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a b s t r a c t 

We investigate the situation where there is interest in ranking distributions (of income, of wealth, of 

health, of service levels) across a population, in which individuals are considered preferentially indistin- 

guishable and where there is some limited information about social preferences. We use a natural domi- 

nance relation, generalised Lorenz dominance, used in welfare comparisons in economic theory. In some 

settings there may be additional information about preferences (for example, if there is policy statement 

that one distribution is preferred to another) and any dominance relation should respect such prefer- 

ences. However, characterising this sort of conditional dominance relation (specifically, dominance with 

respect to the set of all symmetric increasing quasiconcave functions in line with given preference infor- 

mation) turns out to be computationally challenging. This challenge comes about because, through the 

assumption of symmetry, any one preference statement (“I prefer giving $100 to Jane and $110 to John 

over giving $150 to Jane and $90 to John”) implies a large number of other preference statements (“I 

prefer giving $110 to Jane and $100 to John over giving $150 to Jane and $90 to John”; “I prefer giving 

$100 to Jane and $110 to John over giving $90 to Jane and $150 to John”). We present theoretical results 

that help deal with these challenges and present tractable linear programming formulations for testing 

whether dominance holds between any given pair of distributions. We also propose an interactive deci- 

sion support procedure for ranking a given set of distributions and demonstrate its performance through 

computational testing. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. The problem of fair allocation and application domains 

An overriding concern in matters of public (and sometimes pri-

vate) sector management is the equitability in the distribution of

good (or alternatively bad) outcomes (income, wealth, health, ser-

vice quality) across persons or population groups flowing from

some particular decision. This might apply, for example, where

budgetary pressures make it imperative to reform taxation or

welfare arrangements; where differences in facility location lead

to variations in accessibility (travelling times to nearest hospital,

speed of internet service provision); or where social policies to re-

dress the plight of deprived populations (provision of recreational

facilities, early life educational interventions) are being contem-

plated. 
∗ Corresponding author. 

E-mail addresses: ozlemkarsu@bilkent.edu.tr , ozlemkarsu@yahoo.co.uk 

(Ö. Karsu), alec.morton@strath.ac.uk (A. Morton), n.argyris@lboro.ac.uk (N. Argyris). 

 

 

 

 

http://dx.doi.org/10.1016/j.ejor.2017.07.018 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
There is a large body of literature on applications where equity

oncerns naturally arise and are considered (reviewed in Karsu &

orton, 2015 ). Note that in most of these applications, equity is

arely the sole concern and the decision makers consider both fair-

ess and efficiency as important. However, they generally find it

ifficult to explicitly state the equity-efficiency tradeoffs which un-

erlie their decisions (due to a number of reasons elaborated in

he ensuing discussion). In this study we consider such problems

nd try to support the decision makers in these settings by helping

hem choose their most preferred solution or rank the solutions

ased on preference. Some examples of the applications in which

quity concerns arise are the following: 

• Bandwidth allocation on a network: The problem is making

bandwidth allocations considering equity over users as well as

efficiency (throughput) ( Luss, 2010; Ogryczak, Wierzbicki, and

Milewski, 2008 ). 
• Public service facility location: Locating a public service facil-

ity involves equity concerns over the customers as well as effi-

ciency concerns (e.g. minimising total distance travelled to the

facility) ( Ogryczak, 1999 ; Ogryczak, 2009 ). 

http://dx.doi.org/10.1016/j.ejor.2017.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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• Capital-budgeting with fairness concerns: Health care project

funding settings, in which project portfolios are evaluated

based on the distribution of the potential benefit to different

population groups are an example ( Morton, 2014 ). Trying to

achieve more equitable investments across different sectors re-

sulting from an underlying motive for risk reduction is another

example relevant in many settings ( Karsu & Morton, 2014 ). 
• Ranking countries with respect to social welfare: Comparing in-

come distributions of different countries ( Shorrocks, 1983 ). 
• Workload allocation: Managers have concerns for ensuring an

equitable workload allocation when assigning tasks to staff. 

Taking the workload allocation example, a motivating case is a

roblem faced by a firm working in the heating ventilation and air

onditioning (HVAC) sector in Turkey ( Karsu and Azizog ̃lu, 2012 ;

arsu & Azizog ̃lu, 2014 ). The manager faces the problem of assign-

ng staff (agents) to tasks such that once assigned the agent will

erform the task for multiple periods. Agents have different lev-

ls of experience across different types of tasks, hence the time

equired to perform a task is different for different agents. Each

easible assignment results in a load distribution over the agents. 

An assignment that minimises the total workload, which may

e considered as the most efficient solution, in fact may result in

n extremely unfair workload allocation across the agents. On the

ther hand, the (lexicographic) max-min fairness solution (which

rst minimises the maximum workload over all the agents, then

he second maximum and so on), which is sometimes referred to

s the most equitable solution ( Luss, 2012 ), may significantly in-

rease the total workload. Therefore, there is usually a need to seek

ompromise solutions between these two extreme solutions. 

Although managers may concur that both fairness and effi-

iency are important in workload allocation, in our experience

hey are generally unable to articulate a precise mathematical ex-

ression which can serve as an objective function balancing these

wo competing objectives, or explicitly state the equity-efficiency

radeoffs which underlie their decisions. This may be for political

easons—stakeholders may be unhappy to learn precisely, quanti-

atively, how much their service providers or elected representa-

ives care about them relative to others—or may reflect genuine

ognitive difficulties, as assessing relative desert is an unstructured

ask and may involve balancing multiple conflicting considerations.

s an example, consider the following two allocations of a good

cross three indistinguishable entities: (2,7,8) and (4.5,4.5,8). Com-

on sense suggests that the second distribution is better since the

otal amount of 17 units is more equitably allocated. Now consider

2,7,8) and (4,4,5). The first allocation seems more efficient in the

ense that the total amount allocated is larger but in the second

ne the good seems more equitably distributed. We observe the

rade-off between equity and efficiency here. In this example there

s no “objective” way of choosing the better allocation and differ-

nt people may take different views. 

The problems we mention above can be thought of as what

arsu and Morton (2015) call equitability problems . In this work,

e consider such equitability problems in which a social planner

henceforth “SP”) who has equity concerns as well efficiency con-

erns tries to compare distributions of a good over multiple par-

ies, when there is symmetry (meaning that the identities of the

arties are not important and do not affect the decision, hence

ane getting $100 and John getting $150 is as good as John get-

ing $100 and Jane getting $150 for the SP). As mentioned before,

n general SPs may be unable to specify a mathematical expres-

ion that encapsulates the trade-off between efficiency and equity;

et in many settings it is possible to obtain social preferences in-

olving distributions (for example by asking the SP “Do you prefer

istribution a or distribution b ?”). 
This leads naturally to the question which is precisely the prob-

em we study in this work: How do we support a SP who is

onfronted with a set of distributions to select the best one or

ank them from the most preferred to the least, taking into ac-

ount available information about social preferences (for example

he direct expression by the Minister that one distribution is to

e preferred to another distribution)? As we demonstrate later in

ection 3 , the classical results in the literature on equitability prob-

ems (see Karsu and Morton, 2015 for a review) are not suited to

he problem of comparing distributions while taking preferences

nto account. In this paper we propose a new method for this prob-

em which is based on the use of such information to infer more

bout the SP’s preferences. Specifically, preference information will

elp us to refine the ranking of the distributions in the sense that

iven one distribution a is preferred to another distribution b by

he SP, we will be able to make statements such as “she should

lso prefer distribution c to d ”, even if the SP does not express a

reference relation over c and d directly. Checking whether such

tatements can be made between any given pair of distributions

equires calculations of combinatorial complexity due to symmetry.

e introduce substantial theory to tackle the technical challenges

ue to the symmetry property of such problems as we will discuss

n Section 4 . 

Our contributions in this paper can be summarised as follows: 

• We present an effective way of using preference information in

equitability problems. We discuss how preferences can be used

to derive a stronger ordering of distributions under considera-

tion. 
• We introduce results to address the significant computational

problems of deriving the stronger ordering of distributions.

Specifically, by Theorems 5 and 6 in Section 4 , we address the

intractability problem due to symmetry. 
• We illustrate the implementability of our approach by applying

it to a ranking problematique, i.e. the category of decision prob-

lems consisting of the effort to rank the distributions from the

best to the worst, which arises naturally in many settings. 

. Overview of related work 

There is a broad literature in economics dealing with equity

see e.g. Sen and Foster, 1997; Young, 1994 ). In this section we

rovide a review of the most relevant work on comparing distri-

utions and clarify our contribution to the literature. 

.1. The theory of majorisation 

The theory of majorisation gives a frame for comparing dis-

ributions in the absence of preference information ( Hardy, Little-

ood, and Polya, 1934 ; Marshall, Olkin, and Arnold, 2009 ; Müller

nd Stoyan, 2002 ; Shaked & Shanthikumar, 2007 ). We sketch this

ell-known theory below. 

Let Z denote a (finite) set of distributions (alternatives) with a

ypical member as z i = (z i 
1 
, . . . , z i p ) , where z i ∈ Z represents a dis-

ribution of a good among p parties and hence z i 
j 

is the amount of

ood that party j gets in distribution i . Given z ∈ R 

p ( R 

p denotes

he n -dimensional real space), let 
−→ 

z denote the ordered permuta-

ion of z such that 
−→ 

z 1 ≤ −→ 

z 2 ≤ ... ≤ −→ 

z p . 

A distribution z 1 ∈ R 

p is majorised by another distribution z 2 ∈
 

p if 
∑ p 

j=1 

−→ 

z 1 
j 

= 

∑ p 
j=1 

−→ 

z 2 
j 

(i.e. they have the same total output)

nd 

∑ i 
j=1 

−→ 

z 1 
j 

≥ ∑ i 
j=1 

−→ 

z 2 
j 

∀ i < p . An application of majorisation is

n comparing distributions with respect to inequality and the re-

ulting quasi-order is called Lorenz order (introduced by Lorenz

1905) ) in the economics literature. If z 1 is majorised by z 2 then

t represents a more equitable allocation of the same amount of

utput to the parties, i.e. it Lorenz dominates z 2 . 
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Fig. 1. Generalised Lorenz curves. 
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Note that majorisation and hence Lorenz dominance order al-

low us to distinguish distributions with the same amount of total

output. An extension of these concepts to distributions with dif-

ferent total outputs is the generalised Lorenz order, introduced by

Shorrocks (1983) . 

Definition 1. A distribution z 2 generalised Lorenz dominates

another distribution z 1 (denoted by z 1 �GL z 2 ) if 
∑ i 

j=1 

−→ 

z 1 
j 

≤∑ i 
j=1 

−→ 

z 2 
j 

∀ i . 

Starting from the origin (0) and plotting the points

( 
∑ k 

j=1 
−→ 

z j , k/p) for all k = 1 , . . . , p and joining these points by

line segments provides the so called generalised Lorenz curve of

a distribution z . Hence, z 1 �GL z 2 if the corresponding generalised

Lorenz curve does not lie below that of the latter. Generalised

Lorenz dominance is referred to as equitable dominance in the

multicriteria decision making literature ( Baatar and Wiecek, 2006;

Kostreva and Ogryczak, 1999 ; Kostreva, Ogryczak, & Wierzbicki,

2004; Mut & Wiecek, 2011; Ogryczak, 20 0 0 ). 

Example 1. Consider the following distribution pairs: (1,2,5,7) and

(2,2,5,6); (1,2,5,6) and (2,2,4,7); (3,3,3.5,3.5) and (2,2,4,7). The gen-

eralised Lorenz curves of these distribution pairs are seen in

Fig. 1 a, b and c respectively. In Fig. 1 a and b the second distribu-

tion dominates the first one and in Fig. 1 c neither of the distribu-

tions dominates the other. In the first example, the same amount

of total output is distributed more equitably in the second distri-

bution (in (1,2,5,7), taking 1 unit of output from the richest en-

tity and giving it to the worst off one results in the second distri-

bution (2,2,5,6), such an equity-enhancing transfer leads to a bet-

ter distribution). In the second example, the amount allocated to

the k poorest entities in the second distribution is always at least

as high as the amount allocated in the first distribution for all

k = 1 , 2 , . . . , p. In the third example, distribution 1 is more equi-

table but there is greater total wealth in distribution 2, and hence

we observe the trade-off between equity and efficiency. 

Theorem 1 ( Dasgupta, Sen, and Starrett, 1973 ; Rothschild and

Stiglitz, 1973 ; Shorrocks, 1983 ) . For any two distributions z 1 and z 2 ,

z 1 �GL z 2 ⇔ u ( z 1 ) ≤ u ( z 2 ) ∀ u (.) ∈ Q sym 

, where Q sym 

is the set of sym-

metric increasing strictly quasiconcave 1 social evaluation functions. 
1 A function u (.) is strictly quasiconcave if for all z 1 , z 2 : z 1 
 = z 2 and α ∈ (0, 1) we 

have u (αz 1 + (1 − α) z 2 ) > min { u (z 1 ) , u (z 2 ) } . A function u (.) is symmetric if for all 

z ∈ R p , u (z) = u (�s (z)) for all s = 1 , . . . , p! , where �s ( z ) is an arbitrary permuta- 

tion of z . In other words, the function assigns the same value to all permutations 

of a distribution. 

c  

t  

t

t

d

By Theorem 1 , another way to look at generalised Lorenz dom-

nance is dominance with respect to the set of symmetric increas-

ng strictly quasiconcave social evaluation functions. 

.2. Second order stochastic dominance 

Another frame to consider while comparing distributions in the

bsence of preference information is the second order stochastic

ominance (SSD), which concerns itself with comparing distribu-

ions of risky options ( Müller and Stoyan, 2002 ; Shaked & Shan-

hikumar, 2007 ). The analogy between stochastic dominance and

nequality comparisons is well-established in the literature. The

lassic works in the theory of inequality measurement draw on the

nalogy between inequality- and risk- aversion ( Atkinson, 1970 ).

o underscore the qualitative analogy, one way to think about the

omparison of societies a and b with different distributions of in-

ome is to ask oneself the question: “If I was to wake up tomorrow

ith the life circumstances of a randomly chosen individual, would

 prefer to be a randomly chosen member of society a or society

 ?”. 

In the context of inequality comparisons SSD can be defined as

ollows: 

efinition 2. A distribution z 2 dominates another distribution z 1 

n the sense of second order stochastic dominance (denoted z 1 �SSD 

 

2 ) if u ( z 1 ) ≤ u ( z 2 ) for all social evaluation functions of the form

 (. ) = 

∑ 

j v (z j ) , where v (. ) is concave ( Levy, 1992 ). 2 

It is worth noting here that the problems of comparison of risks

nd the comparison of income distributions are not precisely for-

ally identical. The main mathematical difference is that, when

omparing risky options, utility (evaluation) functions are generally

aken to be additively separable over states (reflecting the “sure

hing principle” that one’s preferences for consequences which

ne does experience should not depend on the consequences in

he states of nature which are not realised) ( Hurley, 1992 ; Jeffrey,

982 ; Savage, 1954 ; Wakker, 1989 ). In the theory of inequality

here is no compelling argument for separability in the same way,

nd indeed some writers argued that a theory of inequality should

ake into account “caring externalities” , that is to say, the dis-

ress A feels at B’s disadvantage ( Culyer, 1989 , see also Diamond,

967 for a criticism of assuming the sure thing principle for so-

ial choice). The need to take into account such caring externali-

ies provides a compelling argument that, in the inequality context,
2 To be more precise, SSD is defined by using expectations, i.e. �i p i u ( z i ). However, 

his would be equivalent to the definition we use above. To see this, observe that 

he expectation can be obtained by the additive aggregation (and vice versa) by 

ividing by n , the number of parties, and factorising. 



Ö. Karsu et al. / European Journal of Operational Research 264 (2018) 686–706 689 

u  

t  

o  

F  

m  

i  

u  

A  

t  

t  

t  

a

 

f  

e  

t  

(  

G  

1

T

z

 

r  

l  

f  

s  

h  

e  

i  

e

3

d

 

p  

a  

u  

c

 

m  

b  

m  

d  

f  

t  

t  

p  

S  

m  

A  

c  

p  

o

 

Q  

t  

e  

t  

r

E  

t

Table 1 

Example allocations of a good. 

Alternative Person 1 Person 2 Person 3 

1 2 7 8 

2 3 4 8 

3 2 7 1 

4 3 4 1 
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nlike the risk context, a comprehensive theory has to allow for

he possibility of nonadditivity in the evaluation function. More-

ver, several natural evaluation functions have a non-additive form.

or example, think about a situation where we evaluate alternative

onetary allocations to two people A and B, who are otherwise

ndistinguishable. Suppose that giving $1 more to A (B) is worth 1

til to the social planner as long as the difference between what

 (B) already has and what B (A) already has is less than a certain

hreshold, say $10. When the difference (A–B) ((B–A)) exceeds that

hreshold every $1 added to the income of A (B) is worth 0.5 utils

o the social planner. Such a preference statement cannot apply to

 social planner with an additive evaluation function. 

It is well known that checking dominance with respect to the

unctions of the form u (. ) = 

∑ 

j v (z j ) , where v (. ) is concave, is

quivalent to checking dominance with respect to the set of func-

ions that are symmetric, increasing and strictly quasi-concave

 Q sym 

for short) in the absence of preference information (see

ravel and Moyes, 2013; Rothschild and Stiglitz, 1973 ; Shorrocks,

983 ; Thistle, 1989 ). 

heorem 2. For any two distributions z 1 and z 2 , z 1 �SSD z 2 ⇔ z 1 �GL 

 

2 . 

We commented previously that SPs may have preferences rep-

esented by non-additive evaluation functions. Yet, Theorem 2 il-

ustrates that it would make no difference to merely include such

unctions to the set relative to which dominance is derived. In this

ense, the results of Theorem 2 would be of little use to a SP who

as already expressed preferences incompatible with an additive

valuation function (e.g. as in the previous example). In the follow-

ng section we examine how this equivalence breaks when prefer-

nces expressed by SPs are taken into account. 

. The usefulness of preference information: conditional 

ominance 

We now discuss the implications and usefulness of introducing

reference information in comparing distributions of a good among

 set of entities. We also demonstrate that this approach is both

seful and substantively different to the existing approaches dis-

ussed in the previous section. 

Consider a situation where a SP has provided preference infor-

ation over a finite set R of distributions, denoted �R . This could

e a set of binary preference statements, or in the form of deter-

ining the least preferred distribution in a set of given reference

istributions. Let A ( �R ) denote the set of additive functions of the

orm u (. ) = 

∑ 

j v (z j ) , with v (. ) concave, that are compatible with

he preference information �R . Specifically, for any two distribu-

ions one of which is preferred to the other by the SP, the com-

atible function u (.) has a higher value for the more preferred one.

imilarly, let Q sym 

( �R ) denote the set of strictly quasiconcave sym-

etric increasing functions that are compatible with �R . The sets

 ( �R ) and Q sym 

( �R ) are subsets of sets A and Q sym 

respectively. We

an use these subsets to make further inferences about the social

lanners’ preferences (choices) compared to the case where the

riginal sets of functions A or Q sym 

are used. 

Theorem 2 asserts that dominance with respect to sets A and

 sym 

are equivalent, implying that additivity of the social evalua-

ion function is not a material assumption in the absence of prefer-

nce information. However, in the presence of preference informa-

ion, additivity is a material assumption because dominance with

espect to sets A ( �R ) and Q sym 

( �R ) are not equivalent. 

To see this, consider the following example. 

xample 2. Table 1 shows four feasible allocations of a good over

hree people. 
Suppose the SP compares between (2,7,8) and (3,4,8) and she

refers (2,7,8). If we check dominance with respect to A ( �R ) then

e conclude that she must also prefer, for example (2,7,1) to

3,4,1) since if her preferences are represented by an additive func-

ion u (z 1 ) + u (z 2 ) + u (z 3 ) then we have learned from her pref-

rence statements that u (2) + u (7) > u (3) + u (4) . Her preference

or (2,7,1) over (3,4,1) depends on whether u (2) + u (7) + u (1)

s greater than or less than u (3) + u (4) + u (1) but this is fixed

y the above inequality. This means that all functions in A ( �R )

ould render distribution (2,7,1) superior to distribution (3,4,1).

ut this is not true if we allow general symmetric quasi-concave

unctions. For example, if the evaluation function f is the sum

f the pairwise minima, then f (2 , 7 , 8) = min ( 2 , 7 ) + min ( 2 , 8 ) +
in ( 7 , 8 ) = 2 + 2 + 7 = 11 , and similarly, f (3 , 4 , 8) = 3 + 3 + 4 =

0 but f (2 , 7 , 1) = 1 + 1 + 2 = 4 and f (3 , 4 , 1) = 1 + 1 + 3 = 5 . 

It is possible to check dominance with respect to A ( �R ) using

inear programming models and this is considered in some studies

see e.g. Armbruster and Delage, 2015 ; Karsu, 2016 ). However, to

ur knowledge, the problem of checking dominance with respect

o Q sym 

( �R ) has not been tackled in the literature so far. 

Our approach introduces this machinery to work with prefer-

nce information and is able to accommodate the aforementioned

ocial planner. But there is no a-priori insistence that the social

lanner’s evaluation function is non-additive. Thus our approach

an accommodate any social planner whose preferences are repre-

entable by functions in the set Q sym 

( �R ) (of which A ( �R ) is a po-

entially empty subset). In sum, the approach verifies dominance

ith respect to the set Q sym 

( �R ) and extends generalised Lorenz

ominance, which does not include any preference information, by

ncorporating preference information. 

We shall use the term conditional generalised Lorenz dominance

c-dominance, denoted as �GL c ) to refer to dominance with respect

o all social evaluation functions that are increasing, symmetric,

trictly quasiconcave and consistent with �R . 

efinition 3. Let Q sym 

( �R ) be the set of increasing symmetric

trictly quasiconcave social evaluation functions, which are com-

atible with some preference statement �R . Then for any two dis-

ributions z 1 and z 2 , z 1 �GL c z 2 ⇔ u ( z 1 ) ≤ u ( z 2 ) ∀ u (.) ∈ Q sym 

( �R ). 

Incorporating preference information and hence using condi-

ional generalised Lorenz dominance would be useful as gen-

ralised Lorenz dominance cannot be used to compare even

uite extreme distributions (consider e.g. (3,4,7,11) and (2,100,110,

40). These two distributions do not generalised Lorenz dominate

ach other). Preference information can help us to compare two

istributions z 1 and z 2 which are otherwise incomparable by gen-

ralised Lorenz dominance even if the SP has not expressed a pref-

rence relation over z 1 and z 2 directly. Thus, preference informa-

ion can help refine the ranking of distributions under considera-

ion. We demonstrate with an example. 

xample 3. Suppose that the SP is considering a set of distribu-

ions of e.g. wealth over two people, seen in Table 2 . In this set,

he only pair that is comparable by the generalised Lorenz domi-

ance relation is z 2 and z 3 ; z 2 generalised Lorenz dominates z 3 . 

Now suppose that the SP provided the preference information

hat she prefers z 3 to z 1 . What can we infer about the preference



690 Ö. Karsu et al. / European Journal of Operational Research 264 (2018) 686–706 

Fig. 2. Example on the usefulness of preference information. (For interpretation of the references to colour in the text, the reader is referred to the web version of this 

article.) 

Table 2 

Example distribution of wealth over two 

people. 

Distribution Person 1 Person 2 

z 1 2 6 

z 2 3.7 3.7 

z 3 4 3 

z 4 8 0.5 
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relation between the distributions in this set by assuming that her

social evaluation function is in set Q sym 

? 

We can infer that z 2 should also be preferred to z 1 due to tran-

sitivity but this is trivial. What else can we infer from this prefer-

ence statement? 

Given z 3 is preferred to z 1 , one can infer that for any decision

maker with a symmetric increasing strictly quasiconcave function,

the points in the blue dotted region in Fig. 2 a will be less preferred

than z 1 , and the points that are in the green region with diagonal

lines will be more preferred to z 1 . We know this from quasicon-

cavity (i.e. the indifference curves are convex) and from symmetry.

To see how; consider z 4 , which is a point which should be less

preferred than z 1 . Suppose, on the contrary, that z 3 is preferred to

z 1 but z 4 is also preferred to z 1 . Then there has to be an indiffer-

ence curve which separates z 3 and z 4 from z 1 , with z 3 and z 4 (and

all their permutations) above the indifference curve and z 1 (and

its permutations) below the indifference curve (see Fig. 2 b for an

example). But such a curve is not and cannot be convex, contra-

dicting the assumption of quasiconcavity. So we can infer that z 1 

is preferred to z 4 given z 3 is preferred to z 1 . And the same reason-

ing goes for all points in the blue dotted region in Fig. 2 a. Similarly,

we can infer that the points in the green region with diagonal lines

should be preferred to z 1 . 

4. Theoretical results 

Table 3 summarises the notation and terminology used

throughout the paper. 
In this section we introduce results that allow for using prefer-

nce information provided by a SP to refine the ranking of distri-

utions. As seen in the example of the previous section, the pref-

rences provided by the SP define, for each distribution, a non-

rivial upper set, denoted U ( z ) (the green etched region in Fig. 2 a),

nd a non-trivial lower set, denoted L ( z ) (the blue dotted region

n Fig. 2 a). In a setting where the SP’s preferences are not char-

cterised by symmetry, there are results in the literature that al-

ow for characterising these sets. Such settings are discussed by

orhonen, Wallenius, and Zionts (1984) and Hazen (1983) (see

arsu, 2013 for more information). Relying on these results, how-

ver, is not possible where symmetry is a feature of the SP’s prefer-

nces. In particular, symmetry would necessitate checking a set of

onditions with respect to every possible combination of all per-

utations of a set of distributions, thus imposing an intractable

omputational load. Instead, our results provide a compact char-

cterisation of U ( z ) and L ( z ) which avoid the need for considering

ll permutational checks, and in some cases avoid them altogether,

hus affording tractability. 

In the ensuing we will assume that the SP has provided pref-

rence information �R of the form z i � z k , i = 1 , . . . , k − 1 , which

tands for “the SP prefers distribution z i to z k ”. (Note that when

 = 2 this is pairwise comparison information). We will also use

 = { z 1 , . . . , z k −1 } to denote the set of reference distributions z i 

hich the SP prefers to z k . In practice the SP may provide further

references (in the form of a partial ranking), but our assumption

ere does not restrict generality. 

With use of the reference distributions in R , we also define a

one C ( R ; z k ) and a polyhedron P ( R ; z k ) as follows: 

(R ; z k ) = 

{ 

z| z = z k + 

∑ k −1 

i =1 
μi (z k − z i ) , μi ≥ 0 

} 

, 

 (R ; z k ) = 

{ 

z| z = 

∑ k 

i =1 
μi z 

i , 
∑ 

μi = 1 , μi ≥ 0 

} 

, 

here the reference distributions z i ∈ R are referred to as the upper

enerators of the cone (and polyhedron) and z k as the lower gener-

tor. We express upper and lower sets for a distribution z k through

ones and polyhedrons as follows. 

L asym 

(z k ) = { z| z ≤ z ′ for some z ′ ∈ C(R ; z k ) } 
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Table 3 

Notation and terminology. 

Notation Definition Expression 

z ∈ R p or z i ∈ R p A generic alternative (distribution vector) 

Z A (finite) set of distributions (alternatives) 

�l ( z ) An arbitrary permutation of z −→ 

z Ordered vector of z 
−→ 

z = �l (z) : 
−→ 

z 1 ≤ −→ 

z 2 ≤ ... ≤ −→ 

z p 

� / ≺/ ∼ Weak /strict/ indifference preference relation 

Q The set of functions that are increasing and strictly quasiconcave 

R Set of distributions that are preferred to the same distribution z k R = { z 1 , z 2 , . . . , z k −1 } 
�R Preference information taken from the SP z 1 , ..., z k ∈ R p such that z i � z k 

�c Dominance with respect to Q ( �R ) Conditional dominance in the asymmetric case 

Q sym The set of functions that are 

strictly quasiconcave, symmetric and increasing 

�GL Generalised Lorenz dominance relation Dominance without any preference information, 

i.e. dominance with respect to Q sym 

�GL c c-dominance relation Extension of �GL , includes preference information. 

(conditional generalised Lorenz dominance relation) Dominance with respect to Q sym ( �R ) 

C ( R ; z k ) Cone generated by preference information �R 

Upper generators of C ( R ; z k ) Alternatives z i ∈ R 
Lower generator of C ( R ; z k ) Alternative z k 

P ( R ; z k ) Polyhedron spanned by z 1 , ..., z k (distributions in set R ∪ z k ) 
L asym or L asym ( z 

k ) Given �R the set of points conditionally dominated { z : z ≤ z ′ for some z ′ ∈ C ( R ; z k )} 
by z k (asymmetric case) 

U asym or U asym ( z 
k ) Given �R the set of points conditionally dominating { z : z ′ ≤ z for some z ′ ∈ P ( R ; z k )} 

z k (asymmetric case) 

�( R ) The set of all permutations of the distributions in set R 

Lower set ( L or L ( z k )) Given �R the set of points c-dominated by z k { z ′ : z ′ �GL z 

(symmetric case) for some z ∈ C ( �( R ∪ z k ); �s ( z k )) 

for some permutation �s ( z k ) of z k }. 

Upper set ( U or U ( z k )) Given �R the set of points c-dominating z k { z ′ : z �GL z 
′ for some 

(symmetric case) z ∈ P ( �( R ∪ z k ); z k )}. 

ˆ �( 
−→ 

z k ) The set of ( p − 1 ) distributions, each of which is obtained by ˆ �( 
−→ 

z k ) = { z ′ : z ′ 
i ′ = 

−→ 

z k i ′ +1 , z ′ 
i ′ +1 

= 

−→ 

z k i ′ 

swapping two consecutive elements in 
−→ 

z k z ′ 
i 
= 

−→ 

z k 
i 

∀ i 
 = i ′ , i ′ + 1 for some i ′ ∈ I} . 
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(z k ) = { z| z ′ ≤ z for some z ′ ∈ P (R ; z k ) } 
imilar to Definition 3 , we can define conditional dominance for

he asymmetric settings. 

efinition 4. For any z 1 , z 2 ∈ R 

p , z 1 �c z 
2 ⇔ u ( z 1 ) ≤ u ( z 2 )

 u (.) ∈ Q ( �R ), where Q ( �R ) is the set of social evaluation functions

hat are increasing, strictly quasiconcave and consistent with �R . 

The following result can be used to check this conditional dom-

nance in asymmetric settings: 

heorem 3 ( Korhonen et al., 1984 ) . 3 Consider z, z ′ ∈ R 

p . Then z

c z 
′ if the following hold: 

(i) z ∈ L asym 

( z k ) . 

ii) z ′ ∈ U asym 

( z k ) . 

xample 4. To illustrate the application of the Theorem 3 , consider

he example in Fig. 3 a and b. Consider the distribution defined by

oint (2, 6). Fig. 3 a shows the region of distributions that dom-

nate (2, 6) (etched region) and the set of points that are domi-

ated by (2, 6) (dotted region) in the absence of preference infor-

ation. Fig. 3 b shows the impact of introducing preference infor-

ation, namely (3, 4) is preferred to (2, 6). Both the regions of

oints dominated by (2, 6) and the set of points that dominate

2, 6) increase as seen in the figure. These sets are again derived

y using the convexity property of the indifference curves of the

valuation function as explained in the previous section. Any dis-

ribution z falling within the dotted region is (conditionally) dom-

nated by any distribution z ′ falling within the etched region. By

se of Theorem 3, we can check (by solving systems of linear in-

qualities) whether this is the case for any arbitrary points z and
3 Although the original results do not impose the symmetry assumption they also 

old for the case with symmetry due to the axiom of convexity, which is common 

o both cases. 

�

 

′ and, if so, the original ranking of distributions can be refined by

dding the information that z �c z ′ . 

Theorem 3 has been traditionally applied when there is no a

riori assumption that the SP is indifferent between all permu-

ations of a distribution (in the preceding example, we made no

se of the symmetry assumption about the SP’s preferences). If

his were the case, however, the ranking could be refined further.

o see this, consider the same example in a symmetric setting.

ig. 4 a and b shows the dominating and dominated regions with

nd without preference information respectively. In Fig. 4 a, (2, 6)

s considered equally good as (6, 2), by symmetry, and so there

re now two dominated regions. In Fig. 4 b, symmetry dictates that

ny of (3, 4) or (4, 3) is preferred to any of (2, 6) and (6, 2) and

o both dominating and dominated regions increase. For any two

istributions z and z ′ such that z falls within any of the two (dot-

ed) enlarged dominated regions and z ′ falls within the (etched)

ominating region we can again infer that z �GL c z 
′ . 

In addition to the usefulness of preference information in a

ymmetric setting, the above example also illustrates the increase

n computational complexity due to symmetry. As can be seen, we

eed to perform checks by taking into account every permutation

f the distributions over which preferences are provided. With an

ncrease in the number of entities and the reference distributions

onsidered, this becomes prohibitive. The results that we introduce

elow alleviate this problem. 

Let I be the index set of entities, i.e. I = { 1 , 2 , . . . , p} . For our

esults, we will use the following two sets of permutations of the

eference distributions in R and distribution z k : 

�(R ) = { z ′ : z ′ = �s (z) for some permutation �s (z) of z ∈ R } . 
ˆ ( 

−→ 

z k ) = { z ′ : z ′ i ′ = 

−→ 

z k i ′ +1 , z ′ i ′ +1 = 

−→ 

z k i ′ , z ′ i = 

−→ 

z k i 

∀ i 
 = i ′ , i ′ + 1 for some i ′ ∈ I} . 
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Fig. 3. Asymmetric setting. 

Fig. 4. Symmetric setting. 

 

 

 

U

 

 

 

 

 

 

(  

 

 

 

c  

g  

i  

t  

c  

p  

o  

e  

a  
�( R ) is the set of all possible permutations of the reference

distributions and 

ˆ �( 
−→ 

z k ) is the set of permutations of 
−→ 

z k , each of

which is obtained by swapping two consecutive elements of 
−→ 

z k . 

Using �( R ), we may now formally express the lower and upper

sets L ( z k ) and U ( z k ) through these cones and polyhedrons: 

L (z k ) = { z| z �GL z 
′ for some z ′ ∈ C(�(R ∪ z k ) ;�s (z k )) 

for some permutation �s (z k ) of z k } . 
(z k ) = { z| z ′ �GL z for some z ′ ∈ P (�(R ∪ z k ) ;�s (z k )) 

for some permutation �s (z k ) of z k } . 
Theorem 4. Consider z, z ′ ∈ R 

p . Then z �GLc z ′ if the following hold:

(i) z ∈ L ( z k ) . 

(ii) z ′ ∈ U ( z k ) . 

Proof. 

(i) z ∈ L ( z k ) then z �GL z ′ for some z ′ ∈ C ( �( R ∪ z k ); �s ( z k )) for some

permutation �s ( z k ) of z k . This implies z ′ �c �s ( z k ). Note that
�c implies �GL c (as the set of symmetric quasiconcave func-

tions is a subset of the set of quasiconcave functions) hence

z ′ �GL c �
s (z k ) . �GL c is symmetric, therefore z ′ �GL c z 

k . Then

z �GL z 
′ �GL c z 

k , implying z �GL c z 
k . 

ii) z ′ ∈ U ( z k ) then z ′ ′ �GL z ′ for some z ′ ′ ∈ P ( �( R ∪ z k ); �s ( z k )) for

some permutation �s ( z k )of z k }. This implies �s ( z k ) �c z 
′ ′ , hence

�s (z k ) �GL c z 
′′ . �GL c is symmetric, therefore z k �GL c z 

′′ . We have

z k �GL c z 
′′ �GL z 

′ , implying z k �GL c z 
′ . 

From parts (i) and (ii) z �GL c z 
k �GL c z 

′ , then z �GL c z 
′ . �

The sets L ( z k ) and U ( z k ) above contain distributions that are

onditionally generalised Lorenz dominated by, or conditionally

eneralised Lorenz dominate z k . It follows that any distribution

n L ( z k ) is conditionally generalised Lorenz dominated by any dis-

ribution in U ( z k ). Therefore these sets provide a mechanism for

hecking conditional generalised Lorenz dominance between any

air of distributions, z and z ′ , specifically by checking membership

f either in L ( z k ) or U ( z k ). This would involve solving two LPs for

ach permutation. As mentioned before, this can be computation-

lly prohibitive, as it requires a membership check for every single



Ö. Karsu et al. / European Journal of Operational Research 264 (2018) 686–706 693 

o  

m  

H  

t

 

i

U

T  

e

C  

U

 

g  

a  

c  

s  

i  

l  

z  

g  

t  

a  

o  

(

 

t  

s  

p  

c  

t

L

L

T  

e

 

i  

w  

s  

a  

l  

p  

m  

t  

t  

p  

p

 

t  

�  

i  

s

5

 

o  

a  

f  

m

 

n  

f

A

R  

t

C  

D

R

 

t

 

n  

c

 

i

U  

d

D

 

G  

p  

z  

g

 

e  

z  

n  

p  

m  

t

 

r  

t

4 Note that Theorem 6 applies to situations where p > 2 as long as only two-point 

cones and polyhedra are used. However, it is not generalisable to cases where we 

use larger cones. This is because for two distributions z i and z k such that z i � z k , we 

can claim for a distribution z that, if there is a z ′ ′ ∈ C ( z i ; z k ): z �GL z ′ ′ then there is 

z ′′′ ∈ C( 
−→ 

z i , 
−→ 

z k ) : z �GL z 
′′′ . However, for any k vectors z 1 , . . . , z k ∈ R p such that z i � z k 

for all i 
 = k and z ∈ R p we cannot claim for a distribution z that, if there is a z ′ ′ ∈ C ( R ; 
z k ): z �GL z ′ ′ then there is a z ′′′ ∈ C( 

−→ 

R ;
−→ 

z k ) : z �GL z 
′′′ . See the counterexample in 

Appendix A.2 . 
ne of the p ! permutations �s ( z k ) of z k and in each check all per-

utations of the reference alternatives z i ∈ R should be considered.

owever, our result below shows that we can completely remove

he need for considering all permutations of z k and z i ∈ R . 

In particular, instead of L ( z k ) and U ( z k ), we will use the follow-

ng: 

ˆ L (z k ) = { z| z �GL z 
′ for some z ′ ∈ C( 

−→ 

R ∪ 

ˆ �( 
−→ 

z k ) ;
−→ 

z k ) } . 
ˆ 
 (z k ) = { z| z ′ �GL z for some z ′ ∈ P ( 

−→ 

R ;
−→ 

z k ) } . 
heorem 5. Consider two distributions z, z ′ ∈ R 

p . The following are

quivalent: 

(i) z ∈ L ( z k ) and z ′ ∈ U ( z k ) 

(ii) z ∈ 

ˆ L (z k ) and z ′ ∈ 

ˆ U (z k ) . 

orollary 1. Consider two distributions z, z ′ ∈ R 

p , z ∈ 

ˆ L (z k ) and z ′ ∈
ˆ 
 (z k ) implies z �GLc z ′ . 

To summarise, the result above allows for checking conditional

eneralised Lorenz dominance between a pair of distributions in

n analogous way to Theorem 3 , but also taking symmetry into ac-

ount, therefore further refining the ranking of distributions. At the

ame time, the computational burden of accounting for symmetry

s avoided, as it suffices to work with the ordered vector 
−→ 

z k as the

ower generator, instead of considering all permutations �s ( z k ) of

 

k separately. Moreover instead of using �( R ) in the set of upper

enerators we only consider 
−→ 

R , i.e., the ordered vectors of dis-

ributions in reference set R . Checking dominance involves solving

 LP per each membership check for ˆ L (z k ) and 

ˆ U (z k ) . The details

f this (and the proof of the Theorem) are given in the Appendix

 Appendix A.1 ). 

In addition to the above, further simplification and computa-

ional savings are possible for the special case where we are con-

idering a single reference distribution z i at a time and use two-

oint cones of the form C ( z i ; z k ) (A two-point cone is a cone that

onsists of one upper generator and one lower generator). In par-

icular, define: 

 (z k ) = { z| z �GL z 
′ for some z ′ ∈ C(�r (z i ) ;�s (z k )) 

for some permutations �r (z i ) and �s (z k ) 

of z i and z k , for some z i ∈ R or z ′ 

∈ C(�r (z k ) ;�s (z k )) 

for some permutations 

�r (z k ) and �s (z k ) of z k } . 
¯
 (z k ) = { z| z �GL z 

′ for some z ′ ∈ C( 
−→ 

z i ;
−→ 

z k ) 

for some z i ∈ R } 
heorem 6. Consider two distributions z, z ′ ∈ R 

p . The following are

quivalent: 

(i) z ∈ L ( z k ) and z ′ ∈ U ( z k ) 

(ii) z ∈ L̄ (z k ) and z ′ ∈ 

ˆ U (z k ) . 

To summarise, by considering separately every z i ∈ R , and us-

ng two-point cones, we may reduce the computational burden, as

e can disregard taking permutations of z k into account and in-

tead just use the ordered vector 
−→ 

z k (see Korhonen et al., 1984 for

 discussion on the difference between using two-points cones and

arger cones in settings without symmetry assumption. Their com-

utational experiments indicate that using larger cones eliminates

ore alternatives than using two-point cones. On the other hand

he LPs solved considering two-point cones are easier to handle as

hey are of smaller size, hence there is a trade-off between com-
utational gain and information gain). The proof of the Theorem is

rovided in Appendix A.2 . 4 

The mathematical models solved to check whether a distribu-

ion is in the ˆ L (z k ) (or L̄ (z k ) ) or ˆ U (z k ) given preference information

R are provided in Appendix B . In the next section we propose an

nteractive ranking algorithm which is based on our theoretical re-

ults. 

. Interactive algorithm 

We propose an algorithm that can be used to obtain a ranking

f a given discrete set of distributions. Suppose that we are given

 finite number of distributions each showing a distribution profile

or p entities. We can summarise our algorithm with the following

ain steps: 

S.1. Check whether any distribution is generalised Lorenz domi-

ated by the other for each pair of distributions. This check is per-

ormed by the dominancecheck subroutine in Algorithm 1 . 

lgorithm 1 Interactive algorithm. 

ead problem data and initialise the parameters using Initialisa-

ion subroutine 

heck GL dominance between each pair of distributions using

ominancecheck subroutine 

epeat 

Get preference information from the SP using Getinfo subrou-

ine 

newinfo=1 //This parameter is used to check whether any

ew information is obtained that can allow us to generate new

ones and polyhedra 

Repeat 

Perform the checks related to L and U using Conegenera - 

tion subroutine 

Until newinfo=0 

Count the number of distributions whose ranks are known us-

ng Countassigned subroutine 

ntil n -unassigned = n or CPUtime > 1800 // n is the number of

istributions 

isplay results and performance measure values 

S.2. Select k distributions ( k ≥ 2) based on a predetermined rule.

et the preference information from the SP by asking her to com-

are these distributions. Denote the least preferred distribution as

 

k and the rest as z i for i = 1 , 2 , . . . , k − 1 . This is performed by the

etinfo subroutine in Algorithm 1 . 

S.3. Based on the preference information obtained, check for

ach distribution z whether z ∈ L ( z k ). If not, then check whether

 

k ∈ U ( z k ). If any new information is obtained, which would allow

ew cones and polyhedra to be generated, repeat this step. We

erform these checks, respectively, by solving two linear program-

ing models, LP 1 and LP 2 , discussed in Appendix B . Conegenera-

ion subroutine in Algorithm 1 performs these operations. 

S.4. Update the results accordingly (in the Countassigned sub-

outine). If the result is not satisfactory according to some prede-

ermined stopping criterion, continue with Step 2. 

The pseudocode of the algorithm is as follows. 

See Appendix C for detailed explanation of the subroutines. 
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Table 4 

Option set. 

Voucher 1 2 3 Voucher 1 2 3 

1 90 90 150 6 50 75 230 

2 75 125 125 7 65 125 150 

3 85 85 180 8 80 115 115 

4 95 95 110 9 65 130 135 

5 70 105 160 10 85 95 155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Results of the tests with real subjects. 

Subject Solution 

time 

Number of 

questions 

Subject Solution 

time 

Number of 

questions 

A 1234 20 H 898 19 

B 727 13 I 765 19 

C 842 15 J 753 17 

D 810 14 K 819 18 

E 1087 19 L 616 16 

F 873 20 M 810 18 

G 600 15 N 692 18 
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6. Results 

6.1. Tests with real subjects 

The proposed interactive decision support system was tested

with fourteen individuals with a variety of backgrounds in eco-

nomics, mathematics, statistics and engineering to see whether

it is usable. These individuals were selected as thoughtful people

with quantitative backgrounds. We presented the subjects the fol-

lowing cover story, which involved ranking 10 distributions (op-

tions) each of which represents an allocation of a good over three

indistinguishable people. 

You are giving three presents to three indistinguishable nephews

or nieces (they are triplets so there are no age differences) for their

21st birthday. One of them likes books; one likes CDs and the other

likes clothes, so you want to give them vouchers for these items. You

want to spend £270 altogether, but some shops will give you vouch-

ers with a total value > £270 for this money. For example, you can

buy vouchers at shop A which will give you a voucher for each niece

for £90 (hence with a total value of £270, equitably distributed) or

at shop B which will give you 2 £80 vouchers and a £130 voucher

(with a total value of £290 but less equitably distributed). Which do

you prefer? Suppose that you have a list of alternative vouchers from

different shops (10 options in total) and you want to rank these from

best to the worst. 

The option set is given in Table 4 . Note that only one of the

distributions in the option set is generalised Lorenz dominated. 

Our tests involved the use of two procedures. The first proce-

dure (Procedure 1) was based on asking holistic comparisons be-

tween pairs of options. The second procedure (Procedure 2) was

based on the use of an additive power evaluation (social welfare

function (SWF)) of the form ( 
∑ p 

i =1 
(z i ) 

α) 
1 
α . The power SWF of pro-

cedure 2 was parameterised, i.e. a value for α was found, by asking

a single indifference question to the subject. The indifference ques-

tion was based on finding the equally distributed equivalent (EDE)

of a given option. Specifically, the subject was given (90, 90, 150)

and asked to provide a value x such that s/he valued (90, 90, 150)

and ( x , x , x ) the same (i.e. s/he was indifferent). After finding the

corresponding α value, we obtained a full ranking. 

With each subject, we used both procedures to obtain two (po-

tentially different) rankings of the options. At the end, we asked

the subjects the following questions: 

1. How easy did you find it to make holistic comparisons between

options (relative to finding an EDE)? (very easy, quite easy, nei-

ther easy nor difficult, quite difficult, very difficult). 

2. How satisfactory do you find the interactively derived ranking

versus the SWF derived ranking? (more satisfactory, quite satis-

factory, neither satisfactory nor unsatisfactory, quite unsatisfac-

tory, very unsatisfactory). 

We note here that our aim in performing these tests is in the

spirit of an existence proof: we want to establish whether people

could use the procedure, not to establish the definitive superiority

of Procedure 1 vs. Procedure 2 (as we would expect that differ-

ent people would prefer different questioning modes). In any case,

such a comparison would not be appropriate as our experimental
esign was not counterbalanced to guard against order effects, as

ne of the subjects noted. 

One of the main observations we made in our experiments is

hat the problem we try to handle is cognitively challenging due

o the tradeoff between efficiency and equity. This justifies the im-

ortance of designing appropriate decision support which relies on

nputs collected from the SP in a way that is natural to him/her

like our holistic comparisons) and which provides satisfactory re-

ults. 

Table 5 summarises some information on the experiments in

erms of the solution time of Procedure 1 (in seconds) and the

umber of questions answered. As seen in the table the whole pro-

edure took less than 20 minutes for most trials and the number

f questions answered was at most 20. 

All of the subjects provided a positive feedback in terms of the

sability of our method. We also asked about acceptability of the

istribution question (Question 1) but without getting consensus

bout whether Procedure 1 or Procedure 2 was preferred (seven

ubjects found making holistic comparisons quite difficult while six

ubjects found it quite easy, and one subject found it very easy rel-

tive to finding an EDE). In terms of the satisfaction derived from

he two rankings (Question 2), the feedback was also mixed. One

ubject found Procedure 1 neither satisfactory nor unsatisfactory,

our found it quite satisfactory, seven found it more satisfactory

nd two found it quite unsatisfactory relative to Procedure 2. 

Overall, our small set of trials indicated that the procedure is

sable and is competitive with an EDE-based approach, Procedure

. We also note that our method does not make the strong struc-

ural assumptions which are required by Procedure 2, in the sense

hat no parametric form is assumed. 

.2. Computational experiments 

Our initial motivation for this study was to provide a ranking

rocedure for comparing income distributions. In order to test our

rocedure in this setting, we used income distribution informa-

ion of different countries from the World Bank ( WB, 2011 ) and

NU-WIDER (United Nations University–World Institute for Devel-

pment Economics Research) ( WIDER, 2011 ) databases. We used

he quintile values to represent a country’s income distribution.

e performed tests with smaller discrete datasets (for n values of

4, 15, 26, 39, 54 and 66) but we found that many relations in

hese datasets are already determined by generalised Lorenz domi-

ance and so these datasets do not allow our procedure to demon-

trate its full potential. 

To demonstrate the full potential of the procedure, we explore

ts performance in an environment where none or only some of

he distributions are generalised Lorenz dominated. Note that this

s the sort of dataset which might be generated by one of the

reviously discussed algorithms (e.g. by Baatar & Wiecek, 2006;

ostreva & Ogryczak, 1999; Kostreva et al., 2004; Ogryczak, 2000;

gryczak et al., 2008 ) for exhaustively generating or sampling the

fficient set in the context of some optimisation problem such as
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ight naturally occur in, for example, a telecommunication or lo-

istics application. 

To test the performance of our procedure for such settings, dis-

ributions are generated randomly from a uniform distribution us-

ng MATLAB’s random number generator. In this set only nondom-

nated distributions are generated (a distribution is nondominated

f there is no other distribution in the set that generalised Lorenz

ominates it). 

We simulated the SP’s responses using an underlying evaluation

unction. Three types of underlying evaluation functions are used

n the experiments: 

1. Linear evaluation function 

U(z i ) = 

p ∑ 

j=1 

← −
w j 

−→ 

z i 
j 

where w j , j = 1 , . . . , p are generated from a uniform distribu-

tion between 0 and 1. 

2. Product function 

U(z i ) = 

p ∏ 

j=1 

z i j 

3. Tchebycheff evaluation function 

(z i ) = 

−→ 

z i 
1 

We use the following performance measures used to evaluate

erformance of approach and the algorithm. 

1. CPU time in seconds 

2. Number of LP 1 problems solved 

3. Number of LP 2 problems solved 

4. Number of binary comparisons gathered from the SP 

5. Ratio of the binary comparisons gained through the c-

dominance approach 

The definitions of measures 1,2, 3 and 4 are clear. Let us explain

easure 5. 

In order to achieve a complete ranking of n distributions, one

as to know the relation between each pair of distributions in this

et. Hence, we should know the result of 
(

n 
2 

)
binary comparisons.

t each iteration one binary comparison is asked to the SP, hence,

n t iterations t such comparisons will be provided. We then cal-

ulate the ratio of the binary comparisons gathered from the SP,

hich we call qratio as follows: 

ratio = t/ 

(
n 

2 

)
In the Dominancecheck subroutine of the algorithm we find the

umber of pairwise generalised Lorenz dominance relations. Let us

enote it by d . We also find the ratio of the generalised Lorenz

ominance relations which is a property of the problem set rather

han a performance measure. We call it dratio and calculate as fol-

ows: 

ratio = d/ 

(
n 

2 

)
. 

Ratio of the binary comparisons gained through the c-

ominance approach (gainratio) : Similar to qratio , this measure is

sed to see the amount of information that we gain by using the

-dominance approach. It is calculated as follows: 

ainratio = 1 − qratio − dratio 

The optimal solutions of the LPs are found by using CPLEX 12.2.

e set a termination limit of 30 minutes to the algorithm. All ex-

erimentations are done in Intel Core i5 2.27 gigahertz, 4 gigabyte

AM. The algorithm is coded with MATLAB. 
We now discuss the performance of our algorithm. For each

ombination of the settings discussed above, we generate instances

tarting with n = 10 and p = 2 , increasing them in increments of

0 and 1, respectively. For each combination of evaluation function,

 and n values, 10 problem instances are generated. For the linear

valuation function case, objective function weights are randomly

enerated for each problem instance and then ordered in the non-

ecreasing manner. The average performance measure values over

he 10 instances are shown in Table 6 . Recall that in each problem

nstance none of the distributions are generalised Lorenz dominat-

ng each other, i.e., dratio = 0. Hence this set consists of more diffi-

ult problems in that sense. 

We can find complete rankings for problems with up to 70 dis-

ributions when the number of parties, p , is two, and up to 40 dis-

ributions when p is three, four and five in our time limit of 30

inutes. 

These results reveal the contribution of using c-dominance

conditional generalised Lorenz dominance). The minimum aver-

ge gainratio value is 0.49, that is, at least about 50% of the bi-

ary comparisons are provided by the lower and upper sets ( L and

 ). This indicates a satisfactory performance for the approach. Note

ere that in some instances gainratio is seen as 1, which is due to

ounding. 

We can see the effect of problem size on the performance of

he algorithm and on the amount of information gained. 

As can be observed from the table when the number of distri-

utions, n , increases gainratio increases . Hence for constant p , the

ontribution of the conditional dominance approach to the solution

ncreases as n increases. Note that with increasing n , the number

f questions increases, resulting in an increase in the number of

ones/polyhedra generated. Moreover as n increases so does the

he number of LPs solved per L and U . As a result, we observe an

ncrease in the number of LPs solved and the solution time. 

The effect of number of entities, p , is also notable in the per-

ormance of the approach. As p increases the number and ratio of

he comparisons required from the SP increase. As a result of the

ncrease in the ratio of the comparisons required, the ratio of infor-

ation gained decreases. Moreover the increase in the number of

omparisons provided by the SP leads to an increase in the number

f LP models solved and in turn an increase in solution time. 

It is also observed that the effects of p and n are consistent over

he three types of evaluation functions used. 

. Discussion 

In this study we consider a method to incorporate preference

nformation for equitability problems. We are motivated by the fact

hat problems involving equity concerns are widely encountered in

eal life, especially in the public sector. Such problems include, fa-

ility location, income distribution and resource/service allocation

roblems. 

We extend the generalised Lorenz dominance concept by intro-

ucing the concept of conditional generalised Lorenz dominance

c-dominance): that is, generalised Lorenz dominance consistent

ith given preference information. We propose a method that,

ased on preference information about a distribution, characterises

he lower set (the set of points c-dominated by that distribution)

nd the upper set (the set of points c-dominating that distribution)

n a compact way. Characterising these sets in a compact way is

ot straightforward as symmetry brings combinatorial complexity

o the problem. We provide theoretical results that help us han-

le this complexity and propose a tractable computational scheme

or checking whether a given point belongs to one of these sets.

n that sense, we extend the available methods in the multicriteria

ecision making (MCDM) literature such that they can be used for
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Table 6 

Results of the computational experiments. 

Evaluation p n Number of LP 1 Number of LP 2 Solution time Gainratio Number of 

unction (CPU seconds) questions asked 

1 2 10 32.60 18.80 3.32 0.95 2.40 

20 192.40 149.30 21.66 0.96 7.90 

30 589.70 506.20 85.97 0.97 11.40 

40 944.20 813.00 121.55 0.98 13.70 

50 1714.20 1543.40 248.86 0.98 19.80 

60 2258.50 2005.80 341.17 0.99 17.80 

70 2159.40 1847.70 313.64 1.00 10.60 

3 10 100.90 94.10 12.27 0.68 14.50 

20 707.80 694.40 113.45 0.77 44.60 

30 2061.00 2011.50 320.35 0.84 70.60 

40 3446.10 3351.40 612.62 0.89 88.60 

50 6397.10 6308.70 1438.71 0.91 111.90 

4 10 129.50 128.70 16.43 0.54 20.90 

20 884.80 874.10 124.20 0.73 52.00 

30 2778.30 2757.50 472.12 0.78 95.80 

40 5737.00 5706.60 1278.61 0.82 140.90 

5 10 133.40 132.70 16.95 0.49 23.00 

20 1070.80 1065.30 149.77 0.64 67.70 

30 3100.40 3089.80 533.22 0.75 109.20 

40 6895.75 6881.38 1483.24 0.81 145.88 

2 2 10 46.70 33.40 5.07 0.91 4.10 

20 260.80 220.70 31.30 0.95 9.90 

30 739.70 669.60 96.78 0.96 17.50 

40 1399.70 1296.20 197.30 0.97 22.00 

50 2617.40 2466.60 418.67 0.98 28.10 

60 4026.70 3826.20 733.58 0.98 34.40 

70 5528.70 5267.70 1110.43 0.98 38.50 

3 10 98.50 92.90 12.11 0.64 16.20 

20 752.30 729.20 101.44 0.77 43.00 

30 2075.00 2035.50 325.55 0.81 82.20 

40 4332.30 4272.80 843.19 0.85 119.60 

4 10 123.50 122.40 15.80 0.52 21.70 

20 971.80 967.10 137.55 0.68 60.40 

30 2946.70 2934.10 508.64 0.76 104.70 

40 6290.67 6265.67 1213.64 0.80 152.67 

5 10 127.20 126.40 16.37 0.50 22.50 

20 1092.20 1088.70 153.25 0.66 64.70 

30 3380.00 3375.30 611.02 0.73 119.20 

3 2 10 27.20 11.80 2.51 0.96 1.80 

20 106.30 58.70 10.48 0.98 4.50 

30 263.00 157.40 26.79 0.99 3.20 

40 467.30 320.60 51.32 1.00 3.50 

50 573.20 375.60 73.15 1.00 3.40 

60 943.60 692.20 112.40 1.00 3.10 

70 1286.00 966.10 159.81 1.00 3.10 

3 10 96.00 90.30 11.77 0.67 14.90 

20 717.80 696.90 95.15 0.77 43.60 

30 2063.30 2019.90 323.04 0.84 71.70 

40 4189.10 4118.70 795.93 0.87 103.30 

4 10 128.20 127.00 16.56 0.49 23.10 

20 985.20 978.90 142.83 0.70 56.30 

30 2758.30 2740.40 562.76 0.78 95.10 

40 6040.00 6009.90 1324.71 0.81 147.10 

5 10 128.30 127.60 62.92 0.50 22.70 

20 1055.70 1052.00 531.56 0.66 64.20 

30 3275.90 3269.90 586.79 0.74 113.30 

40 4606.70 4594.50 1832.07 0.94 47.70 
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problems with equity concerns without significantly increasing the

computational efforts. 

Our method does not rely on the assumption of an additive

evaluation function and can handle non-additive preference mod-

els unlike stochastic dominance based approaches. It would in

principle be possible to build a theory of conditional dominance

in an environment where non-additive social evaluation functions

are allowed using the machinery of Argyris, Morton, and Figueira

(2014) . But this method cannot capture symmetry and it is not ob-

vious and it is beyond the scope of this paper how one should do

it. 
We check the performance of the suggested approach by using

t in a ranking problem. Our tests with individuals indicate that

eople could use the procedure in real life settings. Our simulation

esults also suggest that the approach is computationally feasible

or small to medium size problem settings. It is observed that the

atisfactory performance of the algorithm is mostly due to the high

atio of information (at least 50%) gained by the conditional gener-

lised Lorenz dominance approach. 

To the best of our knowledge, this study is the first exten-

ive study that attempts to incorporate SP’s preference information

n equitability problems where the evaluation function is not as-
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umed to be additive. This is also the first discussion on the convex

ones approach in a symmetric environment and the first study

hat reports results for a ranking algorithm that uses the informa-

ion from cones and polyhedra (conditional dominance approach)

n this context. 

This study can be extended by working more on the use of pref-

rence information in this context. 

Our results in Theorem 4 of Section 4 provide only sufficient

onditions for verifying conditional dominance in the symmetric

etting. We note that this is also the case for the existing re-

ults in the literature for the asymmetric setting (see Theorem 3 of

ection 4 ). Establishing whether our conditions are also necessary

nd if not, providing an extended set of conditions that would

e both necessary and sufficient would settle the question as to

hether further inferences about conditional dominance can be

ade and how this may be achieved. Clearly this is a promis-

ng extension to the methods introduced in this paper. Other than

his, generalising the approach includes four main areas: Search-

ng for alternative ways to handle computational complexity due

o symmetry; using the approach in “selecting the best” and “sort-

ng” problematiques ( Roy, 1971 ), also in optimisation with different

easible sets; and performing an experimental study to use the ap-

roach as efficiently as possible. These potential research topics are

iscussed below. 

1. Handling the computational complexity: Recall that the method

we propose to handle computational complexities due to sym-

metry reduces many of the permutational computations. How-

ever, in LP 1 we still have to find some of the permutations of

the lower generator of each cone. In the near future, more the-

oretical studies may be performed to see whether there exists a

way to obtain the information without any permutational cal-

culations or even if it is not possible, to design efficient algo-

rithms for the solution of the resulting models. 

2. Interactive algorithms for selecting the best and sorting prob-

lematiques: We have demonstrated the computational perfor-

mance of the proposed approach in a ranking setting. The

method can also be tested for selecting the best and sort-

ing problematiques. Extending the method for sorting settings

would especially be interesting since we use different ways to

gather and use SP’s preference information in different prob-

lematiques. For example, in a sorting environment, instead

of taking pairwise comparisons or rankings, we may request

him/her to assign the distributions into the classes. 

3. Use of the method for optimisation problems with different

feasible sets: One can study different problem environments

where the feasible region is defined by constraints. Some exam-

ples are transportation problems, telecommunication network 

problems or location problems, where providing equitable ser-

vice to the users of the system is an important concern. More

research can be done to generalise the use of conditional dom-

inance approach in such environments. 

4. Experimental study on convex cones: While designing an algo-

rithm the analyst makes various decisions regarding the ways

to collect preference information from the SP. The performance

of the algorithm may vary based on the size of the sample used

for gathering preference information, the selection rule applied

to select the distributions in the sample and the form of the

information the SP provides. For example, given a set of k dis-

tributions, we may require the SP to rank them or select the

best/worst distributions in the sample. An interesting direction

for further research would be to perform an experimental study

to see the impact on computational performance and user be-
haviour of such decisions.  
cknowledgements 
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ppendix A. Proofs and models 

.1. Proof of Theorem 5 

We prove Theorem 5 in two parts by proving Theorems 7 and

 below. 

.1.1. Proof of Theorem 7 

Recall the definition of U given preference information �R :

(z k ) = { z| z ′ �GL z for some z ′ ∈ P (�(R ∪ z k ) ;�s (z k )) for some

ermutation �s (z k ) of z k } . That is, it is the set of points that gen-

ralised Lorenz dominate at least one point in the polyhedron gen-

rated by all the permutations of the distributions mentioned in

R (distributions in set R ∪ z k ). We show in Theorem 7 that U ( z k )

an be characterised compactly using the ordered vectors only. It

hows that one can check whether a given distribution is in set U

ithout any permutational calculations. 

heorem 7. If z ∈ U ( z k ) then there is z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) : z ′ �GL z (hence

 ∈ 

ˆ U (z k ) , where ˆ U (z k ) = { z| z ′ �GL z for some z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) } ). 

We first prove Lemmas 1 and 2 , which are auxiliary results

hat are used in multiple places in our proofs. We then prove

emmas 3 and 4 , which will be used in our main proof of

heorem 7 . A short sketch of the proof strategy is as follows: 

1. We first show in Lemma 1 that if one distribution is generalised

Lorenz dominating another then it is obtainable from the lat-

ter by a finite-number of equity enhancing (PD) transfers. Using

this result, we then provide an auxiliary result in Lemma 2 to

be used in the proof of Lemma 3 . 

2. We show in Lemma 3 that for z 2 , z 1 ∈ R 

p , if z ∈ P (z 1 ;
−→ 

z 2 ) then

∃ z ′ ∈ P ( 
−→ 

z 1 ;
−→ 

z 2 ) : z ′ �GL z. This shows that using the ordered ver-

sion of the upper generator is sufficient in terms of the in-

formation that can be obtained using a two-point polyhedron

when the lower generator is ordered ( 
−→ 

z 2 ) . 

3. We then provide a more general result in Proposition 1 and

show that for any z 2 , z 1 ∈ R 

p , if z ∈ P ( z 1 ; z 2 ) then ∃ z ′ ∈
P ( 

−→ 

z 1 ;
−→ 

z 2 ) : z ′ �GL z. This shows that using the ordered versions

of the upper and lower generators is sufficient in terms of the

information that can be obtained using any two-point polyhe-

dron. 

4. We link the above results on the two-point polyhedra to the

more general case of larger polyhedra of size k , by showing in

Lemma 4 that, given z i such that z i � z k , ∀ z i ∈ R we have the

following: 

If z ∈ P ( R ; z k ) then there exists λi and y i ∈ P ( z i ; z k ) for i =
1 , . . . , k − 1 such that z = 

∑ k −1 
i =1 λi y 

i and 

∑ k −1 
i =1 λi = 1 . 

5. Finally, we prove Theorem 7 . We make use of the fact that

each point z in a k -point polyhedron (that is, z ∈ P ( R ; z k ))

can be written as a convex combination of other points y i that

are in the two point polyhedrons (generated by one of the up-

per generators and the lower generator of the k -point polyhe-

dron) (see part 4 above). Each of these points ( y i ) generalised

Lorenz dominate a point in P ( 
−→ 

z i ;
−→ 

z k ) for some i (hence a point

in P ( 
−→ 

R ;
−→ 

z k ) as this polyhedron includes the smaller one). As

set { z| z ′ � z for some z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) } is a convex set, any con-
GL 
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vex combination of these y i s is also in this set, hence there is

z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) : z ′ �GL 

∑ k −1 
i =1 λi y 

i = z. 

We now give the detailed results. In a distribution, we call a

transfer that takes an amount of good from a party and gives it

to a poorer party without changing their relative positions to each

other a Pigou–Dalton (P–D) transfer . 

Lemma 1. If z �GL z ′ then there is a z ′′ ∈ R 

p such that z ′ ′ ≤ z ′ , and

z ′ ′ is obtainable from z by a finite number of P–D transfers. 

Proof of Lemma 1. See Ok (1998) , Lemma 1 for the proof. �

Lemma 2. Let z and z ′ ∈ R 

p such that z i = z ′ 
i 
∀ i 
 = h, h + 1 . Then z

�GL z ′ if and only if Min { z h , z h +1 } ≤ Min { z ′ 
h 
, z ′ 

h +1 
} and z h + z h +1 ≤

z ′ 
h 

+ z ′ 
h +1 

. 

Proof of Lemma 2. Necessity: 

This proof comes from the definition of the generalised Lorenz

dominance. Min { z h , z h +1 } ≤ Min { z ′ 
h 
, z ′ 

h +1 
} and z h + z h +1 ≤ z ′ 

h 
+ z ′ 

h +1

imply 
∑ i 

j=1 
−→ 

z j ≤
∑ i 

j=1 

−→ 

z ′ 
j 
∀ i, hence z �GL z ′ . 

Sufficiency: 

From Lemma 1 , if z �GL z ′ then there is a z ′ ′ ∈ R 

p such that

z ′ ′ ≤ z ′ , and z ′ ′ obtainable from z by a finite number of P–D trans-

fers. Suppose that we have obtained a z ′ ′ such that z ′ ′ ≤ z ′ holds.

Without loss of generality suppose that Min { z h , z h +1 } = z h and

Min { z ′ 
h 
, z ′ 

h +1 
} = z ′ 

h 
. If this is not the case, we can arrange them ac-

cordingly since we have symmetry. 

Suppose that at least one of the following holds: 

z h > z ′ h or z h + z h +1 > z ′ h + z ′ h +1 (A1)

z ′ 
i 
= z i ∀ i 
 = h, h + 1 , so for z ′ ′ ≤ z ′ to hold, the P–D type transfer

in distribution z to obtain z ′ ′ should be from z h +1 to z h . 

That is, z ′′ 
h 

= z h + ε, z ′′ 
h +1 

= z h +1 − ε, where 0 ≤ ε ≤ z h +1 − z h . 

z ′ 
i 
= z i = z ′′ 

i 
∀ i 
 = h, h + 1 and z ′′ ≤ z ′ ⇒ z ′ 

h 
≥ z ′′ 

h 
= z h + ε and

z ′ 
h +1 

≥ z ′′ 
h +1 

= z h +1 − ε. 

That is, z ′ 
h 

≥ z h and z ′ 
h 

+ z ′ 
h +1 

≥ z h + z h +1 , which is a contradic-

tion to our initial assumption A1 . �

Lemma 3. For z 2 , z 1 ∈ R 

p , if z ∈ P (z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ P ( 
−→ 

z 1 ;
−→ 

z 2 ) such

that z ′ �GL z . 

Proof of Lemma 3. Let z 1 
 = 

−→ 

z 1 (Otherwise, the result is imme-

diate). Let h be the minimum value for which z 1 
h 

> z 1 
h +1 

holds.

Define z 1 ′ as the permutation obtained from z 1 by swapping

z 1 
h 

and z 1 
h +1 

. That is, z 1 = (z 1 
1 
, z 1 

2 
, . . . , z 1 

h 
, z 1 

h +1 
, . . . , z 1 p ) and z 1 ′ =

(z 1 
1 
, z 1 

2 
, . . . , z 1 

h +1 
, z 1 

h 
, . . . , z 1 p ) where z 1 

h 
> z 1 

h +1 
. We will first show the

following holds: 

If z ∈ P (z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ P ( z 1 ′ ;
−→ 

z 2 ) such that z ′ �GL z . 

Suppose for an arbitrary 0 ≤μ≤ 1 we have a point z : z = μ
−→ 

z 2 +
(1 − μ) z 1 , that is z ∈ P (z 1 ;

−→ 

z 2 ) . Define z 
′ ∈ P (z 1 ′ ;

−→ 

z 2 ) : z 
′ = μ

−→ 

z 2 +
(1 − μ) z 1 ′ . 

One can easily show that z and z ′ have the same elements ex-

cept the h th and h + 1 th elements, which are as follows: 

z h = μ
−→ 

z 2 h + (1 − μ) z 1 
h 
;

z h +1 = μ
−→ 

z 2 h +1 + (1 − μ) z 1 
h +1 

;
z ′ 

h 
= μ

−→ 

z 2 h + (1 − μ) z 1 
h +1 

;
z ′ 

h +1 
= μ

−→ 

z 2 h +1 + (1 − μ) z 1 
h 
. 

Note that z ′ �GL z if Min { z ′ 
h 
, z ′ 

h +1 
} ≤ Min { z h , z h +1 } and z ′ 

h 
+ z ′ 

h +1 
≤

z h + z h +1 (See Lemma 2 above). Let us check (Recall that z 1 
h 

> z 1 
h +1 

):

Min { z ′ 
h 
, z ′ 

h +1 
} = Min { μ−→ 

z 2 h + (1 − μ) z 1 
h +1 

, μ
−→ 

z 2 h +1 + (1 − μ) z 1 
h 
} 

= μ
−→ 

z 2 h + (1 − μ) z 1 
h +1 

= z ′ 
h 
. 
We do not know what Min { z h , z h +1 } is, hence we will compare

 

′ 
h 

with both z h and z h +1 . 

z ′ 
h 

= μ
−→ 

z 2 h + (1 − μ) z 1 
h +1 

≤ μ
−→ 

z 2 h + (1 − μ) z 1 
h 

= z h 

z ′ 
h 

= μ
−→ 

z 2 h + (1 − μ) z 1 
h +1 

≤ μ
−→ 

z 2 h +1 + (1 − μ) z 1 
h +1 

= z h +1 . Hence,

in { z ′ h , z ′ h +1 } ≤ Min { z h , z h +1 } (A.1)

z h + z h +1 = μ
−→ 

z 2 h + (1 − μ) z 1 
h 

+ μ
−→ 

z 2 h +1 + (1 − μ) z 1 
h +1 

= μ
−→ 

z 2 h + (1 − μ) z 1 
h +1 

+ μ
−→ 

z 2 h +1 + (1 − μ) z 1 
h 

= z ′ 
h 

+ z ′ 
h +1 

. That is, 

 

′ 
h + z ′ h +1 ≤ z h + z h +1 (A.2)

From A.1 and A.2 the conditions of Lemma 2 is satisfied so

 

′ �GL z . Since μ is arbitrary, this result is valid for every z ∈
 (z 1 ;

−→ 

z 2 ) . 

We showed that if z ∈ P (z 1 ;
−→ 

z 2 ) , then ∃ z ′ ∈ P (z 1 ′ ;
−→ 

z 2 ) such that

 

′ �GL z , where z 1 ′ is the permutation obtained by a single swap of

wo consecutive elements of z 1 as defined above. 

Note that any permutation of vector z 1 will result in 

−→ 

z 1 if we

pply a finite number of such binary contiguous swaps. Starting

rom the first element which is higher than its consecutive ele-

ent, these type of swaps will eventually result in 

−→ 

z 1 . Hence, we

ave the following result: 

For any z 2 , z 1 ∈ R 

p , if z ∈ P (z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ P ( 
−→ 

z 1 ;
−→ 

z 2 ) such

hat z ′ �GL z . �

roposition 1. For any z 2 , z 1 ∈ R 

p , if z ∈ P ( z 1 ; z 2 ) then ∃ z ′ ∈
 ( 
−→ 

z 1 ;
−→ 

z 2 ) such that z ′ �GL z . 

roof of Proposition 1. Let z 1 = �s ( 
−→ 

z 1 ) and z 2 = �q ( 
−→ 

z 2 ) . Then

 = μ(�q ( 
−→ 

z 2 )) + (1 − μ)(�s ( 
−→ 

z 1 )) for some 0 ≤μ≤ 1. Let the in-

erse permutation of �q be �r and let �r (�s ) = �t . 

We can rewrite the condition as follows: If �r (z) ∈
 (�t ( 

−→ 

z 1 ) ;
−→ 

z 2 ) then ∃ z ′ ∈ P ( 
−→ 

z 1 ;
−→ 

z 2 ) such that z ′ �GL �
r ( z ), implied by

emma 3 proved above. �

emma 4. Every point in a k-point polyhedron is a convex combina-

ion of k − 1 points which are in the k − 1 distinct two-point polyhe-

rons generated by one of the upper generators and the lower gener-

tor. That is, given z i such that z i � z k , ∀ z i ∈ R we have the following:

If z ∈ P ( R ; z k ) then there exists λi and y i ∈ P ( z i ; z k ) for i =
 , . . . , k − 1 such that z = 

∑ k −1 
i =1 λi y 

i and 
∑ k −1 

i =1 λi = 1 . 

roof of Lemma 4. z ∈ P ( R ; z k ) hence z = μz k + 

∑ k −1 
i =1 μi z 

i such

hat μ + 

∑ k −1 
i =1 μi = 1 . 

Let y i = (1 − μ′ 
i 
) z k + μ′ 

i 
z i ∀ i . 

Now we will show that there exist λi i = 1 , . . . , k − 1 such that

 = 

∑ k −1 
i =1 λi y 

i . Given μi corresponding to vector z , we will show

hat λi s and μ′ 
i 
s exist as defined so that we can write z as a

onvex combination of y i s. Suppose that we have λi values for

 = 1 , . . . , k − 2 such that λi > 0 and 

∑ k −2 
i =1 λi < 1 and we set λk −1 =

 − ∑ k −2 
i =1 λi . Given these λi and μi , we can set μ′ 

i 
values as fol-

ows: 

μi = λi μ
′ 
i 

for i = 1 , . . . , k − 1 

μ′ 
i 
= μi /λi . Since λi > 0 and μi ≥ 0, we have μ′ 

i 
≥ 0 . 

 = μz k + 

k −1 ∑ 

i =1 

μi z 
i 

= (1 −
k −1 ∑ 

i =1 

λi μ
′ 
i ) z 

k + 

k −1 ∑ 

i =1 

λi μ
′ 
i z 

i (Since μ = 1 −
k −1 ∑ 

i =1 

μi 
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�

= 1 −
k −1 ∑ 

i =1 

λi μ
′ 
i ) 

= 

k −1 ∑ 

i =1 

λi (1 − μ′ 
i ) z 

k + 

k −1 ∑ 

i =1 

λi μ
′ 
i z 

i . 

= 

k −1 ∑ 

i =1 

λi [(1 − μ′ 
i ) z 

k + μ′ 
i z 

i ] 

= 

k −1 ∑ 

i =1 

λi y 
i 

�

Note that Lemma 4 can be expressed more sharply as follows:

very point in a k -point polyhedron is a convex combination of

 − 1 points which are in the k − 1 distinct two-point polyhedrons,

ach of which is generated by one of the generators (which is used

n all these two-point polyhedrons) and each one of the other gen-

rators. The above proof mechanism can be used to prove it: re-

lace z k with an arbitrary generator and repeat the steps. 

Proof of Theorem 7 We claim that if z ∈ U ( z k ) then z ∈ 

ˆ U (z k ) . 

roof of Theorem 7. If z ∈ U ( z k ) then there exists z ′ ∈ P ( �( R ∪ z k );
s ( z k )): z ′ �GL z for some permutation �s ( z k ) of z k . First note that

his polyhedron includes all permutations of z k , so without loss of

enerality we can assume �s (z k ) = z k as the lower generator. 

Note that R is the set of reference distributions each of which is

referred to the lower generator z k . For the sake of simplicity and

ith an abuse of notation, in this proof we are going to refer to

( R ∪ z k ) as R (this is again without loss of generality). 

From Lemma 4 if z ′ ∈ P ( R ; z k ) then we can find y i ∈ P ( z i ; z k ) :

 

′ = 

∑ k −1 
i =1 λi y 

i for i = 1 , 2 , . . . , k − 1 , where 
∑ k −1 

i =1 λi = 1 . 

By Proposition 1 , y i ∈ P ( z i ; z k ) ⇒∃ z ′ ′ ∈ P ( 
−→ 

z i ;
−→ 

z k )( hence z ′′ ∈
 ( 
−→ 

R ;
−→ 

z k )) : z ′′ �GL y 
i for all y i i = 1 , 2 , . . . , k − 1 . Since y i s, as de-

ned above, are all in set { z ′ : z ′′ �GL z 
′ for some z ′′ ∈ P ( 

−→ 

R ;
−→ 

z k ) }
nd this set is convex; any convex combination of them will also

e in the same set. Hence, ∃ z ′′ ∈ P ( 
−→ 

R ;
−→ 

z k ) : z ′′ �GL z 
′ . 

To summarise, if z ′ ∈ P ( �( R ∪ z k ); z k ) then ∃ z ′′ ∈ P ( 
−→ 

R ;
−→ 

z k ) :

 

′′ �GL z 
′ (i.e., we can use the ordered vectors of the generators

nly). Then we have z ′′ ∈ P ( 
−→ 

R ;
−→ 

z k ) : z ′′ �GL z (by transitivity). Recall

hat ˆ U (z k ) = { z| z ′ �GL z for some z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) } . Hence if z ∈ U ( z k )

hen z ∈ 

ˆ U (z k ) . �

.1.2. Proof of Theorem 8 

In this part we are going to prove the rest of Theorem 5 on

he equivalence of using L ( z k ) and 

ˆ L (z k ) . L ( z k ) is the union of c-

ominated regions of all permutation cones generated using all the

ermutations of the generators. For a distribution to be in L ( z k ), it

s sufficient if it belongs to the dominated region of any of these

ermutation cones. 

The following theorem is our main result on L ( z k ). 

heorem 8. If z ∈ L ( z k ) then z ∈ 

ˆ L (z k ) . 

Given preference information �R ( z i � z k for z i ∈ R ), for each

ermutation of 
−→ 

z k , say �s ( 
−→ 

z k ) , we can generate a permutation

one of the form 

(�1 ( 
−→ 

z 1 ) , . . . , �p! ( 
−→ 

z 1 ) , . . . , �1 ( 
−−→ 

z k −1 ) , . . . , �p! ( 
−−→ 

z k −1 ) , 

1 ( 
−→ 

z k ) , . . . , �p! ( 
−→ 

z k ) ;�s ( 
−→ 

z k )) 

This cone has all the permutations of the upper generators,

 

i ∈ R . Note that it also has all permutations of the lower generator

s ( 
−→ 

z k ) as upper generators since any permutation of a distribution
s weakly preferred to itself by symmetry and can be considered as

n upper generator. For notational simplicity we denote this cone

s C ( �( R ∪ z k ); �s ( z k )). 

This is the largest cone that we can generate for �s ( 
−→ 

z k )

s the lower generator given this preference information.

e have p ! such cones each having a different permu-

ation of 
−→ 

z k as the lower generator. The region we are

nterested in, L ( z k ), is the union of the c-dominated re-

ions of these p ! cones, L (z k ) = { z| z �GL z 
′ for some z ′ ∈ C(�(R ∪

 

k ) ;�s (z k )) for some permutation �s (z k ) of z k } . 
A short sketch of the proof is as follows: 

1. We first show in Remark 1 that these p ! cones have the same

c-dominated region since they are reflections of each other.

Hence it is sufficient to use only one of them. For convenience,

we use C(�(R ∪ z k ) ;
−→ 

z k ) . 

2. C(�(R ∪ z k ) ;
−→ 

z k ) is a convex region defined by an extreme point

( 
−→ 

z k ) and extreme rays. In Lemma 5 we determine nonextreme

rays of the region and state this result in Corollary 2 . 

3. Finally in Theorem 8 we link the above results together. 

We now give the detailed results. 

emark 1. Sets Set1 = { z : z �GL z 
′ and z ′ ∈ C(�(R ∪ z k ) ;

−→ 

z k ) } and

et2 = { z : z �GL z 
′ and z ′ ∈ C(�(R ∪ z k ) ;�s ( 

−→ 

z k )) } are equivalent

or any �s ( 
−→ 

z k ) of 
−→ 

z k . 

roof of Remark 1. This proof consists of two parts. In the first

art we will show that ∀ z ∈ Set 1, z ∈ Set 2 and in the second part

e will show that ∀ z ∈ Set 2, z ∈ Set 1. 

Part 1: Now we want to prove ∀ z ∈ Set 1, z ∈ Set 2. 

Set1 = { z : z �GL z 
′ and z ′ ∈ C(�(R ∪ z k ) ;

−→ 

z k ) } . The c-dominated

egion consists of distributions z , which are generalised Lorenz

ominated by a point z ′ on the cone. Any point z ′ on the cone

an be expressed by the following expression: 

z ′ = 

−→ 

z k + 

∑ p! 
j=1 

∑ k −1 
i =1 μ ji ( 

−→ 

z k − � j ( 
−→ 

z i )) + 

∑ p! 
j=1 

β j ( 
−→ 

z k − � j ( 
−→ 

z k )) 

or μji ≥ 0 and β j ≥ 0 by definition. 

Apply �s so that 

�s (z ′ ) = �s ( 
−→ 

z k ) + 

∑ p! 
j=1 

∑ k −1 
i =1 μ ji (�

s ( 
−→ 

z k ) − � j ( 
−→ 

z i )) + 

 p! 
j=1 

β j (�
s ( 

−→ 

z k ) − � j ( 
−→ 

z k )) . We rearrange the elements of vector z ′ 
uch that we obtain �s ( z ′ ). This rearranged vector �s ( z ′ ) is on the

one generated by the rearranged versions of the cone generators.

s we consider all permutations of the upper generator vectors

n C(�(R ∪ z k ) ;
−→ 

z k ) , this rearrangement affects only the lower

enerator. That is, �s (z ′ ) ∈ C(�(R ∪ z k ) ;�s ( 
−→ 

z k )) by definition.

ince the generalised Lorenz dominance relation has symmetry

roperty z is generalised Lorenz dominated by any permutation of

 

′ , hence it is in Set 2. That is, 

z �GL z ′ ⇒ z �GL �
s ( z ′ ) hence z ∈ Set 2. 

Part 2: We skip the explanations since the structure of the

roof is the same as that of part 1. Now we want to prove ∀ z ∈ Set 2,

 ∈ Set 1. 

Set2 = { z : z �GL z 
′ and z ′ ∈ C(�(R ∪ z k ) ;�s ( 

−→ 

z k )) } . 
z ′ = �s ( 

−→ 

z k ) + 

∑ p! 
j=1 

∑ k −1 
i =1 μ ji (�

s ( 
−→ 

z k ) − � j ( 
−→ 

z i )) + 

 p! 
j=1 

β j (�
s ( 

−→ 

z k ) − � j ( 
−→ 

z k )) for μji ≥ 0 and β j ≥ 0. 

Let �r be the inverse permutation of �s (that is, �r (�s (z)) =
). Apply �r so that 

�r (z ′ ) = 

−→ 

z k + 

∑ p! 
j=1 

∑ k −1 
i =1 μ ji ( 

−→ 

z k − � j ( 
−→ 

z i )) + 

∑ p! 
j=1 

β j ( 
−→ 

z k −
j ( 

−→ 

z k )) . That is, �r (z ′ ) ∈ C(�(R ∪ z k ) ;
−→ 

z k ) } . We have 

z � z ′ ⇒ z � �r ( z ′ ) hence z ∈ Set 1. �
GL GL 
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Fig. A5. Region C ((3, 4), (4, 3), (2, 6), (6, 2); (2, 6)). 
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Remark 1 implies that the c-dominated regions of all the cones

of the form C(�(R ∪ z k ) ;�s ( 
−→ 

z k )) obtained by using different per-

mutations of the lower generator z k are the same. Hence it is suf-

ficient to use only one of them. For convenience, we use C(�(R ∪
z k ) ;

−→ 

z k ) and the corresponding dominated set Set 1. Hence, Set 1 is

a region that summarises all the information provided by all the

permutation cones generated based on z i � z k , z i ∈ R . Given prefer-

ence information �R , for any distribution z , to check whether z is

in L ( z k ) we check whether z is in Set 1. 

C(�(R ∪ z k ) ;
−→ 

z k ) is a convex set (cone), defined by an extreme

point ( 
−→ 

z k ) and a set of rays generated as in Definition 5 below. 

Definition 5. For z i ∈ R 

p : z i � z k for all z i ∈ R , C(�(R ∪ z k ) ;
−→ 

z k ) =−→ 

z k + 

∑ 

λt r t such that λt ≥ 0 and r t are the rays in set Setof rays =
{ Rays defined by ( 

−→ 

z k − � j ( 
−→ 

z i )) , for all z i ∈ R and j = 1 , . . . , p! ,

rays defined by ( 
−→ 

z k − � j ( 
−→ 

z k )) for all j = 1 , . . . , p! } . (We assume

that the vectors have been perturbed so that all entities of z k are

nonidentical). 

C(�(R ∪ z k ) ;
−→ 

z k ) can actually be characterised by the extreme

point ( 
−→ 

z k ) and the extreme rays in set Setofrays . We will show that

these extreme rays have a particularly simple structure. We claim

in Lemma 5 that in region C(�(R ∪ z k ) ;
−→ 

z k ) , the rays given by

z k − � j ( 
−→ 

z i ) for z i ∈ R , where � j ( 
−→ 

z i ) 
 = 

−→ 

z i are not extreme, hence

can be written as a nonnegative combination of the other rays in

R . In other words the cones C(� j ( 
−→ 

z i ) ;
−→ 

z k ) : � j ( 
−→ 

z i ) 
 = 

−→ 

z i do not lie

on the boundary of the region C(�(R ∪ z k ) ;
−→ 

z k ) . In our 2D example

(recall that the preference statement by the SP is that (3,4) is pre-

ferred to (2,6)) this corresponds to claiming that the ray (2 , 6) −
(4 , 3) , i.e. (−2 , 3) , is not an extreme ray for C(�(R ∪ z k ) ;

−→ 

z k ) (dot-

ted region) and this is clearly seen in Fig. A.5 . 

Lemma 5. Part (i): In set Setofrays the rays given by 
−→ 

z k − � j ( 
−→ 

z i ) ,

where � j ( 
−→ 

z i ) 
 = 

−→ 

z i , can be written as a nonnegative combination of

the rays 
−→ 

z k −
−→ 

z i and 
−→ 

z k − � j ( 
−→ 

z k ) ∀ j : � j ( 
−→ 

z k ) is obtained from 

−→
z k 

by swapping two consecutive elements ( note that we have p − 1 such

� j ( 
−→ 

z k ) s ) . 
Part (ii): In set Setofrays the rays given by 
−→ 

z k − �l ( 
−→ 

z k ) can be

ritten as a nonnegative combination of the rays 
−→ 

z k − � j ( 
−→ 

z k ) ∀ j :

j ( 
−→ 

z k ) is obtained by swapping two consecutive elements. 

roof of Lemma 5. We will prove this for an arbitrary element z i 

 R . 

Let z i 
 = 

−→ 

z i as assumed. Let h be the minimum value for which

 

i 
h 

> z i 
h +1 

holds. Define S ( z i ) as the permutation obtained from z i 

y swapping z i 
h 

and z i 
h +1 

( i.e. S is a swap operator). That is, z i =
(z i 

1 
, z i 

2 
, . . . , z i 

h 
, z i 

h +1 
, . . . , z i p ) and S(z i ) = (z i 

1 
, z i 

2 
, . . . , z i 

h +1 
, z i 

h 
, . . . , z i p )

here z i 
h 

> z i 
h +1 

. Note that any permutation of vector z i will re-

ult in 

−→ 

z i if we apply a finite number of such binary contiguous

waps. Hence we will first show the following for a single swap. −→ 

z k − z i = 

∑ 

λt r t where λt ≥ 0 and r t are in the set { −→ 

z k − S(z i )

nd 

−→ 

z k − � j ( 
−→ 

z k ) : � j ( 
−→ 

z k ) 
 = 

−→ 

z k and � j ( 
−→ 

z k ) obtained by swapping

he h th and h + 1 th elements of 
−→ 

z k for h value used in the S oper-

tor}. That is, 
−→ 

z k − z i can be written as a nonnegative combination

f 
−→ 

z k − S(z i ) and 

−→ 

z k − � j ( 
−→ 

z k ) ( � j ( 
−→ 

z k ) as defined in Lemma 5 ). 

For z i , S ( z i ) as defined above the following holds: 

−→ 

z k − z i = 

−→ 

z k − S(z i ) + 

( 

z i 
h 

− z i 
h +1 −→ 

z k h +1 −
−→ 

z k h 

) 

( 
−→ 

z k − � j ( 
−→ 

z k )) 

here � j ( 
−→ 

z k ) i = 

−→ 

z k i ∀ i 
 = h, h + 1 and � j ( 
−→ 

z k ) h = 

−→ 

z k h +1 ; � j ( 
−→ 

z k ) h +1

 

−→ 

z k h (all the elements of 
−→ 

z k are the same in � j ( 
−→ 

z k ) except for

 th and h + 1 th being swapped and we have 
−→ 

z k h ≤
−→ 

z k h +1 by defi-

ition). 

It is clearly seen when we analyse the vectors in detail as be-

ow: 

 

 

 

 

 

 

 

 

 

−→ 

z k 1 − z i 1 
... −→ 

z k h − z i 
h −→ 

z k h +1 − z i 
h +1 

... −→ 

z k p − z i p 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−→ 

z k 1 − z i 1 
... −→ 

z k h − z i 
h +1 −→ 

z k h +1 − z i 
h 

... −→ 

z k p − z i p 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ 

( 

z i 
h 

− z i 
h +1 −→ 

z k h +1 −
−→ 

z k h 

) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 1 
... −→ 

z k h −
−→ 

z k h +1 −→ 

z k h +1 −
−→ 

z k h 
... −→ 

z k p −
−→ 

z k p 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

In the above equation if 
−→ 

z k h +1 > 

−→ 

z k h then 

(
z i 

h 
−z i 

h +1 −→ 

z k h +1 −
−→ 

z k h 

)
≥ 0 , that

s we are able to write the ray that corresponds to 
−→ 

z k − z i as a

onnegative combination of the rays 
−→ 

z k − S(z i ) and 

−→ 

z k − � j ( 
−→ 

z k ) . 

Recall that we assume that the vectors have been perturbed so

hat all entities of z k are nonidentical. That is, we do not have the

ollowing case: 
−→ 

z k h +1 = 

−→ 

z k h , hence 
−→ 

z k = � j ( 
−→ 

z k ) . 

At each such step we will be able to write the first ray ( 
−→ 

z k −
 

i ) as a nonnegative combination of the rays ( 
−→ 

z k − S(z i ) and 

−→ 

z k −
j ( 

−→ 

z k )) . Starting from the first element which is higher than its

onsecutive element, these type of swaps will eventually result in→ 

z i . Hence, we have the following result: 
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In set Setofrays the rays given by 
−→ 

z k − � j ( 
−→ 

z i ) , where � j ( 
−→ 

z i ) 
 =
 

z i can be written as a nonnegative combination of the rays 
−→ 

z k −
−→ 

z i 

nd 

−→ 

z k − � j ( 
−→ 

z k ) ∀ j : � j ( 
−→ 

z k ) is obtained by making binary conta-

ious swaps in 

−→ 

z k (note that we have p − 1 such � j ( 
−→ 

z k ) s ) . 

xample 5. Below is an example case that shows how this proof

orks: 

Suppose that z i = (3 , 2 , 1) . First note that in a number of binary

ontagious swaps we can obtain 

−→ 

z i as follows: 

(3 , 2 , 1) → 

Swap at h = 1 

swap 3 and 2 

(2 , 3 , 1) → 

Swap at h = 2 

Swap 3 and 1 

(2 , 1 , 3) → 

Swap at h = 1 

Swap 2 and 1 

(1 , 2 , 3) 

Hence S(3 , 2 , 1) = (2 , 3 , 1) ; S(2 , 3 , 1) = (2 , 1 , 3) and S(2 , 1 , 3) =
(1 , 2 , 3) . 

Let us apply our result. Assume a generic z k vector. We have

roven that: 
−→ 

z k − z i = 

−→ 

z k − S(z i ) + 

(
z i 

h 
−z i 

h +1 −→ 

z k h +1 −
−→ 

z k h 

)
( 
−→ 

z k − � j ( 
−→ 

z k )) , such that

j ( 
−→ 

z k ) is obtained by swapping the h th element with h + 1 th ele-

ent in 

−→ 

z k . We see below that this holds for any 
−→ 

z k . 

Iteration 1: Start with z i = (3 , 2 , 1) , hence S(z i ) = (2 , 3 , 1) , h =
 and � j ( 

−→ 

z k ) = ( 
−→ 

z k 2 , 
−→ 

z k 1 , 
−→ 

z k 3 ) obtained by swapping 1 st ( h th ) and

 nd ( h + 1 th ) elements in 

−→ 

z k . 

 

 

 

−→ 

z k 1 − 3 −→ 

z k 2 − 2 −→ 

z k 3 − 1 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−→ 

z k 1 − 2 −→ 

z k 2 − 3 −→ 

z k 3 − 1 

⎞ 

⎟ ⎠ 

+ 

( 

1 

−→ 

z k 2 −
−→ 

z k 1 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 2 −→ 

z k 2 −
−→ 

z k 1 −→ 

z k 3 −
−→ 

z k 3 

⎞ 

⎟ ⎠ 

At row 1: 
−→ 

z k 1 − 3 = 

−→ 

z k 1 − 2 − 1 = 

−→ 

z k 1 − 3 

At row 2: 
−→ 

z k 2 − 2 = 

−→ 

z k 2 − 3 + 1 = 

−→ 

z k 2 − 2 

At row 3: 
−→ 

z k 3 − 1 = 

−→ 

z k 3 − 1 + 0 = 

−→ 

z k 3 − 1 

Iteration 2: We set z i = (2 , 3 , 1) now. Hence S(z i ) = (2 , 1 , 3) ,

 = 2 , and � j ( 
−→ 

z k ) = ( 
−→ 

z k 1 , 
−→ 

z k 3 , 
−→ 

z k 2 ) obtained by swapping 2 nd

 h th ) and 3 rd ( h + 1 th ) elements in 

−→ 

z k . 

 

 

 

−→ 

z k 1 − 2 −→ 

z k 2 − 3 −→ 

z k 3 − 1 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−→ 

z k 1 − 2 −→ 

z k 2 − 1 −→ 

z k 3 − 3 

⎞ 

⎟ ⎠ 

+ 

( 

2 

−→ 

z k 3 −
−→ 

z k 2 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 1 −→ 

z k 2 −
−→ 

z k 3 −→ 

z k 3 −
−→ 

z k 2 

⎞ 

⎟ ⎠ 

At row 1: 
−→ 

z k 1 − 2 = 

−→ 

z k 1 − 2 − 0 = 

−→ 

z k 1 − 2 

At row 2: 
−→ 

z k 2 − 3 = 

−→ 

z k 2 − 1 − 2 = 

−→ 

z k 2 − 3 

At row 3: 
−→ 

z k 3 − 1 = 

−→ 

z k 3 − 3 + 2 = 

−→ 

z k 3 − 1 

Iteration 3: We set z i = (2 , 1 , 3) now. Hence S(z i ) = (1 , 2 , 3) ,

 = 1 , and � j ( 
−→ 

z k ) = ( 
−→ 

z k 2 , 
−→ 

z k 1 , 
−→ 

z k 3 ) obtained by swapping 1 st ( h th )

nd 2 nd ( h + 1 st ) elements in 

−→ 

z k . 

 

 

 

−→ 

z k 1 − 2 −→ 

z k 2 − 1 −→ 

z k 3 − 3 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−→ 

z k 1 − 1 −→ 

z k 2 − 2 −→ 

z k 3 − 3 

⎞ 

⎟ ⎠ 

+ 

( 

1 

−→ 

z k 2 −
−→ 

z k 1 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 2 −→ 

z k 2 −
−→ 

z k 1 −→ 

z k 3 −
−→ 

z k 3 

⎞ 

⎟ ⎠ 

At row 1: 
−→ 

z k 1 − 2 = 

−→ 

z k 1 − 1 − 1 = 

−→ 

z k 1 − 2 

At row 2: 
−→ 

z k 2 − 1 = 

−→ 

z k 2 − 2 + 1 = 

−→ 

z k 2 − 1 

At row 3: 
−→ 

z k − 3 = 

−→ 

z k − 3 + 0 = 

−→ 

z k − 3 
3 3 3 r  

z  
To conclude 
 

 

 

−→ 

z k 1 − 3 −→ 

z k 2 − 2 −→ 

z k 3 − 1 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−→ 

z k 1 − 1 −→ 

z k 2 − 2 −→ 

z k 3 − 3 

⎞ 

⎟ ⎠ 

+ 

( 

1 

−→ 

z k 2 −
−→ 

z k 1 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 2 −→ 

z k 2 −
−→ 

z k 1 −→ 

z k 3 −
−→ 

z k 3 

⎞ 

⎟ ⎠ 

+ 

( 

2 

−→ 

z k 3 −
−→ 

z k 2 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 1 −→ 

z k 2 −
−→ 

z k 3 −→ 

z k 3 −
−→ 

z k 2 

⎞ 

⎟ ⎠ 

+ 

( 

1 

−→ 

z k 2 −
−→ 

z k 1 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 2 −→ 

z k 2 −
−→ 

z k 1 −→ 

z k 3 −
−→ 

z k 3 

⎞ 

⎟ ⎠ 

 

 

 

−→ 

z k 1 − 3 −→ 

z k 2 − 2 −→ 

z k 3 − 1 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−→ 

z k 1 − 1 −→ 

z k 2 − 2 −→ 

z k 3 − 3 

⎞ 

⎟ ⎠ 

+ 

( 

2 

−→ 

z k 2 −
−→ 

z k 1 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 2 −→ 

z k 2 −
−→ 

z k 1 −→ 

z k 3 −
−→ 

z k 3 

⎞ 

⎟ ⎠ 

+ 

( 

2 

−→ 

z k 3 −
−→ 

z k 2 

) 

⎛ 

⎜ ⎝ 

−→ 

z k 1 −
−→ 

z k 1 −→ 

z k 2 −
−→ 

z k 3 −→ 

z k 3 −
−→ 

z k 2 

⎞ 

⎟ ⎠ 

At row 1: 
−→ 

z k 1 − 3 = 

−→ 

z k 1 − 1 − 2 + 0 = 

−→ 

z k 1 − 3 

At row 2: 
−→ 

z k 2 − 2 = 

−→ 

z k 2 − 2 + 2 − 2 = 

−→ 

z k 2 − 2 

At row 3: 
−→ 

z k 3 − 1 = 

−→ 

z k 3 − 3 + 0 + 2 = 

−→ 

z k 3 − 1 

Since any permutation of 
−→ 

z i could be used at the beginning as

 

i , this applies to any permutation. �

The same proof mechanism can be used to show that this result

olds for the rays 
−→ 

z k − �l ( 
−→ 

z k ) . That is, such rays can be written as

 nonnegative combination of 
−→ 

z k − � j ( 
−→ 

z k ) : ∀ � j ( 
−→ 

z k ) : � j ( 
−→ 

z k ) is

btained by swapping two consecutive elements in 

−→ 

z k . Simply set

 

i = �l ( 
−→ 

z k ) and repeat the proof. 

orollary 2. In C(�(R ∪ z k ) ;
−→ 

z k ) the rays 
−→ 

z k − � j ( 
−→ 

z i ) : � j ( 
−→ 

z i ) 
 =
 

z i where z i ∈ R are not extreme rays. Also the rays 
−→ 

z k − � j ( 
−→ 

z k ) :

j ( 
−→ 

z k ) cannot be obtained by swapping two consecutive elements in 
 

z k , are not extreme rays. 

roof of Corollary 2. By Lemma 5 , these rays can be written in

erms of the other rays in Setofrays . Hence they are not extreme

ays of C(�(R ∪ z k ) ;
−→ 

z k ) . �

Proof of Theorem 8 

If z ∈ L ( z k ) then z ∈ 

ˆ L (z k ) , which is the set ˆ L (z k ) = { z| z �GL 

 

′ for some z ′ ∈ C( 
−→ 

R ∪ 

ˆ �( 
−→ 

z k ) ;
−→ 

z k ) } , where C( 
−→ 

R ∪ 

ˆ �( 
−→ 

z k ) ;
−→ 

z k ) =
 z : z = 

−→ 

z k + 

∑ k −1 
i =1 μi ( 

−→ 

z k −
−→ 

z i ) + 

∑ p−1 
j=1 

β j ( 
−→ 

z k − � j ( 
−→ 

z k )) , where 

i ≥ 0, β j ≥ 0, j : � j ( 
−→ 

z k ) is obtained by swapping two consecutive

lements in 

−→ 

z k } . 
roof of Theorem 8. z ∈ L ( z k ), that is in set { z | z �GL z ′ for

ome z ′ ∈ C ( �( R ∪ z k ); �s ( z k )) for some permutation �s ( z k ) of z k }

nd hence z ∈ Set1 = { z : z �GL z 
′ and z ′ ∈ C(�(R ∪ z k ) ;

−→ 

z k ) } due to

emark 1 . C(�(R ∪ z k ) ;
−→ 

z k ) is a convex region, defined by an ex-

reme point ( 
−→ 

z k ) and a set of rays Setofrays generated as in

efinition 5 . By Corollary 2 we can exclude the non-extreme

ays from the definition and hence use C(( 
−→ 

R ∪ 

ˆ �s (z k )) ;
−→ 

z k ) = { z :
 = 

−→ 

z k + 

∑ k −1 
i =1 μi ( 

−→ 

z k −
−→ 

z i ) + 

∑ p−1 
j=1 

β j ( 
−→ 

z k − � j ( 
−→ 

z k )) , where μi ≥ 0,
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Fig. A6. Permutation cones in R 2 . 

Fig. A7. L̄ ((2 , 6)) . 
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β j ≥ 0, j : � j ( 
−→ 

z k ) is obtained by swapping two consecutive ele-

ments in 

−→ 

z k } . �

A.2. The results for setting when one uses two-point cones 

A.2.1. Proof of Theorem 6 

We first discuss Lemma 6 that will be used in our main proof

of Theorem 6 . 

Lemma 6. Given z 1 , z 2 ∈ R 

p , if z ∈ C(z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ C( 
−→ 

z 1 ;
−→ 

z 2 ) :

z �GL z 
′ (i.e. z is generalised Lorenz dominated by a point in

( 
−→ 

z 1 ;
−→ 

z 2 ) ). 

Proof of Lemma 6. Let z 1 
 = 

−→ 

z 1 (Otherwise, the result is immedi-

ate). Let h be the minimum value for which z 1 
h 

> z 1 
h +1 

holds. Define

z 1 ′ as the permutation obtained from z 1 by swapping z 1 
h 

and z 1 
h +1 

.

We will show the following holds: 

If z ∈ C(z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ C(z 1 ′ ;
−→ 

z 2 ) : z �GL z 
′ . 

Suppose for an arbitrary μ≥ 0 we have a point z : z = 

−→ 

z 2 +
μ( 

−→ 

z 2 − z 1 ) , that is z ∈ C(z 1 ;
−→ 

z 2 ) . Define z 
′ ∈ C(z 1 ′ ;

−→ 

z 2 ) : z 
′ = 

−→ 

z 2 +
μ( 

−→ 

z 2 − z 1 ′ ) . 
One can easily show that z and z ′ have the same elements ex-

cept the h th and h + 1 th elements, which are as follows: 

z h = 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h 
) ;

z h +1 = 

−→ 

z 2 h +1 + μ( 
−→ 

z 2 h +1 − z 1 
h +1 

) ;
z ′ 

h 
= 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h +1 

) ;
z ′ 

h +1 
= 

−→ 

z 2 h +1 + μ( 
−→ 

z 2 h +1 − z 1 
h 
) 

From Lemma 2 we know that z �GL z ′ if Min { z h , z h +1 } ≤
Min { z ′ 

h 
, z ′ 

h +1 
} and z h + z h +1 ≤ z ′ 

h 
+ z ′ 

h +1 
. Let us check (Recall that

z 1 
h 

> z 1 
h +1 

): 

Min { z h , z h +1 } = Min { [ −→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 h )] , 

[ 
−→ 

z 2 h +1 + μ( 
−→ 

z 2 h +1 − z 1 h +1 )] } 
= 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 h ) = z h . 

We do not know what Min { z ′ 
h 
, z ′ 

h +1 
} is, hence we will compare

z h with both z ′ 
h 

and z ′ 
h +1 

. 

z h = 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h 
) ≤

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h +1 

) = z ′ 
h 

z h = 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h 
) ≤

−→ 

z 2 h +1 + μ( 
−→ 

z 2 h +1 − z 1 
h 
) = z 

′ 
h +1 

. Hence,

Min { z h , z h +1 } ≤ Min { z ′ h , z ′ h +1 } (A.3)

z h + z h +1 = 

−→ 

z 2 h + μ( 
−→ 

z 2 h − z 1 
h 
) + 

−→ 

z 2 h +1 + μ( 
−→ 

z 2 h +1 − z 1 
h +1 

) 

= z ′ 
h +1 

+ z ′ 
h 
. That is, 

z h + z h +1 ≤ z ′ h + z ′ h +1 (A.4)

From A.3 and A.4 the conditions of Lemma 2 are satisfied so

z �GL z ′ . Since μ is arbitrary, this result is valid for every z ∈
(z 1 ;

−→ 

z 2 ) . 

We showed that if z ∈ C(z 1 ;
−→ 

z 2 ) , then ∃ z ′ ∈ C(z 1 ′ ;
−→ 

z 2 ) : z �GL z 
′ .

where z 1 ′ is the permutation obtained by a single swap of two

consecutive elements of z 1 as defined above. Note that any per-

mutation of vector z 1 will result in 

−→ 

z 1 if we apply a finite number

of such binary contiguous swaps. Starting from the first element

which is higher than its consecutive element, these type of swaps

will eventually result in 

−→ 

z 1 . Hence, we have the following result: 

For any z 1 , z 2 ∈ R 

p , if z ∈ C(z 1 ;
−→ 

z 2 ) then ∃ z ′ ∈ C( 
−→ 

z 1 ;
−→ 

z 2 ) : z �GL

z ′ . �
Proof of Theorem 6 

The conclusion that for any distribution z if z ∈ U ( z k ) then z ∈
ˆ 
 (z k ) is by Theorem 5 . We are going to show that the remaining

art of Theorem 6 holds, i.e., if z ∈ L ( z k ) then z ∈ L̄ (z k ) . That is for

ny z i , z k , z ∈ R 

p , if z ∈ L ( z k ) there exists a z ′′ ∈ C( 
−→ 

z i ;
−→ 

z k ) : z �GL z ′ ′ .

roof of Theorem 6. In this special case L ( z k ) is the union of the

-dominated regions of all cones of the form C ( �r ( z i ); �s ( z k )) for

ny r and s . If z ∈ L ( z k ) there exists a z ′ ∈ C(�r ( 
−→ 

z i ) ;�s ( 
−→ 

z k )) for

ome permutations r and s such that z �GL z 
′ . Hence z ′ = �s ( 

−→ 

z k ) +
(�s ( 

−→ 

z k ) − �r ( 
−→ 

z i )) for some μ≥ 0. Let the inverse permutation

f �s be �q and let �q (�r ) = �t . Then �q (z ′ ) ∈ C(�t ( 
−→ 

z i ) ;
−→ 

z k ) . 

If �q (z ′ ) ∈ C(�t ( 
−→ 

z i ) ;
−→ 

z k ) then ∃ z ′′ ∈ C( 
−→ 

z i ;
−→ 

z k ) : �q (z ′ ) �GL z 
′′

 t , implied by Lemma 6 proved above. Then from transitivity, z �GL 

 

′ �GL z ′ ′ . Hence z ∈ L̄ (z k ) . �

This result is easily observed in Figs. A.6 and A.7 for

p = 2 (in R 

2 ) . Fig. A.6 shows the 4 two-point cones based

n the preference information (3, 4) � (2, 6), where each

ine shows a cone. Fig. A.7 shows the set L̄ (2 , 6) . One
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an verify by simple observation that L̄ ((2 , 6)) = { z| z �GL 

 

′ for some z ′ ∈ C((3 , 4) ; (2 , 6)) } = { z| z �GL z 
′ for some z ′ ∈ 

((4 , 3) ; (6 , 2)) } ⊃ { z| z �GL z 
′ for some z ′ ∈ C((4 , 3) ; (2 , 6)) } = 

 z| z �GL z 
′ for some z ′ ∈ C((3 , 4) ; (6 , 2)) } . The dotted region is

 z | z �GL z ′ for some z ′ ∈ C ((4, 3); (2, 6))} and the region with

iagonal lines is { z | z �GL z ′ for some z ′ ∈ C ((3, 4); (2, 6))} \ { z | z �GL 

 

′ for some z ′ ∈ C ((4, 3); (2, 6))}. 

.2.2. Counterexample showing that Theorem 6 does not apply to 

arger cones 

xample 6. Suppose that we have a case where k = 3 and p = 3 ,

hat is we have three-point cones and we work in R 

3 . Suppose that

he SP has the following evaluation function: 

f (x ) = x 1 x 2 x 3 . 

Suppose that we present the following distributions to the SP

or him to compare: 

z 1 = (25 , 4 , 15) 

z 2 = (7 , 11 , 27) 

z 3 = (6 , 7 , 33) 

The corresponding utility values are f (z 1 ) = 1500 , f (z 2 ) =
079 , f (z 3 ) = 1386 . Hence the SP will provide us with the infor-

ation that z 2 � z 3 and z 1 � z 3 . Based on this we can generate

he corresponding 3-point cones. 

We will show that there exists a point z : z ∈ C ( z 1 , z 2 ; z 3 ) (there-

ore z ∈ L ( z 3 )) and � z ′ ∈ C( 
−→ 

z 1 , 
−→ 

z 2 ;
−→ 

z 3 ) : z �GL z 
′ . z = (4 . 82 , 4 . 65 , 37 . 2)

s such an example. 

z ∈ C ( z 1 , z 2 ; z 3 ) since z = z 3 + 

∑ 2 
i =1 μi (z 3 − z i ) where μ1 = 0 . 03

nd μ2 = 0 . 61 . 

Let us check whether there is a z ′ ∈ C( 
−→ 

z 1 , 
−→ 

z 2 ;
−→ 

z 3 ) : z �GL z 
′ . We

olve the following LP: 

Max 0 

sub ject to 

z ′ 1 − 2 μ′ 
1 + 1 μ′ 

2 = 6 

z ′ 2 + 8 μ′ 
1 + 4 μ′ 

2 = 7 

z ′ 3 − 8 μ′ 
1 − 6 μ′ 

2 = 33 

r 1 − d 11 − d 12 − d 13 ≥ 4 . 65 

2 r 2 − d 21 − d 22 − d 23 ≥ 9 . 47 

3 r 3 − d 31 − d 32 − d 33 ≥ 46 . 67 

r n − z ′ i − d ni ≤ 0 i, n = 1 , 2 , 3 

μ′ 
1 , μ

′ 
2 ≥ 0 

d ni ≥ 0 i, n = 1 , 2 , 3 

The above problem is infeasible, which shows that there is no

 

′ ∈ C( 
−→ 

z 1 , 
−→ 

z 2 ;
−→ 

z 3 ) : z �GL z 
′ . 

ppendix B. Checking whether a given distribution is in the L 

r U 

.1. Checking whether a given distribution is in L 

Recall that by Theorem 8 if z ∈ L ( z k ) then there exists z ′ ∈
(( 

−→ 

R ∪ 

ˆ �s (z k )) ;
−→ 

z k ) : z �GL z 
′ . Hence, for each distribution z we

ave to check whether there exists such z ′ . Using Corollary 2 we

an define each point z ′ ∈ C(( 
−→ 

R ∪ 

ˆ �s (z k )) ;
−→ 

z k ) using the equation

 

′ = 

−→ 

z k + 

∑ k −1 
i =1 μi ( 

−→ 

z k −
−→ 

z i ) + 

∑ p 
j=1 

β j ( 
−→ 

z k − � j ( 
−→ 

z k )) for j : � j ( 
−→ 

z k )

s obtained by swapping two consecutive elements in 

−→ 

z k . Let the

et of such indices j be J ; note that | J| = p − 1 . 

a  
We are going to make use of the following Theorem in our

odels. 

heorem 9 ( Ogryczak & Śliwi ́nski, 2003 ) . For any z ∈ R 

p , 
∑ n 

j=1 
−→
z j 

s the optimal value of the following LP problem: 

MODCUM ( Mod el Cum ulative) 
n ∑ 

j=1 

−→ 

z j = max nr n −
p ∑ 

h =1 

d nh 

subject to 

r n − d nh − z h ≤ 0 f or h = 1 , . . . , p 

d nh ≥ 0 f or h = 1 , . . . , p 

The (alternative) optimal values of r n and d nh are as fol-

ows (see Ogryczak and Śliwi ́nski, 2003 for details) r ∗n = 

−→ 

z n 
 c , where c ≥ 0 is a constant and d ∗

nh 
= 0 for h : z h > 

−→ 

z n 

nd d ∗
nh 

= 

−→ 

z n − z h + c for h : z h ≤ −→ 

z n . Hence at optimal-

ty we have nr ∗n −
∑ p 

h =1 
d ∗

nh 
= n 

−→ 

z n + nc − ∑ 

h : z h ≤−→ 

z n 
( 
−→ 

z n + c − z h ) =
 

−→ 

z n −
∑ 

h : z h ≤−→ 

z n 
( 
−→ 

z n − z h ) = 

∑ n 
j=1 

−→ 

z j . To illustrate, suppose that

e have z = (4 , 2 , 5) and we would like to know 

∑ 2 
j=1 

−→ 

z j . One op-

imal solution of this model is r ∗
2 

= 4 , d ∗
11 

= 0 , d ∗
12 

= 4 − 2 = 2 , and

 

∗
13 

= 0 . Hence 
∑ 2 

j=1 
−→ 

z j = 2 ∗ 4 − (2 + 0 + 0) = 6 . Note that at opti-

ality we have n − 1 d nh variables which are positive. 

The following model will be used for checking whether z is in

 : 

(LP 1 ) 

max 

p ∑ 

n =1 

nr n −
p ∑ 

n =1 

p ∑ 

h =1 

d nh 

subject to 

z ′ h −
k −1 ∑ 

i =1 

μi ( 
−→ 

z k h −
−→ 

z i h ) −
∑ 

j∈ J 
β j ( 

−→ 

z k h − � j ( 
−→ 

z k ) h ) = 

−→ 

z k h 

f or h = 1 , . . . , p (B.1) 

nr n −
p ∑ 

h =1 

d nh ≥
n ∑ 

h =1 

−→ 

z h f or n = 1 , . . . , p (B.2) 

r n − d nh − z ′ h ≤ 0 f or h, n = 1 , . . . , p (B.3) 

μi ≥ 0 f or i = 1 , . . . , k − 1 (B.4) 

β j ≥ 0 f or j = 1 , . . . , p − 1 (B.5) 

d nh ≥ 0 f or h, n = 1 , . . . , p (B.6) 

This model checks whether there exists z ′ ∈ C(( 
−→ 

R ∪
ˆ s (z k )) ;

−→ 

z k ) such that
∑ n 

j=1 
−→ 

z j ≤
∑ n 

j=1 

−→ 

z ′ 
j 
∀ n = 1 , . . . , p. Con-

traint sets B.1 and B.2 ensure that z ′ ∈ C(( 
−→ 

R ∪ 

ˆ �s (z k )) ;
−→ 

z k )

nd 

∑ n 
j=1 

−→ 

z j ≤
∑ n 

j=1 

−→ 

z ′ 
j 
∀ n, respectively. The objective func-

ion and constraint sets B.3 and B.6 are used to ensure that
 n 
j=1 

−→ 

z 
′ 
j 
= nr ∗n −

∑ p 

h =1 
d ∗

nh 
, where r ∗n and d ∗

nh 
are the optimal

alues of these decision variables based on Theorem 9 . 

To see what is happening intuitively, imagine deleting con-

traint set B.1 and fixing z ′ . Then clearly the program will find the
 n 
j=1 

−→ 

z ′ 
j 
∀ n (because it can be decomposed n subproblems of type

ODCUM for each n , each of which will return 

∑ n 
j=1 

−→ 

z ′ 
j 
). Now we

dd back in constraint set B.1 —so we are selecting a z ′ from the
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cone—but by the same reasoning whatever z ′ we select will be cu-

mulative ordered. 

Remark 2. At optimality, for each n , nr ∗n −
∑ p 

h =1 
d ∗

nh 
= 

∑ n 
j=1 

−→ 

z ′ 
j 
. 

Proof of Remark 2. Suppose that this does not hold and we have

nr ∗n −
∑ p 

h =1 
d ∗

nh 
< 

∑ n 
j=1 

−→ 

z ′ 
j 
. Then by setting r ∗∗

n = 

−→ 

z ′ n and d ∗∗
nh 

= 0

for h : z ′ 
h 

> 

−→ 

z ′ n and d ∗∗
nh 

= 

−→ 

z ′ n − z ′ 
h 

for h : z ′ 
h 

≤ −→ 

z ′ n , we can ob-

tain nr ∗∗
n − ∑ p 

h =1 
d ∗∗

nh 
= 

∑ n 
j=1 

−→ 

z ′ 
j 

while satisfying all constraints. This

contradicts the optimality of ( r ∗n , d ∗nh 
). 

Suppose that we have nr ∗n −
∑ p 

h =1 
d ∗

nh 
> 

∑ n 
j=1 

−→ 

z ′ 
j 
. We can show

that such a solution is not feasible as constraint set B.3 ( r n −
d nh − z ′ 

h 
≤ 0 for h = 1 , . . . , p) ensures that r ∗n − d ∗

nh 
≤ −→ 

z ′ 
h 

for all h =
1 , . . . , p. For any n , consider the corresponding constraints hav-

ing right hand side z ′ 
h 

: z ′ 
h 

= 

−→ 

z ′ 
i 

: i ≤ n . Aggregating these n con-

straints would give nr ∗n −
∑ 

h : z ′ 
h 
= −→ 

z ′ 
i 
: i ≤n 

d ∗
nh 

≤ ∑ n 
i =1 

−→ 

z ′ 
i 
. Hence nr ∗n −∑ p 

h =1 
d ∗

nh 
≤ nr ∗n −

∑ 

h : z ′ 
h 
= −→ 

z ′ 
i 
: i ≤n 

d ∗
nh 

≤ ∑ n 
i =1 

−→ 

z ′ 
i 
= 

∑ n 
j=1 

−→ 

z ′ 
j 
. �

Note that it is also possible to use a feasibility problem here:

One can check whether there exist any feasible r n and d nh values

by changing the objective function as max 0. If there exist any fea-

sible r n and d nh values (leading to solution that satisfies all the

relevant constraints B.2, B.3 and B.6 ), then the optimal values of

r ∗n and d ∗
nh 

in LP 1 (which maximise 
∑ p 

n =1 
nr n −

∑ p 
n =1 

∑ p 

h =1 
d nh ) also

satisfy the constraint set B.2 . This guarantees that constraint set

B.2 is satisfied hence 
∑ n 

j=1 
−→ 

z j ≤
∑ n 

j=1 

−→ 

z ′ 
j 
∀ n . We use max 0 as the

objective function of LP 1 . If the problem is feasible then z ∈ 

ˆ L (z k )

hence z ∈ L ( z k ). 

LP 1 is an LP problem with p 2 + 3 p + k − 2 variables and p 2 + 2 p

constraints excluding the set constraints (Recall that the we use

p − 1 permutations of the lower generator). Note that, we work

on problems where we ask the SP to compare distributions, i.e.

vectors. Requesting the SP to compare vectors is only meaningful

when the size of the vectors ( p ) is reasonable. p must be in any

case quite small as SPs will not be able to compare highly dimen-

sional distributions. 

Also note that in the algorithms which use two-point cones

only a simpler LP can be used as explained in the next subsection.

B.2. Checking whether a given point is in L when using two-point 

cones 

In order to check whether z ∈ L ( z k ), we check whether there ex-

ists a point z ′ ∈ C( 
−→ 

z 1 ;
−→ 

z 2 ) : z �GL z 
′ for any two generators z 1 and

z 2 . We use the following LP model: 

(LP 3 ) 

Max 0 

subject to 

z ′ h − μ( 
−→ 

z 2 h −
−→ 

z 1 h ) = 

−→ 

z 2 h f or h = 1 , . . . , p (B.7)

nr n −
p ∑ 

h =1 

d nh ≥
n ∑ 

j=1 

−→ 

z j f or n = 1 , . . . , p (B.8)

r n − d nh − z ′ h ≤ 0 f or h, n = 1 , . . . , p (B.9)

μ ≥ 0 (B.10)

d ≥ 0 f or i, n = 1 , . . . , p (B.11)
ni 
This model checks whether there exists z ′ ∈ C( 
−→ 

z 1 ;
−→ 

z 2 ) such that
 n 
j=1 

−→ 

z j ≤
∑ n 

j=1 

−→ 

z ′ 
j 
∀ n. Constraint sets B.7 and B.8 ensure that z ′ ∈

( 
−→ 

z 1 ;
−→ 

z 2 ) and 

∑ n 
j=1 

−→ 

z j ≤
∑ n 

j=1 

−→ 

z ′ 
j 
∀ n, respectively. Constraint set

.9 is used to ensure that
∑ n 

h =1 

−→ 

z ′ h = nr ∗n −
∑ p 

h =1 
d ∗

nh 
, where r ∗n and

 

∗
nh 

are the optimal values of these decision variables based on

heorem 9 . 

This is an LP problem with p 2 + 2 p + 1 variables and p 2 + 2 p

onstraints excluding the set constraints. 

.3. Checking whether a given distribution is in U 

If z ∈ U ( z k ) then there exists z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) : z ′ �GL z. The follow-

ng model will be used for the corresponding check: 

(LP 2 ) 

ax ε

ubject to 

 

′ 
h − μ

−→ 

z k h −
k −1 ∑ 

i =1 

μi ( 
−→ 

z i h ) = 0 f or h = 1 , . . . , p (B.12)

n 
 

h =1 

z ′ h + ε ≤
n ∑ 

h =1 

−→ 

z h f or n = 1 , . . . , p (B.13)

k −1 
 

i =1 

μi + μ = 1 (B.14)

i ≥ 0 ∀ i (B.15)

≥ 0 (B.16)

onstraint sets B.12 and B.14 ensure that z ′ ∈ P ( 
−→ 

R ;
−→ 

z k ) and con-

traint set B.13 ensures that z ′ �GL z by ensuring 
∑ n 

j=1 

−→ 

z ′ 
j 

≤
 n 
j=1 

−→ 

z j ∀ n . If at optimality, ε∗ ≥ 0 then z ∈ U ( z k ). 

It is an LP problem with p + k + 1 variables and 2 p + 1 con-

traints excluding the set constraints. 

ppendix C. Explanation of the subroutines 

Dominancecheck checks generalised Lorenz dominance. We

tore the information on generalised Lorenz dominance relations in

n n ∗n matrix called Dominancemat . Dominancemat(i,j) = 1 if distri-

ution i generalised Lorenz dominates distribution j ; 0 otherwise. 

Getinfo subroutine gathers information from the SP by provid-

ng him with a set of distributions. The preference information

athered is in form of ranking of the distributions in the sample.

he size of this set is controlled by a parameter called samplesize .

e set samplesize = 2, hence use pairwise comparisons in our ex-

eriments. But it is possible to use samples with more than two

istributions, in which case the SP is asked to rank these distribu-

ions from the best to the worst. 

The distributions to be put to the SP are selected according to a

redetermined rule. In the first iteration we rank the distributions

ccording to their Euclidean distances to an ideal point (IP) whose

oordinates are defined as follows: 

P i = Max 
z∈ Z 

i ∑ 

j=1 

−→ 

z j ∀ i = 1 , . . . , p. 

We select the ones having the least (Euclidean) distances to the

P. 
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In the following iterations, we select the distributions on whose

anks we have the least information. Before asking the SP we per-

orm a consistency check for the pair as follows: When we deter-

ine a pair of distributions ( a , b ) to be presented to the SP, we

erform a consistency check to see whether any of the following

wo cases would lead to violation of the consistency assumption

iven the preference information so far: a � b or b � a . Consistency

ould be violated if, for example a is c-dominated by a cone with

 lower generator b (which should imply that b � a ) and when

sked, the SP indicates that he prefers a over b . If only one of

hese cases ( a � b or b � a ) would allow consistency, then we

hoose it without asking the SP. If both cases are possible (none

ould violate consistency) we ask the SP. If for a pair ( a , b ) neither

 � b nor b � a would allow consistency then the SP is inconsis-

ent. 

For example, suppose that the SP has provided the following

reference information so far (about 10 distributions indexed from

 

1 to z 10 ): z 1 � z 2 , z 4 � z 7 , z 9 � z 3 , z 7 � z 2 . Hence we have the

ollowing quasi-orderings: z 1 � z 2 and z 4 � z 7 � z 2 ,and z 9 � z 3 .

uppose that we ask the SP about ( z 1 , z 3 ). If z 3 � z 1 and z 4 ∈ L ( z 1 )

as ∃ z ∈ C ( z 3 ; z 1 ): z 4 �GL z ) the quasiordering will become z 9 � z 3 

z 1 � z 4 � z 7 � z 2 . Moreover, suppose that z 9 ∈ L ( z 2 ) (i.e., ∃ z ∈ C ( z 3 ,

 

1 ; z 2 ): z 9 �GL z ) resulting in z 9 � z 3 � z 1 � z 4 � z 7 � z 2 � z 9 , which

esults in inconsistency. We try to avoid such situations as much as

ossible by checking whether such cases occur before asking about

 pair. In our example case, we also check whether z 1 � z 3 would

ead to inconsistency and if not we do not ask the SP but take

 

1 � z 3 . If both cases ( z 1 � z 3 and z 3 � z 1 ) lead to inconsistency

e stop the procedure and inform the SP about the situation. 

We keep track of the information on a distribution’s possible

anks using an n ∗2 matrix called boundmatrix . In this matrix each

ow is dedicated to a distribution and the two values in each row

how the minimum and maximum possible ranks of the distribu-

ion, respectively. At the beginning these values are set to 1 and

 for all the distributions. Whenever new information is available,

his matrix is updated accordingly. While asking the SP for prefer-

nce information, we choose the distributions for which the differ-

nce between the maximum and minimum possible rank is larger.

When preference information is obtained, it is stored in an n ∗n

atrix called Userpreference . This matrix keeps the information for

one and polyhedron generation. When new information is gath-

red, the Userpreference matrix is updated based on transitivity. For

xample, if from previous iterations we know that distribution i is

referred to distribution j and in the current iteration we are given

 is preferred to distribution k , then we update the matrix setting

serpreference(i,k) = 1 . This allows us to generate the largest cone

or a given lower generator. 

Conegeneration performs the checks related to the cones (i.e.,

ower set) and polyhedra (i.e., upper set). The two LPs, LP 1 and

P 2 , are generated and solved in this subroutine. Whenever pos-

ible, redundant cones/polyhedra and checks are avoided. We do

ot solve the LPs for a distribution if we already know that it is c-

ominated by/c-dominates the cone’s lower generator (recall that

e check consistency before asking the question hence inconsis-

ency does not arise). Since some of the new information obtained

hrough these checks leads us to new cones and polyhedra, we re-

eat this subroutine until there is no useful new information. We

heck this condition by using a binary variable called newinfo . 

Countassigned Recall that we keep the lowest and highest pos-

ible ranks for an distribution in boundmatrix . At the end of each

teration, for each distribution, we count the distributions that it

-dominates/is preferred to and the ones that it is c-dominated

y/less preferred than. We update the information on boundma-

rix accordingly. We then count the number of distributions whose

ank we know, i.e., whose maximum and minimum possible ranks
 S  
re equal. This information is then used to decide whether to ter-

inate the algorithm. 
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