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Abstract Predicting process forces in micromilling is diffi-
cult due to complex interaction between the cutting edge and
the work material, size effect, and process dynamics. This
study describes the application of Bayesian inference to iden-
tify force coefficients in the micromilling process. The
Metropolis-Hastings (MH) algorithm Markov chain Monte
Carlo (MCMC) approach has been used to identify probability
distributions of cutting, edge, and ploughing force coefficients
based on experimental measurements and a mechanistic mod-
el of micromilling. The Bayesian inference scheme allows for
predicting the upper and lower limits of micromilling forces,
providing useful information about stability boundary calcu-
lations and robust process optimization. In the first part of the
paper, micromilling experiments are performed to investigate
the influence of micromilling process parameters on machin-
ing forces, tool edge condition, and surface texture. Under the
experimental conditions used in this study, built-up edge for-
mation is observed to have a significant influence on the pro-
cess outputs in micromilling of titanium alloy Ti6Al4V. In the
second part, Bayesian inference was explained in detail and
applied to model micromilling force prediction. The force
predictions are validated with the experimental measurements.
The paper concludes with a discussion of the effectiveness of

employing Bayesian inference in micromilling force model-
ing considering special machining cases.

Keywords Micromilling .Mechanistic modeling . Bayesian
inference .Markov chainMonte Carlo . Uncertainty analysis

Nomenclature
αe Rake angle
Ap Ploughed area
dF t j Differential tangential cutting force corresponding

to cutting edge j
dFr j Differential radial cutting force corresponding to

cutting edge j
dF tp j

Differential tangential ploughing force
dFrp j

Differential radial ploughing force
dFx j Measured micromilling forces in the X direction

corresponding to cutting edge j
dFy j

Measured micromilling forces in the Y direction
corresponding to cutting edge j

dz Differential height element
φ Cutting angle
Fmeasured Instantaneous experimental cutting force data

point
Fpredicted Predicted cutting force data point
h Uncut chip thickness in milling
hc Critical chip thickness
hj Uncut chip thickness corresponding to cutting

edge j
Kte Tangential edge coefficient
Ktc Tangential cutting coefficient
Kre Radial edge coefficient
Krc Radial cutting coefficient
Ktp Tangential ploughing coefficient
Krp Radial ploughing coefficient
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r Edge radius
Sa Areal surface roughness
Ssk Surface skewness
Sku Surface kurtosis
Sq Root-mean-square height
tu Uncut chip thickness in 2D cutting
Vp Ploughing volume
Fx;m Measured average forces in the x direction
Fy;m Measured average forces in the y direction

1 Introduction

Micromechanical milling is an effective technique to produce
microcomponents having three-dimensional surfaces made
from engineering materials [1, 2]. Controlling the dimensional
tolerances and surface quality of microcomponents consider-
ing productivity issues is a challenge. Predictive process
models, which have been successfully applied to macro-
scale milling, would be helpful to assist in selecting stable
machining conditions, estimating surface location errors, and
optimizing process parameters in micromilling [3, 4].
Extending such predictive models to micromilling is not a
straightforward task due to work material size effects, tool
run-out, tool wear, built-up edge, and difficulties in identifying
structural dynamic parameters. It is difficult to deal with the
stochastic behavior of the micromilling process and uncer-
tainties introduced by these factors using deterministic predic-
tive process models. This paper describes the application of
Bayesian inference methods to micromilling force modeling.

Force modeling based on process input parameters is usu-
ally considered as the first step in process modeling.
Mechanistic process modeling is usually preferred to model
process forces in micromilling where the relationship between
the work material and the cutting edge is obtained through
cutting, edge, and ploughing force coefficients [5–7]. These
coefficients are often calculated from either experimental
measurements of process forces or finite element-based sim-
ulation models [8]. The elasto-plastic behavior of the work
material, tool cutting edge radius, tool deflections, tool run-
out, and tool vibrations all affect the machining forces, leading
to uncertainties in micromilling forces especially when ma-
chining a difficult-to-cut material such as titanium alloy.
Titanium alloy Ti6Al4V is a popular material in the biomed-
ical industry due its bio-compatibility and low density.

There are uncertainties associated with cutting, edge, and
ploughing force coefficients. When micromilling forces are
calculated based on these coefficients, providing uncertainty
information would be useful for the users. In a recent study,
Karandikar et al. [9] demonstrated application of Bayesian
inference to milling force modeling. They used the Markov
chain Monte Carlo (MCMC) method to calculate the posterior
distributions of the force coefficients. They concluded that

Bayesian inference improves the predictive capability com-
pared to linear regression-based traditional methods.
Karandikar et al. [10, 11] also used Bayesian inference to
model tool life in milling and turning operations. Niaki et al.
[12] demonstrated the use of Bayesian inference in a mecha-
nistic model of the tool wear while machining nickel-based
alloys. Mehta et al. [13] used the Bayesian parameter infer-
ence method to model machining forces. Cao and Li [14]
emphasized the importance of uncertainties in selecting stable
machining conditions in micromilling. Jaffery et al. [15] stud-
ied the influence of micromachining process parameters by
considering the relationship between undeformed chip thick-
ness and tool edge radius. They found that when the feed is set
above the tool edge radius, the feed rate is the most important
parameter affecting tool wear, surface roughness, and burr
width. When the undeformed chip thickness is set less than
the tool edge radius, the influence of the feed on tool wear,
surface roughness, and burr width was observed to be lower.
Jaffery et al. [16] also pointed out that tool wear is driven by
stochastic factors.

In this study, the MCMCmethod [17–19] has been applied
to the micromilling process to describe uncertainties in force
predictions. A mechanistic micromilling model from the liter-
ature [5] has been adopted, and the probability distributions of
cutting, edge, and ploughing force coefficients were calculat-
ed. As a result of uncertainty analysis, the mean and standard
deviations of the micromilling forces can be estimated.

Built-up edge (BUE) formation is a common issue during
micromachining of ductile materials affecting the process out-
puts. The size and stability of BUE depends on the machining
conditions. In some cases, it is known to protect the cutting
edge from rapid wear, but it has a detrimental effect on the
surface finish, which is quite important in micromachining
[20]. In this study, BUE is investigated in detail and consid-
ered as an important source of uncertainty.

The paper is organized as follows. First, observations of
process outputs such as micromilling forces, tool edge condi-
tion, and surface texture are investigated. Second, mechanistic
micromilling process modeling technique is explained. Third,
Bayesian inference is applied to calculate probability distribu-
tions of force coefficients. Fourth, the results are discussed.

2 Experimental details

The micromachining experiments were performed on a CNC
milling center DMG HSC 55 together with a NSK HES 510
high-speed spindle (max 50,000 rpm) as shown in Fig. 1a. The
work material is selected as titanium alloy Ti6AL4V due to its
popularity in practice and research. The workpiece is 80 mm
long and its width is 37 mm. The titanium work material has a
lamellar structure consisting of 80% alpha and 20% beta
phases as shown in Fig. 1b. Slot micromilling experiments
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were performed under dry conditions. Machining forces were
measured using a Kistler mini dynamometer (9256 C1) with
its charge amplifier (5080A). The measurements were trans-
ferred to a PC using a data acquisition system (National
Instruments). Force signals were acquired with 105 data points
per second during the experiments. Micro end mills (NS Tools
MSE 230 0.4 × 0.8) having a 0.4-mm diameter and 2-μm
cutting edge radius were used in the experiments. The cutting
speed was kept constant at 35 m/min, which corresponds to
28,000-rpm spindle speed. As the micro end mill diameter
decreases, the rotational speed of the microtool must be in-
creased in order to attain an acceptable cutting speed.
However, the tooth passing frequency should not exceed the
bandwidth of the dynamometer [20]. A special attention was
paid to the placement of the micro end mill to the tool holder;
the static run-out was measured to be less than 1 μm using the

Mahr Millimar C-series indicator. The duration of cut (10 s)
was kept the same in all experiments. Micromachining condi-
tions are given in Table 1. The axial depth of cut was set as
10% of the nominal tool diameter. Feed per tooth values were
set considering the edge radius of the end mill. Force measure-
ments during the micromilling experiments, the condition of
the tool edge after the experiments, and the resulting surface
texture have been investigated in detail.

3 Experimental observations of process outputs

3.1 Micromilling force measurements

Figure 2a shows the micromilling forces in x, y, and z direc-
tions for a feed value of 0.4 μm/tooth. The variation peak

Fig. 1 a Experimental setup of
milling experiments. b
Microstructure of the material
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forces and different directions can also be identified (as shown
with “o”) in this figure. Peak forces are important in
micromilling since calculating the mean forces does not yield
satisfactory information about the process conditions. The
peak forces were counted using the data acquisition software
NI DIAdem for the whole duration of the process. Peak-to-
valley forces in positive and negative directions were calcu-
lated for all feed values, and the mean values are shown in
Fig. 2b. Peak-to-valley forces decrease down to 1 μm/tooth
feed, and around this feed value, “force instability” occurs
where the peak-to-valley forces slightly increase and start de-
creasing again around 0.6 μm/tooth. Based on these results,
feed above 1 μm/tooth can be identified as the shearing-
dominated zone, feed between 0.6 and 1 μm/tooth can be
identified as the transition zone, and feed less than 0.6 μm/
tooth can be identified as the ploughing-dominated zone.

3.2 Tool edge condition

Figure 3a shows the edge condition at the end of slot
micromilling tests, which reveals that a built-up edge (BUE)
at both cutting edges was formed during machining tests. The
samemicro end mill was used in all machining experiments in
order to keep experimental conditions constant (tool overhang
length, run-out, etc.). BUE is known to be detrimental to sur-
face quality, but if it is stable and small in size, it may help to
protect the cutting edge. Figure 3b shows the image of the
cutting edge scanned with a confocal laser microscope
(Keyence VHX-110). The cutting edge has a chamfered tip,
which increases the strength of the tip and also promotes work
material accumulation in front of the tool which acts like the
cutting edge. BUE changes the rake and clearance angles of
the cutting edge, and its size depends on the machining con-
ditions [21]. It is possible to eliminate BUE by increasing the
cutting speed, but in micromilling, it is limited by the maxi-
mum spindle speed and dynamics of the process. A high cut-
ting speed would also result in faster tool wear, especially
when difficult-to-cut materials are machined. Figure 3c shows
the edges of the micro end mill after BUE is removed by
applying a cleaning procedure. The edge radii were measured
to increase from initial 2 to 4 μm. A rapid increase in edge
radius during the break-in period increases the possibility of
material entrapment in front of the cutting edge.

In Fig. 4, two possible cases of micromachining configu-
rations are shown. If there is no BUE in front of the cutting
edge and assuming that the uncut chip thickness tu is smaller
than the edge radius r, then the effective rake becomes nega-
tive αe. The material underneath the cutting edge is ploughed
during machining. This volume is a function of material elas-
tic properties. It is difficult to model material behavior under
such conditions, which introduce uncertainty to modeling. If
there is BUE formation in front of the tool, the ploughing
forces are applied to it. The resulting rake angle becomes
positive, and the contact conditions between the cut material
and the tool material cease. The condition of the edge directly
influences the generated surface. The stability of BUE and its
size and shape introduce uncertainty to modeling. Predicting
BUE stability, size, and shape depending on the machining
conditions is a challenging task [21].

3.3 Surface texture investigation

The condition of the cutting edge and feed value directly in-
fluences machined surface properties. Therefore, investigation
of the surface texture would yield some useful information
about the combined effect of BUE and feed on the surface
texture. In this study, micromilled surfaces were investigated
by considering areal surface properties. Three-dimensional
topography of the micromilled surfaces was obtained by using
a laser scanning microscope (Keyence VK-X110). The

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

)
N(secroFyellaV

otkaeP

Feed (um/rev)

Fx
Fy
Fz

(b)

(a)

Fig. 2 a Acquired force signals from the micromilling experiments,
0.4 μm/tooth. b Peak-to-valley forces for different feed values

Table 1 Machining conditions for micromilling of Ti6AL4V

Rotational
speed (rpm)

Cutting speed
(m/min)

Axial depth of
cut (μm)

Feed per
tooth (μm/rev)

28,000 35 40 0.4, 0.6, 0.8, 1, 1.2,
1.5, 2, 3, 4
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following process steps were considered in the analysis. First,
the tilt (slope) of the surface was corrected. Second, the noise
in the surface height information was removed by applying a
denoising algorithm. Figure 5 shows the raw images of the
micromilled surfaces for all feed values from the smallest,
0.4 μm/tooth (a), to the largest feed, 4 μm/tooth (i), based
on the experimental plan given in Table 1. Figure 6 shows
extracted microscope images of the machined surfaces (with
×500 magnification). The influence of machining conditions
is reflected on the micromilled surface. The small material
particles from BUE were smeared on the surface. These ap-
pear as stochastically distributed hills over the surface. As the
feed increases, feed marks become more visible.

Arithmetic mean surface roughness (Sa), surface skewness
(Ssk), and surface kurtosis (Sku) parameters are investigated
here. Ssk is defined as the ratio of the mean of the height values
cubed and the cube of root-mean-square height (Sq) within a
sampling area [22]. It describes the shape of the topography
height distribution. If Ssk > 0, then the peaks are dominant on
the surface whereas Ssk < 0 indicates dominance of valleys. Sku
is calculated as the ratio of the mean of the fourth power of the
height values and the fourth power of Sq within the sampling
area [22]. It is a measure of the sharpness of the surface height
distribution, and it is strictly positive. Sku > 3.0 indicates the
existence of high peaks or deep valleys on the surface. For a
surface representing normal distribution, Ssk is 0 and Sku is 3.

Fig. 3 a Edge condition of the micro end mill after machining test. b Edge profile of the cutting tool with and without BUE. c Edge condition of the
micro end mill after BUE was removed

Fig. 4 Two possible
configurations of microscale
cutting. a Stagnation point
assumption. b BUE formation
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Ssk and Sku were considered to investigate the size and distri-
bution of the rubbed particles on the surface as they represent a
histogram of heights which define the symmetry and deviation
from an ideal normal distribution. The convention in areal

surface texture measurements is to take one sampling area per
evolution area [22]. Here, it is decided to divide the surface into
nine divisions as shown in Fig. 7, and each divisionwas analyzed
separately. This approach allows the investigation of irregular

Fig. 5 a–i Images of the
micromilled surfaces at all feed
values
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surface imperfections in isolation and observation of their varia-
tion along the machined surface. The image in Fig. 7a represents
an area of 522 × 210 μm obtained by stitching microscope im-
ages along the micromilled surface. Figure 7b shows the varia-
tion in Ssk and Sku at those regions indicated in Fig. 7a. Larger
particles in regions 1, 2, and 5 resulted in large values of Ssk and
Sku. Large values of Ssk and Sku are due to high-order terms in
their equations (Fig. 8).

The trends of the results are in agreement with the force mea-
surements. The lowest surface roughness value of 0.06 μm was
measured around 1.5–2 μm/tooth, which belongs to the
shearing-dominated machining region. As the feed increases fur-
ther, surface roughness also increases, as expected. However, Ssk
and Sku both decrease. A larger and more stable BUE with
increasing feed results in less material particles smeared on the
machined surface. Increasing the feed further leaves larger

surface marks, which increase the areal surface roughness value
as seen in Fig. 5h, i. At feed values corresponding to the
ploughing and transition regions, Ssk and Sku values increase
significantly, indicating the detrimental effect of BUE on the
surface texture. Results indicate the importance of feed selection
in micromilling and the trade-off between surface texture param-
eters. With increasing feed, the process behaves like a macro-
scale milling process where the feed is the most influential pa-
rameter on surface roughness. The results correlate with the find-
ings of Jaffery et al. [15]. Recently, Wang et al. [23] showed that
peaks on the surface due to BUE hinder the ability to predict
surface quality in micromilling.

4 Micromilling mechanistic force modeling

In micromilling, typical feed values are in the same order of
magnitude as the cutting edge radius. If the uncut chip thick-
ness is less than a certain value (also known as the minimum
uncut chip thickness), then the machining operation cannot be
performed effectively. As a result, the round cutting edge
ploughs the uncut material onto the work surface. Malekian
et al. [5] proposed a mechanistic micromilling force model by
considering shearing and ploughing phases separately. They
were able to simulate dynamic machining forces for the
micromilling of aluminum 6061. Ploughing forces were
modeled to be proportional to the volume of the material elas-
tically deformed underneath the cutting edge. The amount of
elastic recovery, the minimum uncut chip thickness value, the
edge radius of the cutting edge, and the clearance angle are the
inputs to model ploughing forces. The minimum chip

Fig. 6 Surface topography obtained through confocal laser scanning. a
Feed at 0.4 μm/tooth. b Feed at 2 μm/tooth
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Fig. 7 a Micromilled surface for 2 μm/tooth feed divided into nine
regions. b Variation in skewness and kurtosis among regions
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thickness is usually defined as the ratio of uncut chip thickness
to cutting edge radius, and it is considered to be around 20%
based on the assumption that a stagnation point exists on the
cutting edge, which separates the work material flow into the
chip and onto the workpiece. In a recent study, Oliaei and
Karpat [21] showed that built-up edge formation in front of
the cutting edge reduces this ratio down to 10% during
microturning of titanium alloy Ti6Al4V.

Figure 9 shows the micromilling process model proposed by
Malekian et al. [5]. The forces acting on the cutting edge are
defined with respect to the uncut chip thickness (h). When the
uncut chip thickness is larger than a critical value (h > hc), shear-
ing dominates the machining process. The tangential and radial
forces acting on the cutting edge can be represented with Eq. 1.

dF t j ¼ K te þ K tchj
� �

dz
dFr j ¼ Kre þ Krchj

� �
dz

ð1Þ

Equation 1 represents the shearing-dominated region, where
Krc and Ktc are defined as the radial and tangential cutting coef-
ficients, respectively. Kre and Kte are the radial and tangential
edge coefficients, respectively. These coefficients represent the
resistance of the material to machining and the influence of the
cutting edge radius. These unknown coefficients are usually cal-
culated based on average machining forces obtained through
micromilling experiments. In Eq. 1, hj denotes the uncut chip
thickness corresponding to cutting edge j. The circular tool path
assumption in which the uncut chip thickness varies from zero to

the maximum value of feed per tooth is no longer acceptable in
micromilling when tool run-out and feed values are close to each
other. As a result, cutting edges of the micro end mills do not
experience the same chip load during milling operation, which
leads to fluctuations in the machining forces from one cutting
edge to another. Tool run-out is directly related to the microtool,
the tool holder, and the high-speed spindle. The tool run-out
model of Zhang et al. [6] has been adopted in this study. The
uncut chip thickness is also a function of the immersion angle
and helix angle of the tool acting on a differential height element
(dz) on the tool body. As for the region where h < hc, ploughing
condition dominates the machining forces. Malekian et al. [5]
modeled these forces proportional to the volume of interference
between the tool and the workpiece. The ploughing volume re-
garding a discretized disk element of a tooth is related to the area
underneath the tool as Vp = Ap.dz. Ploughing forces in radial and
tangential directions can be expressed as in Eq. 2.

dF tp j
¼ K te þ K tpAp

� �
dz

dF rp j
¼ Kre þ KrpAp

� �
dz

ð2Þ

F rp j
and F tp j

are the radial and tangential ploughing forces

acting on tooth j, respectively. Edge coefficients Kre and Kte in
the shearing-dominant regime are incorporated together with
additional ploughing coefficients based on the ploughed area
underneath the cutting edge Krp and Ktp. The estimation pro-
cedure of the ploughed area Ap is given in [5]. Equation 3
summarizes the calculation of radial and tangential forces act-
ing on a discretized disk element on tooth j as

dF t j ¼ K te þ K tchj
� �

dz when h≥hc
K te þ K tpAp

� �
dz when h < hc

� �

dF r j ¼ Kre þ Krchj
� �

dz when h≥hc
Kre þ KrpAp

� �
dz when h < hc

� � ð3Þ

(a)

(b)
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Fig. 9 Micromilling process model
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A coordinate transformation is then required to calculate
the forces in X and Y directions. For measured micromilling
forces in X and Y directions, it is possible to identify unknown
coefficients in reverse fashion.

dFx j ¼ dF t jcosφþ dFr jsinφ
dFy j

¼ dF t jsinφ−dFr jcosφ
ð4Þ

Cutting, edge, and ploughing force coefficients shown in
Eq. 3 together with tool run-out parameters (its magnitude and
angle) can be calculated based on a methodology proposed by
Malekian et al. [5]. There are a total of eight unknowns (six
force coefficients and two tool run-out parameters) that need
to be identified. For simplification, it can be assumed that the
tool run-out magnitude and angle are the same for all feed
values. The objective function can be written as Eq. 5, which
is the sum of the squared error between the data points of the
measured cutting forces and the force predictions, where
Fmeasured is the instantaneous experimental cutting force data
point and Fpredicted corresponds to the prediction, l is the num-
ber of feed values, and k is the number of data points.

error ¼ ∑
k

i¼1
∑
l

j¼1
Fmeasuredi; j−Fpredictedi; j

� �2
ð5Þ

The goal of this study is to calculate the distributions of
force coefficients using Bayesian inference, which is ex-
plained in the next section.

5 Bayesian inference

Bayes’ rule provides a rational method for updating beliefs in
light of new information (i.e., experimental measurements). It
is represented with Eq. 6.

AjB; θf g ¼ A θjf g B A; θjf g
B θjf g ð6Þ

The left-hand side of the equation {A|B,θ} is the posterior
distribution, which summarizes the state of knowledge about
an event A in a statistical model, after observing the result B.
The first term on the right-hand side of the equation {A|θ} is
the prior distribution about an uncertain event A, at a state of
information θ, which addresses our state of knowledge about
the parameters before having an observation. The second term
{B|A,θ} is the likelihood of obtaining an experimental result B
given that the observation A has occurred. The denominator
{B|θ} is the probability of obtaining an experimental result B
without knowing that A has occurred, which behaves like a nor-
malizing constant. Usually, the denominator is not computed

explicitly, as it is known that the posterior distribution is a prob-
ability density function that integrates to one. According to
Bayes’ rule, the posterior belief is proportional to multiplication
of prior and likelihood functions. This process of learning via
Bayes’ rule is referred to as Bayesian inference, i.e., updating
prior beliefs given new data B to obtain the posterior belief.

Karandikar et al. [9] proposed the formulation of updating
the force coefficients, given the measured values of experi-
mental force data. The variability of the force coefficients can
be assessed by combining prior knowledge and experimental
data. Bayes’ rule for the force coefficients, including
ploughing coefficients, could be written as

f K tc;Krc;K te;Kre;K tp;Krp
K tc;Krc;K te;Kre;K tp;Krp Fx;m; Fy;m

���
� �

α

f K tc;Krc;K te;Kre;K tp;Krp
l Fx;m; Fy;m K tc;Krc;K te;K re;K tp;Krp

��� �

ð7Þ

In Eq. 7, Fx;m and Fy;m are the measured mean forces in x
and y directions, respectively. The term f K tc;Krc;K te;Kre;K tp;Krp

K tc;Krc;K te;Kre;K tp;Krp Fx;m; Fy;m

��� �
is the posterior distri-

bution of the force coefficients given measured values of the
mean forces. The term f Ktc;Krc;K te;Kre;K tp;Krp

is the joint prior

d i s t r i b u t i o n o f t h e f o r c e c o e f f i c i e n t s , a n d l

Fx;m; Fy;m K tc;Krc;K te;Kre;K tp;Krp

��� �
is the likelihood of

obtaining mean forces in the x and y directions, given the six
force coefficients. Themultiplication of prior and likelihood is
proportional to the posterior function, which allows for
updating beliefs, and then a normalization must be made as
in Eq. 6. Assuming that the force coefficients are independent,
the density function of the joint force coefficients
f Ktc;Krc;K te;Kre;K tp;Krp

is equal to the multiplication of the density

function of each force coefficient. The mean forces in x and y
directions (Fx;m; Fy;m ) are also assumed to be independent;
thus, the likelihood of obtaining mean force measurements is
multiplied for each direction in order to obtain a joint likeli-
hood function.

In order to carry out the Bayesian updating procedure, two
main inputs are required; the likelihood and prior functions.
The prior function corresponds to our prior knowledge on
specific force coefficients, and the likelihood function refers
to the likelihood of obtaining the experimental mean force
values, given specified values of the force coefficients. To
select these probability distributions, a well-known bell-
shaped normal distribution might be an appropriate choice.
In that case, it is assumed that force coefficients are distributed
symmetrically around a known mean. The other option is to
use non-informative, in other words, uniform priors to capture
the pattern with minimal knowledge. This type of selection is
favorable for situations with insufficient previous evidence or
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expertise, or when obtaining the related information requires
tedious research. In this study, both uniform and normal prior
distributions were employed. In order to define a normal dis-
tribution, mean and standard deviation are required as param-
eters. On the other hand, minimum and maximum values are
required to define a uniform distribution.

5.1 Markov chain Monte Carlo method

The MCMC method is used to draw samples from a random
known distribution. TheMetropolis-Hastings (MH) algorithm
is one of the most popularMCMCmethods, and it is primarily
used as a way to simulate observations from unwieldy distri-
butions [17]. Therefore, theMHmethod can be used for draw-
ing samples from a random known distribution, which, in our
case, is the posterior distribution force coefficients [18]. In the
MH algorithm, the proposal distribution denoted by q(x) is
used to draw candidate samples that mimic samples drawn
from the target distribution denoted by p(x). The candidate
samples from the proposal distribution are either accepted or
rejected depending on an acceptance probability given below:

A x; x*
� � ¼ min 1;

p x*ð Þq x x*jð Þ
p xð Þq x* xjð Þ

� �
ð8Þ

where x∗ is the candidate sample drawn from a proposal dis-
tribution q(x) and x is the current state of the Markov chain.
For each iteration, theMarkov chain moves to x∗ if the sample
is accepted; otherwise, the chain stays on the current value of
x. The pseudo-code of the MH algorithm is shown below:

1. Initialize the starting point x0
2. For i = 0 to i = N − 1 iterations, do the following:

a) Sample x0 ∼ q(x∗|xi)
b) Sample u ∼ U[0,1]

c) If u < A x; x*ð Þ ¼ min 1;
p x*ð Þq x x*jð Þ
p xð Þq x* xjð Þ

� �

x(i + 1) = x*

else
x(i + 1) = x(i)

The MH algorithm has been carried out to approximate
posterior distribution of force coefficients. Since the posterior
distribution we want to approximate is a joint density function
of force coefficients, sampling for each variable is carried out
using univariate proposal distributions. One variable at a time
is sampled, and then sequentially, the algorithm proceeds to
the remaining variables. To illustrate the application of MH
algorithm:

1. The initial values for all force coefficients are conducted
as the first step.

2. The proposal distributions for each force coefficient K are
defined. Proposal distributions have a significant effect on
the convergence process. If we sample a wider range of
K’s, the proportion of the rejection will probably increase,
and therefore, convergence could not be done, or requires
significant numbers of iteration. On the other hand, if we
select them too narrow, most of the samples will be ac-
cepted and the space could not be explored. The key point
for selecting proposal distributions is that the range of
samples obtained from proposal distributions should in-
clude the range of target distributions. It is highlighted that
a 25–35% acceptance rate is appropriate for the conver-
gence of the Markov chain [19].

3. A function needs to be defined in order to estimate force
averages given a set of K’s. Since experimental forces are
close to zero and tool run-out is dominant inmicromilling,
using analytic formulas to estimate average forces results
in additional errors as they underestimate, or overesti-
mate, the effect of tool run-out on the mean forces. In this
research, instead of employing analytic formulas to esti-
mate average force equations, time-domain simulations
with tool run-out extension were conducted and their av-
erages were taken into account.

4. The acceptance ratio defined in Eq. 8 should be estimated by
an operator which needs to be defined. This operator takes
the candidate and current values of the chain as input, eval-
uates the probabilities according to the prior and likelihood
functions, and finally outputs the acceptance probability.

5. For each iteration, one variable at a time is sampled. So for
every variable, basically, we have two sets of K values,
first is the current set of K’s in state i, which is [Ki

1, K
i
1,

Ki
1;… , Ki

n ], and the candidate set, [K
*
1, K

i
1, K

i
1;…, Ki

n ].
Besides these sets, force averages are estimated using both
sets and taken as inputs to the acceptance ratio operator.
Then, the acceptance ratio is estimated and comparedwith
u, which is a random number generated from a uniform
distribution with a range from 0 to 1. According to the
comparison, K*

1 is either accepted or rejected. If it is ac-

cepted, Ki
1 is updated to K*

1. The same procedure is re-
peated continually for the next variable until the sample
from Ki

n is drawn and evaluated. Finally, the iteration
ends and the next iteration i + 1 takes place.

Table 2 Identified force
coefficients and run-out
parameters after
optimization

Kte (N/mm) 9.1

Ktc (N/mm
2) 4475

Kre (N/mm) 13.2

Krc (N/mm2) 2854

Run-out magnitude (μm) 0.19

Run-out angle (°) 101

Ktp (kN/mm3) 13,623

Krp (kN/mm
3) 4300
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6. When the iterations end, we obtain samples from the dis-
tributions of K’s and the traces of them. The burn-in

process is applied, which refers to discarding an initial
portion of the simulation in order to ensure steady-state
conditions. Finally, normal distributions are fit to the sam-
ples. The maximum-likelihood values for the mean and
standard deviation of the normal distribution correspond
to sample statistics for the data.

5.2 Bayesian inference applied to milling force modeling

Ploughing forces aremodeled to be proportional to the volume of
the elastically deformed material underneath the cutting edge
which is defined by those variables. Several variables such as
clearance angle, edge radius, elastic recovery, and critical chip
thickness must be known to calculate ploughing forces.

Table 3 Parameters of prior distributions for uniform and normal
settings

Normal distribution Uniform distribution

Mean Standard deviation Lower Upper

Kte (N/mm) 9.1 3 0 25

Ktc (N/mm
2) 4475 300 0 10,000

Kre (N/mm) 13.2 3 0 25

Krc (N/mm2) 2854 300 0 10,000

Ktp (kN/mm3) 13,623 1400 0 30,000

Krp (kN/mm
3) 4307 400 0 10,000

Fig. 10 Traces (a) and sampled
force coefficients (b) of force
coefficients for normal prior
setting
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Identified ploughing force coefficientsKtp andKrp depend on the
condition of the tool edge as described in Fig. 4. Assuming that

BUE acts as a cutting edge, the radius of the cutting edge with
BUE was measured as 5 μm, the clearance angle was measured
as 7°, and the elastic recovery percentage is assumed to be 10%.
However, considering the dynamic nature of BUE, these vari-
ables cannot be identified easily. A larger ploughing area at the
tool-work interface would result in lower ploughing force coef-
ficients. It is important to note that uncertainties about these
variables are the reason for using the simple force models de-
scribed in Section 4. The development of detailed models is
constrained by the uncertainties of the input parameters.

An open-source software R was used to calculate unknown
coefficients using genetic algorithm. In the solution algorithm,
first, cutting and edge coefficients for the shearing region were
considered. Two ploughing coefficients (Ktp, Krp) were calculat-
ed as a second step based on already calculated edge force coef-
ficients. Table 2 shows the calculated force coefficients and run-

Fig. 11 Posterior (blue lines) and
prior (red dashed lines)
distributions of the force
coefficients. aNormal. bUniform

Table 4 Parameters of obtained posterior distributions for uniform and
normal settings

Normal distribution Uniform distribution

Mean Standard deviation Mean Standard deviation

Kte (N/mm) 8.4 1.2 9.6 1.6

Ktc (N/mm
2) 4477 276 4062 1098

Kre (N/mm) 13.4 1.2 12.9 1.8

Krc (N/mm2) 2849 286 3222 1165

Ktp (kN/mm3) 13,571 1300 12,195 5545

Krp (kN/mm3) 4316 378 5175 2566
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out parameters which minimize Eq. 5 for all experimental con-
ditions given in Table 1.

Deterministic point estimates of force coefficients obtained
from the genetic algorithm approach are selected as means for
normal prior distributions. Since many experiments were per-
formed and force measurements were taken, there is enough
information about the process. On the other hand, if prior
knowledge or experimental data is not available, a uniform
prior can also be chosen. Both approaches are used in this
study to compare the results. Table 3 shows the selected mean
and standard deviation parameters for normal prior distribu-
tion and lower and upper values of uniform prior distributions.
In uniform distribution, any value is equally likely within the
given range.

The likelihood function needs to be addressed in order to
employ Bayesian updating. It is assumed that experimental

mean force values distributed normally with a standard devi-
ation of 0.1 N. The mean of the likelihood corresponds to the
average experimental force data obtained, as it is an estimate
obtained from the slot milling experiments. The likelihood
function used in Bayesian learning behaves like an error-
correcting mechanism, providing a way to overcome prob-
lems caused by linear regression. For instance, after experi-
mental force averages are used to update our prior knowledge,
the non-linearity of the force averages at small feed values is
compensated and the large confidence intervals narrowed for
higher feed values. The Metropolis-Hastings algorithm was
applied for 104 iterations to obtain samples from the joint
target densities of force coefficients, and the first 1000 sam-
ples were discarded. Figure 10 shows the traces and sampled
force coefficients for normal prior. Figure 11 shows the prior
and posterior distributions of the force coefficients. Table 4
shows the calculated posterior distribution parameters.

The results shown in Table 4 are close to each other in
terms of mean values and close to those shown in Table 2.
The results demonstrate the effectiveness of Bayesian infer-
ence even when uniform prior distribution was used. The edge
forces in normal prior distribution are affected by the MCMC
algorithm more than the cutting force coefficients as seen in
Fig. 11a. The variation in uniform posterior distribution pa-
rameters is larger than normal distribution. The posterior

Fig. 12 Simulated and measured force predictions for a 0.4 μm/tooth—normal distribution, b 2 μm/tooth—normal distribution, c 0.4 μm/tooth—
uniform distribution, and d 2 μm/tooth—uniform distribution

Table 5 Summary of second set of experiments

Tool
diameter
(mm)

Rotational
speed
(rpm)

Axial
depth of
cut (μm)

Feed per
tooth
(μm/rev)

Radial
immersion
(%)

Type

0.4 28,000 40 2 100, 60, 25 Upmilling,
downmil-
ling
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distribution is sensitive to the selection of prior distribution. In
order to test the predictive ability of these distributions, two
cases are considered such as 0.5 and 2 μm/tooth feed slot
micromilling. The cutting speed and axial depth of cut was

kept the same. The upper and lower limits (blue dashed lines)
of the force predictions are plotted together according to 95%
confidence interval (±2 standard deviations) with experimen-
tal measurements in Fig. 12. The experimental measurements
are observed to be within the predictions. The range of the
predictions with uniform distribution is larger. Such predic-
tions can be useful to calculate milling stability boundary cal-
culations including force coefficient uncertainties [24].

6 Validation of the Bayesian inference model

In order to test the generalization capability of the developed
Bayesian milling model, additional test cases were consid-
ered. In the second set of experiments, different test conditions
were conducted with a different micro end mill. Table 5 shows
the experimental cases where various radial immersion (RI)
tests were conducted. Figure 13 shows the model prediction
for the 2 μm/tooth feed case with both posterior distributions.
Both predictions are acceptable in terms of Fy forces. Fx

forces are predicted on the lower limit, indicating a difference
in tool edge conditions.

Figure 14 shows the experimental measurement of forces
with different RI test cases. RI cases of 25 and 60% are con-
sidered in both upmilling and downmilling conditions. With
decreasing RI percentage, Fy forces increase while Fx forces
decrease in downmilling. In upmilling, forces are lower in
magnitude and with decreasing RI, Fx forces increase and Fy

forces decrease.
Figure 15 shows the model predictions. While 60% RI

results are acceptable, as the predictions are within the limits,
model predictions at 25% RI are poor especially for the Fy

forces in both upmilling and downmilling tests.
In order to investigate the possible reasons which may

cause this difference, cutting edges of the tools after the 25%
immersion tests were investigated as shown in Fig. 16. No

Fig. 13 Simulated and measured force predictions for 2 μm/tooth feed
slot milling with a normal distribution and b uniform prior distribution

Fig. 14 Measured micromilling
forces at 2 μm/tooth and axial
depth of cut 40 μm. a 60% RI—
downmilling. b 25% RI—
downmilling. c 60% RI—
upmilling. d 25% RI—upmilling
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Fig. 15 Comparison of simulated andmeasuredmicromilling forces: 60% RI (a upmilling—normal, b downmilling—normal, c upmilling—uniform, d
upmilling—uniform), 25% RI (e upmilling—normal, f downmilling—normal, g upmilling—uniform, h downmilling—uniform)
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significant BUE was observed after the micromilling tests.
Altered tool-material interaction possibly resulted in a differ-
ent set of force coefficients.

It must be noted that cases of low-immersion milling
with micro end mills are considered as special milling
cases where the process dynamics are known to be signif-
icantly different than slot milling [25]. Process modeling
of micromilling, including tool deflections and process
dynamics, are necessary for improved predictions in cases
of low-immersion machining. Uncertainty of force predic-
tions as input to those models would be useful. In order to
improve low-radial-immersion predictions, additional
tests at different feed levels can be conducted and force
coefficients can be recalculated based on the new experi-
mental measurements.

With decreasing axial depth of cut, due to inhomogeneities
in the workmaterial microstructure, uncertainties are expected
to increase. Similarly, during long-term machining cases, tool
wear starts to influence the process forces, thereby introducing
additional uncertainties. By considering existing data as prior
information, the number of experimental studies in the
abovementioned cases may be decreased, and their influence
on the force coefficients can be easily observed within the
Bayesian inference scheme.

7 Conclusions

A micromilling force model based on Bayesian inference has
been developed in this study. Experimental observations of
micromilling of titanium alloy were used to analyze the con-
dition of the cutting edge and its influence on the surface
texture of the micromilled surface. The findings of this study
can be summarized as follows:

& It is shown that the Markov chain Monte Carlo (MCMC)
method with the Metropolis-Hastings (MH) updating al-
gorithm can be successfully applied to calculate force co-
efficients of mechanistic machining models. The amount
of experimental effort in micromilling studies can be re-
duced with this approach.

& Uncertainties about the micromilling process forces can be
estimated with this method. The effectiveness of the meth-
od was shown for the case where no prior information
about the process was presented.

& Estimated coefficients indicated the importance of edge
force coefficients on the micromilling force predictions.
Edge forces are directly related to the conditions of the
tool edge. The condition of the cutting edge affects the
cutting force calculations.

Fig. 16 Tool edge condition. a
New micro end mill. b Cutting
edge of the new micro end mill. c
After radial immersion tests right
edge. d After radial immersion
tests left edge
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& Under the experimental conditions used in this study,
built-up edge (BUE) formation has been observed for all
slot milling cases. In low-radial-immersion micromilling
cases, it was not observed, indicating a significant change
in the process mechanics.

& BUE formation significantly affects the surface texture at
feed values lower than 1 μm/tooth by leaving smeared
particles on the machined surface. Surface skewness
(Ssk) and kurtosis (Sku) along with areal surface rough-
ness (Sa) reveal important characteristics of surface tex-
ture in micromilling.

& Peak-to-valley force variation together with surface tex-
ture analysis produced reliable results for identifying
shearing-dominated, transition, and ploughing-
dominated machining regions.
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