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We study the retail location problem in a competitive linear market in which two retailers simultaneously 

choose their locations. Both retailers procure identical products from a common supplier and each con- 

sumer purchases from the closest retailer. Each retailer incurs transportation costs for inventory replen- 

ishment from the warehouse and consumer travels to the store. We consider two carbon tax schemes im- 

posed on retailers: for supply-chain-related transportation and for consumer-related transportation. Our 

analysis indicates that intense competition between retailers leads to a “minimal differentiation” equilib- 

rium, which substantially increases the total system emissions. According to our numerical experiments 

with realistic parameter values, carbon tax on supply-chain-related transportation does not affect retail 

location decisions. Carbon tax on consumer transportation, however, may effectively induce the retailers 

to approach the middle of their respective markets, reducing the total system emissions. Our analysis 

also indicates that a low carbon price, relative to market profitability, only reduces the total system profit 

without any effect on emissions. Our findings suggest that the central policymaker avoid a uniform car- 

bon price across different sources of emission and sectors with different characteristics. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Increasing concentrations of greenhouse gases (GHGs) con-

tribute to the change in global climate patterns and global warm-

ing. Carbon dioxide, methane, ozone, chlorofluorocarbons, nitrous

oxide, and water vapor are the main GHGs existing in the at-

mosphere. Anthropogenic activities such as energy consumption,

burning fossil fuels, deforestation, and transportation increase the

amount of GHGs. Since the Industrial Revolution, the atmospheric

concentration of carbon dioxide has increased by about 40%,

mostly due to the combustion of carbon-based fossil fuels, such as

coal, oil, and gasoline (Intergovernmental Panel on Climate Change

( Staff, 2014b ), and Environmental Protection Agency ( Staff, 2015 )). 

Transportation has been the second biggest source of GHG

emissions in the U.S. and Europe in 2015, with shares of 27% and

23%, respectively ( Staff, 2016a; 2016b ). In fact, in European Union,

the transportation sector emissions did not follow the same grad-

ual decline as in the other sectors, making the issue even more se-

vere, considering the aggressive target of reaching 60% lower than

the 1990 values by mid-century ( Staff, 2017 ). In the U.S., about 61%

of the total transport emissions in 2015 was produced by vehicles

of personal use whereas 23% is attributed to medium-and-heavy-
∗ Corresponding author. 
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uty trucks ( Staff, 2016a ). Similarly, the total road transport is re-

ponsible for more than 70% of Europe’s transport emissions of

014 ( Staff, 2017 ). 

Many countries, including Ireland, Australia, Chile, Sweden, Fin-

and, Great Britain, and Canada, impose carbon taxes to reduce

missions. In British Columbia, for instance, “a carbon tax is usu-

lly defined as a tax based on GHG emissions generated from

urning fuels. By reducing fuel consumption, increasing fuel ef-

ciency, using cleaner fuels and adopting new technology, busi-

esses and individuals can reduce the amount they pay in car-

on tax, or even offset it altogether” ( Staff, 2016c ). With this

rogressive carbon tax policy enforced on individuals as well as

usinesses, the per-person fuel consumption in British Columbia

ropped by 16% from 2008 to 2014, while it increased by 3% in

he rest of Canada ( Staff, 2014a ). 

Distances between a retailer and its suppliers greatly influence

he total amount of carbon emissions in the transportation do-

ain of a supply chain. But a retailer’s location also influences

he patronage to that retailer and the carbon emissions gener-

ted by consumers for their store visits. Hence the retail location

ith respect to both suppliers and consumers plays a key role in

nvironmental performance of the market. Emissions from a re-

ailer’s own supply chain, including transportation, are generally

lassified as scope 1 emissions and tend to be the focus in carbon

ootprinting or any firm-focused regulation; see, for example, Toffel

nd Sice (2011) . Alternatively, emissions that involve consumer

https://doi.org/10.1016/j.ejor.2017.10.060
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A  
ravels and further down the supply chain for a retailer are gen-

rally classified as scope 3 emissions, and not a critical concern for

etailers or policymakers. 

In this paper, we study a competitive retail location problem

nder carbon penalty for transportation, including both upstream

ransportation to warehouse and downstream consumer visits to

etailers. In a duopolistic market, by characterizing the changes in

quilibrium locations, profits, and emissions, we investigate the ef-

ectiveness of different carbon tax schemes on transportation in

he retailer’s own supply chain versus on consumer travels. We

lso compare the duopolistic market performance with a bench-

ark: a monopolist retailer that determines the locations of its

wo stores in the market. In addition, we evaluate the “emis-

ion overage” by comparing our results with the environmentally-

ptimal locations that minimize the total system emissions. In all

ettings, the retail stores procure identical products from a com-

on supplier on the unit line in a full truck-load fashion, con-

umers are distributed uniformly on the unit line, each consumer

ravels to the closest store to purchase the product, and both retail

tores sell their products at the same price. 

The retailers take into account transportation costs due to both

nventory replenishment and consumer travels in their profit cal-

ulations. Both types of transportation costs include fuel con-

umption and possible carbon emission costs. Supply-chain-related

ransportation poses a direct cost for the retailer. Consumer-

elated transportation costs also influence retailers’ profit perfor-

ance. This may arise when carbon tax is enforced on consumers

ased on their fuel consumption, and retailers subsidize consumers

hrough promotions and marketing campaigns (also known as

uniform delivered pricing”). This may also arise when retailers are

iable for consumer-related transportation emissions (i.e., scope 3

missions) and the related carbon tax. 

Through an extensive numerical study, we find that without

arbon tax enforced on transportation, retailers may choose lo-

ations that produce undesirable emission levels. Carbon tax on

onsumer-related transportation is substantially more effective in

educing total system emissions than carbon tax on supplier-

elated transportation. In many cases, supplier-related transporta-

ion tax hurts retailer profits without any effect on emissions. 

The competition intensity in the market is another critical fac-

or in determining the effectiveness of the carbon policy. Account-

bility for both types of transportation is sufficient to align the

onopolist retailer’s location decisions with emission minimiza-

ion. Even at very low carbon prices, the monopolist retailer eas-

ly achieves the minimum emission level possible in a fully func-

ional market. However, in competitive markets, emissions tend to

e substantially higher due to the “minimal differentiation” equi-

ibrium. Competing retailers respond to carbon tax only when it is

igh enough, compared to the market profitability. A low carbon

rice in competitive markets only reduces the total system profit

ithout any effect on emissions. 

Based on our findings, we recommend that the central poli-

ymaker avoid a uniform carbon price across different sources of

mission and sectors with different characteristics. By adjusted tax

evels, emissions can be effectively reduced with minimum impact

n business performance. In addition, carbon footprinting and ac-

ountability for the emissions directly involved with an organiza-

ion’s own operations (i.e., scope 1 emissions), as widely observed

n practice, may fail to be effective or useful in a retail setting. As

onfirmed by the big share of transportation in overall emissions,

nd the substantial contribution of personal vehicles to transport

missions ( Staff, 2016a ), accountability for the consumer-contact

nd recovery of consumer-related carbon taxes from retailers will

ikely be an effective strategy towards reducing GHG emissions. 

Our work is closely related with recent studies investigating the

ffect of carbon emission regulations on firms’ operational deci-
ions and the resulting emission levels. Several papers focus on

he effect of carbon policy on the decisions involved with supply

hain (e.g., Benjaafar, Li, and Daskin, 2013; Cachon, 2014; Caro, Cor-

ett, Tan, and Zuidwijk, 2013; Hoen, Tan, Fransoo, and van Houtum,

014 , and Park, Cachon, Lai, & Seshadri, 2015 ), facility location (e.g.,

slegen, Plambeck, & Taylor, 2016 ), co-products (e.g., Sunar & Plam-

eck, 2016 ), and choice of green technology (e.g., Krass, Nedorezov,

 Ovchinnikov, 2013 ). 

In this stream of literature, Cachon (2014) and Park et al.

2015) are the closest papers to ours; they both analyze the ef-

ect of carbon tax in the downstream part of a supply chain, from

he inventory replenishment of retail stores to the consumer trips

o stores. Although we share the main goal and several model-

ng assumptions with these two papers, we have significant dif-

erences in research questions, model details, and some insights.

achon (2014) considers the operational trade-offs of a monopolist

etail chain when she faces carbon tax, and examines the store lo-

ation decisions alongside the size and number of stores to offer

n an area. Unlike Cachon (2014) , we focus on the effect of car-

on tax in a competitive market. Park et al. (2015) consider both

ases of monopoly and monopolistic competition, by endogeniz-

ng consumers’ shopping frequency decisions. Unlike Park et al.

2015) , we consider perfectly substitutable staple products, i.e., de-

and in each of our retailers is purely based on its (relative) lo-

ation in the market via a Hotelling model. We find that carbon

ost should be substantially high to be effective in the competi-

ive market and taxing consumer travels is more effective than tax-

ng retailer logistics operations, contradicting with the findings of

ark et al. (2015) . 

Our research contributes to the carbon-regulated operations

anagement literature a competitive location model in which re-

ailers sell perfectly substitutable products and determine their lo-

ations in the presence of transportation costs due to both con-

umer travels and inventory replenishment from warehouse. We

rovide guidance to policymakers by characterizing the trade-off

etween the economic loss in the market versus the achieved re-

uction in emissions due to the carbon tax. We show that a possi-

le retailer liability for consumer-related transportation is a crucial

nstrument in regulating retail locations in a competitive market.

his finding calls into question the policymakers’ traditional ap-

roach of monitoring and regulating scope 1 emissions only, which

eaves scope 3 emissions unaccounted for despite their key role in

chieving emission reduction. 

Our work is also related with the competitive location litera-

ure, which is a mature research stream that can be dated back

o Hotelling (1929) . Most of this literature investigates the exis-

ence of, proposes methods to find, and/or characterizes the loca-

ion equilibria. The papers in this stream can be roughly classified

ith respect to attributes such as location space, number of firms,

xistence of non-location decisions (e.g., price, quality, or capac-

ty), pricing policy, timing of moves, demand (in)elasticity, and cus-

omer behavior. For a detailed survey and taxonomy of the com-

etitive location literature, see Eiselt, Laporte, and Thisse (1993);

iselt and Sandblom (2004); Graitson (1982); Plastria (2001); ReV-

lle and Eiselt (2005) . Location space may be merely the unit in-

erval (i.e., linear city) as we adopt in this paper (e.g., Dasci & La-

orte, 2005; D’Aspremont, Gabszewicz, & Thisse, 1979; De Palma,

insburgh, & Thisse, 1987; Granot, Granot, & Raviv, 2010; Hotelling,

929 ). The linear city model lends itself to the horizontal dif-

erentiation and product positioning problems. Location decisions

ay also take place in a multi-dimensional space (e.g., Diaz-Banez,

eredia, Pelegrin, Perez-Lantero, & Ventura, 2011 ), in a network

e.g., Buechel & Roehl, 2015; Dobson & Karmarkar, 1987; Hakimi,

983 ), or across a set of potential discrete locations (e.g., Aboolian,

erman, & Krass, 2007; Godinho & Dias, 2010; 2013; Küçükaydın,

ras, & Altınel, 2011 ). Duopolistic competition, as we study in this
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paper, has received much attention in the literature (e.g., Balvers &

Szerb, 1996; Godinho & Dias, 2013; Saiz, Hendrix, & Pelegrin, 2011 )

whereas there are also papers that study the competition between

three or more firms (e.g., Dasgupta & Maskin, 1986; Eaton & Lipsey,

1975; Rhim, Ho, & Karmarkar, 2003 ). Price, quality, or capacity de-

cisions may follow the location decisions in the problem setting

(e.g., Diaz-Banez et al., 2011; Economides, 1986; Fernandez, Salhi,

& Boglarka, 2014; Meng, Huang, & Cheu, 2009; Rhim et al., 2003;

Saiz et al., 2011 ). Transportation-related costs may be incurred by

the customer (i.e., mill pricing) (e.g., Dasci & Laporte, 2005; De

Palma et al., 1987 ), or may be incurred by the retailer in product

price (i.e., delivered pricing) (e.g., Diaz-Banez et al., 2011; Fernan-

dez et al., 2014 ). Firms may move sequentially (e.g., Granot et al.,

2010 ), simultaneously (e.g., Godinho & Dias, 2013 ), or in multiple

simultaneous stages (e.g., Neven, 1985 ). Demand may be fixed, or

may vary depending on price, distance, or an attraction attribute

determined by the firms (e.g., Granot et al., 2010; Saiz et al., 2011 ).

Customers may deterministically prefer the closest vendor, or may

be heterogeneous in nature with probabilistic location choices (e.g.,

Balvers & Szerb, 1996; Buechel & Roehl, 2015 ). 

We contribute to the competitive location literature by develop-

ing an environmental perspective on a static duopolistic linear city

location problem with uniform delivered pricing. In this setting, we

confirm the well-known “minimal differentiation” equilibrium with

exogenous prices. Through extensive numerical studies with cali-

brated parameters, we evaluate the “emission overage” due to the

competitive equilibrium, analyzing the market response in terms of

both profits and emissions to possibly non-uniform carbon prices.

This enables us to provide new insights into effective calibration of

carbon prices in a well-known problem setting. 

The remainder of the paper is organized as follows. We formu-

late our location problem in Section 2 . We present our analysis of

the duopoly and monopoly markets in Sections 3 and 4 , respec-

tively. We present and interpret our numerical results in Section 5 .

We discuss our insights and conclude the paper in Section 6 . All

proofs are contained in an online appendix. 

2. Problem formulation 

We study the location selection problem for two retailers ( i = A

and B ). Both retailers sell an identical product in a city represented

by a line segment of unit length. A continuum of consumers is uni-

formly spread over the interval [0,1]. We denote by a and b the

locations of retailers A and B on the unit line, respectively. Both

retailers source the product from a common supplier (warehouse)

located at m ∈ [0, 1] via trucks. Both retailers purchase the prod-

uct from the warehouse at the same price p m 

and sell the product

at the same price p . Without loss of generality we assume p m 

= 0 .

Total daily demand in the city is λ. Consumers travel straight lines

to the nearest retailer to their home by passenger vehicles (car) to

purchase one unit of the product. This is a standard assumption in

the literature; see, for instance, Cachon (2014); Dobson and Kar-

markar (1987); Küçükaydın et al. (2011) . We denote by λi ( a , b ) the

total daily demand in retailer i . For example, if a < b , then the total

daily demand in retailer A is 

λA (a, b) = λ

(
a + b 

2 

)

and the total daily demand in retailer B is 

λB (a, b) = λ

(
1 − a + b 

2 

)
. 

Hence there are two types of transportation that take place for

a product to be consumed: the retailer’s inventory replenishment

from the common supplier and the consumer’s travel to the re-

tailer. Both types of transportation (truck and car) lead to negative
xternalities in terms of carbon emissions. A carbon tax is enforced

o curb transportation-related emissions in the system. Both types

f transportation thus incur emission cost, in addition to the regu-

ar fuel and non-fuel costs. 

Each retailer attracts the far located consumers by compensat-

ng their transportation costs, in order to sell her products. Trans-

ortation cost per unit consumption is proportional to the distance

raveled by the consumer; the farther the consumers travel to visit

he retailer, the more emission tax and transportation cost they

ay. Each retailer thus wants to be close to the warehouse to re-

uce her replenishment costs, but also close to her consumer base

o reduce her compensation costs. 

We adopt the model in Cachon (2014) in quantifying the retail-

rs’ revenue and cost trade-offs: We define c c as the transportation

ost per unit of distance traveled by consumer per unit of product

urchased, and c t as the transportation cost per unit of distance

raveled by truck per unit of product delivered. (The subscripts

 c ’ and ‘ t ’ refer to ‘cars’ and ‘trucks,’ respectively.) Transportation

osts are influenced by the fuel efficiency of the vehicles used, the

eight of the loads they carry, and the distance they travel. Thus

e formulate c c and c t in terms of the non-fuel variable cost to

ransport the vehicle j per unit of distance ( v j ), the amount of fuel

sed to transport the vehicle j per unit of distance ( f j ), the per unit

ost of fuel ( p j ), the amount of carbon emission released by con-

umption of one unit of fuel ( e j ), the price of carbon or cost of

missions per unit released ( p e , j ), and the load carried by vehicle

 ( q j ), for j ∈ { c , t }. When the government increases the emission

axes, p e , j increases. Note that high values of p e , j motivate the re-

ailers to reduce their carbon emissions. Thus: 

 j = 

v j + f j (p j + e j p e, j ) 

q j 
for j ∈ { c, t} . 

he cost c j consists of the fuel cost 
f j (p j + e j p e, j ) 

q j 
and the non-fuel

ost 
v j 
q j 

. The fuel cost includes the price of carbon 

f j e j p e, j 

q j 
where

f j e j 
q j 

is the amount of carbon emissions. Note that when v c = p c =
 , our cost formulation would also reflect a setting where the re-

ailers do not compensate the consumers, but instead pay a carbon

ax contingent on the travel of their customers. 

Trucks can carry significantly larger quantities than cars. As a

esult, the economies of scale effect between the truck-load and

he passenger-car-load often dominates the transportation cost co-

fficients. Thus it is not restrictive to assume c c > c t . In their nu-

erical experiments Cachon (2014); Park et al. (2015) assume

 c /c t = 235 . In this study we restrict our analysis to the case with

 > c c > 2 c t . 

ssumption 1. p > c c > 2 c t . 

Last, we define d ic ( a , b ) as the average round-trip distance a

onsumer travels to retailer i and d it ( a , b ) as the length of truck’s

oute from retailer i to the warehouse. For a given warehouse lo-

ation m , the daily profit of retailer i , π i ( a , b ), can be written as 

i (a, b) = [ p − c c d ic (a, b) − c t d it (a, b) ] λi (a, b) 

for a ∈ [0 , 1] , b ∈ [0 , 1] , i ∈ { A, B } . 
The retailers’ demand and cost structures depend on their rel-

tive locations, with respect to each other and the warehouse. We

haracterize eight distinct location combinations in Table 1 ; we

ill formulate the retailers’ profit functions in each of these cases.

e define π( j) 
A 

(a, b) and π( j) 
B 

(a, b) as the profits of retailers A and

 in case (j), respectively. We below show our calculation steps to

erive π(1) 
A 

(a, b) and π(1) 
B 

(a, b) in case (1). We relegated our cal-

ulation steps to derive π( j) 
A 

(a, b) and π( j) 
B 

(a, b) in cases (2)–(8) to

he online appendix. 
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Table 1 

Eight distinct location cases in our problem formulation. 

Case (1) 0 ≤ a < b ≤ m ≤ 1 

Case (2) 0 ≤ a = b ≤ m ≤ 1 

Case (3) 0 ≤ b < a ≤ m ≤ 1 

Case (4) 0 ≤ b ≤ m < a ≤ 1 

Case (5) 0 ≤ a < m < b ≤ 1 

Case (6) 0 ≤ m ≤ a < b ≤ 1 

Case (7) 0 ≤ m < a = b ≤ 1 

Case (8) 0 ≤ m < b < a ≤ 1 
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Suppose that 0 ≤ a < b ≤ m ≤ 1 (case 1). The average round-trip

istance traveled by a consumer to retailer A is 

 Ac (a, b) = 

2 

[ ∫ a 
0 (a − t) dt + 

∫ a + b 
2 

a (t − a ) dt 

] 
a + b 

2 

= 

5 a 2 − 2 ab + b 2 

2 a + 2 b 

nd the average round-trip distance traveled by a consumer to re-

ailer B is 

 Bc (a, b) = 

2 

[ ∫ 1 
b (t − b) dt + 

∫ b 
a + b 

2 
(b − t ) dt 

] 
1 − a + b 

2 

= 

a 2 − 2 ab + 5 b 2 − 8 b + 4 

4 − 2 a − 2 b 
. 

he round-trip distance traveled by a truck from the warehouse to

etailers A and B are d At (a, b) = 2(m − a ) and d Bt (a, b) = 2(m − b) ,

espectively. Hence the daily profit of retailer A can be written as 

(1) 
A 

(a, b) = 

λp(a + b) 

2 

− λc c (5 a 2 − 2 ab + b 2 ) 

4 

−λc t (a + b)(m − a ) 

nd the daily profit of retailer B can be written as 

(1) 
B 

(a, b) = 

λp(2 − a − b) 

2 

− λc c (a 2 − 2 ab + 5 b 2 − 8 b + 4) 

4 

−λc t (2 − a − b)(m − b) . 

Table 2 exhibits the profit functions in each of our cases. In the

emainder of the paper we use the profit functions in Table 2 to

nalyze the retail location problem. In Section 3 , we consider a

ompetitive market in which the two retailers want to choose their

ocations on the unit line to maximize their individual profits. In

ection 4 , we consider a monopolist retail chain who wants to lo-

ate two of its stores, A and B respectively, on the unit line to max-

mize its total profit. 

. Competing retailers 

In this section we consider a competitive market in which the

wo retailers simultaneously choose their locations to maximize
Table 2 

Profit functions in eight distinct location cases. 

π(1) 
A 

(a, b) 2 λp(a + b) −λc c (5 a 2 −2 ab+ b 2 ) 
4 

− λc t (a + b)(m − a ) 

π(1) 
B 

(a, b) 2 λp(2 −a −b) −λc c (a 2 −2 ab+5 b 2 −8 b+4) 
4 

− λc t (2 − a − b)(m − b) 

π(2) 
A 

(a, b) λp−λc c (1 −2 a +2 a 2 ) 
2 

− λc t (m − a ) 

π(2) 
B 

(a, b) λp−λc c (1 −2 a +2 a 2 ) 
2 

− λc t (m − a ) 

π(3) 
A 

(a, b) 2 λp(2 −a −b) −λc c (b 2 −2 ab+5 a 2 −8 a +4) 
4 

− λc t (2 − a − b)(m − a ) 

π(3) 
B 

(a, b) 2 λp(a + b) −λc c (5 b 2 −2 ab+ a 2 ) 
4 

− λc t (a + b)(m − b) 

π(4) 
A 

(a, b) 2 λp(2 −a −b) −λc c (b 2 −2 ab+5 a 2 −8 a +4) 
4 

− λc t (2 − a − b)(a − m ) 

π(4) 
B 

(a, b) 2 λp(a + b) −λc c (5 b 2 −2 ab+ a 2 ) 
4 

− λc t (a + b)(m − b) 

π(5) 
A 

(a, b) 2 λp(a + b) −λc c (5 a 2 −2 ab+ b 2 ) 
4 

− λc t (a + b)(m − a ) 

π(5) 
B 

(a, b) 2 λp(2 −a −b) −λc c (a 2 −2 ab+5 b 2 −8 b+4) 
4 

− λc t (2 − a − b)(b − m ) 

π(6) 
A 

(a, b) 2 λp(a + b) −λc c (5 a 2 −2 ab+ b 2 ) 
4 

− λc t (a + b)(a − m ) 

π(6) 
B 

(a, b) 2 λp(2 −a −b) −λc c (a 2 −2 ab+5 b 2 −8 b+4) 
4 

− λc t (2 − a − b)(b − m ) 

π(7) 
A 

(a, b) λp−λc c (1 −2 a +2 a 2 ) 
2 

− λc t (a − m ) 

π(7) 
B 

(a, b) λp−λc c (1 −2 a +2 a 2 ) 
2 

− λc t (a − m ) 

π(8) 
A 

(a, b) 2 λp(2 −a −b) −λc c (b 2 −2 ab+5 a 2 −8 a +4) 
4 

− λc t (2 − a − b)(a − m ) 

π(8) 
B 

(a, b) 2 λp(a + b) −λc c (5 b 2 −2 ab+ a 2 ) 
4 

− λc t (a + b)(b − m ) 

 

 

 

 

 

 

r

S

heir individual profits. We first analytically characterize the best

esponse functions of the retailers. We then establish the Nash

quilibrium locations when the warehouse is in the middle of the

nit line, based on the contraction mapping of the best responses.

ection 5 provides further (numerical) results and insights on the

ompetitive market. 1 

Recall that the warehouse is located at point m ∈ [0, 1]. Below

e characterize the best response function of retailer A in each of

he following two scenarios: (i) when retailer B is located at point

 ≤ m and (ii) when it is located at point b > m . We assume that the

n-store price p is sufficiently large so that it is always profitable

or each retailer to stay in the market. 

First suppose that b ≤ m . Retailer A can locate herself on the

nit line so that case (1), (2), (3), or (4) in Table 1 holds. Thus

he profit of retailer A takes one of those forms in cases (1)–(4) of

able 2 . We characterize retailer A ’s optimal profit and location in

ach of cases (1)–(4), and identify its optimal location when b ≤ m

s the one that maximizes her profit across all these cases. 

• Suppose that 0 ≤ a < b ≤ m ≤ 1 (case 1). Under Assumption 1 ,

we are able to prove that retailer A ’s profit function π(1) 
A 

(a, b)

is concave in a . The unconstrained maximizer of π(1) 
A 

(a, b) is

a o 
1 

= 

p+ c c b+2 c t (b−m ) 
5 c c −4 c t 

. However, as we assume 0 ≤ a < b , retailer

A ’s optimal location and profit in case (1) are given by (
a ∗1 , π

(1) 
A 

(a ∗1 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 1 , π

(1) 
A 

(a o 1 , b) 
)

if 0 ≤ a o 1 < b (C.1.a) , (
0 , π(1) 

A 
(0 , b) 

)
if a o 1 < 0 (C.1.b), and 

∅ otherwise, i.e., a o 1 ≥ b (C.1.c). 

But condition (C.1.b) is infeasible under Assumption 1 . We de-

tail conditions (C.1.a) and (C.1.c) in the online appendix. 
• Suppose that 0 ≤ a = b ≤ m ≤ 1 (case 2). Thus: 

π(2) 
A 

(b, b) = λ

(
p − c c (1 − 2 b + 2 b 2 ) 

2 

− c t (m − b) 

)
. 

• Suppose that 0 ≤ b < a ≤ m ≤ 1 (case 3). Again, under

Assumption 1 , we are able to prove that retailer A ’s profit

function π(3) 
A 

(a, b) is concave in a . The unconstrained maxi-

mizer of π(3) 
A 

(a, b) is a o 
3 

= 

−p+ c c (4+ b)+2 c t (2+ m −b) 
5 c c +4 c t 

. However, as

we assume b < a ≤ m , retailer A ’s optimal location and profit in

case (3) are given by (
a ∗3 , π

(3) 
A 

(a ∗3 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 3 , π

(3) 
A 

(a o 3 , b) 
)

if b < a o 3 ≤ m (C.3.a) , (
m, π(3) 

A 
(m, b) 

)
if a o 3 > m (C.3.b), and 

∅ otherwise, i.e., a o 3 ≤ b (C.3.c). 

We detail conditions (C.3.a), (C.3.b), and (C.3.c) in the online ap-

pendix. 
• Suppose that 0 ≤ b ≤ m < a ≤ 1 (case 4). Again, under

Assumption 1 , we are able to prove that retailer A ’s profit

function π(4) 
A 

(a, b) is concave in a . The unconstrained maxi-

mizer of π(4) 
A 

(a, b) is a o 
4 

= 

−p+ c c (4+ b) −2 c t (2+ m −b) 
5 c c −4 c t 

. However, as

we assume m < a ≤ 1, retailer A ’s optimal location and profit in

case (4) are given by (
a ∗4 , π

(4) 
A 

(a ∗4 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 4 , π

(4) 
A 

(a o 4 , b) 
)

if m < a o 4 ≤ 1 (C.4.a) , (
1 , π(4) 

A 
(1 , b) 

)
if a o 4 > 1 (C.4.b), and 

∅ otherwise, i.e., a o ≤ m (C.4.c). 
4 

1 We also considered the competitive location problem in a three-retailer envi- 

onment. But, in this setting, no pure strategy equilibrium exists on our test bed in 

ection 5 . We thus omitted analysis of this setting from our study. 
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Table 3 

Best response of retailer A when b ≤ m . 

Best response Conditions 

a o 1 b > a o 1 ≥ 0 , π(1) 
A 

(a o 1 , b) ≥ π(2) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a o 3 > m, 1 ≥ a o 4 > m, π(1) 
A 

(a o 1 , b) ≥ max { π(3) 
A 

(m, b) , π(4) 
A 

(a o 4 , b) } 
OR m ≥ a o 3 > b, m ≥ a o 4 , π

(1) 
A 

(a o 1 , b) ≥ max { π(3) 
A 

(a o 3 , b) , π(4) 
A 

(m, b) } 
OR a o 3 > m, m ≥ a o 4 , π

(1) 
A 

(a o 1 , b) ≥ max { π(3) 
A 

(m, b) , π(4) 
A 

(m, b) } 
OR b ≥ a o 3 , m ≥ a o 4 , π

(1) 
A 

(a o 1 , b) ≥ max { π(3) 
A 

(b, b) , π(4) 
A 

(m, b) } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

a o 3 m ≥ a o 3 > b, π(3) 
A 

(a o 3 , b) ≥ π(2) 
A 

(b, b) AND 

{
b > a o 1 ≥ 0 , m ≥ a o 4 , π

(3) 
A 

(a o 3 , b) ≥ max { π(1) 
A 

(a o 1 , b) , π(4) 
A 

(m, b) } 
OR a o 1 ≥ b , m ≥ a o 4 , π

(3) 
A 

(a o 3 , b) ≥ max { π(1) 
A 

(b, b) , π(4) 
A 

(m, b) } 
}

a o 4 1 ≥ a o 4 > m, π(4) 
A 

(a o 4 , b) ≥ π(2) 
A 

(b, b) AND 

{
b > a o 1 ≥ 0 , a o 3 > m, π(4) 

A 
(a o 4 , b) ≥ max { π(1) 

A 
(a o 1 , b) , π(3) 

A 
(m, b) } 

OR a o 1 ≥ b , a o 3 > m, π(4) 
A 

(a o 4 , b) ≥ max { π(3) 
A 

(m, b) , π(1) 
A 

(b, b) } 
}

m a o 3 > m, π(3) 
A 

(m, b) ≥ π(2) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

b > a o 1 ≥ 0 , 1 ≥ a o 4 > m, π(3) 
A 

(m, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(4) 
A 

(a o 4 , b) } 
OR a o 1 ≥ b , 1 ≥ a o 4 > m, π(3) 

A 
(m, b) ≥ max { π(4) 

A 
(a o 4 , b) , π(1) 

A 
(b, b) } 

OR b > a o 1 ≥ 0 , m ≥ a o 4 , π
(3) 
A 

(m, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(4) 
A 

(m, b) } 
OR a o 1 ≥ b , m ≥ a o 4 , π

(3) 
A 

(m, b) ≥ max { π(1) 
A 

(b, b) , π(4) 
A 

(m, b) } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

b 

b > a o 1 ≥ 0 , a o 3 > m, 1 ≥ a o 4 > m, π(2) 
A 

(b, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(3) 
A 

(m, b) , π(4) 
A 

(a o 4 , b) } 
OR b > a o 1 ≥ 0 , m ≥ a o 3 > b, m ≥ a o 4 , π

(2) 
A 

(b, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(3) 
A 

(a o 3 , b) , π(4) 
A 

(m, b) } 
OR b > a o 1 ≥ 0 , a o 3 > m, m ≥ a o 4 , π

(2) 
A 

(b, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(3) 
A 

(m, b) , π(4) 
A 

(m, b) } 
OR b > a o 1 ≥ 0 , b ≥ a o 3 , m ≥ a o 4 , π

(2) 
A 

(b, b) ≥ max { π(1) 
A 

(a o 1 , b) , π(3) 
A 

(b, b) , π(4) 
A 

(m, b) } 
OR a o 1 ≥ b, a o 3 > m, 1 ≥ a o 4 > m, π(2) 

A 
(b, b) ≥ max { π(3) 

A 
(m, b) , π(4) 

A 
(a o 4 , b) , π(1) 

A 
(b, b) } 

OR a o 1 ≥ b, m ≥ a o 3 > b, m ≥ a o 4 , π
(2) 
A 

(b, b) ≥ max { π(3) 
A 

(a o 3 , b) , π(1) 
A 

(b, b) , π(4) 
A 

(m, b) } 
OR a o 1 ≥ b, a o 3 > m, m ≥ a o 4 , π

(2) 
A 

(b, b) ≥ max { π(3) 
A 

(m, b) , π(1) 
A 

(b, b) , π(4) 
A 

(m, b) } 
OR a o 1 ≥ b, b ≥ a o 3 , m ≥ a o 4 , π

(2) 
A 

(b, b) ≥ max { π(1) 
A 

(b, b) , π(3) 
A 

(b, b) , π(4) 
A 

(m, b) } 
∅ OTHERWISE 

π(1) 
A 

(b, b) = lim a → b − π
(1) 
A 

(a, b) = bλ(p − bc c − 2 c t (m − b)) , π(3) 
A 

(b, b) = lim a → b + π
(3) 
A 

(a, b) = (1 − b) λ(p − (1 − b) c c − 2 c t (m − b)) , and 

π(4) 
A 

(m, b) = lim a → m + π
(4) 
A 

(a, b) = 

λ
4 

(
2(2 − b − m ) p − c c ((m − b) 2 + 4(1 − m ) 2 ) 

)
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But condition (C.4.b) is infeasible under Assumption 1 . We de-

tail conditions (C.4.a) and (C.4.c) in the online appendix. 

Thus, given b ≤ m , we find the optimal location of retailer A (the

maximizer of retailer A ’s profit) in each of cases (1)–(4). The best

response of retailer A should give the maximum profit to retailer

A among cases (1)–(4). If the optimal location of retailer A is ∅ in

any case since the feasible region of the case is not compact, we

take into consideration the profit at the end-point that cannot be

achieved in the feasible region of that case, in our calculation of

the maximum profit among cases (1)–(4). However, if the maxi-

mum profit occurs at an end-point that cannot be achieved in the

feasible region of any case, then retailer A ’s best response becomes

∅ . Proposition 1 characterizes the best response of retailer A to re-

tailer B ’s location choice when b ≤ m . 

Proposition 1. Suppose that Assumption 1 holds and retailer B is

located at b ≤ m. Retailer A’s best response location to b is given in

Table 3 . 

Now suppose that b > m . Retailer A can locate herself on the

unit line so that case (5), (6), (7), or (8) in Table 1 holds. Thus

the profit of retailer A takes one of those forms in cases (5)–(8) of

Table 2 . We characterize retailer A ’s optimal profit and location in

each of cases (5)–(8), and identify its optimal location when b > m

as the one that maximizes her profit across all these cases. 

• Suppose that 0 ≤ a < m < b ≤ 1 (case 5). Under Assumption 1 ,

we are able to prove that retailer A ’s profit function π(5) 
A 

(a, b)

is concave in a . The unconstrained maximizer of π(5) 
A 

(a, b) is

a o 
5 

= 

p+ c c b+2 c t (b−m ) 
5 c c −4 c t 

. However, as we assume 0 ≤ a < m , retailer

A ’s optimal location and profit in case (5) are given by (
a ∗5 , π

(5) 
A 

(a ∗5 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 5 , π

(5) 
A 

(a o 5 , b) 
)

if 0 ≤ a o 5 < m (C.5.a) , (
0 , π(5) 

A 
(0 , b) 

)
if a o 5 < 0 (C.5.b), and 

∅ otherwise, i.e., a o 5 ≥ m (C.5.c). 

But condition (C.5.b) is infeasible under Assumption 1 . We de-

tail conditions (C.5.a) and (C.5.c) in the online appendix. 
• Suppose that 0 ≤ m ≤ a < b ≤ 1 (case 6). Again, under

Assumption 1 , we are able to prove that retailer A ’s profit

function π(6) 
A 

(a, b) is concave in a . The unconstrained max-

imizer of π(6) 
A 

(a, b) is a o 
6 

= 

p+ c c b+2 c t (m −b) 
5 c c +4 c t 

. However, as we

assume m ≤ a < b , retailer A ’s optimal location and profit in

case (6) are given by 

(
a ∗6 , π

(6) 
A 

(a ∗6 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 6 , π

(6) 
A 

(a o 6 , b) 
)

if m ≤ a o 6 < b (C.6.a) , (
m, π(6) 

A 
(m, b) 

)
if a o 6 < m (C.6.b), and 

∅ otherwise, i.e., a o 6 ≥ b (C.6.c). 

We detail conditions (C.6.a), (C.6.b), and (C.6.c) in the online ap-

pendix. 
• Suppose that 0 ≤ m < a = b ≤ 1 (case 7). Note that a = b in this

case. Thus: 

π(7) 
A 

(b, b) = λ

(
p − c c (1 − 2 b + 2 b 2 ) 

2 

− c t (b − m ) 

)
. 

• Suppose that 0 ≤ m < b < a ≤ 1 (case 8). Again, under

Assumption 1 , we are able to prove that retailer A ’s profit

function π(8) 
A 

(a, b) is concave in a . The unconstrained maxi-

mizer of π(8) 
A 

(a, b) is a o 
8 

= 

−p+ c c (4+ b)+2 c t (b−m −2) 
5 c c −4 c t 

. However, as

we assume b < a ≤ 1, retailer A ’s optimal location and profit in

case (8) are given by 

(
a ∗8 , π

(8) 
A 

(a ∗8 , b) 
)

= 

⎧ ⎨ 

⎩ 

(
a o 8 , π

(8) 
A 

(a o 8 , b) 
)

if b < a o 8 ≤ 1 (C.8.a) , (
1 , π(8) 

A 
(1 , b) 

)
if a o 8 > 1 (C.8.b), and 

∅ otherwise, i.e., a o 8 ≤ b (C.8.c). 

But condition (C.8.b) is infeasible under Assumption 1 . We de-

tail conditions (C.8.a) and (C.8.c) in the online appendix. 
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Table 4 

Best response of retailer A when b > m . 

Best response Conditions 

a o 5 m > a o 5 ≥ 0 , π(5) 
A 

(a o 5 , b) ≥ π(7) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

b > a o 6 ≥ m, 1 ≥ a o 8 > b, π(5) 
A 

(a o 5 , b) ≥ max { π(6) 
A 

(a o 6 , b) , π(8) 
A 

(a o 8 , b) } 
OR m > a o 6 , 1 ≥ a o 8 > b, π(5) 

A 
(a o 5 , b) ≥ max { π(6) 

A 
(m, b) , π(8) 

A 
(a o 8 , b) } 

OR b > a o 6 ≥ m, b ≥ a o 8 , π
(5) 
A 

(a o 5 , b) ≥ max { π(6) 
A 

(a o 6 , b) , π(8) 
A 

(b, b) } 
OR m > a o 6 , b ≥ a o 8 , π

(5) 
A 

(a o 5 , b) ≥ max { π(6) 
A 

(m, b) , π(8) 
A 

(b, b) } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

a o 6 b > a o 6 ≥ m, π(6) 
A 

(a o 6 , b) ≥ π(7) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

m > a o 5 ≥ 0 , 1 ≥ a o 8 > b, π(6) 
A 

(a o 6 , b) ≥ max { π(5) 
A 

(a o 5 , b) , π(8) 
A 

(a o 8 , b) } 
OR a o 5 ≥ m, 1 ≥ a o 8 > b, π(6) 

A 
(a o 6 , b) ≥ max { π(8) 

A 
(a o 8 , b) , π(5) 

A 
(m, b) } 

OR m > a o 5 ≥ 0 , b ≥ a o 8 , π
(6) 
A 

(a o 6 , b) ≥ max { π(5) 
A 

(a o 5 , b) , π(8) 
A 

(b, b) } 
OR a o 5 ≥ m, b ≥ a o 8 , π

(6) 
A 

(a o 6 , b) ≥ max { π(5) 
A 

(m, b) , π(8) 
A 

(b, b) } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

a o 8 1 ≥ a o 8 > b, π(8) 
A 

(a o 8 , b) ≥ π(7) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

m > a o 5 ≥ 0 , b > a o 6 ≥ m, π(8) 
A 

(a o 8 , b) ≥ max { π(5) 
A 

(a o 5 , b) , π(6) 
A 

(a o 6 , b) } 
OR m > a o 5 ≥ 0 , m > a o 6 , π

(8) 
A 

(a o 8 , b) ≥ max { π(5) 
A 

(a o 5 , b) , π(6) 
A 

(m, b) } 
OR a o 5 ≥ m, b > a o 6 ≥ m, π(8) 

A 
(a o 8 , b) ≥ max { π(6) 

A 
(a o 6 , b) , π(5) 

A 
(m, b) } 

OR a o 5 ≥ m, m > a o 6 , π
(8) 
A 

(a o 8 , b) ≥ max { π(6) 
A 

(m, b) , π(5) 
A 

(m, b) } 
OR a o 5 ≥ m, a o 6 ≥ b, π(8) 

A 
(a o 8 , b) ≥ max { π(5) 

A 
(m, b) , π(6) 

A 
(b, b) } 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

m m > a o 6 , π
(6) 
A 

(m, b) ≥ π(7) 
A 

(b, b) AND 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

m > a o 5 ≥ 0 , 1 ≥ a o 8 > b, π(6) 
A 

(m, b) ≥ max { π(5) 
A 

(a o 5 , b) , π(8) 
A 

(a o 8 , b) } 
OR a o 5 ≥ m, 1 ≥ a o 8 > b, π(6) 

A 
(m, b) ≥ max { π(8) 

A 
(a o 8 , b) , π(5) 

A 
(m, b) } 

OR m > a o 5 ≥ 0 , b ≥ a o 8 , π
(6) 
A 

(m, b) ≥ max { π(5) 
A 

(a o 5 , b) , π(8) 
A 

(b, b) } 
OR a o 5 ≥ m, b ≥ a o 8 , π

(6) 
A 

(m, b) ≥ max { π(5) 
A 

(m, b) , π(8) 
A 

(b, b) } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

b 

m > a o 5 ≥ 0 , b > a o 6 ≥ m, 1 ≥ a o 8 > b, π(7) 
A 

(b, b) ≥ max { π(5) 
A 

(a o 5 , b) , π(6) 
A 

(a o 6 , b) , π(8) 
A 

(a o 8 , b) } 
OR m > a o 5 ≥ 0 , m > a o 6 , 1 ≥ a o 8 > b, π(7) 

A 
(b, b) ≥ max { π(5) 

A 
(a o 5 , b) , π(6) 

A 
(m, b) , π(8) 

A 
(a o 8 , b) } 

OR m > a o 5 ≥ 0 , b > a o 6 ≥ m, b ≥ a o 8 , π
(7) 
A 

(b, b) ≥ max { π(5) 
A 

(a o 5 , b) , π(6) 
A 

(a o 6 , b) , π(8) 
A 

(b, b) } 
OR m > a o 5 ≥ 0 , m > a o 6 , b ≥ a o 8 , π

(7) 
A 

(b, b) ≥ max { π(5) 
A 

(a o 5 , b) , π(6) 
A 

(m, b) , π(8) 
A 

(b, b) } 
OR a o 5 ≥ m, b > a o 6 ≥ m, 1 ≥ a o 8 > b, π(7) 

A 
(b, b) ≥ max { π(6) 

A 
(a o 6 , b) , π(8) 

A 
(a o 8 , b) , π(5) 

A 
(m, b) } 

OR a o 5 ≥ m, m > a o 6 , 1 ≥ a o 8 > b, π(7) 
A 

(b, b) ≥ max { π(6) 
A 

(m, b) , π(8) 
A 

(a o 8 , b) , π(5) 
A 

(m, b) } 
OR a o 5 ≥ m, a o 6 ≥ b, 1 ≥ a o 8 > b, π(7) 

A 
(b, b) ≥ max { π(8) 

A 
(a o 8 , b) , π(5) 

A 
(m, b) , π(6) 

A 
(b, b) } 

OR a o 5 ≥ m, b > a o 6 ≥ m, b ≥ a o 8 , π
(7) 
A 

(b, b) ≥ max { π(6) 
A 

(a o 6 , b) , π(5) 
A 

(m, b) , π(8) 
A 

(b, b) } 
OR a o 5 ≥ m, m > a o 6 , b ≥ a o 8 , π

(7) 
A 

(b, b) ≥ max { π(6) 
A 

(m, b) , π(5) 
A 

(m, b) , π(8) 
A 

(b, b) } 
OR a o 5 ≥ m, a o 6 ≥ b, b ≥ a o 8 , π

(7) 
A 

(b, b) ≥ max { π(5) 
A 

(m, b) , π(6) 
A 

(b, b) , π(8) 
A 

(b, b) } 
∅ OTHERWISE 

π(5) 
A 

(m, b) = lim a → m − π
(5) 
A 

(a, b) = 

λ
4 

[2 p(b + m ) − c c (b 2 − 2 bm + 5 m 

2 )] , π(6) 
A 

(b, b) = lim a → b − π
(6) 
A 

(a, b) = bλ(p + 2 mc t − b(c c + 2 c t )) , and 

π(8) 
A 

(b, b) = lim a → b + π
(8) 
A 

(a, b) = λ(1 − b)(p − 2 c t (b − m ) − c c (1 − b)) . 
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Table 5 

Total profit functions for the monopolist retail chain. 

π(1) 
T 

(a, b) λ
[

p + c c 
(
2 b + ab − 1 − 3 a 2 +3 b 2 

2 

)
+ c t 

(
2 b − 2 m + a 2 − b 2 

)]
π(2) 

T 
(a, b) λ

[
p − c c 

(
a 2 − a + b 2 − b + 1 

)
− c t ( 2 m − a − b ) 

]
π(3) 

T 
(a, b) λ

[
p + c c 

(
2 a + ab − 1 − 3 a 2 +3 b 2 

2 

)
+ c t 

(
2 a − 2 m + b 2 − a 2 

)]
π(4) 

T 
(a, b) λ

[
p + c c 

(
ab + 2 a − 1 − 3 a 2 +3 b 2 

2 

)
− c t 

(
2 m (a + b − 1) − (a + b) 2 + 2 a 

)]
π(5) 

T 
(a, b) λ

[
p + c c 

(
ab + 2 b − 1 − 3 a 2 +3 b 2 

2 

)
− c t 

(
2 m (a + b − 1) − (a + b) 2 + 2 b 

)]
π(6) 

T 
(a, b) λ

[
p + c c 

(
2 b + ab − 1 − 3 a 2 +3 b 2 

2 

)
+ c t 

(
2 m − 2 b + b 2 − a 2 

)]
π(7) 

T 
(a, b) λ

[
p − c c 

(
a 2 − a + b 2 − b + 1 

)
+ c t ( 2 m − a − b ) 

]
π(8) 

T 
(a, b) λ

[
p + c c 

(
2 a + ab − 1 − 3 a 2 +3 b 2 

2 

)
+ c t 

(
2 m − 2 a + a 2 − b 2 

)]
Proposition 2 characterizes the best response of retailer A to re-

ailer B ’s location choice when b > m . 

roposition 2. Suppose that Assumption 1 holds and retailer B is

ocated at b > m. Retailer A’s best response location to b is given in

able 4 . 

Proposition 3 establishes the Nash equilibrium locations when

he warehouse is exactly in the middle of the unit line, i.e., m =
 . 5 . 

roposition 3. Suppose that Assumption 1 holds and m = 0 . 5 . 

(a) (Symmetric equilibrium.) If p ≥ 2 c c − 2 c t , then the pair of lo-

cations (0.5, 0.5) is a Nash equilibrium solution. 

(b) (Asymmetric equilibrium.) If p < 2 c c − 2 c t , then the pair of

locations 
(

c c + c t + p 
6 c c −2 c t 

, 
5 c c −3 c t −p 

6 c c −2 c t 

)
is a Nash equilibrium solution. 

When the price is sufficiently high, the market incentives dom-

nate the transportation costs in retailers’ location decisions. As a

esult, each retailer has less incentive to reduce her transportation

osts by staying close to the warehouse and her consumer base,

ut more incentive to capture more demand under competition.

he retailers thus get closer to each other in order to serve a larger

emand. Proposition 3 (a) shows that they eventually end up at

he same location in equilibrium so that the total demand is split

qually between the two retailers. When the price is sufficiently

ow, each retailer has more incentive to reduce her transportation

osts. Proposition 3 (b) states that the retailers choose asymmetric

ocations on different sides of the warehouse in equilibrium so that

ach retailer is very close to both the warehouse and her consumer

ase. 
. Monopolist retail chain 

In this section, we consider a single retail chain who wants to

ocate two of her own stores on the unit line so as to maximize

er total profit. The optimization problem of such a retail chain is

iven by 

maximize 
a,b 

πA (a, b) + πB (a, b) 

subject to 0 ≤ a, b ≤ 1 . 

e again assume that the in-store price p is sufficiently large so

hat it is always optimal to stay in the market. 

Table 5 exhibits the total profit function of the retail chain that

rises in each of the eight cases described in Section 2 : π(i ) 
T 

(a, b) is

he total profit when the stores are located at points a and b such

hat case (i) in Table 1 holds, i.e., π(i ) 
T 

(a, b) = π(i ) 
A 

(a, b) + π(i ) 
B 

(a, b) .

he total profit function, in Table 5 , is a piecewise function in both

 and b . Lemma 1 (a) shows that the total profit function is con-

inuous in both a and b . Lemma 1 (b) shows that the total profit

unction in each case (i.e., each piece) is jointly concave in a and



152 H. Dilek et al. / European Journal of Operational Research 269 (2018) 146–158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Pseudo code for steps 2–4 of Algorithm 1 in case (1). 

1: Identify the end-points of the intervals for a and b in case (1). 

The upper end-points are (a U 
1 
, b U 

1 
) = (undefined , m ) and the 

lower end-points are (a L 
1 
, b L 

1 
) = (0 , undefined ) . 

2: Find the global optima for the unconstrained problem in case 

(1). 

3: IF (a 1 , b 1 ) is in the interval of case (1), then (a 1 , b 1 ) is an op- 

timal solution in case (1). 

ELSE 

- Set b 1 = m and take the derivative of π(1) 
T 

(a, b 1 ) to find a 1 . 

IF a 1 is in the interval of case (1), then (a 1 , b 1 ) is a feasible 

solution in case (1). 

ELSEIF a 1 ≥ b 1 , no solution exists. 

ELSEIF a 1 < 0 , set a 1 = 0 to find the value π(1) 
T 

(a 1 , b 1 ) . 

END 

- Set a 1 = 0 and take the derivative of π(1) 
T 

(a 1 , b) to find b 1 . 

IF b 1 is in the interval of case (1), then (a 1 , b 1 ) is a feasible 

solution in case (1). 

ELSEIF a 1 ≥ b 1 , no solution exists. 

ELSEIF b 1 > m , set b 1 = m to find the value π(1) 
T 

(a 1 , b 1 ) . 

END 

- The end-point solution ( ̃  a 1 , ̃  b 1 ) maximizing the profit is an 

optimal solution in case (1). Set (a 1 , b 1 ) = ( ̃  a 1 , ̃  b 1 ) . 

END 

Table 6 

Parameter values used in calculation of c c and c t . Units are f j = L/ kilometer , 

e j = kg CO 2 /L, v j = $ / kilometer , p j = $ /L, q j = kg. 

f j e j v j p j q j p e , j 

Consumer ( c ) 0.111 2.325 0.0804 0.98 18 {0, 1, .., 5} 

Retailer ( t ) 0.392 2.669 0.4840 1.05 20,0 0 0 {0, 1, .., 5} 

5
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l
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(  

c  

a  

a  

(  

2 To reflect a realistic setting and the same trade-offs as in Cachon (2014) and 

Park et al. (2015) , we multiply λA ( a , b ), λB ( a , b ), d Ac ( a , b ), d Bc ( a , b ), d At ( a , b ), and 

d Bt ( a , b ) by 100 so that our location problem on the unit line is equivalent to the 

location problem on a 100 kilometer -long line. 
3 In all our instances, serving even the most distant customer has been profitable 

for both retailers. 
Lemma 1. Suppose that Assumption 1 holds. 

(a) For a given b (or a), the total profit function of a retail chain

with stores located at points a and b is continuous in a (or b). 

(b) The total profit function π(i ) 
T 

(a, b) is jointly concave in a and b

in its respective feasible region, ∀ i. 

Because the total profit functions are continuous and each piece

is jointly concave in its feasible region, we are able to develop a

solution algorithm for the optimization problem of the monopolist

retail chain: We find the optimal solution in each case by solving

the first order conditions simultaneously. If the optimal solution

is not in the interior of the feasible region, we calculate the opti-

mal solutions over the end-points of a and b that can be achieved

in the feasible region, keeping the optimal end-point solution that

yields the maximum profit. We repeat this procedure and obtain

the optimal locations and profit, if any, in each case. We then com-

pare these profits across all cases and select the point that maxi-

mizes the profit. 

Algorithm 1 below finds the optimal solutions in the interior of

the respective feasible regions across all cases and compares these

solutions, in order to compute the optimal total profit and loca-

tions. Algorithm 2 below shows the pseudo code for implementa-

tion of steps 2–4 of Algorithm 1 in case (1). See the online ap-

pendix for the pseudo codes in cases (2)–(8). Proposition 4 proves

Algorithm 1 Optimal store locations for the monopolist retail

chain. 

1: Set i = 1 . 

2: Identify the end-points of the intervals for a and b in case (i). 

3: Find the global optima for the unconstrained problem in case

(i). 

- Calculate the first order conditions of π(i ) 
T 

(a, b) . Solve these

two equations simultaneously to find the global optima

( a i , b i ) . 

4: IF ( a i , b i ) is in the interval of case (i), then ( a i , b i ) is an optimal

solution in case (i). 

ELSE 

- Find the optimal profit over the feasible region of a , at each

end-point of the interval of b that can be achieved. If an

end-point for b cannot be specified, no solution exists. 

- Find the optimal profit over the feasible region of b, at each

end-point of the interval of a that can be achieved. If an

end-point for a cannot be specified, no solution exists. 

- 
(

˜ a i , ̃  b i 
)

maximizing the profit across all feasible end-point

solutions is an optimal solution in case (i). Set ( a i , b i ) =(
˜ a i , ̃  b i 

)
. 

- If there exists no 
(

˜ a i , ̃  b i 
)
, then no solution exists in case (i). 

5: IF i < 8 , set i = i + 1 and go to step 2. 

ELSE let i ∗ = arg max i ∈{ 1 , ... , 8 } π(i ) 
T ( a i , b i ) . ( a i ∗ , b i ∗ ) are the opti-

mal locations and π(i ∗) 
T ( a i ∗ , b i ∗ ) is the optimal total profit. 

that Algorithm 1 always finds an optimal solution to the monopo-

list retail chain’s problem. 

Proposition 4. There always exists an optimal solution in the mo-

nopolist retail chain’s problem and Algorithm 1 always finds the opti-

mal solution. Algorithm 1 also minimizes the total transportation cost

of the monopolist retail chain. 

In Section 5 we numerically compare the monopoly market to

the duopoly market, in order to investigate the impacts of compe-

tition on the location decisions, and the resulting costs and emis-

sions. In Section 5 we employ Algorithm 1 to find the solution of

the monopolist retail chain’s problem. 
. Numerical experiments 

In this section, we conduct a comprehensive numerical study

o extend our theoretical results in the competitive market and

onopoly settings. We first examine the retailers’ location de-

isions with respect to the major parameters of our model, cf.

ection 5.1 . We then link these results to the total system per-

ormance measures, i.e., the total profit and emission levels, cf.

ection 5.2 . In order to better show the effects of competition, we

lot both the competitive market and monopoly solutions in the

ame figures. In our analysis we also consider a central policy-

aker whose objective is to minimize total emissions generated

ubject to the fact that every consumer purchases a product, i.e.,

he market is fully functional. We compare the competitive mar-

et and monopoly solutions to the optimal locations and emission

evels from the central policymaker’s perspective. 

We consider instances in which λ = 5 , m ∈ {0, 0.25, 0.5}, and

 ∈ {6.5, 7.5,.., 12.5}. To be as realistic as possible, we base our cal-

ulation of c c and c t on the experimental setup used by Cachon

2014) and Park et al. (2015) ; see Table 6 . 2 We also vary the

arbon prices p e , c and p e , t between 0 and 5 in a similar way

s in Park et al. (2015) ; again, see Table 6 . Both retailers gener-

te positive profits in each of our instances. 3 For the competitive

duopoly) market, we find the equilibrium locations based on the
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Fig. 2. Locations vs. carbon price for consumer travels when m = 0 . 5 . Each symbol 

“◦” indicates a location under competition, “✦ ” a location in monopoly, and “−−”

minimum-emission locations. 
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ntersection of the best responses. 4 We observed either symmetric

r asymmetric equilibrium in each of our instances. 5 Without loss

f generality, if there are two equilibria such that (a, b) = (x, y )

nd (a, b) = (y, x ) , we only present the pair with a < b . 

.1. Retail locations 

Figs. 1–3 show how the equilibrium locations in the compet-

tive market and the optimal locations in the monopoly market

ary depending on the product price ( p ), the price of carbon per

nit released from consumer transportation ( p e , c ), and the price of
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ig. 1. Locations vs. product price when m = 0 . 5 . Each symbol “◦” indicates a loca-

ion under competition, “✦ ” a location in monopoly, and “−−” minimum-emission

ocations. 

arbon per unit released from replenishment transportation ( p e , t ),

espectively. Figs. 1–3 also exhibit the locations that minimize the

otal carbon emissions in the market. Each of these figures contains

wo plots, each with different values for p e , t and/or p e , c . 

The location decisions under competition are driven by market

ncentives (demand and product price) as well as transportation

osts (from both consumer travels and inventory replenishment).

e observe from Fig. 1 (a) that, when the product price is suffi-

iently high, symmetric equilibria exist in the middle of the mar-

et, i.e., both retailers choose the same location in equilibrium. In

hese cases, as also described in Proposition 3 , the transportation

osts are relatively small compared to the product price (and mar-
4 We have a tolerance of 0.005 in our computations: If the difference is greater 

han 0.005, then the best responses do not intersect, and no equilibrium results. 
5 Equilibrium may not exist in some select cases. We observe nonexistence of 

quilibrium when c c and c t are comparable in value (which is not likely in our 

roblem setting) and the warehouse location favors one side of the market. Equi- 

ibrium always exists when m = 0 . 5 . 

F  

m  

t

R  

f  

m

in) so that the retailers’ location decisions are mainly driven by

emand. Thus, given the competitor’s location, each retailer wants

o stay as close to her competitor as possible in order to capture

 bigger market. This result is in line with the “minimal differen-

iation” equilibrium result in Hotelling (1929) : firms compete on

ocation to split the total market demand and choose the same lo-

ation, again in the middle of the market. 

Fig. 1 also indicates that as p increases, the competitive market

ransitions from asymmetric to symmetric equilibrium locations.

s the product price (and margin) dominates the transportation

osts further, demand becomes the main driver of retailers’ deci-

ions, and both retailers end up in the middle of the market in

quilibrium. Note that symmetric equilibrium always occurs in the

iddle of the market. Asymmetric equilibrium arises when the re-

ailers move toward the middle of their respective markets due to

he significant transportation costs compared to the market incen-

ives. This is when competition is less intense and the retail loca-

ions partition the market more effectively. 

The monopolist retail chain’s location decisions are only driven

y the transportation costs. Because serving the most distant cus-

omer is profitable in each of our instances, the monopolist retailer

s guaranteed to have the revenue of the whole market. The store

ocations are therefore set to minimize the transportation costs,

nd are not affected by the product price. Thus, as illustrated in

igs. 1 –3 , the store locations (0.25, 0.75) perfectly partition the

arket when the warehouse is in the middle of the market. All

hese observations lead to Remark 1 below. 

emark 1. As p increases, the competing retailers’ locations move

rom asymmetric to mid-market symmetric equilibrium, but the

onopolist retailer’s location decisions do not change. 
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Fig. 3. Locations vs. carbon price for inventory replenishment when m = 0 . 5 . Each 

symbol “◦” indicates a location under competition, “✦ ” a location in monopoly, and 

“−−” minimum-emission locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Retail locations when p e,t = 5 and p = 6 . 5 . 

Competing retailers 

p e , c m = 0 m = 0 . 25 m = 0 . 5 

0 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

1 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

2 (0.437, 0.550) (0.438, 0.550) (0.447, 0.560) 

3 (0.360, 0.630) (0.366, 0.630) (0.371, 0.630) 

4 (0.323, 0.670) (0.324, 0.670) (0.327, 0.670) 

5 (0.296, 0.700) (0.297, 0.700) (0.299, 0.700) 

Monopolist retail chain 

0 (0.243, 0.743) (0.250, 0.745) (0.257, 0.743) 

1 (0.247, 0.747) (0.250, 0.748) (0.253, 0.747) 

2 (0.24 8, 0.74 8) (0.250, 0.749) (0.252, 0.748) 

3 (0.24 9, 0.74 9) (0.250, 0.749) (0.251, 0.749) 

4 (0.24 9, 0.74 9) (0.250, 0.749) (0.251, 0.749) 

5 (0.24 9, 0.74 9) (0.250, 0.749) (0.251, 0.749) 
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Figs. 2 and 3 show the effects of increased p e , c and p e , t on

the location decisions. A high p e , c ( p e , t ) translates into a high con-

sumer (replenishment) transportation cost. Thus, as p e , c increases,

the average distance of a retailer to its customers becomes so crit-

ical that the retailers approach the middle of their respective mar-

kets. Increased p e , c therefore creates a reverse effect to that of the

market incentives and competition. As p e , t increases, the replen-

ishment distance to the warehouse (a retailer’s own supply chain

structure) becomes critical, and thus we expect the retailers to ap-

proach the warehouse. However, under the realistic parameter val-

ues listed in Table 6 , c c is significantly greater than c t . For instance,

if p e,c = p e,t = 1 , then c c = 248 . 5 and c t = 0 . 98 . This is mainly due

to the economies of scale that the retailer enjoys in making re-

plenishment runs with trucks, as opposed to individual customers

picking up their shopping list from a retailer. As a result, as p e , t in-

creases, we observe only a very slight change in location decisions

in both the monopoly and competitive market settings (see Fig. 3 ,

and Tables A.1 and A.2 in Appendix A). In the competitive market

setting, p e , t may have an effect only if the equilibrium is already

asymmetric, i.e., if the product price is low enough or the carbon

price for consumer transportation is high enough. We summarize

these observations in Remarks 2 and 3 below. 

Remark 2. As p e , c increases, (i) the retail locations move towards

the middle of their respective markets, (ii) the competing retail-

ers’ locations move from symmetric to asymmetric equilibrium,

and (iii) the monopolist retailer’s location decisions only change

slightly. 

Remark 3. As p e , t increases, the retail locations only slightly

approach the warehouse in both the competitive market and
onopoly settings, except when the equilibrium is symmetric due

o low p e , c or high p in the competitive market setting. 

Table 7 summarizes the retail locations for different warehouse

ocations when p e , t is 5, which is the highest available value in

able 6 . Similar to the effect of increased p e , t , the retail locations

nly slightly shift towards the warehouse under both settings. In

any instances only one retail location changes with the ware-

ouse location. And the warehouse location does not have an ef-

ect at all if the market is highly competitive (with high p or

ow p e , c ) and the equilibrium is symmetric. The monopolist retail

hain, however, becomes more responsive to the warehouse loca-

ion as p e , c decreases. This is because the store location decision

inimizes the sum of the two transportation costs, and thus it is

ore affected by the replenishment transportation cost if the con-

umer transportation cost is low. 

emark 4. The warehouse location only slightly affects the retail

ocation decisions in both the competitive market and monopoly

ettings. It does not affect at all when p e , c is low (or p is high) in

he competitive market setting. 

.2. Carbon emissions and carbon tax calibration 

We next compare the carbon emissions generated in the com-

etitive market and monopoly settings. We assess the impact of

he market parameters and carbon prices on the system emission

erformance. We also examine the profit loss under carbon tax

hat is enforced through increased carbon price(s). 

Table 8 compares the total emission levels with two bench-

ark cases: (1) the total emission level in the market when all

onsumers are served and the carbon price enforced on consumer

ransportation is zero, and (2) the minimum emission level that

an be achieved with two stores in the market when all consumers

re served. Our comparison with (1) yields “Reduction in Emis-

ions,” while our comparison with (2) yields “Emission Overage.”

able 8 also compares the total profit with that in case (1), in

rder to assess the negative economic implications of extra taxes

n the market. Fig. 4 shows how the total emission and profit

evels vary depending on the product price and the carbon price

nforced on replenishment transportation. ( Tables A .3 –A .5 in Ap-

endix A list the total emission and profit levels in many other

nstances.) 

Table 8 and Fig. 4 indicate that the total emission levels in the

ompetitive market are higher than those in the monopoly setting.

n fact, the monopolist retail chain achieves the minimum or near-

inimum emission levels, no matter how low the carbon prices

re. When there is no competition in the market, accountability for

onsumer travels as well as replenishment transportation is suffi-
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Fig. 4. Emission and profit levels when m = 0 . 5 and p e,c = 2 . In each instance the monopolist retailer locations yield the minimum achievable emission level. 

Table 8 

Emission and profit levels when m = 0 . 5 , p = 8 . 5 , and p e,t = 2 . Reduction in emis- 

sions (profits) gives the % reduction in the emission (profit) level when p e,c = 0 . 

Emission overage gives the % increase in the minimum achievable emission level 

when everyone in the market is served. 

Competing retailers 

p e , c Total Total Reduction in Reduction in Emission 

emissions profit emissions (%) profits (%) overage (%) 

0 358.44 3987.25 – – 98.55% 

1 358.44 3628.81 0.00% 8.99% 98.55% 

2 358.44 3270.38 0.00% 17.98% 98.55% 

3 273.87 3227.96 23.59% 19.04% 51.71% 

4 226.58 3178.77 36.79% 20.28% 25.51% 

5 203.14 3087.83 43.33% 22.56% 12.53% 

Monopolist retail chain 

0 180.54 4114.94 – – 0.01% 

1 180.53 3935.69 0.01% 4.36% 0.00% 

2 180.52 3756.69 0.01% 8.71% 0.00% 

3 180.52 3577.25 0.01% 13.07% 0.00% 

4 180.52 3398.03 0.01% 17.42% 0.00% 

5 180.52 3218.81 0.01% 21.78% 0.00% 
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ient to align the monopolist retailer’s profit objective with mini-

izing the total emission level, even when the carbon tax is virtu-

lly zero. Thus increasing the carbon tax in the monopoly setting

as no effect other than hurting the total profit. 

When the retailers compete on locations, carbon tax is nec-

ssary in reducing total carbon emissions. As we observed in

ection 5.1 , the carbon tax on consumer transportation ( p e , c ) can

ffectively induce changes in retail locations, and thus it helps re-

uce the total emission levels. Table 8 shows that p e , c has to be

igh enough compared to other parameters like p to be effective

t all. At low values, retailers prefer to ignore this additional cost

hile making their decisions and only pay their due. Hence it does

ot affect the total emissions but hurts the overall profit. Interest-

ngly, p e , c continues to be effective at the medium-to-high range:

here are no diminishing returns of carbon tax on consumer trans-

ortation. 6 Therefore, from the policymaker’s perspective, conser-

ative carbon prices may prove to be a bigger failure than aggres-

ive ones. However, the minimum profit loss under those carbon

rices that help reduce emissions is considerably high (19.04% in

able 8 ). 7 
6 Setting p e,c = 5 in Table 8 brings a 43.33% reduction in emissions but also leads 

o a 22.56% loss in profits. This alternative is more efficient than setting p e,c = 3 or 

p e,c = 4 . 
7 In our numerical experiments, the lowest carbon price for consumer travels that 

educes carbon emissions leads to a 17.15% loss in profits. This minimum profit loss 

c  

c  

i  

l  

o

w

emark 5. When sufficiently high, p e , c is effective in curbing total

arbon emissions, especially in competitive markets. If p e , c is too

ow, it only hurts profits but does not affect carbon emissions. 

The product price determines the market profitability, and con-

equently the competition intensity between the two retailers. As

lso discussed in Section 5.1 , as the market becomes more prof-

table, the retailers tend to ignore the carbon taxes and approach

ach other’s location, towards the middle of the market. As a re-

ult, the total emission levels in the competitive market increase

ith the product price. But the emission levels remain the same

hen the product price rises above a certain threshold, and the

etailers reach a symmetric equilibrium in the middle of the mar-

et. The monopolist retail chain, however, is not affected by the

roduct price since it already captures the whole demand. 

emark 6. The total carbon emission levels in the competitive

arket tend to increase with p . 

As observed in Section 5.1 , taxing replenishment transportation

hrough p e , t has virtually no effect towards reducing total emis-

ions. It may even result in a slight increase in some cases, es-

ecially when the warehouse is closer to one end of the market

nd the carbon prices are not calibrated well (for example, see

able A.4 ). The main reason behind this result is that the car-

on tax on inventory replenishment can be effectively reduced by

ull-truckload transportation decisions by retailers and takes much

ower values than that on consumer travels. This also explains why

he total profit is not affected much by p e , t . Thus the carbon tax on

he retailers’ own supply chains is mainly ineffective on both the

otal emission and profit levels. 

emark 7. Increasing p e , t has no significant effect towards reduc-

ng the total emission or profit levels. 

When the warehouse is closer to one end of the market as

pposed to being in the middle, the total traveled distance is

reater in both settings: If there is a symmetric equilibrium in

he competitive market, both retailers’ trucks should travel farther

or each replenishment. If there is an asymmetric equilibrium in

he competitive market, or in the monopoly setting, the locations

end to move towards the warehouse in order to balance the

onsumer-related and replenishment-related costs. This increases

onsumer-related transportation at the cost of a restrained rise

n replenishment transportation. Consequently the total emission

evels increase in both settings. Similar to the effect of increased
ccurs when the product price is lowest, i.e., p = 6 . 5 , and the profit loss increases 

ith the product price. 
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p e , t , the warehouse location only has a slight effect, as a result of

the economies of scale in replenishment transportation. ( Table A.5

provides evidence on the effect of the warehouse location on the

minimum emission levels that can be achieved, as well as the

emission levels in both settings.) 

Remark 8. As the warehouse favors one side of the market, the

total emission levels tend to increase but not significantly. 

The control of the total carbon emissions in a market is criti-

cal from an environmental perspective. A policymaker who wants

to minimize the carbon emissions generated can easily manage

monopoly markets. Enforcing very low carbon prices provides suf-

ficient incentives for the monopolist to choose the store loca-

tions that minimize the transportation-related emissions. Compet-

itive markets, however, are more complicated. As the product prof-

itability increases, the retailers become more inclined to ignore

emission-related negative externalities and to go after the market.

Thus the carbon tax values should be calibrated to the profitabil-

ity and competition intensity of the market. More often than not,

the carbon tax on the retailers’ own supply chains does not affect

the retailers’ location decisions and total emissions in the market.

However, the retailers are responsive to the carbon tax on con-

sumer travels when the tax values are sufficiently high. A low car-

bon tax does not reduce the total emissions at all but only drains

the total profits. Based on these observations, we recommend a tax

policy contingent on the profile of customers served to be enforced

on the retailers. Last, our numerical experiments reveal that a uni-

form carbon price across transportation types and markets is the

least effective and sometimes harmful to the businesses. 

6. Concluding remarks 

We have studied the simultaneous location problem of two re-

tailers under carbon tax in the monopoly and duopoly settings.

Location decisions are influenced by transportation costs includ-

ing carbon taxes of both replenishment trucks and consumer vehi-

cles. We also allow for heterogeneous carbon prices enforced in the

market, i.e., emission-related charges on replenishment trucks may

differ from its counterparts on consumer vehicles. We first estab-

lish the equilibrium locations in a special case of the duopoly set-

ting, and the optimal solution algorithm for the location problem

in the monopoly setting. We then evaluate the system emission

and profit levels under different carbon tax levels. 

Our analysis shows that competitive markets tend to build up

emission levels, because retailers’ decisions are dominated by mar-

ket forces instead of emission-related charges. Competing retailers

respond to carbon tax only when it is high enough. Monopolist
Table A1 

Retail locations when p = 8 . 5 and m = 0 . 5 . 

p e , c p e , t 

0 1 2 

Competing retailers 

0 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

1 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

2 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

3 (0.432, 0.570) (0.432, 0.570) (0.433, 0.570) 

4 (0.375, 0.620) (0.375, 0.620) (0.375, 0.620) 

5 (0.339, 0.660) (0.339, 0.660) (0.339, 0.660) 

Monopolist retail chain 

0 (0.251, 0.749) (0.252, 0.748) (0.254, 0.746) 

1 (0.250, 0.750) (0.251, 0.749) (0.251, 0.749) 

2 (0.250, 0.750) (0.251, 0.749) (0.251, 0.749) 

3 (0.250, 0.750) (0.250, 0.750) (0.251, 0.749) 

4 (0.250, 0.750) (0.250, 0.750) (0.251, 0.749) 

5 (0.250, 0.750) (0.250, 0.750) (0.250, 0.750) 
hains, however, can achieve the minimum emission level possible

t moderate carbon prices. We therefore conclude that reducing

missions is possible and comes at a cost, especially in competi-

ive markets. 

Taxing consumer transportation is more effective in reducing

ystem emissions than taxing transportation in supply chains. The

ain reason behind this is the economies of scale a retailer lever-

ges in managing her own operations, which renders both the

ost and emission load of replenishment transportation insignifi-

ant compared to those of consumer transportation. Thus retailers

re more responsive to carbon tax on consumer vehicles, and when

hey are responsive it also makes a difference for system emissions.

arbon tax on retail supply chains, however, is in general not effec-

ive and only drains system profits. Also note that taxing replenish-

ent transportation may induce retail locations to approach arbi-

rary warehouse locations and thus may not produce robust results

cross different markets. 

We thus recommend that the central policymaker implement a

exible regulation scheme with varying carbon prices across trans-

ortation types and markets. Such flexibility may be very use-

ul in achieving the targeted emission reduction and restraining

he profit erosion. Defining firm liabilities on emissions in rela-

ion with own operations only (scope 1) may fail to be effective

r helpful in many cases; consumer patronage of a retailer (scope

) may be the dominant source of emissions in the whole system. 

In this study we focus on the effects of competition and reg-

latory forces on retail location decisions. To concentrate on the

ocation decisions free of the interaction with other factors, we as-

ume that the two competing retailers face deterministic demand,

ell perfectly substitutable products at an exogenous market price,

t standard stores of sufficient size. Our research can be extended

o allow for random demand and positive storage costs. Intuitively,

e would expect the role of the storage costs to be similar to that

f the transportation cost for replenishment. This is because the

torage costs would enforce the retailers to shorten their replen-

shment distances (and thus lead-times) to hold less inventory. A

etailer need not keep inventory if it is at the same location as the

upplier and the replenishment leadtime is zero. Future extensions

f our research could also allow consumers to be non-uniformly

istributed over the unit line. Another direction for future research

s to extend our model to include the joint replenishment problem.

etailers might prefer to procure the items from the supplier via a

ommon truck in order to share transportation costs. 

ppendix A. Additional numerical results 
3 4 5 

(0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

(0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

(0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

(0.433, 0.570) (0.433, 0.570) (0.434, 0.570) 

(0.376, 0.620) (0.376, 0.620) (0.376, 0.620) 

(0.340, 0.660) (0.340, 0.660) (0.340, 0.660) 

(0.255, 0.745) (0.256, 0.744) (0.257, 0.743) 

(0.252, 0.748) (0.253, 0.747) (0.253, 0.747) 

(0.251, 0.749) (0.252, 0.748) (0.252, 0.748) 

(0.251, 0.749) (0.251, 0.749) (0.251, 0.749) 

(0.251, 0.749) (0.251, 0.749) (0.251, 0.749) 

(0.251, 0.749) (0.251, 0.749) (0.251, 0.749) 
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50 0) 

50 0) 

560) 

30) 

670) 

00) 

746) 

74 8) 

74 9) 

74 9) 

74 9) 

750) 
Table A2 

Retail locations when p = 6 . 5 and m = 0 . 

p e , c p e , t 

0 1 2 

Competing retailers 

0 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.

1 (0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.

2 (0.443, 0.560) (0.442, 0.650) (0.442, 0.

3 (0.368, 0.630) (0.368, 0.630) (0.367, 0.6

4 (0.325, 0.670) (0.325, 0.670) (0.324, 0.

5 (0.298, 0.700) (0.298, 0.700) (0.297, 0.7

Monopolist retail Chain 

0 (0.24 9, 0.74 9) (0.24 8, 0.74 8) (0.246, 0.

1 (0.250, 0.750) (0.24 9, 0.74 9) (0.24 9, 0.

2 (0.250, 0.750) (0.24 9, 0.74 9) (0.24 9, 0.

3 (0.250, 0.750) (0.250, 0.750) (0.24 9, 0.

4 (0.250, 0.750) (0.250, 0.750) (0.24 9, 0.

5 (0.250, 0.750) (0.250, 0.750) (0.250, 0.
Table A3 

Emission and profit levels when m = 0 . 5 . Reduction in emissions (profits)

Emission overage gives the % increase in the minimum achievable emission

p e , t p e , c Total Total 

emissions profit 

Competing retailers, p = 6 . 5 

2 0 358.44 2987.25 

2 1 358.44 2628.81 

2 2 285.90 2468.59 

2 3 221.14 2425.07 

2 4 197.63 2316.28 

2 5 187.26 2179.47 

4 0 358.44 2987.25 

4 1 358.44 2628.81 

4 2 286.47 2466.44 

4 3 221.38 2422.83 

4 4 197.75 2313.95 

4 5 187.31 2177.04 

Competing retailers, p = 8 . 5 . 

2 0 358.44 3987.25 

2 1 358.44 3628.81 

2 2 358.44 3270.38 

2 3 273.87 3227.96 

2 4 226.58 3178.77 

2 5 203.14 3087.83 

4 0 358.44 3987.25 

4 1 358.44 3628.81 

4 2 358.44 3270.38 

4 3 274.25 3225.81 

4 4 226.78 3176.57 

4 5 203.25 3085.52 

Competing retailers, p = 10 . 5 

2 0 358.44 4987.25 

2 1 358.44 4628.81 

2 2 358.44 4270.38 

2 3 353.81 3929.23 

2 4 265.60 3993.68 

2 5 228.35 3942.66 

4 0 358.44 4987.25 

4 1 358.44 4628.81 

4 2 358.44 4270.38 

4 3 348.77 3947.97 

4 4 265.88 3991.51 

4 5 228.52 3940.44 

Monopolist retail chain, p = 8 . 5 . 

2 0 180.54 4114.94 

2 1 180.53 3935.69 

2 2 180.52 3756.69 

2 3 180.52 3577.25 

2 4 180.52 3398.03 

2 5 180.52 3218.81 

4 0 180.60 4112.35 

4 1 180.53 3933.09 

4 2 180.52 3753.86 

4 3 180.52 3574.63 

4 4 180.52 3395.41 

4 5 180.52 3216.19 
3 4 5 

(0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

(0.50 0, 0.50 0) (0.50 0, 0.50 0) (0.50 0, 0.50 0) 

(0.441, 0.560) (0.440, 0.560) (0.437, 0.550) 

(0.367, 0.630) (0.366, 0.630) (0.366, 0.630) 

(0.324, 0.670) (0.324, 0.670) (0.323, 0.670) 

(0.297, 0.700) (0.297, 0.700) (0.296, 0.700) 

(0.245, 0.745) (0.24 4, 0.74 4) (0.243, 0743) 

(0.24 8, 0.74 8) (0.247, 0.747) (0.247, 0.747) 

(0.24 9, 0.74 9) (0.24 8, 0.74 8) (0.24 8, 0.74 8) 

(0.24 9, 0.74 9) (0.24 9, 0.74 9) (0.24 9, 0.74 9) 

(0.24 9, 0.74 9) (0.24 9, 0.74 9) (0.24 9, 0.74 9) 

(0.24 9, 0.74 9) (0.24 9, 0.74 9) (0.24 9, 0.74 9) 
 gives the % reduction in the emission (profit) level when p e,c = 0 . 

 level when everyone in the market is served. 

Reduction in Reduction in Emission 

emissions (%) profits (%) overage (%) 

– – 98.55% 

0.00% 12.00% 98.55% 

20.24% 17.36% 58.37% 

38.30% 18.82% 22.50% 

44.86% 22.46% 9.48% 

47.76% 27.04% 3.73% 

– – 98.55% 

0.00% 12.00% 98.55% 

20.08% 17.43% 58.69% 

38.24% 18.89% 22.63% 

44.83% 22.54% 9.54% 

47.74% 27.12% 3.76% 

– – 98.55% 

0.00% 8.99% 98.55% 

0.00% 17.98% 98.55% 

23.59% 19.04% 51.71% 

36.79% 20.28% 25.51% 

43.33% 22.56% 12.53% 

– – 98.55% 

0.00% 8.99% 98.55% 

0.00% 17.98% 98.55% 

23.49% 19.10% 51.92% 

36.73% 20.33% 25.62% 

43.30% 22.62% 12.59% 

– – 98.55% 

0.00% 7.19% 98.55% 

0.00% 14.37% 98.55% 

1.29% 21.21% 95.99% 

25.90% 19.92% 47.12% 

36.29% 20.95% 26.49% 

– – 98.55% 

0.00% 7.19% 98.55% 

0.00% 14.37% 98.55% 

2.70% 20.84% 93.20% 

25.82% 19.97% 93.20% 

36.25% 20.99% 26.59% 

- - 0.01% 

0.01% 4.36% 0.00% 

0.01% 8.71% 0.00% 

0.01% 13.07% 0.00% 

0.01% 17.42% 0.00% 

0.01% 21.78% 0.00% 

- - 0.04% 

0.04% 4.36% 0.00% 

0.04% 8.72% 0.00% 

0.04% 13.08% 0.00% 

0.04% 17.43% 0.00% 

0.04% 21.79% 0.00% 
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Table A4 

Emission levels when p = 8 . 5 . 

p e , c m p e , t 

0 1 2 3 4 5 

Competing retailers 

0 0 361.05 361.05 361.05 361.05 361.05 361.05 

0 0.25 359.75 359.75 359.75 359.75 359.75 359.75 

0 0.5 358.44 358.44 358.44 358.44 358.44 358.44 

2 0 361.05 361.05 361.05 361.05 361.05 361.05 

2 0.25 359.75 359.75 359.75 359.75 359.75 359.75 

2 0.5 358.44 358.44 358.44 358.44 358.44 358.44 

4 0 225.30 225.14 224.99 227.69 227.53 227.38 

4 0.25 224.01 223.89 226.61 226.48 226.36 226.24 

4 0.5 223.54 226.58 226.58 226.68 226.78 226.88 

Monopolist retail chain 

0 0 181.83 181.84 181.84 181.85 181.87 181.89 

0 0.25 180.53 180.53 180.53 180.53 180.54 180.55 

0 0.5 180.52 180.53 180.54 180.54 180.57 180.64 

2 0 181.83 181.83 181.83 181.83 181.83 181.83 

2 0.25 180.53 180.53 180.53 180.53 180.53 180.53 

2 0.5 180.53 180.52 180.52 180.52 180.53 180.53 

4 0 181.83 181.83 181.83 181.83 181.83 181.83 

4 0.25 180.53 180.53 180.53 180.53 180.53 180.53 

4 0.5 180.53 180.53 180.52 180.52 180.52 180.52 

Table A5 

Emission and profit levels when p = 6 . 5 and p e,t = 5 . 

p e , c m = 0 m = 0 . 25 m = 0 . 5 

Competing retailers 

0 (361.05, 2971.93) (359.75, 2979.59) (358.44, 2987.25) 

1 (361.05, 2613.50) (359.75, 2621.15) (358.44, 2628.81) 

2 (289.40, 2450.99) (288.52, 2457.47) (286.75, 2465.37) 

3 (221.68, 2416.91) (220.57, 2423.85) (221.49, 2421.72) 

4 (198.66, 2306.79) (197.45, 2313.99) (197.80, 2312.79) 

5 (188.47, 2169.16) (187.22, 2167.53) (187.34, 2175.83) 

Monopolist retail chain 

0 (181.89, 3103.36) (180.55, 3110.99) (180.64, 3111.08) 

1 (181.84, 2924.11) (180.53, 2931.76) (180.54, 2931.79) 

2 (181.83, 2744.89) (180.53, 2752.53) (180.53, 2742.56) 

3 (181.83, 2565.66) (180.53, 2573.31) (180.52, 2573.33) 

4 (181.83, 2386.44) (180.53, 2394.09) (180.52, 2394.11) 

5 (181.83, 2207.22) (180.53, 2214.88) (180.52, 2214.89) 

Minimum m = 0 m = 0 . 25 m = 0 . 5 

emission levels 181.83 180.53 180.52 
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Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.ejor.2017.10.060 . 
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