
ar
X

iv
:1

31
0.

41
44

v4
  [

co
nd

-m
at

.s
tr

-e
l] 

 2
5 

F
eb

 2
01

4 Drude Weight, Meissner Weight, Rotational
Inertia of Bosonic Superfluids: How Are They

Distinguished?

Balázs Het́enyi

Department of Physics, Bilkent University
06800, Ankara, Turkey

February 26, 2014

Abstract

The Drude weight, the quantity which distinguishes metals from insula-
tors, is proportional to the second derivative of the groundstate energy with
respect to a flux at zero flux. The same expression also appearsin the defini-
tion of the Meissner weight, the quantity which indicates superconductivity,
as well as in the definition of non-classical rotational inertia of bosonic su-
perfluids. It is shown that the difference between these quantities depends
on the interpretation of the average momentum term, which can be under-
stood as the expectation value of the total momentum (Drude weight), the
sum of the expectation values of single momenta (rotationalinertia of a su-
perfluid), or the sum over expectation values of momentum pairs (Meissner
weight). This distinction appears naturally when the current from which the
particular transport quantity is derived is cast in terms ofshift operators.

1 Introduction

To distinguish conductors from insulators in the quantum case, the strength of the
zero-frequency conductivity was derived by Kohn [1]. The Drude weight is often
expressed [1, 2] in terms of the second derivative of the ground state energy with
respect to a phaseΦ associated with the perturbing field as

D(c)
=
π

V

[

∂2E(Φ)
∂Φ2

]

Φ=0

, (1)
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whereE(Φ) denotes the perturbed ground state energy. The Meissner weight,
which appears in London’s phenomenological theory of superconductors is for-
mally identical to the Drude weight. Moreover, the inverse of the rotational iner-
tia of a rotating bosonic superfluid (non-classical rotational inertia (NCRI))is also
proportional to the second derivative of the ground state energy, i.e. it is exactly
of the same form as Eq. (1), only that in that caseΦ is proportional to the angular
velocity. Here these quantities will be collectively called transport susceptibilities.

A fundamental question thus arises: there are three distinct physical phe-
nomena, but they appear to be described by a single mathematical expression.
Scalapino, White, and Zhang (SWZ) [3, 4] have proposed an interpretation which
distinguishes the Drude weight from the Meissner weight. They pointed out that
the derivative with respect to the flux is ambiguous. It couldrefer to the deriva-
tive of the ground state eigenvalue of the energy with respect to the perturbation
(adiabatic derivative) or the actual ground state as a function of the perturbation
(“envelope” derivative). In the absence of level crossingsthe two are identical.
SWZ conclude that the difference between the Drude and superfluid weights is
that the former(latter) corresponds to the adiabatic(envelope) derivative. Up to
now this appears to be the last word on this topic.

There are a number of weaknesses in this interpretation. In one dimension the
level crossings occur atΦ = π even in the thermodynamic limit, hence in that case
the Drude and Meissner weights can not be distinguished. Moreover, as discussed
in a recent paper of the author [5] and summarized below, the application of these
ideas to variational wavefunctions is ambiguous. The usualway [6, 7] to calculate
the Drude weight is to take the second derivative of the variational ground state en-
ergy. However, this quantity can be cast in terms of an average of the true energy
eigenvalues. Turning on the perturbation can cause level crossings. If we insist on
SWZ, then these level crossings should be excluded, and the usual approach [6, 7]
would be invalidated. In the limit of a perfect variational wavefunction (one which
corresponds to the exact ground state for any value of the perturbation) the result
would be what according to SWZ is the Meissner weight, not theDrude weight.
We stress though that this usual approach wouldonly be invalidated if we as-
sume SWZ is correct. In addition the SWZ interpretation does not distinguish the
Meissner weight associated with superconductors from the non-classical inertia of
rotating superfluids (these two quantities in SWZ belong to the general category
of “superfluid weight”).

In this paper a different approach to distinguishing the Drude weight, Meissner
weight, and the rotational inertia of a superfluid is developed, which does not make
any reference to whether the derivative is adiabatic or envelope. First a general
expression for the second derivative of the ground state energy is derived, which
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is of the form
[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+ lim
∆Φ→0

〈Ψ|
[

e−i∆ΦX̂K̂ + K̂ei∆ΦX̂
]

|Ψ〉
m∆Φ

. (2)

whereK̂ =
∑N

i=1 k̂i. In a periodic system this expression includes an expectation
value which can be interpreted in a number of ways. It can be taken to mean (A)
the expectation value of the sum over all momenta, (B) the sumover expecta-
tion values of single momenta, or (C) any other break up of thetotal momentum
operator (pairs, triplets, etc.). In fact, this ambiguity disappears if the current,
from which Eq. (2) is derived, is written in terms of the appropriate Berry phase
expression [5]. Case (A) is shown to correspond to the Drude weight, which
distinguishes metallic conductors from insulators. It is also shown that metallic
conduction can be related to a generalization of the conceptof off-diagonal long-
range order (ODLRO) [8, 9, 10]. Case (B) is shown to correspond to bosonic
superfluids. The justification is based on the fact that the second derivative of
the ground state energy with respect to the flux in this case isproportional to the
number of particles in a Bose-Einstein condensed state. A direct connection is
established between ODLRO associated with the single particle density matrix.
Breaking upK̂ into pairs is shown to correspond to a condensate of pairs, such
as in the case of BCS superconductivity. Here, a direct connection is established
between ODLRO associated with the two-particle density matrix. Moreover, this
interpretation, unlike SWZ, distinguishes not only conductors from superconduc-
tors, but also superfluids with single particle condensatesfrom condensates with
other basic groups (two particles, three particles, etc.).Also, unlike SWZ, its
applicability is independent of dimensions.

The fact that Eq. (2) is ambiguous may appear surprising, butit can be made
obvious by casting the current from which the transport susceptibility is derived
in terms of an explicit position shift operator [5]. In that case, as shown below,
the distinct transport susceptibilities originate from the limiting cases of different
current expressions.

In addition the results of this work solve another open problem. In a recent
paper Anderson stated [11] the following:

...it has never been demonstrated that ODLRO, and NCRI are syn-
onymous,...

Below this gap is filled by making this connection explicit.
This paper is organized as follows. The subsequent two sections provide

background information, followed by a brief note on current. Section 5 derives
the Drude weight. In section 6 the connection of standard conduction with off-
diagonal long-range order is presented, the subsequent sections treat the case of
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simple Bose-Einstein condensation and condensation in a general pairing sys-
tem. The penultimate section presents a comprehensive theory of conduction,
after which the work is concluded.

2 Background

The quantities which in this work will be referred to as transport susceptibilities
are the Drude weight, the Meissner weight (the fraction of particles which are
in a Bose-Einstein condensate in a superconductor), and therotational inertia of
the superfluid fraction. In this section some general background information on
transport susceptibilities is provided.

We consider a system ofN identical particles in a periodic potential with
Hamiltonian

Ĥ(Φ) =
N
∑

i=1

(k̂i + Φ)2

2m
+ V̂ , (3)

wherek̂i denotes the momentum operator of particlei, m denotes the mass of the
particles,Φ denotes a perturbation, and̂V denotes the interaction potential, for
which it holds that

V(x1, ..., xi, ...xN) = V(x1, ..., xi + L, ...xN) (4)

for anyi. For most of this article, we will consider the ground state of this Hamil-
tonian,

Ĥ(Φ)|Ψ(Φ)〉 = E(Φ)|Ψ(Φ)〉, (5)

whereE(Φ)(|Ψ(Φ)〉) denotes the ground state energy (wavefunction) for the per-
turbed system. In the momentum space representation the unperturbed state can
be written asΨ(k1, ..., kN), whereas the perturbed wavefunction takes the form
Ψ(k1+Φ, ..., kN +Φ). One can also express the pertubed wavefunction in terms of
the unpertubed one using the total momentum shift operator [12, 13] as

|Ψ(Φ)〉 = eiΦX̂ |Ψ(0)〉, (6)

whereX̂ =
∑N

i=1 x̂i.
The Drude weight was first derived in Ref. [1]. The main results from this

work relevant here are that the current and the Drude weight can be obtained in
terms of the first and second derivatives (respectively) of the ground state energy
with respect toΦ, i.e.

J(Φ) =
∂E(Φ)
∂Φ

(7)

D(c)
=
π

V

[

∂2E(Φ)
∂Φ2

]

Φ=0

,
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D(c) is obtained by assumingΦ to be of the formΦ = Eeiωt/(iω). Using this
form for the perturbation, the imaginary part of the frequency dependent con-
ductivity σ′′(ω) can be calculated and the zero frequency limit of the quantity
limω→0ωσ

′′(ω) can be taken, resulting inD(c).
The Meissner weight is a result of the phenomenological explanation of the

Meissner effect due to London and London. We follow Ref. [14]. We first assume
that a superconductor is a perfect conductor, obeying

E =
1

n(s)

∂j
∂t
, (8)

wheren(s) the density of superconducting charge carriers,j indicates the current
density. Using the Maxwell relation for the curl of the electric field we obtain

∂

∂t

[

∇ × j + n(s)B
]

= 0. (9)

If the quantity in the square brackets is assumed to equal zero then the Meissner
effect can be accounted for and the penetration depth of the magnetic field in a
superconductor can be calculated. Using this assumption and the London gauge
(∇χ = 0) we obtain

j = n(s)A. (10)

Considering one dimension only, and associating the vectorpotential with the
momentum shift we obtain

n(s)
=

1
V

[

∂2E(Φ)
∂Φ2

]

Φ=0

. (11)

One of the main characteristic properties of a bosonic superfluid emerges from
the rotating bucket experiment, first discussed by Landau [15] in 1941. When a
superfluid below the critical temperature is rotated slowly, its moment of iner-
tia is reduced compared to a normal fluid, since the superfluidfraction remains
stationary. We write the total rotational inertia as

I = I(s)
+ I(n), (12)

where I(s)(I(n)) corresponds to the rotational inertia associated with thesuper-
fluid(normal) fraction. Above the critical temperature, where both fractions rotate,
the work to rotate the container would be

∆W(Φ) = E(Φ) − E(0) = I
Φ

2

2
. (13)
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Below the critical temperature only the normal fraction would rotate with the
bucket and the work required would be

∆W (n)(Φ) = E(n)(Φ) − E(n)(0) = I(n)Φ
2

2
, (14)

whereE(n)(Φ) denotes the ground state energy associated with the normalfluid.
From Eqs. (13) and (14) it follows that

E(s)(Φ) − E(s)(0) = I(s)Φ
2

2
, (15)

or for smallΦ

I(s)
=

[

∂2E(s)(Φ)
∂Φ2

]

Φ=0

. (16)

All three quantitesD(c), n(s), I(s) are proportional to the second derivative of the
ground state energy with respect to the perturbationΦ atΦ = 0.

3 The Problems with Distinguishing Transport Sus-
ceptibilities Based on Adiabatic or Envelope Deriva-
tives

SWZ suggested [3, 4] that to distinguish the Drude weight from the Meissner
weight, one has to consider that the derivative with respectto Φ in the definition
of transport susceptibilities is ambiguous. They pointed out that the derivative
could refer to the derivative of the ground state energy withrespect to the pertur-
bation (adiabatic derivative) or that of the zero temperature limit of the free energy
(envelope derivative). In the case of the former level crossings are excluded. SWZ
also show that level crossings occur atΦ ≈ 1/Ld−1, whereL is the linear dimen-
sion andd is the dimensionality. In one dimension the level crossing occurs at a
finite value even in the thermodynamic limit, resulting in nodistinction between
the Drude and Meissner weights. One could argue that superconductivity is a
two-dimensional effect (the Meissner weight is the response of the system to a
magnetic field), but this would be incorrect. A superconducting ring is described
by a one-dimensional model. Also the analysis of flux quantization by Byers and
Yang [16] uses a one-dimensional example (a ring around the cavity).

One can also show that the SWZ interpretation is ambiguous when applied in
variational theory. The usual procedure to calculate the Drude weight in varia-
tional theory [6, 7] is to take the second derivative of the variational ground state
energy, however, as shown below, when this procedure is followed, level cross-
ings are still present, and the derivative can not be considered adiabatic. To see
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this one can compare variational theory to the finite temperature extension of the
Drude weight.

The finite temperature extension ofD(c) has been given by Zotos, Castella, and
Prelovšek [17] (ZCP). This generalization can be summarized as

Dadb(T ) =
π

V

∑

n

Pn(0)

[

∂2En(Φ)
∂Φ2

]

Φ=0

, (17)

where

Pn(0) =
exp
(

−En(0)
kBT

)

Q(0)
, (18)

and whereQ(0) denotes the canonical partition function of the unperturbed sys-
tem. The important point is that in Eq. (17) the Boltzmann weight factorsremain
unchanged as the perturbationΦ is turned on. Thus the effect of level crossings is
excluded and thederivative is the adiabatic one. Taking the zero temperature limit
reproduces Kohn’s expression forD (Eq. (1)). Eq. (17) consists of a sum over
adiabatic derivatives of energies weighted by the Boltzmann factor. Eq. (17) has
been applied [18] to calculate the Drude weight in strongly correlated systems.

To define [5] a quantity which in the limit of zero temperatureproduces Eq.
(1), but with the envelope derivative instead of the adiabatic one, one could modify
Eq. (17) as

Denv(T ) =
π

V

[

∂2

∂Φ2
〈E(Φ)〉

]

Φ=0

=
π

V
∂2

∂Φ2















∑

n

Pn(Φ)En(Φ)















Φ=0

, (19)

where〈E(Φ)〉 indicates the average energy of the perturbed system. Alternatively,
one could also define a quantity based on the free energy as

Denv(T ) =
π

V

[

∂2F(Φ)
∂Φ2

]

Φ=0

. (20)

In the zero temperature limit both Eqs. (19) and (20) tend to the same expression,
Eq. (1) but this time with theenvelope derivative, since level crossings can in this
case alter the state which enters the definition of the derivative.

In a variational theory, when the Drude weight is calculated, usually [6, 7]
the second derivative of the variational energy is taken with respect toΦ . Such
an assumption is not consistent with the SWZ interpretationfor the following
reasons. Suppose|Ψ̃(γ)〉 is a variational wavefunction, whereγ denotes a set of
variational parameters, which we wish to use to optimize some HamiltonianĤ
with eigenbasis

Ĥ|Ψn〉 = En|Ψn〉. (21)

7



The estimate for the ground state energy may be written in terms of a density
matrix as

〈Ψ̃(γ)|Ĥ|Ψ̃(γ)〉 =
∑

n

〈Ψ̃(γ)|Ψn〉En〈Ψn|Ψ̃(γ)〉 =
∑

n

P̃nEn, (22)

the probabilities can be written as

P̃n = |〈Ψ̃(γ)|Ψn〉|2. (23)

Comparing with Eq. (17) it is obvious that if the SWZ interpretation is assumed
then the correct Drude weight would be defined as

Dadb =

∑

n

P̃n(0)

[

∂2En(Φ)
∂Φ2

]

Φ=0

, (24)

with P̃n(0) independent of the perturbationΦ, since this way we would have a set
of weighted adiabatic derivatives. In this case the effect of level crossings on the
weights would be excluded.

Instead, the standard way [6, 7] to calculate the Drude weight in variational
theory is to take the second derivative of the variational energy with respect to the
perturbation, i.e.

Denv =
π

V
∂2

∂Φ2















∑

n

Pn(Φ)En(Φ)















Φ=0

, (25)

in which case the effect of level crossings arenot excluded, and which corre-
sponds to anenvelope derivative. In fact Eq. (25) has the same form as Eq. (19),
in both cases the derivatives of the average energy are taken. Millis and Copper-
smith [6] conclude based on Eq. (25) that the Gutzwiller projected Fermi sea [19]
is a conductor. The equivalent of the zero temperature limitfor Eq. (25) would
be the limit of a perfect variational wavefunction, which corresponds to the true
wavefunction for any value ofΦ. In this limit Eq. (25) would corresponds to the
envelope derivative, in other words, according to the logic of SWZ, the Meissner
weight. It needs to be stressed that the statement of this article is not that Eq. (25)
corresponds to the Meissner weight, only that it does according to the criteria of
SWZ.

Apart from the above, another shortcoming of the SWZ prescription is that it
does not explicitly distinguish bosonic superfluids from superconductors (conden-
sation of paired fermions).
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4 Berry Phase Expression for the Current in Many-
Body Systems with Periodic Boundary Conditions

In Ref. [5] it was shown that for continuous systems with many-particles under
periodic boundary conditions the current can be expressed as

JN(Φ) =
N
m
Φ + lim

∆X→0

1
m∆X

Im ln〈Ψ(Φ)| exp(i∆XK̂)|Ψ(Φ)〉. (26)

Carrying out the limit∆X → 0 results in

JN(Φ) =
N
m
Φ +

1
m
〈Ψ(Φ)|K̂|Ψ(Φ)〉. (27)

However, for a system with identical particles one could also write

J1(Φ) =
N
m
Φ + lim

∆X→0

N
m∆X

Im ln〈Ψ(Φ)| exp(i∆Xk̂)|Ψ(Φ)〉, (28)

wherek̂ is a single momentum operator, or more generally one has

Jp(Φ) =
N
m
Φ + lim

∆X→0

N/p
m∆X

Im ln〈Ψ(Φ)| exp















i∆X
p
∑

i=1

k̂i















|Ψ(Φ)〉. (29)

Carrying out the limit in∆X → 0 Eqs. (29) and (28) would appear to give identical
results similar to Eq. (27).

The difference betweenJp(Φ) for differentps becomes obvious if we cast the
second term in terms of the appropriate reduced density matrix (Eq. (43)),

Jp(Φ) =
N
m
Φ + lim

∆X→0

N/p
m∆X

Im ln Tr















ρ̂p exp















i∆X
p
∑

i=1

k̂i





























. (30)

As shown below the transport susceptibilities derived froma particular definition
of current are sensitive to ODLRO [10] in density matrices ofdifferent orders. In
the examples analyzed below, it will always be assumed that the transport suscep-
tibility is derived from one particular definition of the current, Eq. (30), i.e., a
particular value ofp. However, to prevent the notation from becoming too cum-
bersome, we will not write the current in terms of the corresponding shift opera-
tors.

5 Expressing
[

∂2E(Φ)
∂Φ2

]

Φ=0

As our first example we analyze the casep = N. The quantities in this section
are derived based onJN(Φ). The first derivative of the ground state energy with
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respect toΦ corresponds to the total current, and, after the limit∆X → 0 is taken,
it can be written as

J(Φ) =
N
m
Φ +
〈Ψ(Φ)|K̂ |Ψ(Φ)〉

m
. (31)

Taking the next derivative results in

∂2E(Φ)
∂Φ2

=
N
m
+

1
m

[

〈∂ΦΨ(Φ)|K̂|Ψ(Φ)〉 + 〈Ψ(Φ)|K̂|∂ΦΨ(Φ)〉
]

. (32)

We now multiply and divide the last two terms by∆Φ, resulting in

∂2E(Φ)
∂Φ2

=
N
m
+

1
m∆Φ

[

∆Φ〈∂ΦΨ(Φ)|K̂|Ψ(Φ)〉 + ∆Φ〈Ψ(Φ)|K̂ |∂ΦΨ(Φ)〉
]

. (33)

In the limit∆Φ→ 0 it holds that

∆Φ〈∂ΦΨ(Φ)| = 〈Ψ(Φ + ∆Φ)| − 〈Ψ(Φ)|. (34)

Using the fact that atΦ = 0 the total current is zero, we obtain

∂2E(Φ)
∂Φ2

=
N
m
+ lim
∆Φ→0

1
m∆Φ

[

〈Ψ(∆Φ)|K̂ |Ψ(0)〉 + 〈Ψ(0)|K̂|Ψ(∆Φ)〉
]

. (35)

Applying the definition of the shift operator results in

∂2E(Φ)
∂Φ2

=
N
m
+ lim
∆Φ→0

1
m∆Φ

[

〈Ψ|e−i∆ΦX̂K̂ |Ψ〉 + 〈Ψ|K̂ei∆ΦX̂ |Ψ〉
]

. (36)

which is the same as Eq. (2).
The interpretation of Eq. (36) is the same as that of the Drudeweight derived

in Ref. [20]. If the unperturbed wavefunction|Ψ〉 is an eigenstate of̂K, given
that it is unperturbed it would have to have an eigenvalue of zero. In this case the
second derivative is simplyNm . When that is not the case one can expand Eq. (2)
in ∆Φ and keep the leading term, resulting in

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+ i
〈Ψ(0)|[K̂, X̂]|Ψ(0)〉

m
. (37)

The zeroth order term in the expansion in∆Φ corresponds to the expectation value
of the total current in the unperturbed state which is zero. Using the definitons of
the operatorŝK andX̂, it is easy to show that

[K̂, X̂] =
N
∑

i=1

[k̂i, x̂i] = iN, (38)

and that the second derivative in this case is zero.
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6 Off-Diagonal Long-Range Order

One can also cast [21] the criterion for conduction in terms discontinuous features
of the distribution of the total momentumK alternatively in terms of a variation
on the idea of ODLRO. We define

PN(K) =
∫

...

∫

dk1...dkN |Ψ(k1, ..., kN)|2δ














K −
N
∑

i=1

ki















. (39)

If Ψ is an eigenstate of the total momentum,PN(K) is aδ-peak at the origin. For
the insulating statePN(K) is some smooth function, symmetric around the origin.
One can define a quantity,

ρ̃N(X, X′) =
∫

...

∫

dx1...dxNΨ(x1 + X, ..., xN + X)Ψ∗(x1 + X′, ..., xN + X′). (40)

It is easy to show that

ρ̃N(X, X′) =
∫

dKPN(K)eiK(X−X′), (41)

and that conduction corresponds to

lim
|X−X′|→∞

ρ̃N(X, X′) = finite, (42)

whereas insulation corresponds to a decay in ˜ρN(X, X′) to zero.
In the following we will use the reduced density matrices defined as

ρp(x1, ..., xp; x′1, ..., x
′
p) =
∫

...

∫

dxp+1...dxNΨ(x1, ..., xp, xp+1, ..., xN)Ψ(x′1, ..., x
′
p, xp+1, ..., xN).

(43)
It is well-known [10] that long-range order in the reduced density matrix corre-
sponds to Bose-Einstein condensation in systems of identical particles at low tem-
perature. For example, if the one-body reduced density matrix exhibits long-range
order, i.e.

lim
|x−x′ |→∞

ρ1(x; x′) = finite, (44)

then the system exhibits condensation in which the basic group has one particle
(superfluidity in bosonic systems, e.g. He4). Similarly, ODLRO inρ2(x1, x2; x′1, x

′
2),

but not inρ1(x; x′) corresponds to the condensation where the basic group con-
sists of two particles, as in BCS pairing in superconductors, or superfluidity in
He3. ODLRO in them-body real-space reduced density matrices corresponds to
δ-peaks in them-body momentum distributions. These results were derived by
Yang [10]. Yang has also shown that if off-diagonal long-range order is present in
some reduced density matrixρ j, then it will also be present in all reduced density
matricesρk with k ≥ j.
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7 Bose-Einstein Condensation of Single Particles

We will now interpret Eq. (2) as a sum over single-particle momenta, in other
words, we assume that the current expression from which the transport suscepti-
bility originates isJ1(Φ) (Eq. (28)). The corresponding second derivative is

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+

N
∑

j=1

lim
∆Φ→0

〈Ψ|
[

e−i∆ΦX̂k̂ j + k̂ jei∆ΦX̂
]

|Ψ〉
m∆Φ

. (45)

Equations (2) and (45) appear to be identical, however they are distinct, with
different physical meanings. We first expand in∆Φ resulting in

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+ i

N
∑

j=1

〈Ψ|[k̂ j, x̂ j]|Ψ〉
m

. (46)

The second part of Eq. (46) is an average over single particlecommutators. This
average can be expressed in terms of the one body reduced density matrix as

i
N
∑

j=1

〈Ψ|[k̂ j, x̂ j]|Ψ〉
m

=
iN
m

Trρ̂1[k̂, x̂]. (47)

The one-body reduced density matrix can be diagonalized resulting in

ρ1(x; x′) =
∑

j

R(1)
j f j(x) f j(x

′), (48)

where f j(x) are the natural orbitals of the many-body system,
∑

j

R(1)
j = 1, (49)

andR(1)
j ≥ 0 for all j. In order to evaluate Eq. (47) we first consider the action of

the commutator on a single orbital. In general it will hold that

〈 f j|[k̂, x̂]| f j〉 = i, (50)

except if f j(x) is an eigenstate of either the momentum or the position. [22] In
particular for the zero momentum state

f j(x) =
1
√

V
, (51)

it holds that
〈 f j|[k̂, x̂]| f j〉 = 0. (52)
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Such eigenstates of the reduced density matrix will not contribute to the average
in the second term in Eq. (46) so

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m

















1−
′
∑

j

R j

















=
N0

m
, (53)

where the prime indicates that the summation is over states which are not zero
momentum states.N0 ≤ N can be associated with the number of particles in zero
momentum states. In principle it can also occur that an eigenstate of the reduced
density matrix is also an eigenstate of the momentum, but with a finite eigen-
value. Such states will contribute to the non-classical rotational inertia, but not to
ODLRO. In this sense Bose-Einstein condensation is distinct from superfluidity.

Clearly, the expression for the second derivative of the energy, when inter-
preted according to Eq. (45), is proportional to the number of single particles in
a zero momentum state, in other words the Bose-Einstein condensate, therefore
we can interpret the second derivative in this case as the rotational inertia of the
superfluid component of a rotating sample (I(s) Eq. (16)). Also, the casting of Eq.
(2) in terms of the one-body reduced density matrix establishes the connection be-
tween non-classical rotational inertia of a superfluid and off-diagonal long range
order, solving a long-standing open problem [11].

8 Bose-Einstein Condensation of Pairs of Particles

One can also break up the total momentum operator into pairs of momenta, rather
than only single momenta. We will use first quantization, as we have throughout
the paper. Some details of the first quantized notation in thecontext of indistin-
guishable particles is given in the appendix.

In this case the current from which the transport susceptibility is derived is of
the formJ2(Φ) (Eq. (29) withp = 2). The second derivative of the energy, when
the current is taken to mean a sum over pairs, takes the form

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+

N
2
∑

j=1

lim
∆Φ→0

〈Ψ|
[

e−i∆ΦX̂k̂(2)
j + k̂(2)

j ei∆ΦX̂
]

|Ψ〉
m∆Φ

, (54)

where
k̂(2)

j = k̂ j + k̂ j+ N
2
. (55)

Note that the indices on operators refer to arguments of the wavefunction on which
k̂ j + k̂ j+ N

2
operates. Taking the limit∆Φ→ 0 leads to

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+ i

N
2
∑

j=1

〈Ψ|[k̂(2)
j , x̂

(2)
j ]|Ψ〉

m
. (56)
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Due to the indistinguishability of the particles we can castEq. (56) in terms of the
two-body reduced density matrix,

[

∂2E(Φ)
∂Φ2

]

Φ=0

=
N
m
+

iN
2m

Tr{ρ̂2[k̂
(2), x̂(2)]}. (57)

As before we can diagonalize ˆρ2 as

ρ2(x1, x2; x′1, x
′
2) =
∑

j

R(2)
j g j(x1, x2)g j(x

′
1, x
′
2), (58)

where
∑

j

R(2)
j = 1, (59)

with R(2)
j ≥ 0 for all j. In general it holds that

[k̂(2), x̂(2)]g j(x1, x2) = 2ig j(x1, x2), (60)

except for pair-orbitalsg j(x1, x2) for which

k̂(2)g j(x1, x2) = 0. (61)

(This would be the case for BCS pairs, since there the momentaof opposite spin
particles cancel.) Again, such pairing states will not contribute to the second
derivative of the energy, since

〈g j|[k̂(2), x̂(2)]|g j〉 = 0, (62)

whereas for the rest we can use Eq. (60), resulting in

[

∂2E(Φ)
∂Φ2

]

Φ=0

=

N(1−
∑′

j=1 R(2)
j )

m
=

N0,p

m
. (63)

N0,p ≤ N can be interpreted as the number of electrons in paired states for which
the total momentum is zero, such as Cooper pairs in the BCS theory.

9 A Comprehensive Theory of Transport

Based on the above one can define a generalized transport susceptibility as fol-
lows:

Dp =
π

V

[

∂Jp(Φ)

∂Φ

]

Φ=0

=
π

V





















N
m
+

N
p
∑

j=1

lim
∆Φ→0

〈Ψ|
[

e−i∆ΦX̂k̂(p)
j + k̂(p)

j ei∆ΦX̂
]

|Ψ〉
m∆Φ





















, (64)
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wherek̂(p)
j indicates the sum ofp distinct momenta. The quantityDp can be used

to distinguish insulators and different types of conductors. Due to the result of
Yang [10], that if ODLRO is present in a reduced density matrix of orderp, then
all higher order density matrices will also exhibit ODLRO, it follows that if Dp is
finite, then allDr’s will be finite if r ≥ p. Hence, in principle, one has to find the
smallest valuepm for whichDpm is finite. If pm is of microscopic magnitude (pm =

1 for bosonic superfluids or perfect conductors,pm = 2 for BCS superconductors)
then the system can be classified as a superconductor. Ifpm is on the order of
the total number of particles in the system, then the system can be classified as a
regular conductor. If allDp = 0 then the system is an insulator.

We have defined a large number ofDp, which raises the question: which one is
measured experimentally? Experiments detect the motion ofparticles, charges in
conductors, so a finiteDp, for any value ofp will be detected as conduction. To de-
cide whether the current corresponds to a Bose-Einstein condensed state (bosonic
superfluids, superconductors), information other than conduction is needed (for
example Meissner effect, flux quantization, non-classical rotational inertia).

Another interesting aspect of the above results is the overall interpretation of
conductivity which follows. Bose-Einstein condensates are independent particles
in zero momentum states. Superconductors are pairs of particles in zero momen-
tum states. Normal conduction in a correlated system is a large (thermodynamic)
number of particles in zero momentum states. In a superconductor the applied
field moves pairs of particles independently, whereas in a normal conductor, a
large number of particles are moved together. This is consistent with the fact that
a superconductor can sustain a persistent current for a verylong time, as well as
with Kohn’s theory [1] of normal conductors. Kohn’s statement is that insulation
is a result of many-body localization, the wavefunction is alinear combination
of states each of which includes large number of particles which are localized.
An equivalent statement is: a conducting state is one in which a large number of
particles are simultaneously delocalized [20].

One more aspect of the above needs to be mentioned. It turns out that D1 is
finite for a Fermi sea, since the wavefunction in this case consists of a Slater deter-
minant of eigenstates of the single particle momentum operator (non-interacting
system). If an interaction is turned on, however small (for example the case of a
Landau Fermi liquid), then one expects that the wavefunction will not consist of
a Slater determinant of eigenstates of the single momentum,andD1 will, in gen-
eral, not be finite. However the fact thatD1 is finite suggests that the Fermi sea
exhibits properties similar to bosonic superfluids. It has recently been suggested
by Hirsch [23, 24] that current in a superconductor is carried by free electrons.

The evaluation of a particularDp consists of the following steps. First the
reduced density matrix of orderp is calculated, diagonalized, and its eigenstates
obtained. Then, for each state it needs to be determined whether it is an eigenstate
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of the p-body momentum operator,̂Kp =
∑p

i=1 k̂i. This operator when applied
directly to the state will reduce to a sum of single body momenta, so it is essential
to use the operator exp(i∆XK̂p) (which is a partial shift operator). If a particular
eigenstate of the reduced density matrix is also an eigenstate of exp(i∆XK̂p), then
it contributes toDp, otherwise it does not.

On the technical side the main issue is the evaluation and subsequent diago-
nalization of the reduced density matrix. This already has ahistory, since it is an
important step also in the study of natural orbitals [25], and more recently in the
density matrix renormalization group method. [26] These statements are valid for
the calculation of actual models, as well as variational theories. In the latter case
the first step is the calculation of the reduced density matrix associated with the
variational wavefunction.

10 Conclusion

In this paper the problem of transport susceptibilities wasconsidered. It is well-
known that the Drude weight, the Meissner weight, and the rotational inertia of
a rotating superfluid all have the same mathematical expressions apart from con-
stants factors. This problem was thought to have been solvedby Scalapino, White,
and Zhang, based on observing an ambiguity in the definition of the derivative of
the ground state energy, namely, that the derivative could refer to the adiabatic or
the envelope derivatives. This classification is not applicable in one dimension,
is cumbersome to apply consistently in a variational setting, and only divides the
transport susceptibilities into two categories (conductor and superfluid).

In this paper, it was shown that a more fruitful approach to the problem is
to start with the Berry phase expression for the current, anddistinguish between
currents in which the charge carriers conduct individually, in pairs, or in larger
(thermodynamically large) clusters. A particular currentand the susceptibility de-
rived from it can be cast in terms of a reduced density matrix of the corresponding
order (order one for the individually conducting case, order two for paired sys-
tems, etc.), and its value will be sensitive to off-diagonal long range order in the
reduced density matrix of the given order. Thus the susceptibility for the case of
conduction by thermodynamically large clusters corresponds to the Drude weight,
for the paired case to the Meissner weight. For the case of individual particles the
non-classical rotational inertia results.
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A Anti-Symmetry and First Quantization

In Eq. (55) a two-body operator is defined in first quantization whose expectation
value is subsequently evaluated over a many-body wavefunction of indistinguish-
able particles. In this appendix a brief discussion of first-quantized operators in
the context of indistinguishable particles is presented, for a more complete discus-
sion the reader may consult Ref. [27].

The indices in Eq. (55) refer to the positions of arguments inthe wavefunction.
To give an example, let us consider a three-particle system of spinless fermions in
the state

|Ψ(k1, k2, k3)〉 =
1
√

3!
(|k1, k2, k3〉 − |k1, k3, k2〉 − |k2, k1, k3〉 + |k2, k3, k1〉 + |k3, k1, k2〉 − |k3, k2, k1〉) .

(65)
Ψ(k1, k2, k3) is an antisymmetric wavefunction, hence it is a valid wavefunction
for three identical fermions.

One can define an operator

k̂(2)
= k̂1 + k̂2, (66)

which when it acts on one of the (not antisymmetric) components of Ψ results
in the sum of the values of the momenta in the first and second arguments, for
example,

k̂(2)|k3, k2, k1〉 = (k3 + k2)|k3, k2, k1〉 (67)

or
k̂(2)|k1, k3, k2〉 = (k1 + k3)|k3, k2, k1〉. (68)

Using this one can easily show that

〈Ψ|k̂(2)|Ψ〉 = 2k̄, (69)

where

k̄ =
k1 + k1 + k3

3
, (70)

in other words the average momentum.
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