helicopter flights to exchange crews is modeled as an SDVRP.
The authors propose an integer linear programming formulation in which all feasible
flight schedules are enumerated in advance and solve its linear relaxation by means of
column generation. A similar column generation approach is suggested by Jin et al.
(2008) for the SDVRP with large demands. The undirected version of SDVRP is
considered by Belenguer et al. (2000). The authors provide an integer programming
model and a relaxation of the SDVRP and prove that all constraints in this relaxation
are facet-defining for the convex hull of the incidence vectors of the SDVRP solu-
tions. Computational experiments with 25 instances indicate that their cutting plane
approach can solve instances with up to 50 customers optimally. A dynamic program
with finite state and action spaces is given in Lee et al. (2006). Test instances contain-
ing at most 9 customers are solved with this method. A two-stage algorithm with valid
inequalities (TSVI) is introduced by Jin et al. (2007). The first stage creates clusters
while respecting vehicle capacity restrictions, and establishes a lower bound on the
optimal cost. The second stage computes an upper bound by solving a TSP on each
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cluster. TSVI iteratively executes these steps until the lower bound in the first stage
and the upper bound from the second stage are equal and solve instances with up to
21 customers. Ceselli et al. (2009a) and Moreno et al. (2010) provide extended for-
mulations to compute lower bounds for the SDVRP. In both studies, Dantzig–Wolfe
decomposition principle is employed and column generation procedures are imple-
mented to solve the resulting master problems. Computational experiments show that
Moreno et al. (2010) can in general produce tighter lower bounds than Ceselli et al.
(2009a).

The first branch-and-price-and-cut method for the SDVRP is developed by Archetti
et al. (2011) applying a similar decomposition to Desaulniers (2010), who proposes a
branch-and-price-and-cut technique for the SDVRPwith timewindows. The algorithm
is tested on a large set of benchmark instances for both limited and unlimited vehicle
fleet cases. The majority of the best available lower bounds and some of the best
available upper bounds are improved. Although one instance with 144 customers is
solved to optimality, the second largest instance optimized contains 48 customers.
Two exact branch-and-cut solution methodologies are given in Archetti et al. (2014)
where the optimality of 17 instances in the literature and a new instance involving 100
customers is established.

In this paper, we propose a new arc flow formulation for the SDVRP that uses
variables with vehicle indices. To decrease the size and to eliminate the symmetry,
we aggregate the variables over all vehicles. This resulting relaxation is similar to one
of the relaxations in Archetti et al. (2014). We give a family of valid inequalities that
includes the generalized capacity inequalities of Belenguer et al. (2000) as a special
case and show that these inequalities are not sufficient to obtain a formulation. To
eliminate solutions of the relaxation infeasible for SDVRP, we propose to locally
extend the relaxation either by adding vehicle-indexed variables for some customer
nodes or by node splitting. Our computational experiments reveal that iterating for an
optimal solution of the SDVRPwith our methods can be performed effectively as long
as the relaxation can be solved effectively.

Though split deliveries save costs, they come at the expense of additional handling
time. We introduce the problem SDVRP with restricted number of splits to the lit-
erature. We extend our exact solution methodologies to solve this variant. Against
intuition, it is not any easier to solve this restricted version of the SDVRP. Another
variation we handle is the SDVRP with open routes where the depot return require-
ment is relaxed. Though some theoretical results no longer are valid for this variation,
our computational experiments reveal favorable results.

The rest of this paper is organized as follows. In Sect. 2, the arc flow formulation and
its relaxed version are presented along with some simplifications for the relaxation.
We propose a family of valid inequalities that generalize the generalized capacity
inequalities of Belenguer et al. (2000) and give an example where these inequalities
cannot cut off the optimal solution of the relaxation that is infeasible for the SDVRP.
In Sect. 3, the methods to eliminate the optimal solutions of the relaxed model that are
not feasible for the SDVRP as well as the exact solution algorithms are introduced.
The results of the computational experiments are given in Sect. 4. Section 5 is reserved
for the two extensions of SDVRP along with their computational results. Section 6
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provides insights into the behavior of the proposed algorithms. Finally, Sect. 7 provides
a summary of our findings.

2 Formulation, relaxation and valid inequalities

Let G = (N , A) be a directed complete graph with the set of nodes N = {0, 1, . . . , n}
and the set of arcs A = {a = (i, j) : i, j ∈ N , i �= j}. Suppose that the depot is
located at node 0 and each node i ∈ N\{0} represents a customer location. There
are m identical vehicles available at the depot to serve the customers, each having a
capacity of Q units. We define K = {1, . . . ,m}. The cost of traversing arc a ∈ A is
ca and the demand of customer i ∈ N\{0} is 0 < di ≤ Q. We assume that the costs
are nonnegative and they satisfy the triangle inequality.

2.1 An exact flow-based formulation with vehicle indices

We first present a flow-based formulation with vehicle indices. We use the following
decision variables:

• yka =
{
1 if vehicle k ∈ K travels on arc a ∈ A,

0 otherwise,
• gka = the amount of flow carried on arc a ∈ A by vehicle k ∈ K ,
• wk

i = fraction of the demand of customer i ∈ N\{0} delivered by vehicle k ∈ K .

For a given set S ⊂ N , let δ−(S) denote the set of arcs (i, j) with i ∈ N\S and
j ∈ S and δ+(S) denote the set of arcs (i, j) with i ∈ S and j ∈ N\S. We use
δ−(i) and δ+(i) for δ−({i}) and δ+({i}). For a vector α ∈ R|U | and U ′ ⊆ U , we let
α(U ′) = ∑

u∈U ′ αu .

(SDVRP)

min
∑
a∈A

∑
k∈K

ca y
k
a (1)

gk(δ−(i)) − gk(δ+(i)) = diw
k
i i ∈ N\{0}, k ∈ K , (2)

yk(δ−(i)) − yk(δ+(i)) = 0 i ∈ N\{0}, k ∈ K , (3)

yk(δ+(0)) = 1 k ∈ K , (4)∑
k∈K

wk
i = 1 i ∈ N\{0}, (5)

gka ≤ Qyka a ∈ A, k ∈ K , (6)

wk
i ≥ 0 i ∈ N\{0}, k ∈ K , (7)

gka ≥ 0 a ∈ A, k ∈ K , (8)

yka ∈ {0, 1} a ∈ A, k ∈ K . (9)

The objective function (1) aims to minimize the global transportation cost. Constraints
(2) and (3) require commodity flow and vehicle flow conservation for every customer
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Table 1 Some results with the vehicle-indexed model

Instance Number of
nodes

Number of
vehicles

Lower
bound

Upper
bound

Gap (%) Time (s) Nodes in
b&c tree

eil22 22 4 375 375 0 108.57 115,403

eil23 23 3 569 569 0 9.87 14,475

eil30 30 3 510 510 0 2149.89 1,065,899

eil33 33 4 819.64 835 1.84 7200 1,364,276

and for everyvehicle.Constraint (4) forces all the vehicles to leave thedepot for service,
and (5) guarantees that the demand of each customer is fully satisfied. Constraint (6)
is the coupling constraints ensuring that the flow on an arc carried by a vehicle does
not exceed the vehicle capacity. Finally, (7)–(9) specify variable restrictions.

The formulation given in (1)–(9) contains O(n2m) variables and O(n2m) con-
straints.Due to its large size and due to the symmetry induced by the homogeneousfleet
of vehicles, it can be solved to optimality for small size problems. Table 1 shows our
results with a time bound of 7200 s regarding the four smallest instances in Belenguer
et al. (2000). It can be observed that the number of nodes in the branch-and-cut tree
is quite large even for these instances.

2.2 A flow-based relaxation

In this section, we present a relaxed model obtained by aggregating the decision
variables over all vehicles, i.e., by letting fa = ∑

k∈K gka and xa = ∑
k∈K yka for

every arc a ∈ A. Our aim is to decrease the size of the vehicle-indexed formulation
and to eliminate symmetry. The relaxed model is as follows:

(R-SDVRP)

min
∑
a∈A

caxa (10)

s.t. f (δ−(i)) − f (δ+(i)) = di i ∈ N\{0}, (11)

x(δ−(i)) − x(δ+(i)) = 0 i ∈ N\{0}, (12)

x(δ+(0)) = m, (13)

fa ≤ Qxa a ∈ A, (14)

fa ≥ 0 a ∈ A, (15)

xa ∈ Z+ a ∈ A. (16)

Similar to the exact model, the objective is to minimize the total cost of transportation.
Constraint (11) ensures that the demand of every customer is fulfilled. Vehicle flow
conservation is enforced by constraint (12), and constraint (13) guarantees that exactly
m vehicles are dispatched from the depot for service. Constraint (14) relates variables
xa and fa based on the vehicle capacity. Domain restrictions on the decision variables
are imposed by (15) and (16).
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2.3 An optimality property

A k-split cycle is defined inDror andTrudeau (1989) as a subgraph on a set of customers
i1, . . . , ik ⊂ N\{0} with k ≥ 2 in which there exist 1 ≤ h ≤ k vehicle routes such
that it and it+1 are on the same route for every t = 1 . . . , k − 1 and that i1 and ik
are on the same route. Accordingly, the authors establish the k-split cycle property,
which guarantees the existence of an optimal SDVRP solution free of k-split cycles
for any k ≥ 2 under the condition that the cost matrix satisfies the triangle inequality.
Based on the k-split cycle property, we can impose binary requirements on the xa
variables for arcs a with customers at both endpoints, i.e., a ∈ A\(δ−(0) ∪ δ+(0)).
This helps in reducing computation times. In Proposition 2.1, we prove that if the costs
are symmetric, then we can also restrict the x variables associated either with the arcs
originating from the depot or with those ending at the depot to take 0–1 values. Based
on initial computational trials, we prefer to apply the restriction to the arcs emanating
from the depot.

Proposition 2.1 If the costs are symmetric and if they satisfy the triangle inequality,
then there exists an optimal SDVRP solution x for which xa ∈ {0, 1} for all a ∈
A\δ−(0).

Proof First note that since the cost matrix is symmetric, one can reverse the direction
of any route and attain an alternative optimal solution. Also, there exists an alternative
optimal solution in which a customer on a dedicated route, i.e., a route with a single
customer, is visited only once. To show this, assume that i is a customer who is visited
by routes C1 and C2 where C1 is a dedicated route. Since di ≤ Q and the costs
satisfy triangle inequality, it is possible to attain another solution with the same cost
by excluding i from route C2.

Assume that x is an optimal solution to a given SDVRP instance that is free of
k-split cycles (for any k ≥ 2) and that customers receiving dedicated service are not
split nodes. If x0i ≤ 1 for every customer i , then we are done. Otherwise, we shall
iteratively construct another optimal solution satisfying the proposed condition. Take
a customer i for which x0i = μ, where μ ≥ 2. Pick any one of these μ routes, say
C1, and let j1 be the last customer on this route (where i is the first customer). Note
that j1 �= i otherwise customer i would be a split node receiving dedicated service. If
x0 j1 = 0, then reversing the direction of route C1 will result in an alternative optimal
solution with x0i decremented and no xa for a ∈ δ+(0) incremented beyond value 1.
Otherwise, let C1, . . . ,Cl be a sequence of routes such that for any two consecutive
routes Ct and Ct+1 for t = 1, . . . , l − 1, the last customer of Ct and the first customer
of Ct+1 are identical. Moreover, let l be the largest possible such number. Consider
any two routes Cp and Cq such that q > p + 1. These two routes cannot intersect,
otherwise routes Cp,Cp+1, . . . ,Cq will constitute a (q − p + 1)-split cycle and we
know that the optimal solution is free of such cycles. In particular, this implies that if
jl is the last customer in route Cl , then x0 jl = 0, otherwise we violate either the fact
that l is not the largest possible consecutive route number or that there is no k-split
cycle. Now, reversing all the routes C1, . . . ,Cl will result in an optimal solution with
x0i decremented and no xa for a ∈ δ+(0) incremented beyond value 1. Repeating this
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procedure for every customer i with x0i ≥ 2, an alternative optimal solution can be
attained in which xa ∈ {0, 1} for all a ∈ A\δ−(0). 
�

2.4 Comparison with existing relaxations

Next, we compare our relaxed model to other relaxed models in the literature. A
similar model to R-SDVRP is given by Archetti et al. (2014). Different from our
model, Archetti et al. (2014) do not force all vehicles to be used. They use additional
variables to keep the number of visits to each node and put upper bounds on these
variables. Using the k-split cycle property, they restrict the variables associated with
the arcs between customer pairs to be 0–1. In addition, they force the flow on return
arcs to the depot to be zero.

Note that if we project out the flow variables in R-SDVRP, we obtain the fractional
capacity inequalities

x(δ−(S)) ≥ d(S)

Q
(17)

for all S ⊆ N\{0} [see Gouveia (1995) and Letchford and Salazar-González (2006)
for more projection results]. Hence, R-SDVRP is equivalent to a directed version of
the relaxation used by Belenguer et al. (2000). These authors depict a solution of their
relaxation for the instance eil30 which is not feasible for SDVRP. In Fig. 1, we depict
the solution found by solving our relaxation. We obtain the same solution, but we also
have the flow values on the arcs. We report these values for the arcs adjacent to node
18. Three vehicles visit node 18, one ofwhich is empty upon arrival while the other two
are not. The empty vehicle returns to the depot after passing through node 18, while
the nonempty vehicles arrive at node 18 with 4500 and 625 units of load and leave
the node with 3175 and 1800 units of load, respectively. This can only be possible if
1175 units of load is unloaded from the first vehicle and loaded on the second vehicle,
while the vehicles are at node 18. This is not admissible for the SDVRP.

2.5 Framed capacity inequalities

In Belenguer et al. (2000), the authors propose to cut off the infeasible solution given in
Fig. 1 using a valid inequality. In this section, we present a family of valid inequalities
that generalizes the inequalities used by Belenguer et al. (2000). These inequalities
are called “framed capacity inequalities,” and their undirected variants are proposed
for the CVRP [see, e.g., the review by Naddef and Rinaldi (2002)].

Proposition 2.2 Let H ⊆ N\{0} and S1, . . . , St be disjoint nonempty subsets of H.
Define b(S1, . . . , St ) to be the optimal value of the bin packing problem with items
1, . . . , t of size d(S1), . . . , d(St ) (if there exists u with d(Su) > Q, then as done by

Belenguer et al., we consider the demand of set Su to be d(Su) −
⌊
d(Su)
Q

⌋
Q in the

bin packing problem and add
⌊
d(Su)
Q

⌋
to the bin packing value). The framed capacity

inequality
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Fig. 1 The optimal solution of R-SDVRP for eil30

x(δ−(H)) +
t∑

u=1

x(δ−(Su)) ≥
t∑

u=1

⌈
d(Su)

Q

⌉
+ b(S1, . . . , St ) (18)

is valid for the feasible set of SDVRP.

Proof If x(δ−(Su)) =
⌈
d(Su)
Q

⌉
for all u = 1, . . . , t , thenwe need at least b(S1, . . . , St )

vehicles to enter set H to satisfy the demand of ∪t
u=1Su . Hence x(δ−(H)) ≥

b(S1, . . . , St ). Since each split in Su can reduce the number of required vehicles by at
most 1, the result follows. 
�

Note that, for the CVRP, the bin packing value is computed using all customers in

H . In our case, if b(S1, . . . , St ) ≤
⌈
d(H)
Q

⌉
, then the inequality is dominated by the

sum of rounded capacity inequalities x(δ−(H)) ≥
⌈
d(H)
Q

⌉
and x(δ−(Su)) ≥

⌈
d(Su)
Q

⌉

over all u = 1, . . . , t . If b(S1, . . . , St ) >
⌈
d(H)
Q

⌉
, considering all customers of H by

letting splits for the ones in H\ ∪t
u=1 Su does not change the result of the bin packing

problem since b(S1, . . . , St )Q > d(H).
The inequalities used by Belenguer et al. (2000) are special cases of inequality (18)

with H = V \{0} and consequently x(δ−(H)) = m.
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Fig. 2 An optimal solution to R-SDVRP that cannot be cut off by any framed capacity inequality

Next, we showwith an example that even if we include all framed capacity inequal-
ities into our relaxed model, the resulting model is still a relaxation and may have
optimal solutions that are not feasible for the SDVRP. In other words, there exist
optimal R-SDVRP solutions that are not admissible for the SDVRP, yet cannot be
eliminated using any framed capacity inequality. Such a solution is depicted in Fig. 2
along with the cost matrix associated with the problem instance. The demands are
d1 = 4, d2 = 2, d3 = 6, d4 = 15 and d5 = 1. There are two vehicles, each with a
capacity of 15 units. The number on each arc corresponds to its flow value. Notice that
a load exchange takes place between the vehicles at node 5. The total cost associated
with this solution is 60,while the optimal SDVRP solution has cost 61. Therefore, there
does not exist an optimal SDVRP solution using the edges in this R-SDVRP solution.

First note that the bin packing value cannot be larger than 2 for all possible subsets H

and S1, . . . , St . If x(δ−(H)) ≥ 2, then as b(S1, . . . , St ) ≤ 2 and x(δ−(Su)) ≥
⌈
d(Su)
Q

⌉
for u = 1 . . . , t , inequality (18) is satisfied. Now for x(δ−(H)) = 1, we need
H ⊂ N\{0, 5} and |H | = 1. Then, S1 = H or S1 = ∅, and accordingly, the bin
packing value b(S1) is 1 or 0 and the inequality is again satisfied. Hence, the framed
capacity inequalities fail to omit the solution in this example from the feasible set of
the R-SDVRP.

2.6 Rounded capacity and cutset inequalities

Toconclude this section,wedescribe twoclasses of valid inequalities that are employed
for strengthening our relaxation. Let Y be the feasible set of the R-SDVRP and S ⊆
N\{0}. The rounded capacity inequality
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x(δ−(S)) ≥
⌈
d(S)

Q

⌉
(19)

is valid for Y .
Now consider the relaxation

f (δ−(S)) − f (δ+(S)) = d(S), (20)

0 ≤ fa ≤ Qxa a ∈ δ−(S) ∪ δ+(S), (21)

xa ∈ Z+ a ∈ δ−(S) ∪ δ+(S). (22)

The convex hull of the solutions of the above set is defined by trivial inequalities and
the following cutset inequalities (see Atamtürk 2002). Let A− ⊆ δ−(S), A+ ⊆ δ+(S),

η =
⌈
d(S)
Q

⌉
and r = d(S) −

⌊
d(S)
Q

⌋
Q. The cutset inequality is

f (δ−(S)\A−) + r x(A−) + (Q − r)x(A+) − f (A+) ≥ rη (23)

and is valid for Y . If A− = δ−(S) and A+ = ∅, the cutset inequality reduces to the
rounded capacity inequality.

3 New exact methods for the SDVRP

Twonovel iterative algorithms are devised for solving the SDVRP to optimality. Essen-
tially, the mechanism behind both algorithms is the same. First, an optimal solution
( f ∗, x∗) of the R-SDVRP is obtained. If the solution ( f ∗, x∗) is feasible for SDVRP,
then it is also an optimal SDVRP solution.Otherwise, newvariables and constraints are
added to the formulationR-SDVRP such that when the new variables are projected out,
some portion of Y , including the vector ( f ∗, x∗), is cut off. The relaxation is solved
again over a more constrained region. This process continues iteratively until an opti-
mal SDVRP solution is found. The two methods are distinguished by the routines they
use for eliminating the solution ( f ∗, x∗) at every iteration. Before elaborating more
on these routines, we describe what we refer to as the regularity property.

Definition (Regularity property) A feasible solution of R-SDVRP possesses the reg-
ularity property, or equivalently, it is called regular, if for any node i ∈ N\ {0}, the
following holds:

f −(i, j) ≥ f +(i, j) for all j = 1, . . . , in,

where in is the number of vehicles passing through node i , f −(i, j) and f +(i, j) are
the amounts of the j th largest incoming and outgoing flows associated with the node
i , respectively.

Note that the regularity of an R-SDVRP solution can be established in O(m2 logm)

time since there can be at most m − 1 split nodes (see Archetti et al. 2008), and for
each one, ordering the incoming and outgoing flow values takes at most O(m logm)
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time. For a node i for which xi0 > 1, fi0 should be decomposed into xi0 flow values
having the potential of satisfying the regularity property which can easily be handled
within the same time complexity.

Archetti et al. (2014) prove that if an optimal solution of the R-SDVRP has the
regularity property, then it solves SDVRP optimally. This result establishes an equiv-
alence between the regular R-SDVRP solutions and the feasible SDVRP solutions.
Given a solution to the R-SDVRP, one can check in polynomial time whether it is
regular and thus feasible for the SDVRP. However, deciding on the regularity of an
R-SDVRP solution is different from checking whether a given solution x is feasible
for the SDVRP, which is shown to be NP-complete by Belenguer et al. (2000).

We can construct an optimal SDVRP solution from an optimal regular solution
( f, x) of the R-SDVRP in the following way. Consider the arcs in the corresponding
support graph; that is, the arcs a ∈ A with xa ≥ 1. We shall apply depth first search
traversals in the support graph in order to construct m viable routes. Start each route
with an arc emanating from the depot and perform depth first search making sure at
every node among the potential outgoing arcs, the one having the largest flowvalue less
than or equal to the flow value of the used incoming arc is selected. For a node i such
that xi0 ≥ 2, such a route extension is not that obvious. Suppose our traversal enters
such a node i using arc ( j, i). We shall split arc (i, 0) into xi0 identical arcs. The route
will be completed by choosing one of these arcs with flow value asmin( f j i , fi0). Now,
take out this constructed route from the support graph, update the demands and the
flow values on multiple arcs entering the depot and repeat the same steps for another
route. Note that our arc selection preserves regularity and after m steps we construct
an optimal solution for the SDVRP. Since the support graph has at most nm arcs and
since each arc can be visited at most m times during our traversals, the complexity of
this algorithm is O(nm2).

In the following subsections, the details of the exact solution methods we propose
are discussed.

3.1 Patching algorithm

Even though our vehicle-indexed flow formulation is not computationally efficient,
it may be reasonable to use vehicle indices, at least for some arcs, to be able to
find an optimal SDVRP solution by solving a relaxation. The patching algorithm
is based on the idea of locally extending the R-SDVRP formulation with vehicle-
indexed variables when needed. More precisely, at each iteration of the algorithm, a
node violating the regularity property is identified and vehicle-indexed variables are
introduced associated with the arcs incident to this node. These variables allow us to
formulate the constraints necessary to enforce the regularity at this node. The steps of
the patching algorithm are given below.

Step 0. Initialization: Solve the R-SDVRP, and let ( f̄ , x̄) denote the optimal solution
found. Set current solution to ( f̄ , x̄).

Step 1. Check the regularity of the current solution. If it is regular, stop. The current
solution is optimal for the SDVRP.
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Step 2. Let Ḡ = (N , Ā) represent the support graph corresponding to the current
solution; i.e., the graph induced by the arcs (i, j) for which x̄i j ≥ 1. Update
Ḡ by adding it the arcs ( j, i) for all (i, j) ∈ Ā, and solve the exact (vehicle-
indexed) SDVRP formulation on the updated graph Ḡ. If a feasible solution
exists, stop; it is optimal for the SDVRP.

Step 3. Among the nodes violating the regularity of the current solution, select the
first one encountered during the regularity check. Denote this node by i∗.
Add vehicle-indexed variables for the arcs in δ−(i∗) ∪ δ+(i∗), and introduce
the following set of constraints to the model solved in the previous iteration.

gk(δ−(i∗)) − gk(δ+(i∗)) ≥ 0 k ∈ K , (24)

yk(δ−(i∗)) − yk(δ+(i∗)) = 0 k ∈ K , (25)

yk(δ−(i∗)) ≤ 1 k ∈ K , (26)∑
k∈K

gka = fa a ∈ δ−(i∗) ∪ δ+(i∗), (27)

∑
k∈K

yka = xa a ∈ δ−(i∗) ∪ δ+(i∗), (28)

gka ≤ Qyka a ∈ δ−(i∗) ∪ δ+(i∗), k ∈ K , (29)

gka ≥ 0, yka ∈ {0, 1} a ∈ δ−(i∗) ∪ δ+(i∗), k ∈ K . (30)

Constraint (24) forces the regularity property at node i∗, and constraint (25)
ensures that vehicle flow is conserved at this node. Constraint (26) prevents
node i∗ from being visited more than once by the same vehicle. The vehicle-
indexed variables gka and y

k
a are linked to the original decision variables fa and

xa with constraints (27) and (28), respectively. Constraint (29) set the upper
bounds on the flows for the arcs in δ−(i∗) ∪ δ+(i∗). Finally, nonnegativity
and binary requirements for the new variables are given by (30).

Step 4. Solve themodifiedmodel and update the current solution accordingly. Return
to step 1.

The patching algorithm guarantees convergence to an optimal solution of the
SDVRP by fixing the regularity violation for at least one node from one iteration
to another. Adding vehicle-indexed variables and regularity-related restrictions for a
node makes it possible to distinguish between different vehicles visiting the node and
prevents load exchanges. Although the R-SDVRP grows in terms of the number of
variables and constraints with the increasing number of iterations, as our computa-
tional results in Sect. 4 will attest to, this algorithm is capable of reaching the optimum
much faster compared to the vehicle-indexed model, which can be seen by comparing
the results in Table 1 to those that are provided in Tables 2 and 3.

3.2 Node-split algorithm

The patching algorithm adds vehicle-indexed variables for all vehicles at a node violat-
ing regularity. In most practical cases, the demand of a node is split among two or three
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Table 2 Results for the instances taking single iteration for the SDVRP

Instance Number of
nodes

Number of
vehicles

Best-known
upper bound

Lower
bound

Upper
bound

Gap (%) Time (s)

eil22 22 4 375 375 375 0 3.07

eil23 23 3 569 569 569 0 1.56

eil33 33 4 835 835 835 0 19.09

eil51 51 5 521 521 521 0 264.98

eilA76 76 10 818 777.42 – – 7200

eilB76 76 14 1002 941.25 – – 7200

eilC76 76 8 733 709.14 – – 7200

eilD76 76 7 681 657.46 – – 7200

S51D1 51 3 458 458.00 458 0 21.68

S51D2 51 9 703 682.01 – – 7200

S51D3 51 15 943 911.64 945 3.53 7200

S51D4 51 27 1551 1504.67 1555 3.24 7200

S51D5 51 23 1328 1297.37 1329 2.38 7200

S51D6 51 41 2163 2093.05 2153 2.78 7200

S76D1 76 4 592 592 592 0 1728.26

S76D2 76 15 1081 1011.45 – – 7200

S76D3 76 23 1419 1349.64 – – 7200

S76D4 76 37 2071 1979.51 – – 7200

SD1 9 6 228 228 228 0 0.03

SD2 17 12 708 708 708 0 0.38

SD3 17 12 432 432 432 0 0.11

SD4 25 18 630 630 630 0 0.44

SD5 33 24 1392 1392 1392 0 6137.18

SD6 33 24 832 832 832 0 4.32

SD7 41 30 3640 3484.12 – – 7200

SD8 49 36 5068 4790.15 – – 7200

SD9 49 36 2046 2005.48 2046 1.98 7200

SD10 65 48 2688 2620.33 2696 2.81 7200

p01-110 51 3 458 458 458 0 21.97

p01-1030 51 11 753 722.38 755 4.32 7200

p01-1050 51 16 998 969.97 998 2.81 7200

p01-1090 51 26 1481 1440.76 1480 2.65 7200

p01-3070 51 26 1473 1433.04 1478 3.04 7200

p01-7090 51 41 2212 2075.84 2142 3.09 7200

p02-110 76 5 612 599.56 – – 7200

p02-1030 76 16 1157 1044.54 – – 7200

p02-1050 76 24 – 1433.98 – – 7200

p02-1090 76 40 – 2212.47 – – 7200

p02-3070 76 39 – 2133.99 – – 7200

p02-7090 76 61 – 3103.35 3205 3.17 7200
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vehicles. Hence, by patching, we may use unnecessary variables and constraints. The
node-split method provides a way to make a distinction between the vehicles visiting
a certain node without using vehicle-indexed variables. It is similar to the patching
algorithm in the following respects: (1) the R-SDVRP is solved at the initialization
step, (2) an extended version of the R-SDVRP obtained by adding new variables and
constraints is solved at each iteration, and (3) regularity violations are detected and
eliminated iteratively until an optimal SDVRP solution is obtained. However, it dif-
fers from the patching algorithm in terms of the approach adopted for enforcing the
regularity property at a violating node.

The idea of the node-split algorithm is to create duplicates of the nodes violating
regularity and to constrain the net incoming flow to each such node and every one of
its duplicates to take nonnegative values. Duplicating a certain node provides means
to decompose the flow carried on the incoming arcs of the original node and the flow
carried on its outgoing arcs into distinct vehicles. Note that the network associated
with the original problem is enlarged every time a node is duplicated because both the
number of nodes and the number of arcs increase. Hence, after a number of iterations,
a regular solution is found on an extended network, for which the corresponding
solution on the original network can be obtained simply by merging each node with
its duplicates (if there is any).

We present the generic version of themodel solved at each iteration of the node-split
algorithm below along with some additional notation. Suppose that N ′ = ∪i∈N\{0}Ni ,
where Ni represents the set of nodes containing node i ∈ N and its duplicates. Let
A′ = {(k, l) : ∃(i, j) ∈ A, k ∈ Ni and l ∈ N j }∪{(0, i)∪(i, 0) : i ∈ N ′} and c̄kl = ci j
if k ∈ Ni and l ∈ N j . Similarly, let c̄0k = c0i and c̄k0 = ci0 if k ∈ Ni . Assume that
Ni is ordered so that a node j ∈ Ni is denoted by (i, l), where l is the order of node j
in the set Ni . Also, define:

vi,l =
{
1 if node (i, l) ∈ N ′ is visited,
0 otherwise.

(Node-split model)

min
∑
a∈A′

c̄a xa (31)

s.t.
∑
j∈Ni

(
f (δ−( j)) − f (δ+( j))

) = di i ∈ N\ {0} , (32)

x(δ+(0)) = m, (33)

x(δ−( j)) − x(δ+( j)) = 0 j ∈ N ′, (34)

f (δ−(i, l)) − f (δ+(i, l)) ≥ 0 (i, l) ∈ N ′ : |Ni | ≥ 2, (35)

x(δ−(i, l)) = vi,l (i, l) ∈ N ′ : |Ni | ≥ 2, l �= |Ni |, (36)

x(δ−(i, |Ni |)) ≤ (m − |Ni | + 1)vi,|Ni | i ∈ N\ {0} : |Ni | ≥ 2, (37)

vi,l ≥ vi,l+1 (i, l) ∈ N ′ : |Ni | ≥ 2, l �= |Ni |, (38)

0 ≤ fa ≤ Qxa a ∈ A′, (39)
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vi,l ∈ {0, 1} (i, l) ∈ N ′, (40)

xa ∈ {0, 1} a ∈ A′\δ−(0), (41)

xa ∈ Z+ a ∈ δ−(0). (42)

The objective of the node-split model is to minimize the total transportation cost.
Constraint (32) guarantees that the demand of each customer is completely satisfied.
Exactly m vehicles depart from the depot due to (33), and constraint (34) ensures
that the vehicle flow is conserved everywhere. For the customers having at least one
duplicate; i.e., the nodes that have caused regularity violation at a previous iteration,
constraint set (35) intends to enforce regularity property at these customers together
with constraints (36). More specifically, for every violating customer i , inequality (35)
imposes nonnegativity restrictions on the net incoming flow to every node in Ni and
equality (36) prevents more than one visit to all but the last node in Ni . In this way,
only the last node in Ni can cause regularity violation during the succeeding iterations
if Ni < m, which would be eliminated later by adding more duplicates as necessary.
Eventually, the regularity is established at a violating customer by (35) and (36) after
creating at most m − 1 duplicates. The number of visits v to every duplicate node is
determined by the inequalities (37) and (38). In particular, these constraints ensure
that multiple entries are allowed only for the last duplicate of a particular node and
that duplicate nodes are visited in the increasing order; i.e., if lth duplicate of a node
is visited, then all the preceding duplicates must have been visited once. Lower and
upper bounds on the arc flows are imposed by (39). Finally, constraints (40)–(42) are
integrality and binary restrictions on the variables.

The node-split algorithm follows the same steps as the patching algorithm except
Step 3. In this step of the node-split algorithm, among the nodes violating the regularity
of the current solution, we select the first one encountered during the regularity check.
We denote this node by i , create a duplicate i ′ of node i , and update N ′ by setting
Ni = Ni∪{i ′} and A′ by establishing the arcs between i ′ and the nodes in (N ′∪{0})\Ni .
We redefine the node-split model over the enlarged sets N ′ and A′ and then proceed
to the next step.

Convergence to an optimal solution of the SDVRP is guaranteed by the node-split
algorithm since the regularity violation is eliminated for a given node after m − 1
iterations in the worst case. More precisely, if all of them vehicles visit a certain node,
therewill be atmostm−1 copies of the node afterm−1 iterations, and constraints (33)
will force regularity for all copies and thus for the original node. Essentially, creating
m − 1 duplicates of a node in this algorithm is analogous to adding vehicle-indexed
variables in the patching algorithm. Even if the number of iterations required to reach
an optimum is higher compared to the patching algorithm, the node-split algorithm
usually works faster as will be apparent through our computational results.

4 Computational study

We implemented our algorithms in Java using the mixed integer linear programming
solver CPLEX 12.6 and performed a computational study on a 64-bit machine with

123



New exact solution approaches for the split delivery… 101

Intel Xeon E5-2630 v2 processor at 2.60 GHz and 96 GB of RAM. The experiments
were conducted on a total of 46 problem instances including benchmark instances
proposed by Belenguer et al. (2000), Archetti et al. (2006), Chen et al. (2007), and a
new set of randomly generated instances. In each of these instances, the number of
vehicles is equal to theminimumnumber of vehicles required to serve the total demand,

i.e., |K | =
⌈
d(N\{0})

Q

⌉
. We attempted to solve the problems up to 75 customers with

rounded costs. We check triangle inequality and set cik = ci j + c jk for (i, k) ∈ A
with cik > ci j + c jk . Parallel processing is employed in our study with 8 threads or
24 threads depending on the problem size. For the instances containing less than 50
customers, we use 8 threads, while for larger problems, the processing is performed
on 24 threads. Based on the results of preliminary computational tests, flow cover,
flow path and the mixed integer rounding cuts are switched off.

The R-SDVRP is strengthened by adding rounded capacity inequalities and cutset
inequalities at the root node of the branch-and-bound tree. Starting with a fractional
solution obtained by solving the linear relaxation of the R-SDVRP, we separate the
rounded capacity inequalities employing a heuristic procedure known as the connected
component heuristic in the CVRP literature (see Ralphs et al. 2003 for details). Con-
sider the support graph Ḡ associated with a given fractional solution x̄ . First, we find
the connected components of Ḡ excluding the depot node. We denote these compo-
nents by S1, . . . , St , and for every u = 1, . . . , t we check whether Su violates the
rounded capacity inequality (19). If no violation is detected, we try to identify a node
i ∈ Su for which

⌈
d(Su\{i})

Q

⌉
=

⌈
d(Su)

Q

⌉

and

x(δ−(Su\{i})) < x(δ−(Su)),

remove node i from the set Su and check for violation for the new set Su\{i}. If the
new set still does not violate (19), we repeat the same steps until either a violated
rounded capacity inequality is detected, or no node whose removal would induce a
violated rounded capacity inequality exists. For the cutset inequality, separation can
be performed by checking violation for subsets A− = {a ∈ δ−(S) : fa ≥ r xa} and
A+ = {a ∈ δ+(S) : (Q − r)xa − fa < 0} given a fractional solution ( f, x) and a set
S ⊆ N\{0}. We apply this separation procedure for the sets S with |S| = 1 only; i.e.,
we check violation for subsets A− = {a ∈ δ−(i) : fa ≥ r xa} and A+ = {a ∈ δ+(i) :
(Q − r)xa − fa < 0} for every i ∈ N\{0}. A violated rounded capacity or cutset
inequality is introduced to the model if its violation is at least 10%, and the search is
terminated when the improvement in the objective function value cannot exceed 5% in
the last two iterations. Additionally, the variables xa are restricted to take 0–1 values
for the arcs a ∈ A\δ−(0) by Proposition 2.1.

For each problem instance, the time limit is set to 2 h after violated rounded capacity
cuts and cutset inequalities are separated at the root node of the search tree. If an optimal
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solution to the R-SDVRP cannot be found within 2 h, we investigate the existence
of a feasible SDVRP solution on the support graph associated with the incumbent
solution ( f̄ , x̄), which is induced by the arcs (i, j) such that x̄i j ≥ 1 or x̄ j i ≥ 1, by
employing our vehicle-indexed formulation, for which the time limit is an additional
30 min. Under the above settings, our results regarding the patching and the node-split
algorithms are summarized in Tables 2 and 3.

For the majority of the instances in the literature, either the optimal solution of the
R-SDVRP is also feasible for the SDVRP; that is, the R-SDVRP yields an optimal
SDVRP solution, or the R-SDVRP cannot be solved within the time limit of 2 h. In
fact, there is only one instance, namely eil30, for which our algorithms perform more
than a single iteration. We note that the results in Archetti et al. (2014) show that the
undirected formulation without flow variables performs better in solving most of these
instances. Our aim here is not to compare different formulations with and without flow
variables but to test whether the idea of extending the formulation iteratively can be
useful in solving the problem. We use the formulation with flow variables and only
change the way we extend the formulation in applying different methods. We need
instances that are solved after several iterations to be able to compare the performances
of the patching and the node-split algorithms and to see if there is a gain in extending
the formulation iteratively. To this end, we introduce five new instances to the literature
(available at ozbaygin.bilkent.edu.tr), namely r1 through r5, with the number of nodes
ranging between 30 and 48, and the number of vehicles is three or four.

Among these instances, r1 is completely random. For the remaining ones, the coor-
dinates were taken from the existing CVRP instances, while the demands are randomly
generated according to three different scenarios; that is, between [0.01Q, 0.1Q],
[0.01Q, 0.15Q], or [0.01Q, 0.2Q], and the demand of one customer is increased
by Q/2 to enhance the possibility of having at least one split customer.

The results regarding the instances for which an optimal R-SDVRP solution cannot
be obtained at the end of 2 h as well as the instances for which the optimal solution
of our relaxation yields an admissible SDVRP solution are provided in Table 2. Both
the patching and the node-split algorithms solve the R-SDVRP in their first iteration;
hence, the two algorithms yield the same results for these instances. For the remaining
instances, we give the results in Table 3.

We can solve 19 instances to optimality, 13 of which take a single iteration to solve
because either the optimal R-SDVRP solution satisfies the regularity property, or an
alternative regular solution of the same cost exists. The solution times and iterations
performed by both algorithms are provided in Table 3 for the remaining instances.
Accordingly, the node-split algorithm converges to an optimal solution faster than the
patching algorithm in five of the six instances.

We obtain an upper bound for 12 problem instances, and we are able to improve the
best-known upper bound in the literature for four of the instances that are highlighted
bold in Table 2. In fact, regarding the instance p02-7090, we report an upper bound
for the first time in the literature. In general, once the optimal R-SDVRP solution is
attained, iterating for an optimal solution of the SDVRP with our patching or node-
split algorithms can be effectively done. In particular, as Table 3 also depicts, this time
is much lower for the node-split algorithm. However, as Table 2 clearly points out,
solving even the relaxed form of the SDVRP could be quite challenging.
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Finally, we also provide the best-known upper bounds as well as the upper and
lower bounds for each instance using nonrounded costs in Table 4. These values are
obtained with the node-split algorithm. Overall, we observe that the results are similar
to those in the rounded cost case.

5 Extensions

In this section, we introduce two new extensions of the SDVRP: (1) SDVRP with
at most r splits and (2) SDVRP with open routes (SDOVRP). To the best of our
knowledge, no results have been presented previously regarding these extensions,
both of which can be modeled by slightly modifying our flow-based formulations.

5.1 SDVRP with at most r splits

Even though delivery splitting has a potential for cost savings, customers might not be
willing to receive several separate deliveries due to handling inefficiencies in practice.
In the SDVRP with at most r splits, split deliveries are allowed, but the demand of any
customer may be covered by at most r vehicles where 1 < r < m. Notice that when
r = 1, the problem reduces to the CVRP, and when r = m, it becomes the SDVRP.
There are some studies in the literature that impose a restriction on minimum delivery
amounts for the vehicles visiting a customer. However, we are not aware of any work
in which the number of splits is limited. A mathematical model for SDVRP with at
most r splits is readily available by adding the following constraints to SDVRP model
(1)–(9)

∑
k∈K

yk(δ−(i)) ≤ r i ∈ N\{0}.

Similarly, introducing the restriction

x(δ−(i)) ≤ r i ∈ N\{0} (43)

to the R-SDVRP model (10)–(16) provides a relaxation to SDVRP with at most r
splits.

Regarding the solution approach, the patching algorithm can be implemented
directlywhen constraint set (43) is added to theR-SDVRP, and the node-split algorithm
can be employed by replacing (37) with the following set of constraints:

x(δ−(i, |Ni |)) ≤ (r − |Ni | + 1)vi,|Ni | i ∈ N\ {0} : |Ni | ≥ 2 (44)

since fulfilling the demand of a customer with at most r vehicles means that the
customer can have no more than r duplicates at any iteration of the algorithm.

Here we consider the case r = 2 and provide the results of our computational
experiments for the SDVRP with at most two splits. Notice that when r = 2 the
node-split model can be simplified further, because in this case, we do not need the
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Table 4 Results for the SDVRP instances with nonrounded costs

Instance Number of
nodes

Number of
vehicles

Best-known
upper bound

Lower
bound

Upper
bound

Gap (%) Time (s)

eil22 22 4 375.28 375.28 375.28 0 3.59

eil23 23 3 568.56 568.56 568.56 0 0.81

eil30 30 3 512.72 512.72 512.72 0 465.09

eil33 33 4 837.06 837.06 837.06 0 600.90

eil51 51 5 524.61 524.61 524.61 0 890.85

eilA76 76 10 823.89 783.58 – – 7200

eilB76 76 14 1009.04 949.56 – – 7200

eilC76 76 8 738.67 713.34 – – 7200

eilD76 76 7 687.60 663.44 – – 7200

S51D1 51 3 459.50 459.50 459.50 0 17.22

S51D2 51 9 708.42 679.81 – – 7200

S51D3 51 15 947.97 909.75 951.08 4.54 7200

S51D4 51 27 1560.88 1506.14 1569.08 4.18 7200

S51D5 51 23 1333.67 1302.63 1335.98 2.56 7200

S51D6 51 41 2169.10 2101.62 2183.02 3.87 7200

S76D1 76 4 598.94 598.94 598.94 0 4453.60

S76D2 76 15 1087.99 1023.28 – – 7200

S76D3 76 23 1427.81 1362.89 – – 7200

S76D4 76 37 2079.76 1994.38 – – 7200

SD1 9 6 228.28 228.28 228.28 0 0.03

SD2 17 12 708.28 708.28 708.28 0 0.74

SD3 17 12 430.58 430.58 430.58 0 0.20

SD4 25 18 631.05 631.05 631.05 0 0.25

SD5 33 24 1390.57 1390.57 1390.57 0 2330.64

SD6 33 24 831.24 831.24 831.24 0 4.46

SD7 41 30 3640 3557.53 3640.00 2.32 7200

SD8 49 36 5068.28 4798.36 5068.28 5.63 7200

SD9 49 36 2044.20 1998.32 2044.20 2.30 7200

SD10 65 48 2684.88 2622.56 2684.88 2.38 7200

p01-110 51 3 459.50 459.50 459.50 0 18.44

p01-1030 51 11 756.71 730.04 756.71 3.65 7200

p01-1050 51 16 1005.75 980.92 1005.75 2.53 7200

p01-1090 51 26 1487.41 1457.01 1488.76 2.18 7200

p01-3070 51 26 1481.71 1439.81 1481.76 2.91 7200

p01-7090 51 41 2162.58 2093.48 2159.81 3.17 7200

p02-110 76 5 617.85 607.11 – – 7200

p02-1030 76 16 1122.91 1050.71 – – 7200

p02-1050 76 24 1509.79 1441.15 – – 7200

p02-1090 76 40 2372.22 2224.98 – – 7200
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Table 4 continued

Instance Number of
nodes

Number of
vehicles

Best-known
upper bound

Lower
bound

Upper
bound

Gap (%) Time (s)

p02-3070 76 39 2235.61 2147.40 – – 7200

p02-7090 76 61 3259.36 3131.52 3240.92 3.49 7200

r1 30 4 711.50 711.50 711.50 0 20.07

r2 36 3 399.04 399.04 399.04 0 894.00

r3 36 4 419.79 419.79 419.79 0 46.86

r4 41 3 410.81 410.81 410.81 0 2144.34

r5 48 3 37,232.93 37,232.93 37,232.93 0 6017.46

variable v, and regularity violation at a node can be eliminated at once by creating a
single duplicate of the node (unlike the SDVRP, which may take m − 1 iterations to
establish regularity at a node in the worst case). More precisely, the node-split model
reduces to the following:

min
∑
a∈A′

c̄a xa

s.t.
∑
j∈Ni

(
f (δ−( j)) − f (δ+( j))

) = di i ∈ N\{0},

f (δ−(i, l)) − f (δ+(i, l)) ≥ 0 (i, l) ∈ N ′ : |Ni | = 2,

x(δ+(0)) = m,

x(δ−( j)) − x(δ+( j)) = 0 j ∈ N ′,
x(δ−(i, 1)) = 1 i ∈ N\{0} : |Ni | = 2,

x(δ−(i, 2)) ≤ 1 i ∈ N\{0} : |Ni | = 2,

0 ≤ fa ≤ Qxa a ∈ A′,
xa ∈ {0, 1} a ∈ A′\δ−n(0),

xa ∈ Z+ a ∈ δ−(0).

Since our node-split algorithm proved more effective than the patching algorithm
for the SDVRP, we attempted to solve at most two splits version using only the node-
split algorithm. Tables 5 and 6 indicate our results. In this case, we can solve 18
instances optimally and obtain an upper bound for 16 instances. Different from our
results for the SDVRP, we cannot reach an optimal solution for the instance r5.

Another way to tackle the problem with at most two splits is to solve the R-SDVRP
without adding constraint (43), and create duplicates of the customers receiving more
than two separate deliveries in addition to those violating the regularity of the solution.
We also tried to solve the SDVRP with at most two splits in this manner. The results
are demonstrated in Tables 7 and 8. We can reach an optimum for the instance r5 in
addition to 17 of the instances that can be solved optimally in the presence of (43),
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Table 5 Results for the instances taking single iteration for the SDVRP with at most two splits

Instance Number of
nodes

Number of
vehicles

Lower
bound

Upper
bound

Gap (%) Time (s)

eil22 22 4 375 375 0 4.93

eil23 23 3 569 569 0 1.53

eil33 33 4 835 835 0 60.55

eil51 51 5 521 521 0 676.38

eilA76 76 10 775.91 828 6.29 7200

eilB76 76 14 940.62 1015 7.33 7200

eilC76 76 8 708 – – 7200

eilD76 76 7 657.01 684 3.95 7200

S51D1 51 3 458 458 0 18.94

S51D2 51 9 677.53 – – 7200

S51D3 51 15 908.62 944 3.75 7200

S51D4 51 27 1504.19 – – 7200

S51D5 51 23 1293.61 1329 2.66 7200

S51D6 51 41 2088.57 2206 5.32 7200

S76D1 76 4 592 592 0 1351.40

S76D2 76 15 1019.85 – – 7200

S76D3 76 23 1349.70 – – 7200

S76D4 76 37 1989.93 – – 7200

SD1 9 6 228 228 0 0.02

SD2 17 12 708 708 0 1.60

SD3 17 12 432 432 0 0.28

SD4 25 18 630 630 0 0.27

SD5 33 24 1392 1392 0 10.66

SD6 33 24 832 832 0 3.39

SD7 41 30 3606.23 3640 0.93 7200

SD8 49 36 4875.15 5068 3.81 7200

SD9 49 36 2007.52 2046 1.88 7200

SD10 65 48 2612.83 2688 2.80 7200

p01-110 51 3 458 458 0 22.94

p01-1030 51 11 726.02 755 3.84 7200

p01-1050 51 16 967.69 – – 7200

p01-1090 51 26 1445.06 1483 2.56 7200

p01-3070 51 26 1440.55 1479 2.60 7200

p01-7090 51 41 2077.65 2166 4.08 7200

p02-110 76 5 600.76 – – 7200

p02-1030 76 16 1043.23 – – 7200

p02-1050 76 24 1434.84 – – 7200

p02-1090 76 40 2210.41 – – 7200

p02-3070 76 39 2134.39 – – 7200

p02-7090 76 61 3108.36 3343 7.02 7200
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Table 6 Results for the instances taking multiple iterations for the SDVRP with at most two splits

Instance Number of
nodes

Number of
vehicles

Node-split algorithm Number of
iterations

Lower
bound

Upper
bound

Gap (%) Time (s)

eil30 30 3 510 510 0 42.20 3

r1 30 4 708 708 0 22.43 2

r2 36 3 398 398 0 327.93 4

r3 36 4 421 421 0 151.58 2

r4 41 3 410 410 0 234.69 2

r5 48 3 37,105 37,234 0.34 7200 4

while we can obtain an upper bound only for the instance eilD76. Observe that in
general, when the number of vehicles is large and the instance cannot be solved to
optimality, an upper bound cannot be obtained because the solution found at the end of
the 2-h time limit usually contains customers that are visited by at least three vehicles.
Besides, even though some instances with large number of vehicles can be solved
optimally, finding an optimal solution takes many iterations without (43), yielding
longer computational times. Therefore, relaxing constraint (43) makes it harder to
terminate with an optimal or a feasible solution to the SDVRP with at most two splits
for the instances containing large number of vehicles. When the number of vehicles is
small, not imposing restriction (43) usually improves the solution times if the optimal
SDVRP solution is also feasible to the at most two splits version. Nonetheless, if the
number of iterations performed to reach an optimum increases due to the relaxation
of (43), solution times may get worse.

5.2 SDVRP with open routes

Another extension we present is the SDVRP with open routes (SDOVRP), which is
essentially the SDVRP where vehicles are not required to return to the depot upon
completing their service, or they may return by visiting the customers on their route in
the reverse order. The notion of open routes is mentioned for the first time by Schrage
(1981), but the open vehicle routing problem (OVRP) did not receive much attention
until the formal introduction of the problem by Sariklis and Powell (2000). Hence, it is
relatively new compared to the SDVRP and the majority of the research effort on this
problem seems to focus on heuristic methods (see Sariklis and Powell 2000; Tarantilis
and Kiranoudis 2002; Brandão 2004; Fu et al. 2005 for some examples). One exact
solution approach for the problem is the branch-and-cut algorithm due to Letchford
et al. (2007). For a review of the OVRP algorithms, the reader is referred to Li et al.
(2007). Several variants of the OVRP have been studied so far, including capacitated
OVRP, the OVRP with time windows and the OVRP with fuzzy demands. Also, there
are studies involving split deliveries and open routes under the same framework as
in Ceselli et al. (2009b) and Wang et al. (2014), but the former is the part of a rich
VRP, and the latter is within the context of a location-routing problem. To the best of
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Table 7 Results for the instances taking single iteration for the SDVRP with at most two splits when (43)
is relaxed

Instance Number of
nodes

Number of
vehicles

Lower
bound

Upper
bound

Gap (%) Time (s)

eil22 22 4 375 375 0 2.90

eil23 23 3 569 569 0 1.50

eil33 33 4 835 835 0 18.81

eil51 51 5 521 521 0 266.69

eilA76 76 10 777.40 – – 7200

eilB76 76 14 941.24 – – 7200

eilC76 76 8 709.16 – – 7200

eilD76 76 7 657.46 684 3.88 7200

S51D1 51 3 458 458 0 21.45

S51D2 51 9 681.97 – – 7200

S51D3 51 15 911.59 – – 7200

S51D4 51 27 1504.59 – – 7200

S51D5 51 23 1297.38 – – 7200

S51D6 51 41 2092.83 – – 7200

S76D1 76 4 592 592 0 1789.73

S76D2 76 15 1011.41 – – 7200

S76D3 76 23 1349.60 – – 7200

S76D4 76 37 1979.51 – – 7200

SD7 41 30 3483.04 – – 7200

SD8 49 36 4790.31 – – 7200

SD9 49 36 2005.46 – – 7200

SD10 65 48 2620.32 – – 7200

p01-110 51 3 458 458 0 21.91

p01-1030 51 11 722.39 – – 7200

p01-1050 51 16 969.95 – – 7200

p01-1090 51 26 1440.63 – – 7200

p01-3070 51 26 1432.99 – – 7200

p01-7090 51 41 2075.79 – – 7200

p02-110 76 5 599.38 – – 7200

p02-1030 76 16 1044.37 – – 7200

p02-1050 76 24 1433.67 – – 7200

p02-1090 76 40 2212.56 – – 7200

p02-3070 76 39 2134.03 – – 7200

p02-7090 76 61 3103.14 – – 7200

our knowledge, the only study incorporating the open route structure into the classical
SDVRP is due to Song and Liu (2013), who present a tabu search heuristic for the
problem. However, we are not aware of any published work in which an exact solution
algorithm is proposed for the SDOVRP.
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Table 8 Results for the instances taking multiple iterations for the SDVRP with at most two splits when
(43) is relaxed

Instance Number of
nodes

Number of
vehicles

Node-split algorithm Number of
iterations

Lower
bound

Upper
bound

Gap (%) Time (s)

eil30 30 3 510 510 0 31.12 3

SD1 9 6 228 228 0 0.14 3

SD2 17 12 708 708 0 21.69 11

SD3 17 12 432 432 0 0.21 2

SD4 25 18 630 630 0 3.20 3

SD5 33 24 1392 – – 7200 3

SD6 33 24 832 832 0 1572.21 15

r1 30 4 708 708 0 24.52 2

r2 36 3 398 398 0 360.81 5

r3 36 4 421 421 0 88.26 2

r4 41 3 410 410 0 850.77 3

r5 48 3 37,234 37,234 0 2322.83 4

Our vehicle-indexed formulation can be adapted to the SDOVRPby simply omitting
the cost terms associated with the arcs returning to the depot in the objective function;
that is, the objective function of the SDOVRP is expressed as

∑
a∈A\δ−(0)

∑
k∈K

ca y
k
a .

In the exact same way, we can modify the objective function of the R-SDVRP as

∑
a∈A\δ−(0)

caxa

and employ our algorithms to solve the SDOVRP. It is important to note here that
Proposition 2.1 does not remain valid, because reversing the direction of a route can
change the total transportation cost in an open route setting. However, we can still
restrict the variables xa to take binary values for a ∈ A\(δ−(0) ∪ δ+(0)) as the
feasible region associated with the problem does not change; i.e., we only modify the
objective function. Since xa ∈ Z+ for a ∈ δ−(0) ∪ δ+(0), the procedure for checking
the regularity of a solution is adapted to handle the cases breaking symmetry. Both
the patching and the node-split algorithms are used for solving the SDOVRP, and the
results we obtain are reported in Tables 9 and 10. In this case, we can find an optimal
solution for 24 instances, while we obtain an upper bound for 9 instances. Similar to
the results obtained for the SDVRP, the node-split algorithm yields more favorable
solution times when our algorithms perform multiple iterations. Overall, the results
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Table 9 Results for the instances taking single iteration for the SDOVRP

Instance Number of
nodes

Number of
vehicles

Lower
bound

Upper
bound

Gap (%) Time (s)

eil22 22 4 252 252 0 0.55

eil23 23 3 426 426 0 1.52

eil33 33 4 511 511 0 8.33

eil51 51 5 413 413 0 60.55

eilA76 76 10 542.18 – – 7200

eilB76 76 14 592.99 – – 7200

eilC76 76 8 532 532 0 4015.37

eilD76 76 7 520 520 0 262.22

S51D1 51 3 405 405 0 24.63

S51D2 51 9 449.18 – – 7200

S51D3 51 15 526.32 541 2.71 7200

S51D4 51 27 798.70 – – 7200

S51D5 51 23 698.18 – – 7200

S51D6 51 41 1083.54 – – 7200

S76D1 76 4 515 515 0 141.94

S76D2 76 15 617.80 – – 7200

S76D3 76 23 742.03 – – 7200

S76D4 76 37 1040.08 – – 7200

SD1 9 6 128 128 0 0.03

SD2 17 12 368 368 0 0.25

SD3 17 12 232 232 0 0.06

SD4 25 18 330 330 0 2.38

SD5 33 24 712 712 0 2.18

SD6 33 24 432 432 0 1.64

SD7 41 30 1820 1820 0 12.12

SD8 49 36 2548 2548 0 8.23

SD9 49 36 1050 1050 0 8.92

SD10 65 48 1377.90 1392 1.01 7200

p01-110 51 3 405 405 0 19.91

p01-1030 51 11 466.41 474 1.60 7200

p01-1050 51 16 588.29 – – 7200

p01-1090 51 26 770.42 791 2.60 7200

p01-3070 51 26 764.53 786 2.73 7200

p01-7090 51 41 1069.77 1100 2.75 7200

p02-110 76 5 513 513 0 92.20

p02-1030 76 16 625.15 – – 7200

p02-1050 76 24 781.50 809 3.40 7200

p02-1090 76 40 1153.18 – – 7200
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Table 9 continued

Instance Number of
nodes

Number of
vehicles

Lower
bound

Upper
bound

Gap (%) Time (s)

p02-3070 76 39 1115.61 – – 7200

p02-7090 76 61 1580.73 1634 3.26 7200

r2 36 3 332 332 0 12.83

r3 36 4 334 334 0 7.10

r4 41 3 349 349 0 15.19

r5 48 3 30787 30787 0 12

Table 10 Results for the instances taking multiple iterations for the SDOVRP

Instance Number of
nodes

Number of
vehicles

Patching algorithm Number of
iterations

Lower
bound

Upper
bound

Gap (%) Time (s)

eil30 30 3 375 375 0 329.84 3

r1 30 4 506 507 0.19 7200 5

Instance Number of
nodes

Number of
vehicles

Node-split algorithm Number of
iterations

Lower
bound

Upper
bound

Gap (%) Time (s)

eil30 30 3 375 375 0 145.65 5

r1 30 4 506 507 0.19 7200 5

indicate that the problem becomes easier to handle when the depot return requirement
is relaxed.

6 Discussion on algorithmic performance

Computational experiments revealed that the main difficulty we face is in solving the
R-SDVRP. This is a mixed integer program that our algorithms extend iteratively and
try to solve optimally at each iteration. Notice that applying patching or node-split
procedures does not require waiting until optimality is achieved. Therefore, we also
considered using a continuous relaxation of the R-SDVRP and solving the problem in
one branch-and-cut tree. We implemented this by using the lazy constraint callback
feature of CPLEX. However, we observed that it did not speed up the algorithm. We
believe that there aremainly two reasons behind this. First, using control callbacks dis-
ables dynamic search and activates traditional MIP search, which can be significantly
slower than dynamic search. Second, a larger number of variables and constraints are
added to the initial relaxation when the integrality constraints are relaxed. Table 11

123



112 G. Ozbaygin et al.

Table 11 Comparison: Using
R-SDVRP versus its continuous
relaxation

Instance Solution time (s)

R-SDVRP Continuous rel. of
R-SDVRP

eil22 3.07 7.11

eil23 1.56 3.42

eil30 30.58 3600

eil33 19.09 1863.18

eil51 264.98 3600

Table 12 Cuts active versus inactive

Instance Solution time (s) Relative reduction (%)

Cuts active Cuts disabled

eil22 3.16 3.07 2.85

eil23 0.53 1.56 –

eil30 557.51 30.58 94.51

eil33 20.03 19.09 4.69

eil51 420.64 264.98 37.01

r1 218.61 105.41 51.78

r2 590.46 857.07 –

r3 255.28 698.62 –

r4 2022.27 1033.69 48.88

r5 3526.03 3686.20 –

provides a comparison between the two approaches using the patching algorithm for
five small-to-medium sized instances, namely eil22–eil51 with a 1-h time limit.

As a result, we put our effort in solving the aggregated integer model more effi-
ciently. To this end, we proposed and tested several enhancement ideas. Accordingly,
we observed that the solution procedure can be accelerated by restricting a subset of
the integer variables, i.e., the arc design variables associated with the outgoing arcs
of the depot, to take binary values. Moreover, the lower bounds of the R-SDVRP can
be strengthened by separating cutset inequalities and rounded capacity inequalities
at the root node of the search tree. It should be noted, however, that after a certain
number of cutting plane iterations, the improvement achieved by adding more of these
inequalities is marginal. Therefore, we used a stopping criterion for the cutting plane
phase to overcome the tailing-off effect. We also performed experiments by switching
off some default cuts used by CPLEX, and we found out that flow cover, flow path
and MIR cuts usually slow down the solution of the R-SDVRP as demonstrated in
Table 12.

We were able to achieve significant performance enhancements by employing the
ideas outlined above.Moreover,we considered othermeans of speedingupour solution
procedure, such as the use of framed capacity inequalities as cutting planes, or applying
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Benders decomposition to the R-SDVRP, but concluded that these are not helpful
based on initial experiments. Note that the results reported in Tables 2–10 adopt all
the enhancements that proved useful during the preliminary computations.

7 Conclusion

The SDVRP is considered in this study. A vehicle-indexed arc flow formulation is pro-
posed for the problem as well as a relaxed model (R-SDVRP) obtained from this flow
formulation. A new property regarding the optimal SDVRP solutions is derived, which
guarantees the existence of an optimal SDVRP solution in which any arc emanating
from the depot is traversed at most once. We devise two novel exact solution algo-
rithms based on the idea of iteratively extending the relaxation by means of variables
and constraints until finding a solution satisfying the regularity property. Additionally,
we introduce two extensions of the SDVRP, namely the SDVRP with at most r splits,
and the SDVRP with open routes (SDOVRP). We adapt our relaxation and algorithms
to tackle these extensions. Computational experiments are performed on 46 problem
instances in total, 41 of which are benchmark instances from the literature, and five
of which are randomly generated new instances. Results are reported regarding the
SDVRP, SDVRP with open routes and SDVRP with at most r splits for the case of
r = 2. Accordingly, we can remark that our algorithms effectively iterate until an
optimal SDVRP solution is found as long as the R-SDVRP can be solved quickly.
Nevertheless, solving the R-SDVRP is a difficult task, especially for large-sized prob-
lem instances. It is important to recognize, however, that both the patching and the
node-split methods can be adopted when solving (especially symmetric) problems
other than the SDVRP, such as the multi-depot VRP, inventory routing, crew schedul-
ing and unit commitment.We believe that exploring the iterative extension idea further
on different problems can yield efficient optimization algorithms and thus can be a
worthwhile contribution in the future.
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