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In this study, we develop decision support tools for policy makers that will help them make choices 

among a set of allocation alternatives. We assume that alternatives are evaluated based on their benefits 

to different users and that there are multiple benefit (output) types to consider. We assume that the pol- 

icy maker has both efficiency (maximizing total output) and equity (distributing outputs across different 

users as fair as possible) concerns. This problem is a multicriteria decision making problem where the 

alternatives are represented with matrices rather than vectors. 

We develop interactive algorithms that guide a policy maker to her most preferred solution, which are 

based on utility additive (UTA) and convex cone methods. Our computational experiments demonstrate 

the satisfactory performance of the algorithms. We believe that such decision support tools may be of 

great use in practice and help in moving towards fair and efficient allocation decisions. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many decision making settings the decision makers have to

hoose among a set of given alternatives, considering multiple cri-

eria. Due to the trade-offs that exist between different criteria,

his choice problem is a challenging problem, which motivated the

esign of many decision support tools (see [1] for a survey). Some

xample settings from the literature involve decision making prob-

ems in the areas of energy planning [2,3] finance [4] , and sustain-

bility [5,6] . In such settings, each alternative is associated with a

ector whose elements show the performance of that alternative

ith respect to each criterion. These problems are multiple criteria

valuation problems where a finite set of alternatives is given ex-

licitly. For evaluation problems, one may try to: identify the best

lternative or a small subset of most preferred alternatives, rank

he alternatives, or sort the alternatives into predefined groups [7] .

A special multicriteria choice problem occurs when the alter-

atives are allocation vectors, in which each element corresponds

o the amount of a benefit that a beneficiary enjoys [8] . In such

ases, the DM has to choose the best allocation considering both

airness (the concern for choosing an allocation as fair as possi-

le) and efficiency (the concern for choosing an allocation that has

igh total benefit). The tradeoff between these two concerns makes

he problem challenging. For example, considering two alternative
� This manuscript was processed by Associate Editor Dias. 
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llocations of a good across two beneficiaries: (5, 6) and (3, 10),

ne can say that the first one is fairer, while the second one is

ore efficient. Some examples of such equitable choice problems

re public service facility location problems, in which the best lo-

ation is to be chosen among candidate locations (efficiency is the

esire to choose the alternative that minimizes the total distance

o the users, fairness is the desire to be equally close to all users)

nd healthcare project selection problems, in which each project

s associated with the distribution of a health gain across different

opulation groups (efficiency is the concern of maximizing the to-

al health gain and fairness is the desire to be fair in the health

ain distribution). A distinguishing feature of such choice prob-

ems is the impartiality property, which assumes that the identities

f the beneficiaries are not important and do not affect the deci-

ion. In such a setting the decision maker is indifferent between

n allocation and any permutation of that allocation, making the

roblem and the solution approaches different than their counter-

arts in the classical multicriteria decision making literature (see

8–11] and references therein). 

In many real life problems, there are multiple beneficiaries en-

oying multiple benefits , hence efficiency and fairness concerns oc-

ur on multiple dimensions. In this study, we address such set-

ings and consider multicriteria decision making (MCDM) prob-

ems, where the alternatives are not vectors but matrices, the

olumns and rows of which show the allocated outputs and the

sers that enjoy these goods, respectively. Each element of the ma-

rix shows the level of an output a user receives. In this sense this

https://doi.org/10.1016/j.omega.2017.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2017.10.001&domain=pdf
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u  
problem generalizes the two problems (the classical MCDM choice

problem) and (the equitable choice problem) mentioned above. 

In this work we consider a choice problem in which a policy

maker (decision maker) is faced with a set of distribution alter-

natives that are evaluated with respect to how multiple outputs

are distributed across multiple users. Such allocation problems are

encountered in many real life cases; however our initial motiva-

tion was policy making decisions in healthcare, which show the

tradeoff between fairness and efficiency to a very high degree. In

such settings alternative projects/project portfolios are evaluated

not only based on total gain (e.g. total increase in the quality-

adjusted life years of the population) but also based on how this

gain will be distributed to different population groups. Moreover,

health gain is usually not the only outcome of interest, other out-

comes such as protection from healthcare related financial catas-

trophes or decrease in out-of-pocket expenses are also considered

[12,13] . 

This problem can be considered as related to the group deci-

sion making problem, where alternatives that have different con-

sequences for a number of entities (individuals) are evaluated, typ-

ically by the group of entities itself. Hence in such settings, one of

the main concerns is constructing a social welfare function whose

arguments are the individual utilities. The suggested decision sup-

port methods include assessments of the preferences of individuals

and a rule for aggregating these preferences to determine group

preferences [14,15] . The pioneering studies that deal with aggre-

gation of cardinal utilities are due to [14,16–19] . Recently, Greco

et al. [20] proposed an extension of the robust ordinal regression

method to multiple criteria group decision problems. 

One of the important concerns in group decision making is eq-

uity (fairness) of the group decision [21–24] . In line with this,

Eliashberg and Winkler [22] structure a framework in which an in-

dividual’s utility depends on what others receive. Group members’

approach to equity is reflected through individual utility functions,

which are functions of the distribution vector. Similar to the previ-

ous studies, the authors consider a linear aggregation rule. Keeney

[23] considers equity in distributions of risk and Harvey [24] ex-

tends this discussion by considering preferences on trade-offs and

develops notions of inequity neutrality and inequity aversion. He

discusses different conditions and links them to various forms of

group value functions. 

In most of the group decision making studies, individuals have

different preference models (represented by different individual

utility functions) and the aim is aggregating these preferences into

a group preference model. However, in the problem settings we

consider, we assume that there is a single policy maker (DM)

hence we do not have the concern of aggregating individual pref-

erences. In group decision making, since each individual’s utility is

usually considered as a function of what he receives (independent

of what others get), assuming an additive social welfare function

may be realistic. As we will elaborate later, we try to relax the

preferential separability assumption, which is common to many

group decision making settings, since we assume that the policy

maker’s preferences involve equity concerns (hence will depend on

how a benefit is distributed) alongside efficiency concerns. Even

when separability is assumed, we structure the framework so as

to encourage equity in the distributions of benefits. 

2. Problem definition 

Consider an example healthcare project selection problem in

which the policy maker is to choose a project to initiate among

a set of projects. In this problem, we are given a set of alternatives

A = 

{
a 1 , a 2 , . . . , a N 

}
and a typical member shows the distribution

of multiple ( n ) outputs over multiple ( m ) users. In the matrix rep-

resentation, the rows and columns correspond to different users
population groups) and outputs, respectively as follows: 

 

k = m Users 

n Outputs ⎡ 

⎢ ⎢ ⎣ 

a k 11 a k 12 · · · a k 1 n 

a k 21 a k 22 · · · a k 2 n 
. . . 

. . . 
. . . 

. . . 

a k m 1 a k m 2 · · · a k mn 

⎤ 

⎥ ⎥ ⎦ 

here for a given alternative a k , a k 
i j 

represents the level of output

 allocated to user i . We assume that the decision maker is trying

o select the best alternative in line with her preferences. 

This problem can be considered as a multicriteria choice prob-

em, in which alternatives are explicitly given and the problem is

etermining the most preferred one. However, it is an MCDM prob-

em of a special type. It is different than the classical MCDM prob-

ems discussed in the literature in the sense that the alternatives

orrespond to matrices rather than vectors. 

Moreover, unlike a classical MCDM problem, this problem in-

olves fairness factors alongside the usual trade-off between differ-

nt outputs. That is, how we distribute outputs is also of concern

o the decision maker. We will try to explain the relation and the

ossible trade-off between equity and efficiency by using a small

xample. 

xample 1. Consider a problem in which a DM is faced with a

et of alternatives showing distributions of two outputs to two

sers. When we increase efficiency with respect to both outputs,

hat is when we increase the total amount distributed in both

utput 1 and output 2, while keeping the equity levels same, we

btain a better alternative. For example, when we have 

(
5 5 
5 5 

)
nd 

(
6 6 
6 6 

)
as two alternatives, the DM will choose 

(
6 6 
6 6 

)
over

5 5 
5 5 

)
, since 

(
6 6 
6 6 

)
distributes higher amounts of outputs to

he users and both alternatives have complete equality. This ex-

mple illustrates the efficiency concerns of the DM. 

When we have a more equitable allocation in both goods while

eeping the efficiency levels same, we obtain a better alternative.

or example, when we have 

(
3 3 
5 5 

)
and 

(
4 4 
4 4 

)
as two alterna-

ives, the DM will choose 

(
4 4 
4 4 

)
over 

(
3 3 
5 5 

)
. Both alternatives

ave the same efficiency levels with respect to both outputs, they

istribute 8 units of output 1 and 8 units of output 2, but alterna-

ive 2 provides a more equitable allocation for each of the outputs.

In the first example, only efficiency levels change and in the

econd example, only equity levels change. Therefore, they do not

eflect the trade-off between the two concerns that many real life

xamples come along with. Choosing between alternatives where

oth efficiency and equity levels change can be a cognitively chal-

enging task. For example, we cannot say which alternative would

e chosen between 

(
4 5 
6 7 

)
and 

(
3 4 
8 9 

)
. In this example, the al-

ernative that has higher efficiency levels is worse in terms of eq-

ity. The trade-off between equity and efficiency can be observed

ere. Note that even this example is insufficient to reflect the chal-

enge to its full extent, since the second alternative is more ef-

cient and less equitable with respect to both outputs. In fact,

he problem involves multidimensional efficiency and multidimen-

ional equity concerns since multiple outputs are distributed. Con-

ider 

(
4 4 
6 9 

)
and 

(
3 5 
8 7 

)
: the second alternative is more efficient

and less equitable) with respect to output 1 while the first alter-

ative is more efficient (and less equitable) with respect to output

. 

In this study we assume a non-hierarchical relation among the

sers. We assume that changing the bundles over the users does
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ot affect the social welfare value that alternative brings. (A bun-

le is a distribution of benefits to a single user and corresponds

o a row in our matrix notation). This is the so-called impartiality

ssumption defined in equitable preferences [25] . For example, we

ssume that the DM will be indifferent between two alternatives
4 5 
3 6 

)
and

(
3 6 
4 5 

)
. 

As seen in Example 1 the efficiency and fairness concerns are of

 multidimensional nature as we consider situations in which mul-

iple benefits are distributed to multiple entities. There are well-

nown results in the economics literature on single benefit (in-

ome) distributions to multiple individuals that discuss various ax-

oms and link these to dominance relations such as Lorenz domi-

ance [26] and Generalized Lorenz dominance [27] . However, it is

onsiderably harder to obtain such rules and equivalence results

n a multidimensional framework [28] . A pioneering work that

ouches upon these dominance issues in the multidimensional set-

ings is due to [29] . We also provide dominance rules in line with

he assumptions (impartiality and monotonicity) that we make on

he preference model of the central DM. 

These dominance rules are obtained by extending vector dom-

nance relations for alternatives that are represented by matrices.

e will first give the definition of (weak) dominance relation over

ectors and then, discuss the corresponding extensions. 

efinition 1. Given two alternatives z k , z k 
′ ∈ R 

n where n is the

umber of outputs (criteria) and J = { 1 , 2 , . . . , n } , 
z k �d z k 

′ 
( z k 

′ 
weakly dominates z k ) ⇐⇒ z k 

j 
≤ z k 

′ 
j 

for all j ∈ J . 

A simple extension of Definition 1 for our problem setting

ould be the following: 

efinition 2. Given two alternatives a k , a k 
′ ∈ R 

(mxn ) where m and

 are the number of users and the number of outputs, respectively,

et us define the following sets I = { 1 , 2 , . . . , m } and J = { 1 , 2 , . . . , n }
a k �d a k 

′ 
( a k 

′ 
weakly dominates a k ) ⇐⇒ a k 

i j 
≤ a k 

′ 
i j 

for all i ∈ I , j

 J . 

Consider two alternatives a k = 

(
5 4 
4 3 

)
and a k 

′ = 

(
6 5 
4 3 

)
.

ince a k 
i j 

≤ a k 
′ 

i j 
for all i, j , we say that a k 

′ 
dominates a k . Alterna-

ive k ′ brings greater value to the first user for each criterion than

lternative k while the second user gets the same bundle in both

lternatives. Here, the users are called as first and second just to

rovide an ease in the expression. Their usage do not imply any

uperiority relation. Let us consider a scenario where alternative k

ecomes a k = 

(
4 3 
5 4 

)
. From the impartiality assumption, the DM

s indifferent between 

(
5 4 
4 3 

)
and 

(
4 3 
5 4 

)
. However, the domi-

ance rule introduced in Definition 2 fails to acknowledge this rela-

ion when the row ordering of the users changes. Hence, we mod-

fy this dominance rule to handle the impartiality assumption. 

efinition 3. For an alternative a k ∈ R 

(mxn ) where m and n repre-

ent the number of users and the number of outputs, respectively,

et π ( a k ) be the set of all different row permutations of a k and

 = { 1 , 2 , . . . , m ! } . Given two alternatives a k and a k 
′ ∈ R 

(mxn ) , 

a k �em 

a k 
′ 

( a k 
′ 

equitably matrix weak dominates (em-

ominates) a k ) ⇐⇒ πr (a k ) �d a k 
′ 

for at least one r ∈ R . 

Em-dominance enables us to make further inferences com-

ared to the previous dominance relations. Let us take the

xample where a k = 

(
4 3 
5 4 

)
and a k 

′ = 

(
6 5 
4 3 

)
and π(a 1 ) =

 (
4 3 
5 4 

)
, 

(
5 4 
4 3 

)} 

. Since π2 (a k ) = 

{ (
5 4 
4 3 

)} 

and π2 (a k ) �d 

 

k ′ , a k 
′ 

em-dominates a k . The em-dominance relation will help us

liminate some alternatives. However, in most real life cases, we

ill have trade-offs and using dominance relations will not be
ufficient to make decisions. Hence we propose decision support

ools, that will help the DM choose her most preferred alternative

n a set of em-efficient alternatives (an alternative is em-efficient if

here is no other alternative that em-dominates it). 

. Solution approaches 

Recall that we consider the problem of selecting the best al-

ernative among a finite set of alternatives. In the literature, dif-

erent approaches such as outranking relations and multi-attribute

alue theory approaches are used for this problem type [30] . We

ropose value function based solution approaches to this problem.

uch approaches assume that the DM’s preferences can be repre-

ented by value functions. We construct our approaches by defin-

ng three different value functions: marginal value function (MVF),

undle value function (BVF) and social welfare function (SWF). 

For each output a MVF is defined, which assigns value scores

o different levels of the output. Let MV j (.) be the non-decreasing

arginal value function for output j . MV j (a k 
i j 
) represents the value

erived by the DM (policy maker) from the allocation of the j th

utput of alternative k to any user i . Hence, MVF depends only on

he output type and not the user enjoying it. 

Another function that can be defined is the bundle value func-

ion (BVF). Let BV (b k 
i 
) be the social value (as perceived by the DM)

erived by providing a user with bundle b k 
i 

(this is the i th row in

lternative k ) (see [28,29] for further discussion on this assump-

ion). In other words, BV (.) assigns a total value score to the bun-

les (vectors showing levels of output with respect to all output

ypes). Again, due to impartiality, we assume that this value does

ot depend on users’ identities. 

We also define a social welfare function (SWF) for the alter-

atives. Let SW ( a k ) be the total social welfare that alternative k

rings. It will be used to evaluate overall values of the alternatives

o the DM. 

xample 2. To illustrate these functions, let us consider an exam-

le problem where a healthcare policy maker aims to choose the

est alternative among the six alternatives provided below. Let the

lternatives correspond to different distributions of two outcomes,

ncrease in quality adjusted life time and decrease in out-of-pocket

xpenditures, to two user groups. Hence two MVFs will be de-

ned: one for the increase in quality adjusted life time and one

or the decrease in out-of-pocket expenditures ( MV 1 (.) and MV 2 (.)

or short.) 

 

1 = 

(
2 8 

3 4 

)
a 2 = 

(
5 5 

6 2 

)
a 3 = 

(
4 6 

3 5 

)
a 4 = 

(
5 5 

4 6 

)

 

5 = 

(
3 5 

8 2 

)
a 6 = 

(
6 4 

3 7 

)

In this example, the levels for outputs 1 and 2 are

2, 3, 4, 5, 6, 8) and (2, 4, 5, 6, 7, 8), respectively. MVFs convert

hese levels into their value correspondences. For example, MV 1 (6)

nd MV 2 (5) represent the values obtained from getting 6 and 5

nits from the first and the second outputs, respectively. Each user

eceives a bundle of two outputs (e.g. user 1 gets (2, 8) in the first

lternative and (5, 5) in the second alternative) and BVFs calculate

he total value (as perceived by DM) that a bundle brings to a user

e.g. BV(2, 8) returns the value that bundle (2, 8) brings). Similarly,

WFs assign total values to the alternative (e.g. SW( 

(
2 8 
3 4 

)
) gives

he social welfare value that the first alternative brings). 

The methods we discuss below are based on different assump-

ions on the forms of these marginal value, bundle value, and so-

ial welfare functions, which are summarized in Table 1 . The first
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Table 1 

Summary of the solution approaches. 

Approach MVF BVF SWF Preference information 

UTA-based Concave Additive Additive Vector comparisons 

Cone-based Linear Additive S. quasi-concave Holistic comparisons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Concave marginal value function and its piecewise linear approximation. 
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approach exploits UTA techniques and uses concave MVFs to en-

courage equitable distribution of an output. BVFs are assumed to

be additive, i.e. the total value that a user acquires through an al-

ternative is the sum of the values that she obtains from each out-

put. Furthermore, social welfare that an alternative brings is as-

sumed to be the sum of bundle values. The second approach (con-

vex cone based approach) assumes linear MVFs and additive BVFs,

which are weighted aggregations of the marginal values of the

outputs. This approach also assumes SWFs are symmetric quasi-

concave and hence it relaxes the additivity assumption of the first

approach. 

We design interactive algorithms that take preference informa-

tion from the DM iteratively by asking pairwise comparison ques-

tions. In the UTA-based approach, we ask the DM to compare two

different bundles of outputs (vectors) while the convex cone based

approach asks the DM to compare alternatives holistically. As a

small example, when holistic comparison method is employed, the

DM is asked to compare two alternatives from the given set such

as 

(
2 8 
3 4 

)
and 

(
5 5 
6 2 

)
whereas when vector (bundle) comparison

method is employed, the DM is asked to compare the following

bundles (3, 4) and (6, 2), which represent different distributions of

outputs to only one user. Holistic comparison is more challenging

in terms of its cognitive requirements. However one can eliminate

the alternative which is not preferred, permanently from the set.

Vector comparison questions are easier for the DM but we cannot

eliminate any alternative directly based on such questions. 

3.1. UTA-based method 

In this part, we discuss the interactive approach based on the

well-known UTA method introduced by Jacquet-Lagrèze and Siskos

[31,32] . In a classical MCDM problem, this method assumes an ad-

ditive unweighted global value function, which is the sum of the

marginal value scores and assigns values to alternatives in line

with the preferences of a DM by using linear programming tech-

niques [33–35] . Although the marginal value functions are forced

to be compatible with the preference information, there may still

exist many such value functions. The idea of evaluating all func-

tions that are compatible with the preference information was

firstly introduced in UTA 

GMS method (see [36,37] ). 

Similarly, in the UTA-based method, we propose that the value

that is obtained from a bundle is the sum of the marginal values

acquired from each output level in the bundle (we assume pref-

erence independence). Moreover the social welfare function is as-

sumed to be sum of the bundle values (i.e. we use a utilitarian

framework). These functions are in the following forms: 

BV (b k 
i 
) = 

n ∑ 

j=1 

MV j (a k 
i j 
) where b k 

i 
= (a k 

i 1 
, a k 

i 2 
, . . . , a k 

in 
) 

∀ i = 1 , 2 , . . . , m, ∀ k = 1 , 2 , . . . , N

SW (a k ) = 

m ∑ 

i =1 

n ∑ 

j=1 

MV j (a k 
i j 
) ∀ k = 1 , 2 , . . . , N

with the normalization constraints below, 

MV j (a j ∗ ) = 0, 
n ∑ 

j=1 

MV j (a ∗
j 
)= 1, MV j ( a ij ) ≥ 0 

∀ j = 1 , 2 , . . . , n, ∀ i = 1 , 2 , . . . , m 

where a j ∗ and a ∗
j 

are the least and most preferable levels of output

j , respectively. Therefore, in this approach inferring the marginal
alue functions of the outputs will be sufficient to calculate social

elfare scores of the alternatives. 

There are different UTA applications in the literature, each with

ts own assumptions on the shape of the marginal value func-

ions. They can be linear [38,39] , piecewise linear [32,40,41] , or

onotone [42] . In our problem setting, we assume that all MV j (.)s

re concave and approximate them in our mathematical mod-

ls by piecewise linear approximation. This assumption is used

o (partially) reflect the fairness concerns of the DM into the

odel. When concave marginal value functions are used, the to-

al value increases (the total value that the alternative brings be-

omes higher) as the levels of an output distributed to users get

loser, everything else being the same. 

Fig. 1 illustrates a concave marginal value function for an out-

ut with four different levels and the corresponding piecewise lin-

ar function. 

We now discuss our interactive UTA-based algorithm, which

nds the best alternative (or a small subset of most preferred ones)

sing basic UTA principles. (See [43] for an alternative methodol-

gy based on robust ordinal regression to find the best alternative

n an efficient way for general MCDM settings.) 

At each iteration, preference information of the DM is gathered

y asking bundle comparison questions. Then the algorithm elimi-

ates an alternative if there exists any other alternative that brings

igher social welfare value for all possible marginal value assign-

ents that are compatible with given preference information. This

oop is repeated until the number of remaining alternatives is less

han or equal to a predetermined threshold value K . 

lgorithm 1. 

Step 1: Initialization. Set REMAIN = { a 1 , a 2 , . . . , a N } . Find the em-

ominated alternatives and remove them from the set REMAIN. 

Step 2: UTA eliminations. For all pairs of alternatives, make

airwise comparisons using the Comparison subroutine. Make the

ecessary eliminations and update set REMAIN accordingly. (Note

hat no preference information has been incorporated yet.) 

Step 3: Take new preference information from the DM by using

ectorpreferenceinfo subroutine. Add the information as a con-

traint to the UTA-based model and go to Step 4. 

Step 4: Preference Information Eliminations. Take the first pair

hat is not compared yet in set REMAIN and call the Comparison
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Table 2 

Elimination rules for UTA-based algorithm. 

Is SW (a k ) ≥ SW (a k 
′ 
) 

possible? 

Is SW (a k 
′ 
) ≥ SW (a k ) 

possible? 

Results 

Yes Yes Inconclusive 

Yes No Eliminate alternative a k 
′ 

No Yes Eliminate alternative a k 

s  

M  

y  

s

 

t

 

D  

w  

a

 

w  

t  

g  

i  

T  

t

 

t  

W  

o  

f  

d

 

e  

h  

t  

m  

i  

m

 

F  

t  

b  

W  

S  

n  

t

 

e  

t

 

t

 

t  

a  

t  

t  

T  

e

 

(  

t  

T  

s

 

c  

T

 

T  

s

 

e

 

h  

t  

m

m

s

4

M

B

B

S

ubroutine. Make the necessary eliminations and update set RE-

AIN accordingly. If all pairs in REMAIN have not been checked

et, repeat this step. Otherwise, if the number of alternatives in

et REMAIN is higher than K , go to step 3. If not, go to Step 5. 

Step 5: Stop and report REMAIN. 

Let us now explain Vectorpreferenceinfo and Comparison subrou-

ines in more detail. 

Vectorpreferenceinfo 

This subroutine is used to select the vectors to be asked to the

M. We tried three alternative methods to choose these vectors,

hich are based on random selection, distance to an ideal vector

nd pairwise distances between the set of vectors. 

Random selection: We randomly choose two vectors. 

Ideal: We create an ideal vector ( (id eal 1 , id eal 2 , . . . , id eal n )

here ideal j = max ∀ k ∈ A, ∀ i ∈ I a k 
i j 

) and calculate the Euclidean dis-

ances between the ideal vector and each vector (bundle) in the

iven set of alternatives. The vectors to be asked are chosen start-

ng from the ones which have smallest distance to the ideal vector .

his method aims to gather effective preference information from

he DM by asking her to compare strong candidates. 

Minimum pairwise distance: We calculate the Euclidean dis-

ances between all pairs of vectors in the given set of alternatives.

e choose the vectors that have the minimum distance to each

ther. This method aims to gather effective preference information

rom the DM by asking her to compare candidates that are more

ifficult to distinguish. 

We also tried a maximum pairwise distance strategy so as to

nsure that the chosen vectors have enough diversity (rather than

igh similarity). However, the computational results demonstrated

hat this method is outperformed by the others. The poor perfor-

ance of this strategy may be due to the fact that such compar-

sons are ineffective in reducing the set of compatible value assign-

ents. 

Comparison 

This subroutine is used to compare alternatives with each other.

or any two alternatives a k and a k 
′ 

and given preference informa-

ion, we check if SW ( a k ) can be higher than SW (a k 
′ 
) using UTA-

ased model . Then we check if SW (a k 
′ 
) can be higher than SW ( a k ).

e make the necessary eliminations using Table 2 provided below.

Given preference information, if SW (a k ) ≥ SW (a k 
′ 
) ( SW (a k 

′ 
) ≥

W (a k ) ) is possible but SW (a k 
′ 
) ≥ SW (a k ) ( SW (a k ) ≥ SW (a k 

′ 
) ) is

ot possible, then we conclude that the alternative k ( k ′ ) is bet-

er. If both cases are possible we do not make any eliminations. 

Let us now review the steps of the Algorithm 1 for the provided

xample ( Example 2 ) where the DM tries to find the best alterna-

ive among six alternatives. 

Step 1. Checks the em-dominance relation among the alterna-

ives. It eliminates a 3 since a 4 em-dominates a 3 . 

Step 2. Compares the alternatives just considering the assump-

ions on MVFs (being increasing and concave) without obtaining

ny preference information. At this step a 5 is eliminated (the to-

al levels of both outputs that are distributed by a 2 and a 5 are

he same and a 2 distributes first output more equally than a 5 ).

he same relation is observed between a 4 and a 6 , hence a 6 is also

liminated. 
Step 3. The DM is asked to compare bundles (4, 6) and (5, 5)

assume that the question selection method is based on the dis-

ance from the ideal vector). Assume that the DM chooses (5, 5).

his preference information is added to UTA-based model de-

cribed below as a constraint (constraint (7) ). 

Step 4. Through solving the related mathematical models, we

onclude that a 1 cannot be better than a 4 , hence it is eliminated.

he remaining alternatives are a 2 and a 4 . 

Step 3. The DM is asked to compare bundles (8, 2) and (3, 7).

his preference information is added to UTA-based model as a con-

traint (constraint (7) ). 

Step 4. Through solving the related mathematical models, a 2 is

liminated. 

Step 5. The algorithm returns a 4 as the solution. 

UTA-based model introduced below checks if alternative a k can

ave higher social welfare value than alternative a k 
′ 

considering

he DM’s preference information. Note that this is a feasibility

odel. 

UTA-based model 

Sets : 

I: the set of users { 1 , . . . , m } . 
J: the set of outputs { 1 , . . . , n } . 
Q: the pairwise comparison information gathered so far {

(p, p ′ ) : p is preferred over p 
′ 

& p, p ′ ∈ R n 
}

. 

C j : the vector that stores unique values of output j in an increasingly 

ordered manner. 

Parameters : 

L j : the number of different levels in output j. 

T i jk : The rank of a k 
i j 

in set C j where i ∈ I, j ∈ J and a k ∈ A . 
T p j : The rank of p j in set C j where p ∈ Q, j ∈ J. 
ε: a small positive number to ensure the MVFs are increasing. 

γ : a small positive number to ensure the MVFs are strictly concave. 

�: a small positive number to incorporate strict preference information. 

Variables : 

MV jt : the value of the tth minimum level in output j. 

BV p : the total value achieved from the bundle p where p = { p 1 , . . . , p n } and 

p ∈ Q . 

SW k : the total social welfare that alternative k brings where k ∈ A . 

aximize 0 (1) 

ubject to M V j,t+1 − M V jt ≥ ε ∀ j ∈ J, t ∈ 

{
1 , . . . , L j − 1 

}
(2) 

 

M V j,t+1 − M V jt 

C j,t+1 − C jt 
− M V j,t+2 − M V j,t+1 

C j,t+2 − C j,t+1 

≥ γ

∀ j ∈ J, t ∈ 

{
1 , . . . , L j − 2 

}
(3) 

∑ 

j∈ J 
MV jL j = 1 (4) 

V j1 = 0 ∀ j ∈ J (5) 

V p = 

∑ 

j∈ J 
MV jT pj 

∀ p ∈ Q (6) 

V p − BV p ′ ≥ � ∀ (p, p ′ ) ∈ Q (7) 

W k = 

∑ 

j∈ J,i ∈ I 
MV jT i jk 

(8) 
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Fig. 2. C ((2, 6); (3, 4)) and cone dominated region. 
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SW k ′ = 

∑ 

j∈ J,i ∈ I 
MV jT i jk ′ (9)

SW k − SW k ′ ≥ 0 (10)

MV jt ≥ 0 ∀ j ∈ J, t ∈ 

{
1 , . . . , L j 

}
(11)

The model tries to assign values to outputs in such a way that

social value score of alternative k will be greater than social value

score of alternative k ′ . Constraint sets (2) and (3) ensure that the

marginal value functions will be increasing and concave, respec-

tively. Parameter γ determines the concavity levels of the marginal

value functions. Constraint sets (4) and (5) are for normalization

and guarantee that the social welfare values of all alternatives are

in the range [0- m ]. Constraint set (6) assigns a BV score to each

bundle p in the preference information set. Constraint set (7) in-

corporates the provided information by the DM to into the model.

Constraint sets (8) and (9) assign social welfare values to alterna-

tives k and k ′ , respectively. Constraint (10) checks if alternative a k 

can bring higher social welfare value than alternative a k 
′ 
. 

UTA-based approach introduces concave marginal value func-

tions hence encourages a more equitable distribution for each of

the outputs over users regardless of the levels of other outputs

that they receive. That is, using additivity over users, we make this

underlying assumption that the outputs are not substitutable and

hence a more equitable distribution is always desired regardless of

users’ positions with respect to the other outputs. 

Let us consider the following two alternatives in Example 2 :

a 2 = 

(
5 5 
6 2 

)
and a 5 = 

(
3 5 
8 2 

)
. The first output is distributed in

a more equitable manner in a 2 but this occurs at the cost of mak-

ing second user, who was worse off with respect to second output,

have less of first output compared to a 5 . In UTA-based approach,

a 2 is considered better since, everything else being the same, the

first output is distributed in a more equitable manner. However,

one can argue that redistribution is only meaningful and social

welfare increasing when one user is definitely underprivileged and

redistribution alleviates this underprivilege, which is not the case

in this example. In such cases, the UTA-based approaches will not

be of use and the preference model of a DM who would prefer

e.g. 

(
3 5 
8 2 

)
over 

(
5 5 
6 2 

)
on the grounds that the outputs may

be substitutable cannot be taken into account. This is due to the

additivity assumption of the UTA-based approach. 

There exists a large body of work in the economics litera-

ture discussing inequality in single good distributions like income.

When a single good is distributed, most of the literature agrees on

the suitability of using nonadditive social welfare functions rather

than assuming separability [44–46] . The convex cone based ap-

proach, which we discuss now, alleviates some drawbacks of the

UTA-based approach as it (partially) relaxes the additivity assump-

tion for the social welfare function used. That is, the convex cones

approach will allow a DM to prefer the first distribution over the

second in the above example as we will elaborate in the next sec-

tion. (The interested reader is referred to [47] , which discusses an-

other possible non additive approach within the UTA family meth-

ods.) 

3.2. Convex cone based approach 

In this section, we discuss the convex cone based approach,

which is widely used in the MCDM literature [48–52] . Convex

cones are used in MCDM problems to incorporate preference in-

formation in the model. This method assumes that the underly-

ing value function of the DM is quasi-concave and is based on
liminating the alternatives that are inferior to the cones gener-

ted based on preference information that she provides [49] . We

rst give the main definitions and results used in the classical

CDM choice problems, where alternatives are vectors. We then

iscuss an extension of the approach to cases where each alter-

ative shows the allocation of a single output over multiple users

nd the DM has an equitable preference model (discussed in [53] ).

inally, we provide the extension we suggest for problems where

he alternatives are defined as matrices. 

efinition 4. Given a set of k vectors, such that z 1 , ..., z k ∈ R 

m ,

he cone C(z 1 , . . . , z k −1 ; z k ) is defined, where z � : � � = k are the

pper generators and z k is the lower generator as follows:

(z 1 , . . . , z k −1 ; z k ) = 

{
z | z = z k + 

∑ 

� � = k μ� (z k − z � ) , μ� ≥ 0 
}

. The

one dominated region of C(z 1 , . . . , z k −1 ; z k ) is denoted by

D (z 1 , . . . , z k −1 ; z k ) and defined as follows CD (z 1 , . . . , z k −1 ; z k ) =
z ′ | z ′ ≤ z where z ∈ C(z 1 , . . . , z k −1 ; z k ) 

}
. 

If the value function of the DM (SWF) is quasi-concave, the fol-

owing holds [49] , 

emma 1. For any z c ∈ C(z 1 , . . . , z k −1 ; z k ) , SW ( z c ) ≤ SW ( z k ) . Also, for

ny z ′ ∈ CD (z 1 , . . . , z k −1 ; z k ) , SW ( z ′ ) ≤ SW ( z k ) . 

Each point z ′ ∈ CD (z 1 , . . . , z k −1 ; z k ) is called cone dominated . 

To illustrate, suppose that we have (2,6) and (4,3) as alterna-

ives and the DM prefers (2,6) over (4,3). Fig. 2 shows the 2-point

one generated by these alternatives. The solid line represents C ((2,

); (4, 3)) and the gray area is the cone-dominated region, CD ((2,

); (4, 3)). Any alternative in this region is cone dominated. 

Linear programming models can be used to check if an alter-

ative is in the cone dominated region. For an alternative z I , the

ollowing feasibility model checks if z I is in the cone dominated

egion CD (z 1 , . . . , z k −1 ; z k ) . The right hand side of constraint set

13) corresponds to a point on C(z 1 , . . . , z k −1 ; z k ) , which (vector)

ominates z I . If this model is feasible, z I ∈ CD (z 1 , . . . , z k −1 ; z k ) . 

inimize 0 (12)

ubject to z I i ≤ z k i + 

k −1 ∑ 

� =1 

μ� (z k i − z � i ) , f or i = 1 , . . . , m (13)

� ≥ 0 , f or � = 1 , . . . , k − 1 (14)

A large body of the literature using convex cones in MCDM

roblems do not touch upon the concept of equitability. Karsu

t al. [53] extend the use of convex cones for allocation settings

here a single output is distributed to multiple users and impar-

iality holds. Since the preference model of the DM is assumed

o be equitable, impartiality holds, which implies that the value

unction of the DM is symmetric quasi-concave. This assumption
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Fig. 3. Generalized Lorenz dominance illustration. 
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mplies that each vector (allocation) of size m will have m! per-

utations and the DM is indifferent to all these permutations.

ence given single pairwise preference information, one can gen-

rate multiple cones considering various permutations of the up-

er and lower generators. Let us re-consider the example described

bove. If the DM prefers (2,6) over (4,3), impartiality implies that

he DM prefers any permutation of (6, 2) over any permutation of

4, 3). So in addition to C ((2, 6); (4, 3)) we can generate the cones

 ((2, 6); (3, 4)), C ((6, 2); (3, 4)) and C ((6, 2); (4, 3)) and eliminate

he alternatives which are inferior to any of these cones. 

Considering multiple permutation cones increases the amount

f inference one can make from the preference information. How-

ver, note that, when one has a cone generated by n vectors

f size m , the number of permutation cones to be considered

ecomes m ! n . Karsu et al. [53] introduce results to handle this

omplexity. The study also involves using a different dominance

elation than the vector dominance relation, namely the gener-

lized Lorenz dominance (also called equitable dominance ) relation,

hich is defined below. 

efinition 5. Let � z k denote the permutation of z k such that � z k :

  

k 
1 

≤ �
 z k 
2 

≤ . . . ≤ �
 z k m 

where m is the number of users. � z k is called the

rdered vector of z k . Let Q̄ (z k ) denote the cumulative ordered vec-

or of z k defined as follows: 

Q̄ (z k ) = ( ̄Q 1 (z k ) , Q̄ 2 (z k ) , . . . , Q̄ m 

(z k )) where Q̄ i (z k ) = 

∑ i 
t=1 � z k 

 i ∈ I , I = { 1 , 2 , . . . , m } . 
That is, Q̄ i (z k ) shows the total output amount provided to the

oorest i users in the distribution. 

heorem 1. Given two alternatives z 1 , z 2 ∈ R 

m , 

z 1 �GL z 
2 (z 2 generalized Lorenz dominates z 1 ) ⇐⇒ Q̄ i (z 1 ) ≤

¯
 i (z 2 ) ∀ i ∈ I [10] . 

Generalized Lorenz dominance is introduced as an extension

f the widely-known Lorenz dominance concept used in the eco-

omics literature [27] . It can be used to compare distribution vec-

ors over anonymous users even when the means of the distribu-

ions are not equal. Moreover, pairs of alternatives for which vector

ominance remains inconclusive, could be compared using gener-

lized Lorenz dominance. For example, assume that we have three

lternatives where z 1 = (12, 7, 3, 18), z 2 = (2, 7, 12, 18), and z 3 = (9, 7,

5, 5). None of the vectors is dominated in the vector dominance

ense. However, since Q̄ (z 1 )= (3, 10, 22, 40) and Q̄ (z 2 )= (2, 9, 21,

9), z 2 �GL z 
1 . Fig. 3 shows the generalized Lorenz curves of the al-

ernatives provided. It is seen that the cumulative output amount
iven to the poorest i users in z 1 is always higher than that of z 2 ;

ence the generalized Lorenz curve of z 1 is always above that of

 

2 . However, there is no dominance between z 3 and z 1 since the

wo curves intersect. 

When dealing with single benefit distributions, Karsu et al.

53] eliminate an alternative if it is generalized Lorenz dominated

y any of the permutation cones. It is proved that, rather than con-

idering all the permutation cones, it is sufficient to use the cone

enerated by the ordered versions of the generators. In order to

heck if an alternative z I is (generalized Lorenz) dominated by any

f the permutation cones the following model is solved [53] : 

aximize 

m ∑ 

h =1 

hr h −
m ∑ 

h =1 

m ∑ 

i =1 

d hi (15) 

ubject to z c i −
k −1 ∑ 

� =1 

μ� ( � z k 
i − �

 z � i ) = 

�
 z k 
i f or i = 1 , . . . , m (16) 

 h − d hi − z c i ≤ 0 f or i, h = 1 , . . . , m (17) 

k ∑ 

j=1 

�
 z I j ≤ hr h −

m ∑ 

i =1 

d hi f or h = 1 , . . . , m (18) 

 hi ≥ 0 f or i, h = 1 , . . . , m (19) 

� ≥ 0 f or � = 1 , . . . , k − 1 (20) 

here r h and d hi are auxiliary variables used to ensure that cumu-

ative ordered vector of z c is found (at optimality, hr ∗
h 

− ∑ m 

i =1 d 
∗
hi 

=
¯
 h (z c ) . Note that the model has alternate optima, r ∗

h 
= 

�
 z c 
h 

+ g,

here g is a scalar and d ∗
hi 

= 0 for i : z c 
i 

> 

�
 z c 
h 

and d ∗
hi 

= 

�
 z c 
h 

− z c 
i 
+ g

or i : z c 
i 

≤ �
 z c 
h 
. These ensure that at optimality the difference term

r ∗
h 

− ∑ m 

i =1 d 
∗
hi 

= Q̄ h (z c ) ) [54] . This model checks if there exist z c ∈
(z 1 , . . . , z k −1 ; z k ) such that Q̄ (z I ) ≤ Q̄ (z c ) . Constraint set (16) cre-

tes z c such that z c ∈ C(z 1 , . . . , z k −1 ; z k ) . Constraint set (17) to-

ether with the objective function ensures that at optimality, hr ∗
h 

−
 m 

i =1 d 
∗
hi 

= Q̄ h (z c ) and constraint set (18) guarantees that Q̄ (z I ) ≤
¯
 (z c ) . 
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Karsu et al. [53] consider ranking problems where alternatives

are allocation vectors of a single output to multiple users. We sug-

gest a further extension of the convex cone method to problems

where the alternatives are defined as matrices. We assume that

social welfare is a symmetric quasi-concave function of the bun-

dle values, which are assumed to be additive. 

We assume the DM has an equitable preference model over

the distribution vector of these bundle values, hence use the

convex cones method discussed in [53] (with the generalized

Lorenz dominance relation). The bundle values are calculated as

the weighted sum of the scaled output levels. The scaled ma-

trix a k 
s 

for an alternative a k is generated as follows: a k 
s 

i j 
= (a k 

i j 
−

min i ∈ I,k ∈ A a k i j 
) / ( max i ∈ I,k ∈ A a k i j 

− min i ∈ I,k ∈ A a k i j 
) . For the sake of sim-

plicity, from now on we use a k for the scaled levels, too. BV (b k 
i 
)

is calculated as BV (b k 
i 
) = 

∑ 

j∈ J (w j a 
k 
i j 
) . 

Then, the previous model becomes, 

maximize 

m ∑ 

h =1 

hr h −
m ∑ 

h =1 

m ∑ 

i =1 

d hi (21)

subject to z c i −
k −1 ∑ 

� =1 

μ� ( 
−−−→ 

( wa k ) i −
−−−→ 

(wa � ) i ) = 

−−−→ 

(wa k ) i f or i = 1 , . . . , m

(22)

r h − d hi − z c i ≤ 0 f or i, h = 1 , . . . , m (23)

h ∑ 

j=1 

−−−→ 

(wa I ) j ≤ hr h −
m ∑ 

i =1 

d hi f or h = 1 , . . . , m (24)

n ∑ 

j=1 

w j = 1 (25)

d hi ≥ 0 f or i, h = 1 , . . . , m (26)

w j ≥ 0 j = 1 , . . . , n (27)

μ� ≥ 0 f or � = 1 , . . . , k − 1 (28)

This model checks if there exists any z c vector on

(wa 1 , wa 2 , . . . , wa k −1 ; wa k ) , that generalized Lorenz dominates

a given alternative a I ( wa I ) for any weight value ( w ). Since the

weight vectors are also unknown, the model discussed above is

non-linear. Moreover, even when the above model is feasible we

cannot eliminate an alternative, since it could have been cone

dominated for some w vector and not dominated for others. To

be affirmative, one should ensure that alternative a I is cone domi-

nated over the entire feasible weight space. In order to handle this

non-linearity and be conclusive, we use discretization and perform

a parametric search over the entire (discretized) feasible weight

region. 

3.2.1. The convex cones algorithm 

We now describe the convex cone-based algorithm we use for

our problem setting. We will explain the algorithm for problems

with two outputs and for the case where only 2-point cones (these

are cones with only two generators) are used. It is straightfor-

ward to generalize the algorithm for problems with more than two

outputs with an appropriate discretization of the feasible weight

space. The algorithm can easily be modified if one wants to use

k -point cones (cones with k − 1 upper generators and one lower
enerator). We assume that there are N alternatives and m users

s before. In addition to the set REMAIN , which keeps the alterna-

ives not eliminated so far, we define the following sets: the set

ONES stores all the alternative pairs on which the DM provides

reference information. The set POSW 1 stores the possible weight

alues for the first output, which are compatible with the prefer-

nce information that the DM provided. Recall that we discretize

he weight space. 

lgorithm 2. 

Step 1: Initialization. CONES = ∅ . REMAIN = { a 1 , a 2 , . . . , a N } . Find

he em-dominated alternatives and remove them from REMAIN.

OSW1 = { 0 , 0 . 05 , 0 . 1 , 0 . 15 , . . . , 0 . 95 , 1 } . 
Step 2: Take new preference information from the DM us-

ng Holisticpreferenceinfo subroutine and let a U and a L indicate

referred and not-preferred alternatives, respectively. Remove a L 

rom REMAIN. If the number of alternatives in the set REMAIN is

reater than K , narrow the possible weight interval by using Nar-

owweight subroutine (if possible) and go to Step 3. Otherwise,

TOP. 

Step 3: Update CONES = { CONES } ∪ ( a U ; a L ) and remove the

one dominated alternatives from REMAIN by using Conedomi-

ancecheck subroutine. If the number of alternatives in the set

EMAIN is greater than K , go to Step 2. Otherwise, STOP. 

Let us now explain each subroutine in more detail. 

Holisticpreferenceinfo 

This subroutine is used to determine the alternatives to ask the

M for pairwise comparison. It creates an ideal alternative, IDEAL ,

uch that IDEAL i j = max ∀ k ∈ A, ∀ i ∈ I a k 
i j 

and calculates the Euclidean

istance between each alternative in set REMAIN and IDEAL . Then

he DM is asked to choose between two alternatives that have the

inimum distances. 

Narrowweight 

This subroutine is used to narrow the possible weight interval

f the first output in line with the preference information. Sup-

ose that the DM is asked to choose between two alternatives in

 

(mxn ) . Let a U be the preferred alternative and a L be the alterna-

ive which is not preferred. We eliminate the weights that satisfy

he following inequality Q̄ 

(
a U 

[
w 1 

. . . 

w n 

])
≤ Q̄ 

(
a L 

[
w 1 

. . . 

w n 

])
based

n Remark 1 . 

emark 1. If the DM prefers a U over a L , then a L cannot gener-

lized Lorenz dominate a U . Then, from the definition of general-

zed Lorenz dominance, we are sure that the following inequal-

ty Q̄ 

(
a U 

[
w 1 

. . . 

w n 

])
≤ Q̄ 

(
a L 

[
w 1 

. . . 

w n 

])
cannot hold. The weight val-

es that satisfy the above inequality should be eliminated as they

ould lead to a less preferred alternative to generalized Lorenz

ominate a more preferred one, contradicting with the assump-

ions made on the preference model. 

Conedominancecheck 

This subroutine is used to find the cone dominated alterna-

ives in the set REMAIN . The subroutine checks if a I ( wa I ) is

one dominated by any C(wa U 
′ ; wa L 

′ 
) such that (a U 

′ 
, a L 

′ 
) ∈ CONES

 w ∈ POSW 1 where a I ∈ REMAIN. To eliminate an alternative, it is

ufficient to ensure that for any weight level possible, there exists

 cone dominating the alternative. If so, that alternative is removed

rom the set REMAIN . This is repeated for all the alternatives in the

et REMAIN. 

Let us now review the steps of the Algorithm 2 for the provided

xample ( Example 2 ) where the DM tries to find the best alterna-

ive among six alternatives. We assume that the underlying social

elfare function of the DM is SW (a k ) = (0 . 7 a k 
11 

+ 0 . 3 a k 
12 

)(0 . 7 a k 
21 

+
 . 3 a k ) . 
22 
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Step 1. Checks the em-dominance relation among the alterna-

ives. It eliminates a 3 since a 4 em-dominates a 3 . 

Step 2. The DM is asked to compare a 2 and a 4 and prefers a 2 

o a 4 . This preference information eliminates a 4 and narrows the

ossible weight interval for the first output to [0.7-1]. 

Step 3. C( wa 2 ; wa 4 ) is generated for all the possible discretized

eights (0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1). The remaining alterna-

ives ( a 1 , a 5 , a 6 ) are checked if any of them is dominated using the

one-based model (described below). In this example, none of the

lternatives are dominated so no elimination can be made. 

Step 2. The DM is asked to compare a 2 and a 6 and prefers a 2 to

 

6 . This information eliminates a 6 but does not narrow the possible

eight interval any further. 

Step 3. Cones C( wa 2 ; wa 6 ) are generated and the remaining al-

ernatives ( a 1 , a 5 ) are checked for cone dominance using Cone-

ased model. a 1 is dominated by C( wa 2 ; wa 6 ) for all w , hence it

s eliminated. 

Step 2. The DM is asked to compare a 2 and a 5 and prefers a 2 to

 

5 . STOP. The algorithm returns a 2 . 

Cone-based model introduced below checks if an alternative is

n the cone dominated region for a given weight vector. Suppose

e want to check if a I is in the cone dominated region of the cone

enerated by the alternatives a U and a L . Remember that our al-

ernatives are represented by matrices. We first calculate the BV

ectors for the alternatives by using weighted sum of their output

evels. After we obtain bundle value vectors for the alternatives, we

se Cone-based model to check if a I is cone dominated. 

Cone-based model 

Assume that the DM is asked to choose between two alterna-

ives and a U represents the alternative that the DM prefers and a L 

epresents the alternative that the DM does not prefer. The follow-

ng model checks if alternative a I is in the cone dominated region

enerated by a U and a L . 

Parameters : 

�
 V L : the vector ( � V L 1 , 

�
 V L 2 , . . . , 

�
 V L m ) ∈ R m that stores ordered BVs of a L (for the 

given weight values) in an ascending manner. 
�
 V U : the vector ( � V U 1 , 

�
 V U 2 , . . . , 

�
 V U m ) ∈ R m that stores ordered BVs of a U (for the 

given weight values) in an ascending manner. 
�
 V I : the vector ( � V I 1 , 

�
 V I 2 , . . . , 

�
 V I m ) ∈ R m that stores ordered BVs of a I (for the 

given weight values) in an ascending manner. 

Variables : 

μ: the scalar for C( � V U ; � V L ). 

V c : a vector ∈ R m : V c ∈ C( � V U ; � V L ). 

r h : auxiliary variables used to ensure that the cumulative ordered vector 

of V c is found. 

d hi : auxiliary variables used to ensure that the cumulative ordered vector 

of V c is found. 

inimize 

m ∑ 

h =1 

hr h −
m ∑ 

h =1 

m ∑ 

i =1 

d hi (29) 

ubject to V 

c 
i − μ( � V 

L 
i − �

 V 

U 
i ) = 

�
 V 

L 
i f or i = 1 , . . . , m (30) 

 h − d hi − V 

c 
i ≤ 0 f or i, h = 1 , . . . , m (31) 

r h −
m ∑ 

i =1 

d hi ≥
h ∑ 

j=1 

�
 V 

I 
j f or h = 1 , . . . , m (32) 

 hi ≥ 0 f or i, h = 1 , . . . , m (33) 

≥ 0 (34) 
Constraint set (30) creates a V 

c vector in C ( V 

U ; V 

L ). Constraint

ets (31) and (32) ensure that the created V 

c generalized Lorenz

ominates V 

I by using r h and d hi auxiliary variables. Constraints

33) and (34) are non-negativity constraints. 

As discussed before, assuming a symmetric quasi-concave social

elfare function partially handles the issue of preferential inde-

endence by relaxing the additivity assumption of the UTA-based

pproach. To elaborate, recall the previous example consisting of

lternatives a 2 = 

(
5 5 
6 2 

)
and a 5 = 

(
3 5 
8 2 

)
, in which the UTA-

ased approach always gives a 2 more social value. However, there

ay be symmetric quasi-concave function forms representing dif-

erent comparisons. Consider the following types of social wel-

are functions, which are symmetric quasi-concave: additive (social

elfare is the sum of bundle values), multiplicative (social wel-

are is the product of bundle values [53] ), Rawlsian (social wel-

are is the minimum of bundle values [55] , see also [56] ), and

rdered weighted averaging (a rank-based function which gives

ore weights to worse-off users and returns a weighted sum of

he bundle values [57] ). For these two alternatives, the bundle

alue vectors become (0.5, 2 w /3) and ((0 . 5 − 2 w/ 6) , w ) , where w

s the weight of the first output. Note that we used scalarized ma-

rices when calculating these utility vectors. An additive function

ould consider the two options as equally good (as both will have

 . 5 + 2 w/ 3 as the social welfare); however, the results for the other

unctions would change depending on the weight parameter, al-

owing more flexibility. For example, when the underlying social

elfare function is taken as multiplication of bundle values, the

M would prefer a 5 over a 2 when w = 0 . 2 . The convex cone based

pproach can take such preferences into account. 

. Extensions of the UTA-based approach 

In this section we discuss some possible extensions to the UTA-

ased approach. The first extension offers an alternative way to

ncorporate the tradeoff between efficiency and equity concerns

hile the second extension relaxes the assumption that the bundle

alue functions are the same over all users. 

Note that in the UTA-based approach, where the social welfare

unction is assumed to be an additive function of the marginal val-

es, equity concerns are incorporated via assuming that the MVFs

re concave. The parameter γ controls the degree of concavity in

he MVFs (and hence the degree of inequity aversion in the dis-

ribution of outputs). Assuming a concave MVF for inequity aver-

ion is analogous to using a concave utility function for risk aver-

ion in decision making under uncertainty. As γ value increases,

he inequity-aversion increases, resulting in a potential loss in ef-

ciency. By changing the γ parameter value, one can obtain so-

utions with different levels of efficiency and observe the tradeoff

etween fairness and efficiency. 

An alternative approach would be defining equity measures and

ncorporating constraints into the models to make sure that any

hosen solution respects fairness to some degree. Such an ap-

roach would return the efficiency maximizing solution that also

atisfies the equity constraints. Note that by an efficiency maximiz-

ng solution we mean a social welfare value maximizing solution,

here the SWF is utilitarian. In this approach one can use any in-

quality measure in the constraints (see [8] for a list of measures

hat can be used). We demonstrate this method using a Rawlsian

ype inequality measure and ensure that the minimum marginal

alue enjoyed by a user at any output is larger than a predeter-

ined threshold α. Similar to the γ parameter in the previous ap-

roach, α controls how “equitable” an output distribution to the

sers should be. One can observe the tradeoff between efficiency

nd equity by iteratively increasing the threshold. 
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Table 3 

Results for UTA-based algorithm. 

N m method # of questions solution time accuracy 

avg. max avg. max 

25 3 Random 30.4 88 11.75 38.8 70% 

Ideal 8 25 5.4 14.9 80% 

Min dist 11.4 63 5.29 20.71 70% 

5 Random 29.9 99 15.9 56.28 80% 

Ideal 4 9 2.91 7.53 80% 

Min dist 31.6 97 8.07 18.81 70% 

50 3 Random 8.6 35 4.18 9.6 90% 

Ideal 1.4 3 1.23 3.41 80% 

Min dist 2.6 5 2.42 6.05 80% 

5 Random 12.6 25 14.3 43.9 80% 

Ideal 3.77 10 3.4 7.23 70% 

Min dist 3.8 9 4.99 12.37 70% 
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Similar to the UTA-based model, the following model checks

whether an alternative k can be more efficient than alternative k ′ 
( SW k − SW k ′ ≥ 0 ) while satisfying the equity constraints, given pref-

erence information. 

maximize 0 (35)

subject to (36)

constraint sets 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 

MV jT i jk 
≥ α∀ i ∈ I, j ∈ J (37)

For any pair of not-yet-eliminated alternatives k and k ′ , we

solve the above model and another version, in which SW k ′ − SW k ≥
0 is ensured in constraint (10) and MV jT 

i jk ′ ≥ α is used in con-

straint set (37) . Then, the elimination rules that are summarized

in Table 2 are used. The structure of the overall approach is the

same as the UTA-based approach, hence we do not repeat it here.

Note that, in this approach we do not assume that the MVFs are

concave, but just assume that they are increasing. We call this ap-

proach equity index based approach. 

We now discuss the second extension of the UTA-based ap-

proach. Recall that, in the approaches discussed in Section 3 , we

consider the bundle values as the decision maker’s evaluation of

the bundles, hence we assume that they do not depend on the

identities of the users. This interpretation is also used in other

studies in the literature, especially in settings where a central de-

cision maker makes the allocations [28,29] . 

The bundle value functions could also be interpreted as func-

tions representing users’ subjective satisfaction with the bundles

rather a central decision maker’s. In such cases, the above assump-

tion may be unrealistic since different users may have different

preferences over the bundles. 

We have developed an extension of the UTA-based approach,

which relaxes the assumption that the bundle value functions are

the same over all users and takes user specific marginal value

functions. Let MV i j (a k 
i j 
) represent the value derived by user i from

the allocation of the j th output in alternative k . As in the UTA-

based approach discussed in Section 3 , the bundle values are cal-

culated as the sum of marginal values and the overall social wel-

fare is the sum of bundle values. In this case, we assume that

the preference information is not provided by a central DM, rather

by the users themselves. Hence, in the algorithm, pairwise bun-

dle comparisons are requested from each user. The structure of the

overall approach is the same as the UTA-based approach: for each

pair of alternatives, we check whether one can be better than the

other given preference information, by solving a modified version

of UTA-based model with user specific marginal values. Since the

model is a straightforward extension of the UTA-based model, we

do not repeat it here. We then use Table 2 to decide whether an al-

ternative could be eliminated from further consideration. We refer

to this algorithm as user-specific UTA based approach and provide

the results of our computational experiments in Section 5 . 

5. Computational experiments 

We perform computational experiments to check the computa-

tional efficiency and the quality of the results for proposed algo-

rithms. We generate problem instances with two outputs ( n = 2 ).

We use two values for the number of alternatives ( N = 25 and N =
50 ) and two values for the number of users ( m = 3 and m = 5 ).

We create 10 problem instances for each parameter setting. The

output levels are randomly generated in the range [10–100]. The

algorithms stop when the number of remaining alternatives is less
han or equal to a pre-specified threshold value. In our experi-

ents, we set this threshold value K as K = 0 . 05 N. 

The algorithms are coded in MATLAB and solved by a dual core

Intel Core i5 2.40 GHz) computer with 8GB RAM. All models are

olved by CPLEX 12.6 and the solution times are expressed in cen-

ral processing unit (CPU) seconds. 

In these experiments, we set γ = 5 x 10 −5 , ε = 5 x 10 −4 and � =
 . 03 for the UTA-based approach. We assume that the underlying

arginal value functions are the square root function of the lev-

ls of the outputs, i.e. MV (a k 
i j 
) = 

√ 

a k 
i j 

and simulate the responses

f the DM accordingly. Table 3 summarizes the results of our ex-

eriments for the UTA-based algorithm. We report the average and

aximum values for the number of questions asked and the so-

ution time (in seconds), for each parameter setting and for each

uestion selection strategy (Random, Ideal and Minimum pairwise

istance). We also report the accuracy of the results, which is cal-

ulated as the percentage of instances in which the actual best al-

ernative is in the set of alternatives returned by the algorithm.

ote that this inaccuracy is due to the possible inconsistency be-

ween the chosen parameters dictating the functional form ( γ , ε)

nd the underlying social welfare function used for simulating the

esponses. 

For the convex cone based method, we assume 5 different un-

erlying social welfare function forms as follows: 

1. The sum of bundle values (BVs): SW s (a k ) = 

∑ m 

i =1 BV (b k 
i 
) 

2. The multiplication of BVs: SW p (a k ) = 

∏ m 

i =1 BV (b k 
i 
) 

3. The minimum of BVs (Rawlsian): SW m 

(a k ) = min ∀ i ∈ I BV (b k 
i 
) 

4. Sum of pairwise minima of BVs: SW sp (a k ) =∑ 

i,i ′ ∈ I: i � = i ′ min (BV (b k 
i 
) , BV (b k 

i ′ )) . 
5. Ordered Weighted Average (OWA) of BVs: SW o (a k ) =∑ m 

i =1 w 

owa 
i 

−→ 

B k 
i 
, where B k is the vector of bundle values of

a k and w 

owa ∈ R 

m is a nonincreasing weight vector. 

For the OWA function we take w 

owa = (0 . 5 , 0 . 3 , 0 . 2) for m =
 and w 

owa = (0 . 4 , 0 . 3 , 0 . 2 , 0 . 06 , 0 . 04) when m = 5 . In all

hese settings, a k corresponds to the scaled matrix obtained by

calarizing the elements of the original matrix. Recall that in this

pproach, BVs are calculated as BV (b k 
i 
) = (w 1 a 

k 
i 1 
) + (1 − w 1 ) a 

k 
i 2 

.

e assume 3 different underlying weights for the outputs: w 

1 =
(0 . 15 , 0 . 85) , w 

2 = (0 . 5 , 0 . 5) , and w 

3 = (0 . 85 , 0 . 15) . 

Tables 4 and 5 summarize the results of our experiments for

he convex cone based algorithm. We report the average and max-

mum values for the number of questions asked and the solution

ime (in seconds), for each parameter setting. We also report the

verage and maximum reduction (as percentage) in the weight in-

erval for the first output. Recall that in the convex cone based ap-

roach, we narrow down the possible weight interval of the bundle
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Table 4 

Convex cone results for additive, Rawlsian, and multiplicative social welfare functions. 

SWF form N m w 1 # of quest sol. time weight red. (%) 

avg. max avg. max avg. max 

SW s (a k ) = 

∑ m 
i =1 BV (b k 

i 
) 25 3 0.15 8.3 13 40.7 69.8 61 85 

0.5 5.8 9 29.5 57.1 51 90 

0.85 5.4 9 24.6 54.9 52 80 

5 0.15 9.9 13 44.2 95.0 73 95 

0.5 11.1 15 83.8 127.2 56 90 

0.85 10.2 13 61.9 126.7 68 90 

50 3 0.15 6 9 43.38 93.82 64 85 

0.5 5.7 9 43.7 91.89 58 90 

0.85 6.8 10 49.05 94.4 60 95 

5 0.15 15.4 24 304.3 634.1 74 95 

0.5 15.3 20 376.6 697.0 80 100 

0.85 14.9 18 307.0 676 65 95 

SW m (a k ) = min ∀ i ∈ I BV (b k 
i 
) 25 3 0.15 8 11 38.4 68.7 64 85 

0.5 6.3 9 31.2 52 58 95 

0.85 6 10 29.5 56.3 46 65 

5 0.15 11 15 64.9 122.4 70 90 

0.5 10.9 14 83.9 144.1 69 95 

0.85 11 14 68.0 111.3 61 100 

50 3 0.15 6.2 9 41.09 73.19 63 95 

0.5 6.9 11 59.5 102.4 66 95 

0.85 7.8 11 65.1 100.9 61 95 

5 0.15 16.3 20 275.9 637.7 77 100 

0.5 15.4 19 339.7 634.6 77 95 

0.85 14.9 17 237.7 483.6 75 90 

SW p (a k ) = 

∏ m 
i =1 BV (b k 

i 
) 25 3 0.15 8.3 12 38.8 67.48 58 75 

0.5 5.9 9 32.6 59.8 50 90 

0.85 5.9 10 29.3 68.1 49 70 

5 0.15 11.2 15 77.5 123.3 62 80 

0.5 11.2 14 93.5 139.1 62 90 

0.85 10.3 13 70.9 127.5 65 85 

50 3 0.15 6.8 10 57.3 110.8 59 80 

0.5 6.3 9 58.5 112.6 56 85 

0.85 6.1 9 43.5 79.8 64 85 

5 0.15 17.2 24 377.1 666.7 63 75 

0.5 16.4 20 394.0 681.6 71 90 

0.85 15.6 18 337.6 667.4 64 80 

Table 5 

Convex cone results for sum of pairwise minima and ordered weighted averaging (OWA) social welfare functions. 

SWF form N m w 1 # of quest sol. time weight red.(%) 

avg. max avg. max avg. max 

SW sp (a k ) = 

∑ 

i,i ′ ∈ I 
s.t. 
i � = i ′ 

min (BV (b k 
i 
) , BV (b k 

i ′ )) 25 3 0.15 8.2 11 42.0 69.7 58 75 

0.5 6.5 9 38.7 60.6 51 95 

0.85 6 10 39.2 84.7 46 65 

5 0.15 10.9 13 92.0 146.8 66 80 

0.5 11.3 14 87.8 124.5 53 95 

0.85 10.6 13 62.8 111.4 65 90 

50 3 0.15 6.3 10 50.4 78.4 61 80 

0.5 7.4 11 75.2 112.7 55 80 

0.85 7.8 11 67.0 105.9 55 80 

5 0.15 17.6 24 532.3 843.6 61 75 

0.5 16.3 20 805.6 1329.8 64 85 

0.85 15.7 18 541.9 1176.1 63 80 

SW o (a k ) = 

∑ m 
i =1 w 

owa 
i 

−→ 

B k 
i 

25 3 0.15 8.3 12 39.0 69.0 58 75 

0.5 6.7 9 33.6 56.9 47 80 

0.85 5.9 10 34.6 73.8 46 65 

5 0.15 10.9 15 78.3 113.9 66 80 

0.5 11.3 14 93.9 129.9 53 95 

0.85 10.6 13 59.9 103.6 66 90 

50 3 0.15 6.2 9 43.8 80.2 61 80 

0.5 7.3 11 70.6 105.8 57 80 

0.85 6.8 10 60.8 111.6 59 80 

5 0.15 17.6 24 385.4 638.7 61 75 

0.5 16.4 20 424.9 731.2 65 90 

0.85 15.7 18 329.5 632.4 63 80 
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Table 6 

Results of the equity index based algorithm. 

N m α Num. of questions Solution Time 

avg. max avg max 

25 3 0 70.4 85 135.71 252.66 

0.15 39 68 52.77 81.40 

0.3 15.8 38 6.52 13.29 

5 0 58 82 63.49 127.27 

0.15 32 58 15.75 38.17 

0.3 17.4 23 36.71 59.67 

50 3 0 34.2 61 90.49 188.27 

0.15 23.6 32 38.20 68.87 

0.3 2.4 5 0.82 1.21 

5 0 33 41 14.47 20.39 

0.15 14.2 31 11.02 18.66 

0.3 16.2 35 20.69 45.89 

Table 7 

Detailed analysis of the results for the m = 3 N = 25 instances. 

Instance α Alternative Total Min SW Min 

index output output score MV ij 

1 0 11 436 10 4.26 0.00 

0.15 22 424 14 4.13 0.04 

0.3 14 332 19 3.08 0.10 

2 0 4 490 32 4.80 0.24 

0.15, 0.3 6 460 39 4.46 0.31 

3 0, 0.15, 0.3 1 464 48 4.48 0.40 

4 0, 0.15 19 477 54 4.66 0.49 

0.3 23 459 53 4.46 0.48 

5 0 6 453 26 4.28 0.13 

0.15 13 445 44 4.17 0.33 

0.3 2 431 57 4.01 0.48 

Table 8 

Underlying MVFs used in the experiments for the user specific 

UTA-based algorithm. 

Set 1 Set 2 

Output 1 Output 2 Output 1 Output 2 

User 1 
√ 

1 . 5 a k 
11 

√ 

1 . 5 a k 
12 

√ 

a k 
11 

√ 

a k 
21 

User 2 
√ 

2 a k 
21 

√ 

a k 
22 

1 − e −0 . 05 a k 21 1 − e −0 . 06 a k 22 

User 3 
√ 

a k 
31 

√ 

2 a k 
32 

1 − e −0 . 01 a k 31 1 − e −0 . 02 a k 32 

User 4 
√ 

2 . 5 a k 
41 

√ 

0 . 5 a k 
42 

1 − e −0 . 03 a k 41 1 − e −0 . 04 a k 42 

User 5 
√ 

0 . 5 a k 
51 

√ 

2 . 5 a k 
52 

a k 51 a k 52 
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value function from initial interval [0–1] based on the preference

information. In these experiments we used the question selection

strategy that chooses two closest alternatives to an ideal alterna-

tive, due to its superior performance in the experiments on the

UTA-based algorithm. 

It is seen in Tables 3–5 that the number of questions asked in

the convex cone based algorithm tends to be higher compared to

the UTA-based algorithm. However, the convex cones based ap-

proach is more accurate (robust) in the sense that the true best

alternative is always returned. The accuracy and the general per-
Table 9 

Results of the user specific UTA-based algorithm. 

N m Set 1 

# of questions solution time 

avg. max avg. max accuracy

25 3 11.8 32 50.86 73.12 80% 

5 11.4 28 74.61 139.50 80% 

50 3 7.4 23 54.78 167.85 80% 

5 5.2 15 212.16 305.93 80% 
ormance of the UTA-based algorithm depends on how the param-

ters are chosen. A parameter set reducing the size of the set of

ossible marginal value functions would make more eliminations

t each iteration; hence the algorithm would terminate with rela-

ively less number of questions, sometimes at the expense of ac-

uracy. The convex cones based approach considers a larger set of

ocial welfare function forms hence more questions are asked to

each a conclusion. 

We also observe that both approaches are satisfactory in terms

f solution time as linear programming models of small-sizes are

olved. It is also observed that when the number of users increases

o 5, the number of questions asked in both algorithms increases

ith a few exceptions. 

We now discuss the results of the computational experiments

erformed to see the performance of the extensions of the UTA-

ased algorithm, which are discussed in Section 4 . Table 6 sum-

arizes the results of our experiments on the equity index based

lgorithm, in which we try to determine the social welfare maxi-

izing solution that satisfies equity constraints based on a prede-

ermined threshold α. For each parameter setting ( N and m combi-

ation), we solved 5 problem instances three times, each time with

 different α value. We use the instances that we generate for test-

ng the performance of the UTA-based and convex cone based ap-

roaches and select the comparison questions based on their dis-

ance to an ideal point as before. It is seen that the number of

uestions asked and solution time decrease as α increases. 

In Table 7 , we report detailed results of the problem instances

ith m = 3 and N = 25 . For each instance and equity threshold

evel α, we report the alternative returned as the best solution,

ts total and minimum output levels, the corresponding social wel-

are score (calculated based on the underlying marginal value func-

ions) and the minimum marginal value over all users and out-

uts. The trade-off between efficiency (SW score) and equity (the

inimum marginal value score in the chosen alternative) can be

een in the results. The algorithm returns different solutions as

changes, with a few exceptions. It can be seen that as α in-

reases, the recommended alternatives become more equitable but

his comes at the expense of efficiency. We observe a similar be-

avior in the other problem instances that are used in the compu-

ational experiments. 

We also perform computational experiments to see how the

ser-specific UTA based algorithm would work. Recall that in this

pproach, the assumption that the bundle value functions are the

ame over all users is relaxed. Therefore, the algorithm asks bun-

le comparisons to all the users and incorporates this preference

nformation into the models. In this approach we used two sets

f marginal value functions to simulate the answers to the com-

arison questions as summarized in Table 8 . We then normalized

he obtained values to make sure that the marginal value range

or each output-user pair is between 0 and 1. Table 9 summarizes

he results of our experiments. We observe that this extension re-

urns different alternatives than the UTA-based approach in most

f the test instances, as expected. We also observe an increase in

he number of questions asked and the solution time. 
Set 2 

# of questions solution time 

 avg. max avg. max accuracy 

12.6 29 68.57 79.64 80% 

13.4 24 137.71 227.44 80% 

6.2 13 67.41 158.29 80% 

6.4 12 310.30 571.84 100% 
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. Conclusion 

In this study we consider multicriteria evaluation problems in

hich a decision maker has to choose the best alternative (or a

mall subset of most preferred alternatives) among a given set of

lternatives. Each alternative represents the allocation of multiple

ypes of outputs to multiple users and is associated with a matrix,

hose columns and rows correspond to outputs and users, respec-

ively. This problem is an extension of the classical multiple criteria

hoice problem, in which alternatives are vectors. Moreover, since

here are multiple users, equity in the distribution of the outputs

cross the users is important as well as efficiency. In that sense,

he problem is an extension of the allocation problems that focus

n the distribution of a single output. 

We design two interactive algorithms that will guide the deci-

ion maker to her most preferred alternative. The first algorithm

ssumes additivity in the social welfare function, while in the sec-

nd one we (partially) relax this assumption by defining the so-

ial welfare as a symmetric quasi-concave function of the bundle

alues. The fairness concerns imply special axioms for the under-

ying preference model of the decision maker such as impartial-

ty, which means that the identities of the users are not impor-

ant and do not affect the decision, making the problem and the

olution approaches different than their counterparts in the clas-

ical multicriteria decision making literature. In the UTA-based al-

orithm we check whether an alternative can be better than an-

ther for all alternative pairs given the preference information via

inear programming models. We then reduce the set of alterna-

ives that are candidates to be the most preferred alternative. The

econd approach is based on an extension of the well-known con-

ex cones approach. Due to the fairness concerns, the method uses

eneralized Lorenz dominance instead of vector dominance while

hecking cone dominance. This method checks dominance over the

hole set of possible parameters (weights) to make robust conclu-

ions. 

We demonstrate the computational feasibility of our ap-

roaches by conducting experiments on randomly generated prob-

em instances. We observe that the UTA-based algorithm asks less

uestions but this may come at the expense of accuracy. Both al-

orithms show satisfactory performance in terms of solution time,

owever they are not directly comparable since they use different

omparison questions. 

We also propose two extensions of the UTA-based approach:

he first one offers an alternative way to model the tradeoff

etween efficiency and equity. This approach aims to find the

ost efficient solution that satisfies a predetermined equity con-

traint. The second extension considers the case where bundle

and marginal) value functions represent subjective judgments of

he users rather than a central decision maker’s, hence relaxes the

ssumption that they are the same over all users. We perform

omputational experiments to demonstrate the computational per-

ormances of these approaches and compare them to the UTA-

ased algorithm whenever possible. Future research may consider

nother hybrid approach, where equity constraints are used to

ake the trade-off between efficiency (sum of user utilities) and

airness more explicit as in the first extension, and where marginal

alue functions are defined for each output-user pair to form eval-

ation of alternatives from each beneficiary’s point of view, as in

he second extension. 

As the problem is relevant in many real life decision making

ettings, more research in this topic awaits further attention. Fu-

ure research could be performed in a few directions: In the con-

ex cone based approach, we considered problems where the num-

er of outputs and the number of users are not too large. Increas-

ng the number of outputs would significantly affect the solution

imes due to the discretization process. Further research could be
erformed for developing algorithms for larger problem instances.

ne can also consider the multicriteria design version of this prob-

em, in which the alternatives are implicitly defined by constraints

ather than given explicitly. 
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