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Abstract

The Drude weight, the quantity which distinguishes metalsffinsula-
tors, is proportional to the second derivative of the grostade energy with
respect to a flux at zero flux. The same expression also appehesdefini-
tion of the Meissner weight, the quantity which indicatepesgonductivity,
as well as in the definition of non-classical rotational ii@eof bosonic su-
perfluids. It is shown that the flierence between these quantities depends
on the interpretation of the average momentum term, whichbeaunder-
stood as the expectation value of the total momentum (Drueight), the
sum of the expectation values of single momenta (rotatimatia of a su-
perfluid), or the sum over expectation values of momentunrsgdeissner
weight). This distinction appears naturally when the aurfeom which the
particular transport quantity is derived is cast in termstoft operators.

1 Introduction

arxXiv:1310.4144v4 [cond-mat.str-el] 25 Feb 2014

To distinguish conductors from insulators in the quantusecéhe strength of the
zero-frequency conductivity was derived by Kohn [1]. Thei@ weight is often

expressed [1,/2] in terms of the second derivative of themi@iate energy with
respect to a phask associated with the perturbing field as
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where E(®) denotes the perturbed ground state energy. The Meissnghtyve
which appears in London’s phenomenological theory of stgueductors is for-
mally identical to the Drude weight. Moreover, the inver$¢he rotational iner-
tia of a rotating bosonic superfluid (non-classical rotagianertia (NCRI))is also
proportional to the second derivative of the ground state@n i.e. it is exactly
of the same form as Ed.](1), only that in that cdsis proportional to the angular
velocity. Here these quantities will be collectively cdlleansport susceptibilities.

A fundamental question thus arises: there are three digpimgsical phe-
nomena, but they appear to be described by a single mattuaineatipression.
Scalapino, White, and Zhang (SWZ) [3, 4] have proposed ampngtation which
distinguishes the Drude weight from the Meissner weighteylpointed out that
the derivative with respect to the flux is ambiguous. It caefdr to the deriva-
tive of the ground state eigenvalue of the energy with resjeethe perturbation
(adiabatic derivative) or the actual ground state as a fomaif the perturbation
(“envelope” derivative). In the absence of level crossitigstwo are identical.
SWZ conclude that the flerence between the Drude and superfluid weights is
that the former(latter) corresponds to the adiabatic(empe derivative. Up to
now this appears to be the last word on this topic.

There are a number of weaknesses in this interpretatiomerdonension the
level crossings occur &t = 7 even in the thermodynamic limit, hence in that case
the Drude and Meissner weights can not be distinguishedeMar, as discussed
in a recent paper of the author [5] and summarized below,gpkcation of these
ideas to variational wavefunctions is ambiguous. The usasl|6,/7] to calculate
the Drude weight is to take the second derivative of the tianal ground state en-
ergy. However, this quantity can be cast in terms of an aweotéthe true energy
eigenvalues. Turning on the perturbation can cause lewssorgs. If we insist on
SWZ, then these level crossings should be excluded, andstred approach [6,] 7]
would be invalidated. In the limit of a perfect variationawvefunction (one which
corresponds to the exact ground state for any value of tharpation) the result
would be what according to SWZ is the Meissner weight, notDhede weight.
We stress though that this usual approach waury be invalidated if we as-
sume SWZ is correct. In addition the SWZ interpretation does not distinguish th
Meissner weight associated with superconductors fromaheatassical inertia of
rotating superfluids (these two quantities in SWZ belondgheodeneral category
of “superfluid weight”).

In this paper a dferent approach to distinguishing the Drude weight, Meissne
weight, and the rotational inertia of a superfluid is devebthpvhich does not make
any reference to whether the derivative is adiabatic orlepee First a general
expression for the second derivative of the ground stateggng derived, which



is of the form
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whereK = PN k. Ina periodic system this expression includes an expectati
value which can be interpreted in a number of ways. It can kentéo mean (A)
the expectation value of the sum over all momenta, (B) the suen expecta-
tion values of single momenta, or (C) any other break up otated momentum
operator (pairs, triplets, etc.). In fact, this ambiguitgappears if the current,
from which Eq. [(2) is derived, is written in terms of the apmiate Berry phase
expression([5]. Case (A) is shown to correspond to the Drudmght, which
distinguishes metallic conductors from insulators. Itlsoashown that metallic
conduction can be related to a generalization of the corafegfi-diagonal long-
range order (ODLRO)]&,19, 10]. Case (B) is shown to corredpmnbosonic
superfluids. The justification is based on the fact that tlerse derivative of
the ground state energy with respect to the flux in this capeojgortional to the
number of particles in a Bose-Einstein condensed state.réctdconnection is
established between ODLRO associated with the singlectadiensity matrix.
Breaking upK into pairs is shown to correspond to a condensate of paick su
as in the case of BCS superconductivity. Here, a direct atiioreis established
between ODLRO associated with the two-particle densityrinatloreover, this
interpretation, unlike SWZ, distinguishes not only condus from superconduc-
tors, but also superfluids with single particle condenstitea condensates with
other basic groups (two particles, three particles, etdlso, unlike SWZ, its
applicability is independent of dimensions.

The fact that Eq.[{2) is ambiguous may appear surprisingit loan be made
obvious by casting the current from which the transport spshbility is derived
in terms of an explicit position shift operatar [5]. In thase, as shown below,
the distinct transport susceptibilities originate frore timiting cases of dferent
current expressions.

In addition the results of this work solve another open pEobl In a recent
paper Anderson stated [11] the following:

...it has never been demonstrated that ODLRO, and NCRI are syn-
onymous, ...

Below this gap is filled by making this connection explicit.

This paper is organized as follows. The subsequent twoaseciprovide
background information, followed by a brief note on curreSectior b derives
the Drude weight. In sectidd 6 the connection of standaralgotion with dt-
diagonal long-range order is presented, the subsequerirsetreat the case of
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simple Bose-Einstein condensation and condensation imargepairing sys-
tem. The penultimate section presents a comprehensiveytioé@onduction,
after which the work is concluded.

2 Background

The quantities which in this work will be referred to as tnamg susceptibilities
are the Drude weight, the Meissner weight (the fraction atiglas which are
in a Bose-Einstein condensate in a superconductor), anatagonal inertia of
the superfluid fraction. In this section some general bamkgd information on
transport susceptibilities is provided.

We consider a system afl identical particles in a periodic potential with
Hamiltonian

_
H(@):Z('“;—HZD)ZN, 3)
i=1

wherek; denotes the momentum operator of particle denotes the mass of the
particles,® denotes a perturbation, aMidenotes the interaction potential, for
which it holds that

V(X1, ooy Xiy o Xn) = V(Xg, o0 Xi + L, . XN) 4)

for anyi. For most of this article, we will consider the ground stdtéhes Hamil-
tonian, A
H(D)I¥(®@)) = E(D)¥(D)), (5)

whereE(®)(|¥(d))) denotes the ground state energy (wavefunction) for the per
turbed system. In the momentum space representation treturiped state can

be written as¥(ky, ..., ky), whereas the perturbed wavefunction takes the form
Y(ky + @, ..., ky + ). One can also express the pertubed wavefunction in terms of
the unpertubed one using the total momentum shift operia#il3] as

P(@)) = €*X[¥(0)), (6)

whereX = 3N, %.

The Drude weight was first derived in Ref.] [1]. The main res@iom this
work relevant here are that the current and the Drude weigihtoe obtained in
terms of the first and second derivatives (respectivelyhefground state energy
with respect tab, i.e.

 9E@)
J@D) = 50 (7)
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D© is obtained by assumin@® to be of the form® = E€“!/(iw). Using this
form for the perturbation, the imaginary part of the frequenependent con-
ductivity o”’(w) can be calculated and the zero frequency limit of the qoanti
lim,,_.0 wo”’ (w) can be taken, resulting D©.

The Meissner weight is a result of the phenomenologicalamqtion of the
Meissner éect due to London and London. We follow Ref. [14]. We first assu
that a superconductor is a perfect conductor, obeying

1 9]
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wheren® the density of superconducting charge carrigigdicates the current
density. Using the Maxwell relation for the curl of the elecfield we obtain

% [V Xj+ n(S)B] =0. (9)
If the quantity in the square brackets is assumed to equalthen the Meissner
effect can be accounted for and the penetration depth of theetiadield in a
superconductor can be calculated. Using this assumptidnhenLondon gauge
(Vx = 0) we obtain

j = n®A. (10)

Considering one dimension only, and associating the vemtential with the
momentum shift we obtain

5 1[6%E(®)
-5, -

One of the main characteristic properties of a bosonic $lupeemerges from
the rotating bucket experiment, first discussed by Landaliift1941. When a
superfluid below the critical temperature is rotated slowly moment of iner-
tia is reduced compared to a normal fluid, since the superfitaction remains
stationary. We write the total rotational inertia as

| =10 410 (12)

where |9 (1M) corresponds to the rotational inertia associated withsiinger-
fluid(normal) fraction. Above the critical temperature,avé both fractions rotate,
the work to rotate the container would be

(I)Z

AW(®) = E(®) - E(0) = I - (13)



Below the critical temperature only the normal fraction Wbuotate with the
bucket and the work required would be

AW (@) = EV(®@) - EM(0) = |(”>%2, (14)

whereEM(®) denotes the ground state energy associated with the ndiuithl
From Egs.[(IB) and (14) it follows that

— |(S)();2

EC@) - E¥(0) (15)
or for small® 22
19 = GE—@)) ] (16)
00?2 00

All three quantitedD©, n®, | are proportional to the second derivative of the
ground state energy with respect to the perturbatiat ® = 0.

3 TheProblemswith Distinguishing Transport Sus-
ceptibilitiesBased on Adiabaticor EnvelopeDeriva-
tives

SWZ suggested [3,! 4] that to distinguish the Drude weightnfrithe Meissner
weight, one has to consider that the derivative with resfmedt in the definition
of transport susceptibilities is ambiguous. They pointatdtbat the derivative
could refer to the derivative of the ground state energy va#pect to the pertur-
bation (adiabatic derivative) or that of the zero tempegalimit of the free energy
(envelope derivative). In the case of the former level dragssare excluded. SWZ
also show that level crossings occudate 1/L9, wherelL is the linear dimen-
sion andd is the dimensionality. In one dimension the level crossioguos at a
finite value even in the thermodynamic limit, resulting indistinction between
the Drude and Meissner weights. One could argue that supductivity is a
two-dimensional ffect (the Meissner weight is the response of the system to a
magnetic field), but this would be incorrect. A superconohgrcting is described
by a one-dimensional model. Also the analysis of flux quaittn by Byers and
Yang [16] uses a one-dimensional example (a ring aroundatiéyg.

One can also show that the SWZ interpretation is ambiguo@svapplied in
variational theory. The usual procedure to calculate thedBrweight in varia-
tional theory [6] 7] is to take the second derivative of theateonal ground state
energy, however, as shown below, when this procedure iswelll, level cross-
ings are still present, and the derivative can not be corsidadiabatic. To see
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this one can compare variational theory to the finite tempegaextension of the
Drude weight.

The finite temperature extension®f has been given by Zotos, Castella, and
Prelovsekl[17] (ZCP). This generalization can be sumredres

Dunl) = § 3P0 55 a7)
=0
where £

QO -
and whereQ(0) denotes the canonical partition function of the unpéed sys-
tem. The important point is that in Ed._(17) the Boltzmannghéfactorsremain
unchanged asthe perturbation ® isturned on. Thus the &ect of level crossings is
excluded and thderivativeisthe adiabatic one. Taking the zero temperature limit
reproduces Kohn'’s expression for(Eq. (1)). Eq. [(IFF) consists of a sum over
adiabatic derivatives of energies weighted by the Boltzmann factor. Eql (17) has
been applied [18] to calculate the Drude weight in stronglyelated systems.

To define [5] a quantity which in the limit of zero temperatypreduces Eq.
(@), but with the envelope derivative instead of the adialmate, one could modify

Eq. (I7) as

Deny(T) = . (19

®=0

n 02
(E(® )>L:0 = V502

D, Pa(®)En(®)

|

where(E(®)) indicates the average energy of the perturbed system.naligely,
one could also define a quantity based on the free energy as

BZF((D)]
8(1)2 ®=0

™) = 5 | 0)
In the zero temperature limit both Eqs.{19) aind (20) tenthiéosame expression,
Eq. () but this time with thenvelope derivative, since level crossings can in this
case alter the state which enters the definition of the darea

In a variational theory, when the Drude weight is calculatesually [6, 7]
the second derivative of the variational energy is takein wespect tad . Such
an assumption is not consistent with the SWZ interpretaftwrthe following
reasons. Suppos¥(y)) is a variational wavefunction, whesedenotes a set of
variational parameters, which we wish to use to optimize esétamiltonianH
with eigenbasis A

H[Wn) = En[¥h). (21)



The estimate for the ground state energy may be written mgesf a density
matrix as

FOIAPG) = D (FOIDIE(ENPG) = D Pk, (22)

the probabilities can be written as
P = KEOI¥WI. (23)

Comparing with Eq.[(17) it is obvious that if the SWZ interfatgon is assumed
then the correct Drude weight would be defined as

62En(®)]
o002 |,

Daco = ), Po(0) (24)

with P,(0) independent of the perturbatidn since this way we would have a set
of weighted adiabatic derivatives. In this case tifec of level crossings on the
weights would be excluded.

Instead, the standard waly [6, 7] to calculate the Drude werghkariational
theory is to take the second derivative of the variationakrgywith respect to the
perturbation, i.e.

: (25)

D, Pa(®)Eq(®)

=0
in which case the féect of level crossings areot excluded, and which corre-
sponds to amenvelope derivative. In fact Eq. (25) has the same form as Hg.] (19),
in both cases the derivatives of the average energy are.tdkdis and Copper-
smith [6] conclude based on E@.{25) that the Gutzwillergctgd Fermi sea [19]
is a conductor. The equivalent of the zero temperature fioniEq. (25) would
be the limit of a perfect variational wavefunction, whichrr@sponds to the true
wavefunction for any value ab. In this limit Eq. (25) would corresponds to the
envelope derivative, in other words, according to the logic of SWZ, the Meissner
weight. It needs to be stressed that the statement of tidteaet not that Eq.[(25)
corresponds to the Meissner weight, only that it does acagri the criteria of
SWZ.

Apart from the above, another shortcoming of the SWZ prpsion is that it
does not explicitly distinguish bosonic superfluids frompetconductors (conden-
sation of paired fermions).



4 Berry Phase Expression for the Current in Many-
Body Systemswith Periodic Boundary Conditions

In Ref. [5] it was shown that for continuous systems with maayticles under
periodic boundary conditions the current can be expressed a

N . 1 N
Carrying out the limitAX — 0 results in
N 1 .
IN(D) = =D + —(V(D)|K|V(D)). 27
N(®) = —® + —(F@)RI¥(®)) (27)
However, for a system with identical particles one could alsite
N . N R
Ji (D) = ﬁq) + AI;(rgo mlm INCP(D)| exp{AXK)|[P(D)), (28)

wherek is a single momentum operator, or more generally one has

N/p

N )
Jp(P) = E(D + AI;(rp}o X

P
Im InC¥(D)| exp[iAX > &) P(@).  (29)
i=1
Carrying out the limitimAX — 0 Egs. [(29) and (28) would appear to give identical
results similar to Eq(27).
The diterence betweed,(P) for differentps becomes obvious if we cast the
second term in terms of the appropriate reduced densitypn{&iy. (43)),

p
Jp(®) = %(I) + AILnlo %Im InTr {[)p exp(iAX Zl: R]} : (30)

As shown below the transport susceptibilities derived feoparticular definition

of current are sensitive to ODLRQ [10] in density matriceslifferent orders. In

the examples analyzed below, it will always be assumed legransport suscep-

tibility is derived from one particular definition of the e¢ent, Eq. [(3D), i.e., a

particular value ofp. However, to prevent the notation from becoming too cum-

bersome, we will not write the current in terms of the coroegpng shift opera-

tors.

5 Expressing =5

62E(CD)]
=0

As our first example we analyze the cgse- N. The quantities in this section
are derived based ady(®). The first derivative of the ground state energy with
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respect tab corresponds to the total current, and, after the liXt— O is taken,
it can be written as

I(®) = %q) N <‘P(<D)Irl;|‘P(CD)>. (31)
Taking the next derivative results in
PEW@) N 1 N .
07 =t o [GoF@IKIF@) + (F@)RI¥@)].  (32)

We now multiply and divide the last two terms b, resulting in

2
ag?:%+i§p@%w@mﬂ®mAMMQM%w®ﬂ (33)

In the limit A® — 0 it holds that

A3 ¥(D)| = ((P + AD)| - (¥(D)!. (34)
Using the fact that ab = O the total current is zero, we obtain

E(®) N

802 m +A|é>nlom[
Applying the definition of the shift operator results in

(P(AD)KIP(O)) + (PO)KIP(AD))].  (35)

O’E(@) N
=—+ lim —[
oD? m  ad—0 MAD

which is the same as Eq.](2).

The interpretation of Eq[(36) is the same as that of the Dweight derived
in Ref. [20]. If the unperturbed wavefunctid¥f) is an eigenstate df, given
that it is unperturbed it would have to have an eigenvalueead .zin this case the
second derivative is simpl§. When that is not the case one can expand Eq. (2)
in A® and keep the leading term, resulting in

FPE@)]  _ N (YO)K,X]O)
v |,., m m '

(Ple PR IY) + (PIREH ). (36)

(37)

The zeroth order term in the expansiomié corresponds to the expectation value
of the total current in the unperturbed state which is zergsinthe definitons of
the operator& andX, it is easy to show that

N
[R,X] = > [k, %] =iN, (38)

i=1

and that the second derivative in this case is zero.
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6 Off-Diagonal Long-Range Order

One can also cast[21] the criterion for conduction in termsahtinuous features
of the distribution of the total momentuk alternatively in terms of a variation
on the idea of ODLRO. We define

N
PN(K):f...fdkl...del‘I’(kl,...,kN)|25[K—Zki). (39)
i=1

If ¥ is an eigenstate of the total momentuPg(K) is ad-peak at the origin. For
the insulating stat@y(K) is some smooth function, symmetric around the origin.
One can define a quantity,

ﬁN(X, X/) = f fdxl...dXN\P(X]_ + X, o0y XN+ X)\P*(X]_ + X’, s XN T X’) (40)

It is easy to show that

PN X) = f dK Py (K)e ), (41)
and that conduction corresponds to
lx_l;(r)p_mpN(X, X') = finite, (42)

whereas insulation corresponds to a decgwifX; X’) to zero.
In the following we will use the reduced density matrices miedi as

Pp(X1s .oy Xpi Xq, .o x;)) = f fdxp+1...de‘I’(xl, cees Xps Xp1s oo XN)P (X -0 x’p, Xpi1s -es XN)-
(43)
It is well-known [10] that long-range order in the reducechsiey matrix corre-
sponds to Bose-Einstein condensation in systems of idgpiacticles at low tem-
perature. For example, if the one-body reduced densityixthibits long-range
order, i.e.
lim  pi(x; X) = finite, (44)

[ X=X | =00
then the system exhibits condensation in which the basigmhas one particle
(superfluidity in bosonic systems, e.g. HleSimilarly, ODLRO inp,(Xy, Xo; X;, X5),
but not inp;(x; X') corresponds to the condensation where the basic group con-
sists of two particles, as in BCS pairing in superconductorssuperfluidity in
He®. ODLRO in them-body real-space reduced density matrices corresponds to
o-peaks in them-body momentum distributions. These results were deriwed b
Yang [10]. Yang has also shown that ffa@iagonal long-range order is present in
some reduced density matgy, then it will also be present in all reduced density
matricesox with k > j.
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7 Bose-Einstein Condensation of Single Particles

We will now interpret Eq. [(R) as a sum over single-particlenneata, in other
words, we assume that the current expression from whichréimsport suscepti-
bility originates isJ;(®) (Eq. (Z8)). The corresponding second derivative is

S2E(D) N O (P [ |Ad>xk +k e]A(DX] |‘P)
> =—+ ) lim (45)
0P |, M < 400 MAD

Equations[(R) and_(45) appear to be identical, however tmeydastinct, with
different physical meanings. We first expandib resulting in

PE@)] N Ik, %)
[ 02 L:O_E-H; m .

(46)

The second part of Eq[_(#6) is an average over single padirtanutators. This
average can be expressed in terms of the one body reducatydeasix as

Ny ok, %19
Z< | J’XJ“ - ﬂT palk, 1. (47)
=1
The one-body reduced density matrix can be diagonalizedtirs in
6 x) = ) RVHO(), (48)
j

wheref;(x) are the natural orbitals of the many-body system,

Z RY =1, (49)
j

and Rgl) > O for all j. In order to evaluate Eq_(47) we first consider the action of
the commutator on a single orbital. In general it will holdth

(Fillk, R = i, (50)

except if fj(x) is an eigenstate of either the momentum or the positior. If22
particular for the zero momentum state

1
fj(X) = W’ (51)
it holds that A
(fjllk, X]If;) = 0. (52)
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Such eigenstates of the reduced density matrix will notrdaute to the average
in the second term in Eq._(46) so

62E(dD N / N
[ aqu)Lzoza[l—ZRj):Eo, (53)

where the prime indicates that the summation is over staleshvare not zero
momentum statedNy < N can be associated with the number of particles in zero
momentum states. In principle it can also occur that an sigés of the reduced
density matrix is also an eigenstate of the momentum, but wifinite eigen-
value. Such states will contribute to the non-classicaltrohal inertia, but not to
ODLRO. In this sense Bose-Einstein condensation is distiom superfluidity.

Clearly, the expression for the second derivative of thegneavhen inter-
preted according to Eq[_(#5), is proportional to the numbesirggle particles in
a zero momentum state, in other words the Bose-Einsteinerwade, therefore
we can interpret the second derivative in this case as tla#iooal inertia of the
superfluid component of a rotating sampl€ (Eq. (16)). Also, the casting of Eq.
(2) in terms of the one-body reduced density matrix esthbtishe connection be-
tween non-classical rotational inertia of a superfluid afied@agonal long range
order, solving a long-standing open problemi[11].

8 Bose-Einstaein Condensation of Pairs of Particles

One can also break up the total momentum operator into pam®menta, rather
than only single momenta. We will use first quantization, ashave throughout
the paper. Some details of the first quantized notation irctiméext of indistin-
guishable particles is given in the appendix.

In this case the current from which the transport suscdipyils derived is of
the formJ,(®) (Eq. (29) withp = 2). The second derivative of the energy, when
the current is taken to mean a sum over pairs, takes the form

[62E(CD)] NG [eORRD KO )
®=0

502 = — 4 lim

54
m & ae-o MAD ’ (54)

where

Aoy na

K? =k + ki, (55)
Note that the indices on operators refer to arguments of #vefunction on which
k; + kj+% operates. Taking the limit® — 0O leads to

N
2

[62E(CD) (PIK?, L27w)

| -ge
0P Jop M L m

(56)
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Due to the indistinguishability of the particles we can &gt (56) in terms of the
two-body reduced density matrix,

H2E(D) N iN_ . oo
= — + —Tr{p,[k®, K]}, 7

As before we can diagonalige as

pa(xa, %03 %, 36) = > RAgj(x, %)9;0, %), (58)
]

where

2 RY=1 (59)
j
with REZ) > 0 for all j. In general it holds that
[k, %]g;(x, X2) = 2ig;(x1, %), (60)
except for pair-orbitalgj(x;, x2) for which
K?g;j(x4, %) = 0. (61)

(This would be the case for BCS pairs, since there the montdrpposite spin
particles cancel.) Again, such pairing states will not dbote to the second
derivative of the energy, since

(9illk?, %|g;) = 0, (62)

whereas for the rest we can use EqJ (60), resulting in

[525@)] _N@- 3 R?) _Nog )
=0

00?2 m m

Nop < N can be interpreted as the number of electrons in pairedsdtatevhich
the total momentum is zero, such as Cooper pairs in the BG#\the

9 A Comprehensive Theory of Transport

Based on the above one can define a generalized transpogpsibsity as fol-
lows:

TV

D, = = I 4
PV | o0 m+_lAé>To MA®D > (64)

T [HJp((I))] _x|N P (¥ [e—iACD)A(f(EP) n lzgp)emq»“(] )
=0 =
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wherek!” indicates the sum gb distinct momenta. The quantify, can be used
to distinguish insulators and féierent types of conductors. Due to the result of
Yang [10], that if ODLRO is present in a reduced density mxatfiorder p, then

all higher order density matrices will also exhibit ODLR®fdllows that if D, is
finite, then allD,’s will be finite if r > p. Hence, in principle, one has to find the
smallest valug, for which D, is finite. If py, is of microscopic magnitudepf, =

1 for bosonic superfluids or perfect conductqrg,= 2 for BCS superconductors)
then the system can be classified as a superconductqy, i on the order of
the total number of particles in the system, then the syseambe classified as a
regular conductor. If alD, = 0 then the system is an insulator.

We have defined a large number®f, which raises the question: which one is
measured experimentally? Experiments detect the motipauicles, charges in
conductors, so a finitB,, for any value ofp will be detected as conduction. To de-
cide whether the current corresponds to a Bose-Einsteiterwed state (bosonic
superfluids, superconductors), information other thardaotion is needed (for
example Meissnerfiect, flux quantization, non-classical rotational inertia)

Another interesting aspect of the above results is the dvetarpretation of
conductivity which follows. Bose-Einstein condensatesiadependent particles
in zero momentum states. Superconductors are pairs o€lgartn zero momen-
tum states. Normal conduction in a correlated system isge Ighermodynamic)
number of particles in zero momentum states. In a superabodthe applied
field moves pairs of particles independently, whereas inranabconductor, a
large number of particles are moved together. This is cterdisvith the fact that
a superconductor can sustain a persistent current for admegytime, as well as
with Kohn'’s theory[1] of normal conductors. Kohn’s staterhis that insulation
is a result of many-body localization, the wavefunction isn@ar combination
of states each of which includes large number of particleghvhare localized.
An equivalent statement is: a conducting state is one inhwaiarge number of
particles are simultaneously delocalized! [20].

One more aspect of the above needs to be mentioned. It tutriiadlD; is
finite for a Fermi sea, since the wavefunction in this caseistsof a Slater deter-
minant of eigenstates of the single particle momentum apefaon-interacting
system). If an interaction is turned on, however small (faaraple the case of a
Landau Fermi liquid), then one expects that the wavefunaciidl not consist of
a Slater determinant of eigenstates of the single momeraodD; will, in gen-
eral, not be finite. However the fact th@j is finite suggests that the Fermi sea
exhibits properties similar to bosonic superfluids. It hesently been suggested
by Hirsch [23] 24] that current in a superconductor is cdrbg free electrons.

The evaluation of a particuldd, consists of the following steps. First the
reduced density matrix of ordgris calculated, diagonalized, and its eigenstates
obtained. Then, for each state it needs to be determinedhehiets an eigenstate
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of the p-body momentum operatol{p = ipzlki. This operator when applied
directly to the state will reduce to a sum of single body motagso it is essential
to use the operator ex’rA(XRp) (which is a partial shift operator). If a particular
eigenstate of the reduced density matrix is also an eigmm;tazxp(AXRp), then

it contributes taD,, otherwise it does not.

On the technical side the main issue is the evaluation ansesuient diago-
nalization of the reduced density matrix. This already hhs#ory, since it is an
important step also in the study of natural orbitals [25] amore recently in the
density matrix renormalization group methad.|[26] Thesg¢eshents are valid for
the calculation of actual models, as well as variationabties. In the latter case
the first step is the calculation of the reduced density maissociated with the
variational wavefunction.

10 Conclusion

In this paper the problem of transport susceptibilities w@ssidered. It is well-
known that the Drude weight, the Meissner weight, and thati@ial inertia of
a rotating superfluid all have the same mathematical expresapart from con-
stants factors. This problem was thought to have been sblv&adalapino, White,
and Zhang, based on observing an ambiguity in the definitidheoderivative of
the ground state energy, namely, that the derivative caitt to the adiabatic or
the envelope derivatives. This classification is not aplie in one dimension,
is cumbersome to apply consistently in a variational sgttamd only divides the
transport susceptibilities into two categories (conduatal superfluid).

In this paper, it was shown that a more fruitful approach ® pinoblem is
to start with the Berry phase expression for the current,distihguish between
currents in which the charge carriers conduct individyaflypairs, or in larger
(thermodynamically large) clusters. A particular currand the susceptibility de-
rived from it can be cast in terms of a reduced density mafrik@corresponding
order (order one for the individually conducting case, ottt for paired sys-
tems, etc.), and its value will be sensitive t-diagonal long range order in the
reduced density matrix of the given order. Thus the suda#iptifor the case of
conduction by thermodynamically large clusters corresisda the Drude weight,
for the paired case to the Meissner weight. For the case ofichhl particles the
non-classical rotational inertia results.
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A Anti-Symmetry and First Quantization

In Eq. (5) a two-body operator is defined in first quantizatidose expectation
value is subsequently evaluated over a many-body wavefumet indistinguish-
able particles. In this appendix a brief discussion of fiygéntized operators in
the context of indistinguishable particles is presentedaimore complete discus-
sion the reader may consult Ref. [27].

The indices in Eq.L(85) refer to the positions of argumenthénwavefunction.
To give an example, let us consider a three-particle systepinless fermions in
the state

1
[V (K1, ko, k3)) = ﬁ (Ika, k2, Ka) — [Kq, Kz, ko) — Ko, Ki, Ka) + [Ko, K, K1) + [Ks, K1, ko) — [Ks, ka, Kq)) .
' (65)

W(ky, ko, k3) is an antisymmetric wavefunction, hence it is a valid wawnetion
for three identical fermions.
One can define an operator

k@ =k + ko, (66)

which when it acts on one of the (not antisymmetric) comptnenh¥ results
in the sum of the values of the momenta in the first and secampehaents, for
example,

k@lks, ko, ki) = (ks + Ko)lKs, ko, ki) (67)
or A
k(2)|k1, k3, k2> = (kl + k3)|k3, k2, k1> (68)
Using this one can easily show that
(PP = 2k, (69)
where ot ket k
k = %, (70)

in other words the average momentum.
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