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Abstract It is commonly assumed in the optimal auction design literature that valuations of1

buyers are independently drawn from a unique distribution. In this paper we study auctions 12

under ambiguity, that is, in an environment where valuation distribution is uncertain itself,3

and present a linear programming approach to robust auction design problem with a discrete4

type space. We develop an algorithm that gives the optimal solution to the problem under5

certain assumptions when the seller is ambiguity averse with a finite prior set P and the6

buyers are ambiguity neutral with a prior f ∈ P . We also consider the case where all parties,7

the buyers and the seller, are ambiguity averse, and formulate this problem as a mixed integer8

programming problem. Then, we propose a hybrid algorithm that enables to compute an9

optimal solution for the problem in reduced time.10

Keywords Optimal auction design · Robustness · Multiple priors · Ambiguity · Linear11

programming · Mixed-integer programming12

1 Introduction13

An auction is a process of selling a single/multiple good(s). Auctions have been used since14

antiquity for selling a variety of goods. They continue to be popular not only for the sale15

of art objects but also for the sale of goods as varied as fish, tobacco, flowers and so on.16

Auctions are also used in competitive bidding for procurement in several industries where17

the bidders now try to sell their goods instead of acquiring something. Auctions have also18

been the preferred method in transferring the ownership or usage rights of public goods such19

as frequency spectrum to private hands. Therefore, determining the most profitable auction20

B Mustafa Ç. Pınar
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rule in a given context is a crucial research question of interest to both the public and private21

sectors (Klemperer 1999).22

A common aspect of auctions is the collection of bids from buyers. An auction is described23

by an allocation rule specifying who gets the object and a payment rule describing how much24

every bidder must pay. In auctions, each buyer has a valuation—willingness to pay—assigned25

to goods on sale. The major reason for holding auctions is the seller’s lack of knowledge26

about these valuations. Hence, the question is determine the rules of allocation and payment27

(e.g., in a sealed bid auction, the highest bidder wins and pays the second highest bid amount)28

that are optimal with respect to some suitable criteria (e.g., maximizing the expected revenue29

of the seller) for the party running the auction while ensuring by appropriate incentives the30

participation of bidders into the process. This endeavour is referred to as “auction design”,31

i.e., it indicates the design of the auction process. In optimal auction design literature, it is32

mostly assumed that buyers’ valuations are independently drawn from a unique distribution.33

However, in reality, it is more likely that some estimation errors occur or that one has no34

clear prior idea of the valuations of potential bidders, and thus, attaching a precise distribution35

to this valuation is a questionable approach, if not impossible. Therefore, it is a worthwhile36

research effort to optimally design auctions taking into account the uncertainty in the valuation37

distribution of bidders. This line of research is henceforth referred to as robust auction design38

in the sense that the resulting auction rules are robust against uncertainty in the valuation39

distribution which is also termed ambiguity in the economics literature. Robustness in this40

context is to yield expected revenue figures that are stable regardless of which distribution41

the valuations are drawn from.42

In this paper, we study auctions in an environment where valuation distribution comes43

from a set P of possible distributions, and introduce a linear programming approach to44

robust auction design problem where a single object is sold to potential buyers. To have a45

finite number of equations in our formulation and to take advantage of advances in modern46

optimization tools, we let the valuation distribution to be discrete as well as the set P . In47

the literature, it is shown that the decision makers may exhibit some degree of ambiguity48

averse behavior (Ellsberg 1961). Here we consider the seller to be ambiguity averse in the49

sense that she tries to maximize the worst case expected revenue. Hence, we adopt a more50

realistic approach to formulate auction design problems compared to the studies with unique51

valuation distribution assumption.52

This paper is organized as follows: Sect. 2 provides a brief literature review on auction53

design. Some important concepts related to our study are introduced. In Sect. 3 we define54

robust auction design problem when the seller is ambiguity averse and the buyers are ambigu-55

ity neutral. Note that ambiguity neutrality of buyers leads them to give the same importance56

to all possible realizations of the valuation distribution. We reformulate this problem as a57

linear programming problem. Then, we develop a simple procedure which gives the optimal58

solution under certain assumptions and state properties of the optimal mechanism. In Sect. 459

we introduce the robust auction design problem when the buyers are ambiguity averse too.60

We give a reformulation of the problem as a mixed integer programming problem. Since the61

optimal solution does not result in a recognizable mechanism we focus on efficient numerical62

solution of problem instances. To this end, we propose an efficient algorithm. We support63

our claim by computational results. Finally, we give concluding remarks in Sect. 5.64

Contributions of this paper are as follows:65

1. In Sect. 3, we give a specific and applicable optimal mechanism for the robust auction66

design problem with ambiguity averse seller and ambiguity neutral buyers under cer-67

tain assumptions, which is the only detailed optimal mechanism in the literature to our68
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knowledge. Our optimal mechanism is easy to understand due to its similarity to the69

well-known Vickrey auction, and it is reasonable and fair from participants’ perspective70

because only the winner makes a payment which never exceeds his own bid.71

2. In Sect. 4, the MIP formulation is new, to the best of our knowledge, as well as the72

algorithm. The contribution here is to render the robust auction design problem with73

ambiguity averse seller and buyers tractable in that it is solvable by existing state-of-74

the-art optimization solvers. To shorten the solution time, we propose an algorithm and75

demonstrate its usefulness by computational results.76

2 Literature review77

In this section, we give a brief literature review related to our work. For a more detailed78

review, see Klemperer (1999). We also recommend (Krishna 2009) as an introductory book.79

Since auction design can be considered as a sub-branch of economic mechanism design, we80

refer to the general reference (Hurwicz and Reiter 2006) on economic mechanism design.81

Auction design entered the economics literature relatively recently. Vickrey (1961) wrote82

the first game theoretical analysis of auctions. This was the first occurrence of well-known83

second price sealed-bid auctions in which buyers simultaneously report sealed bids to the84

seller, the highest bidder wins the object and pays the second highest bid. Today, second price85

sealed-bid auctions are also called Vickrey auctions.86

Myerson (1981) stated the Revelation Principle:87

The outcomes resulting from any equilibrium of any mechanism can be replicated by88

a truthful equilibrium of some direct mechanism.89

By the Revelation Principle, Myerson (1981) concluded that restricting attention to only90

direct mechanisms, i.e., mechanisms where all the buyers report their true valuations, does91

not cause loss of generality under certain assumptions. Utilizing this result, he also showed92

that the second price auction with a reserve price is an optimal mechanism to classical93

auction design problem when the hazard function defined as the ratio of density function to94

survival function (one minus cumulative distribution function), is monotone (Myerson 1981).95

In classical auction design problem, there is a risk neutral seller with a single good which she96

desires to sell to a number of risk neutral buyers. Each buyer has a private valuation assigned97

to the good. Buyers’ valuations are assumed to be independently drawn with respect to a98

unique continuous distribution function over a finite interval.99

In 1981, simultaneously, Myerson (1981), and Riley and Samuelson (1981) extended100

Vickrey’s results regarding expected revenue equivalence in different auctions and led to the101

famous Revenue Equivalence Principle:102

Under certain conditions, any auction mechanism that results in identical outcomes103

(i.e. allocates items to the same bidders) also generates the same expected revenue.104

Myerson (1981) also analyzed optimal auctions when the monotone hazard function and105

symmetric buyers assumptions are relaxed.106

When risk aversion is introduced to the auction design problems, the Revelation Principle107

is not valid for most of the cases. For analyses of how risk aversion affects the Revelation108

Principle and literature in risk aversion, we direct the reader to Klemperer (1999). In this109

paper, we assume that the seller and the buyers are risk neutral.110
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Recently, Vohra (2012) showed the close relationship between linear programming and111

auction design when valuations of buyers are discrete. He used standard results from lin-112

ear programming to solve a wide class of auction design problems. His work has been113

a motivation for the present paper to use linear programming in robust auction design114

problem. Furthermore, although auction problems have been widely studied in the litera-115

ture, results on robust auction design are limited due to the complexity of the problem. In116

Gilboa and Schmeidler (1989) modeled ambiguity aversion using maxmin expected util-117

ity (MMEU). In MMEU, decision maker is characterized by a utility function and a set118

of priors and the chosen act maximizes the minimal expected utility over the prior set. In119

this paper, we follow their work to formulate robust auction design problem. There have120

been few studies on auction design allowing ambiguity in prior distribution. Most of these121

studies consider some specific auctions, such as first price auction and second price auc-122

tion, rather than seeking an optimal auction (Salo and Weber 1995; Lo 1998). Bandi and123

Bertsimas (2014) studied optimal design for multi-item auction from a robust optimization124

perspective but this study is quite different from our work. Rather than specifying an ambi-125

guity set for the type distribution as done here, they treat the buyer valuations as uncertain126

parameters which are allowed to take values in some uncertainty sets designed to reflect127

the usual probability axioms in a limiting sense in an auction setting with a reservation128

price.129

Bose et al. (2006) is closer to our work. However, there are marked differences between130

Bose et al. (2006) and our work. The first difference from our approach is that the valuation131

distribution f is assumed to be continuous over a finite interval and the prior set P is infi-132

nite in Bose et al. (2006). Besides, our incentive compatibility constraints in Sect. 3 under133

multiple priors are different from theirs. This is because when Bose et al. (2006) considers134

ambiguity neutral agents, it is assumed that those agents have a unique prior. In our setting,135

we consider the problem from the sellers’ perspective and he does not have this information.136

Instead of eliminating ambiguity, we assume that ambiguity neutral agents stick with linear137

utility functions for each distribution from the prior set instead of switching to MMEU. The138

important trick is to find a mechanism which is incentive compatible for all distributions in139

the prior set since each buyer may have different distributions as their prior. Under monotone140

hazard function assumption, in Bose et al. (2006) it is proved that when the seller is ambiguity141

averse and the bidders are ambiguity neutral, an auction that fully insures the seller is in the142

set of optimal mechanisms. The theorem and proof for this result are based on the assumption143

that buyers have a unique prior; hence, an insurance mechanism is not optimal in our setting.144

In Sect. 3, we derive an optimal mechanism for robust auction design problem and claim145

that this is the unique optimal mechanism. Furthermore, since we work in a discrete type146

space and our formulations are linear and integer optimization formulations we are able to147

harness the power of modern optimization tools, which is a feature absent from Bose et al.148

(2006).149

Under certain assumptions some properties of optimal mechanism were given in Bose150

et al. (2006) when buyers are also ambiguity averse. Bose et al. (2006) showed that when151

the bidders face more ambiguity than the seller in a way that buyers’ prior set contains152

the seller’s prior set, the seller can be better off by switching to an auction providing full153

insurance to all types of bidders,1 and in general neither the first nor the second price auction154

is optimal.155

1 A full insurance mechanism is one where the ex-post pay-off of a given type of bidder does not vary with

the report of a competing bidder.
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3 Auction design problem with ambiguity averse seller156

In our problem environment, an agent knows his own valuation, and he also believes that157

others’ valuations are independently drawn from a finite and discrete type set T = {1, . . . , m}158

with respect to a probability mass function f satisfying fi > 0 for all i ∈ T . The seller is159

not sure about the maximum amount each buyer is willing to pay for the object, which we160

call valuation (type) of agent. On the other hand, the seller wishes to protect herself against161

uncertainty in the distribution of buyer valuations by specifying a discrete prior set P with a162

finite number of distributions in it. Therefore, we have a single, ambiguity averse seller with163

prior set P and n ambiguity neutral buyers (agents). Both the seller and the agents are risk164

neutral. In other words, they have linear utility functions.165

The seller desires to sell a single good to the agents. Since the seller is ambiguity averse,166

the objective is to maximize her worst case expected revenue. To formulate this problem,167

we invoke the Revelation Principle (which also holds in our case; see Bose et al. 2006), and168

restrict our attention only to direct mechanisms in which agents simultaneously report their169

true valuations. From Sect. 2, recall that the Revelation Principle states that the outcomes170

resulting from any equilibrium of any mechanism can be replicated by a truthful equilibrium171

of some direct mechanism.172

3.1 Formulation173

Before problem formulation, let us give the notation. We use t ∈ T n to denote a profile174

vector which is constructed by reports of all agents. The symbols a and p are defined to be175

allocation and payment rule, respectively.176

For an indivisible object, fractional values of continuous allocation rule variables are177

interpreted as the probability of a bidder getting the object. Obviously, in case the object178

is divisible, fractional allocation values refer to the fraction of the good. The symmetry179

assumption allows focusing on one agent, say agent 1. Therefore, we let a(i, t−1) be the180

allocation to agent 1 and p(i, t−1) be the payment done by agent 1 to the seller when he181

reports his type as i ∈ T and all other agents report t−1 ∈ T n−1. We will also use them as182

ai (t) and pi (t), allocation and payment of agent who reported type i ∈ T in profile t ∈ T n .183

The probability of agents having types that give rise to the profile t−1 is denoted by π f (t
−1)184

for all f ∈ P . The number of agents with type i in profile t is shown by ni (t).185

Interim (expected) allocations and payments are denoted accordingly:186

A f (i) =
∑

t−1∈T n−1
ai (i, t−1)π f (t

−1) ∀ f ∈ P,187

P f (i) =
∑

t−1∈T n−1
pi (i, t−1)π f (t

−1) ∀ f ∈ P.188

To clarify, A f (i) denotes expected allocation to agent 1 and P f (i) is the payment of agent189

1 if he reports type i where f ∈ P . The seller faces the following constrained maximization190

problem (opt1) over the variables A f (i), P f (i), and ai (t):191

max
A,P,a

{

min
f ∈P

∑

i∈T

fi P f (i)
}

(1)192

s.t. i A f (i) − P f (i) ≥ i A f ( j) − P f ( j) ∀i, j ∈ T ∀ f ∈ P (2)193

i A f (i) − P f (i) ≥ 0 ∀i ∈ T ∀ f ∈ P (3)194

A f (i) =
∑

t−1∈T n−1

ai

(

i, t−1
)

π f

(

t−1
)

∀i ∈ T ∀ f ∈ P (4)195
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∑

i∈T

ni (t)ai (t) ≤ 1 ∀t ∈ T n (5)196

ai (t) ≥ 0 ∀i ∈ T, ∀t ∈ T n . (6)197

The objective is to maximize the seller’s worst case expected revenue (1). I.e., since the198

seller does not know which member of P is the true valuation distribution function, she199

tries to maximize the minimum expected revenue over f ∈ P due to ambiguity aversion.200

Bidders are utility maximizers such that, given a mechanism, a bidder with true valuation i201

tries to maximize i A f ( j) − P f ( j) over j . Constraints (2) are called Bayes–Nash Incentive202

Compatibility (BNIC) constraints in the literature. These constraints ensure that, for an agent,203

misreporting the valuation will always result in expected utility which is less than or equal204

to the one when the type is truthfully reported. Note that we are only interested in direct205

mechanisms and, by BNIC, a risk neutral agent’s optimal strategy is to truthfully report his206

valuation. With constraints (3), each agent will choose to participate in the auction because207

he will gain a non-negative expected payoff in every possible outcome of profiles. This type208

of constraints is known as Individual Rationality (IR) constraints. Constraints (4) satisfy the209

consistency between interim allocations and allocation rule variables. Obviously, constraints210

(5) and (6) ensure that at most one good is allocated (whole or in part) for each profile211

outcome and no agent receives a negative amount. Next, we associate shortest path problems212

with BNIC and IR constraints to reformulate (opt1).213

3.2 Network representation214

In this section, we follow Vohra’s approach (2012), and relate to shortest path problems and215

duality theory. Consider (2) and (3). They can be rewritten as follows:216

i A f (i) − i A f ( j) ≥ P f (i) − P f ( j) ∀i, j ∈ T ∀ f ∈ P, (2)217
218

219

i A f (i) ≥ P f (i) ∀i ∈ T ∀ f ∈ P. (3)220
221

For each f ∈ P , we can associate system (2) and (3) with the following network:222

In Fig. 1, each vertex corresponds to a type in T . A dummy type with value 0—with A f (0)223

and P f (0) equal to 0 for all f ∈ P—is introduced to the network to include IR constraints224

(3.3) to the network representation. There is a directed edge of length i A f (i) − i A f ( j)225

between every ordered pair of types ( j, i).226

Fig. 1 Network of valuations
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Now, consider the following shortest path problem from vertex 0 to vertex m:227

min
∑

i∈T

∑

j∈T

(i A f (i) − i A f ( j))x j i228

s.t.
∑

j∈T

x j i −
∑

j∈T

xi j =

⎧

⎪

⎨

⎪

⎩

1 if i = m

−1 if i = 0

0 otherwise

229

xi j ∈ {0, 1} ∀i, j ∈ T .230

We can let xi j ’s take continuous values, and the optimal solution to the relaxed shortest path231

problem will still be an integer solution due to the total unimodularity property of the feasible232

set. Note that we consider the relaxed shortest path problem from this point onwards.233

For fixed interim allocation values, if we interpret P f (i)’s to be dual variables corre-234

sponding to each constraint of the shortest path problem then we observe that (2) and (3) are235

the constraints of the dual problem. Hence, system (2) and (3) is feasible if and only if the236

network has no negative length cycles. Otherwise, the shortest path problem is unbounded,237

which leads the corresponding dual problem to be infeasible.238

Theorem 1 The system (2)–(3) is feasible if and only if interim allocations are monotonic,239

i.e., if i ≤ j , then A f (i) ≤ A f ( j) for all f ∈ P .240

For a proof, see Vohra (2012). Note that to avoid negative length cycles, the length of the241

edge from i to i + 2 must be at least as large as the sum of the lengths of edges (i, i + 1)242

and (i + 1, i + 2). This implies that Fig. 1 includes all shortest paths from vertex 0 to m. We 2243

also observe that in absence of negative cycles, the shortest path from vertex 0 to i gives the244

tightest upper bound for each P f (i). Since the objective is to maximize sum of P f (i)’s with245

non-negative coefficients, it is reasonable to set them equal to their tightest upper bounds.246

Therefore, we can rewrite the objective as follows:247

∑

i∈T

fi P f (i) =
∑

i∈T

fi

i
∑

k=1

k A f (k) − k A f (k − 1) =
∑

i∈T

fi

(

i A f (i) −

i
∑

k=1

A f (k − 1)

)

248

=
∑

i∈T

fi i A f (i) − (1 − F(i))A f (i) =
∑

i∈T

fi

(

i −
1 − F(i)

fi

)

A f (i).249

250

We let ν f (i) = i − 1−F(i)
fi

. Using the development so far, (opt1) can be reformulated as251

follows:252

max
A,a

{

min
f ∈P

∑

i∈T

fiν f (i)A f (i)
}

(7)253

s.t. 0 ≤ A f (1) ≤ · · · ≤ A f (m) ∀ f ∈ P254

A f (i) =
∑

t−1∈T n−1

ai

(

i, t−1
)

π f

(

t−1
)

∀i ∈ T ∀ f ∈ P255

∑

i∈T

ni (t)ai (t) ≤ 1 ∀t ∈ T n
256

ai (t) ≥ 0 ∀i ∈ T,∀t ∈ T n . (8)257

While the objective function takes a new form in (7), monotonicity of expected allocations258

(8) replaces BNIC (2) and IR (3). Vohra’s (2012) next step is to take out allocation rule259
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variables and solve the problem only over interim allocations. However, we will take out260

interim allocations instead because otherwise, we are unable to find a useful formulation to261

ensure existence of a corresponding allocation rule.262

3.3 Projecting out expected allocations263

We shall proceed as Vohra (2012), and show that his reformulation does not ensure feasibility264

of expected allocations in our problem. Vohra uses the following theorem to reduce the auction265

design problem without ambiguity to a polymatroid optimization problem.266

Theorem 2 Border’s Theorem Vohra (2012) The expected allocation A(i) is feasible if and267

only if268

n
∑

i∈S

fi A(i) ≤ 1 −

(

∑

i /∈S

fi

)n

∀S ⊆ T .269

The proof follows from reformulating (4)–(6) as a transportation problem and standard270

maxflow-mincut characterization of feasibility (Vohra 2011). Note that in Vohra’s problem271

definition, it is assumed that buyers’ valuations depend on a unique distribution function.272

Hence, (4)–(6) refer to only one f .273

In our formulation, since expected allocations differ for each f ∈ P , we need to write274

inequalities from Border’s theorem for all distributions:275

max
A

{

min
f ∈P

∑

i∈T

fiν f (i)A f (i)
}

276

s.t. 0 ≤ A f (1) ≤ · · · ≤ A f (m) ∀ f ∈ P277

n
∑

i∈S

fi A f (i) ≤ 1 −

(

∑

i /∈S

fi

)n

∀S ⊆ T ∀ f ∈ P.278

This formulation decomposes for each f ∈ P . The solutions from the decomposed problems279

will yield several allocation rules which may not be implementable at the same time. Hence,280

this approach is not suitable for our problem of maximizing the minimum expected revenue.281

3.4 Final form of the formulation282

We take out expected allocation variables and reformulate the problem accordingly:283

max
a

{

min
f ∈P

∑

i∈T

fiν f (i)
∑

t−1∈T n−1

ai

(

i, t−1
)

π f

(

t−1
)

}

284

s.t. 0 ≤
∑

t−1∈T n−1

a1

(

1, t−1
)

π f

(

t−1
)

≤ · · · ≤
∑

t−1∈T n−1

am

(

m, t−1
)

π f

(

t−1
)

∀ f ∈P285

∑

i∈T

ni (t)ai (t) ≤ 1 ∀t ∈ T n
286

ai (t) ≥ 0 ∀i ∈ T, ∀t ∈ T n .287

288
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Introducing a new variable z, we can linearize this problem. Below, the final form of the289

formulation can be found.290

max
a,z

z (9)291

s.t. z ≤
∑

i∈T

fi

∑

t−1∈T n−1

ν f (i)ai (i, t−1)π f (i, t−1) ∀ f ∈ P (10)292

0 ≤
∑

t−1∈T n−1

a1(1, t−1)π f (t
−1) ≤ · · ·293

≤
∑

t−1∈T n−1

am(m, t−1)π f (t
−1) ∀ f ∈ P (11)294

∑

i∈T

ni (t)ai (t) ≤ 1 ∀t ∈ T n (12)295

ai (t) ≥ 0 ∀i ∈ T, ∀t ∈ T n . (13)296

This is a linear programming problem. Hence, it is easy to solve numerically using state-of-297

the-art optimization software.298

3.5 The solution approach299

In this section, we first give Propositions 1, 2 and 3 representing some basic results concerning300

the allocation rule. Theorems 3, 4 and 5 clarify the cases in which it is optimal for ambiguity301

averse buyer to stick with Second Price Auction. For other cases, we propose an algorithm302

that constructs an optimal mechanism similar to Second Price Auction.303

To derive an optimal mechanism from our final formulation, we focus on the case where304

there are two agents and the type distribution set is equal to P = { f, g}. We also assume305

that the monotone hazard condition holds, which leads ν(i) to be non-decreasing in i ∈ T . If306

we ignore monotonicity of interim allocations (11), the two propositions below and results307

stated in between hold.308

Proposition 1 Optimal allocation rule satisfies a∗
i (i, j) ≥ a∗

j ( j, i), ∀(i, j) ∈ T 2 such that309

i ≥ j .310

Proof We establish the result by analyzing coefficients of ai (i, j) and a j ( j, i) in the objective311

function:312

We aim to maximize z such that313

z ≤
∑

i∈T

∑

j∈T

fi ai (i, j)ν f (i) f j (14)314

z ≤
∑

i∈T

∑

j∈T

gi ai (i, j)νg(i)g j . (15)315

316

For arbitrary i and j , (14) and (15) can be rewritten as317

z ≤ · · · + fi f j ai (i, j)ν f (i) + fi f j a j ( j, i)ν f ( j),318

z ≤ · · · + gi g j ai (i, j)νg(i) + gi g j a j ( j, i)νg( j).319
320

Assume i ≥ j . Then ν f (i) fi f j ≥ ν f ( j) fi f j and νg(i)gi g j ≥ νg( j)gi g j , which states that321

a unit increase in ai (i, j) improves objective function by a larger quantity compared to the322

same amount of increase in a j ( j, i). Considering the constraint ai (i, j) + a j ( j, i) ≤ 1 and323
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Ann Oper Res

allocation variables being nonnegative, it is concluded that ai (i, j) ≥ a j ( j, i) ∀i ≥ j at an324

optimal solution. ⊓⊔325

In fact, it is immediate to see that this result is independent from the number of agents326

participating in the auction and the number of distribution functions contained in P . The327

interpretation is that, as expected, for a profile outcome allocating the good to the highest328

bidder is always more profitable if the monotone hazard condition holds. Note that when329

monotonicity of hazard condition fails, it is possible that the good will be allocated to a330

bidder with a lower valuation in the optimal mechanism. This results from the fact that the331

virtual valuation from a lower valuation can take a higher value than the virtual valuation332

under the highest bid.333

Remark 1 By proof of Proposition 1, we can conclude that the optimal allocation rule obeys334

a∗
j ( j, i) = 0 ∀(i, j) ∈ T 2 such that j < i since increasing ai (i, j) is always preferable to335

increasing a j ( j, i) and their sum is upper bounded by 1.336

Proposition 2 If fiν f (i) ≥ f jν f ( j) ∀(i, j) ∈ T 2 such that i ≥ j ∀ f ∈ P , the optimal337

allocation rule fulfills the condition a∗
i (i, k) ≥ a∗

j ( j, k) ∀i ≥ j .338

Proof Take arbitrary i and j .339

Case 1: i, j < k then a∗
i (i, k) = a∗

j ( j, k) = 0 by Remark 1.340

Case 2: j < k then a∗
i (i, k) ≥ a∗

j ( j, k) = 0.341

Case 3: i, j ≥ k.342

For arbitrary i and j , (14) and (15) can be rewritten as343

z ≤ · · · + fi fkai (i, k)ν f (i) + f j fka j ( j, k)ν f ( j),344

z ≤ · · · + gi gkai (i, k)νg(i) + g j gka j ( j, k)νg( j).345
346

Note that it is assumed ν f (i) fi ≥ ν f ( j) f j and νg(i)gi ≥ νg( j)g j . Since the objective347

function coefficient of ai (i, k) is higher in above equations, a unit increment in ai (i, k) leads348

to a greater improvement in objective function value than a unit increase in a j ( j, k) would.349

With the fact that both ai (i, k) and a j ( j, k) are bounded above by 1 (by Remark 1), the result350

is proved. ⊓⊔351

Although we proved Proposition 2 for two agents and two distribution functions, it is352

obvious that this result is valid for the general case. For the implication of Proposition 2,353

think of two profile outcomes where only highest bid differs and all other reported types are354

identical. If the seller allocates the good to the highest bidder which is the lowest in these355

two profile outcomes, she also sells the good in case of the second profile outcome.356

Proposition 3 If fiν f (i) ≥ f jν f ( j) ∀(i, j) ∈ T 2 such that i ≥ j , ∀ f ∈ P and hazard357

function is monotone, then optimal solution ignoring monotonicity constraints is feasible to358

the final form of the formulation.359

Proof If fiν f (i) ≥ f jν f ( j) ∀(i, j) ∈ T 2 such that i ≥ j , ∀ f ∈ P and hazard function is360

monotone, the optimal allocation rule obeys a∗
i (i, j) ≥ a∗

j ( j, i) and a∗
i (i, k) ≥ a∗

j ( j, k) for361

all (i, j) ∈ T 2 such that i ≥ j , ∀k ∈ T by Propositions 1 and 2. Hence, it is directly seen362

that monotonicity constraints (11) are satisfied. ⊓⊔363
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Theorem 3 If all ν f ’s corresponding to f ∈ P start taking non-negative values from type364

i∗ ∈ T such that365

ν f (i) ≥ 0 ∀ f ∈ P, ∀i ∈ T st. i ≥ i∗366

ν f (i) < 0 ∀ f ∈ P, ∀i ∈ T st. i < i∗367
368

then optimal solution of the final formulation has the following structure:369

a∗
i (i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i ≥ i∗ ∧ i > j

0.5 if i ≥ i∗ ∧ i = j

0 o.w.

∀(i, j) ∈ T 2.370

371

The proof follows from the following idea. If we project out the allocation rule variables372

in (opt1), and decompose the resulting formulation for each f ∈ P as explained before in373

this section, then we would obtain optimal interim allocations for each decomposed problem374

which are feasible with respect to given allocation rule in Theorem 3; see knapsack solution375

approach of Vohra (2011) for solution of decomposed subproblems. In this case, i∗ denotes376

the reserve price and the good is allocated with equal probability to the highest bidders if377

the highest bid exceeds the reserve price. To analyze the optimal structure under different378

circumstances, we make the following assumption. Note that this assumption does not cause379

loss of generality if the hazard function, and respectively, ν are monotone.380

Assumption 1 x f , xg ∈ T such that x f > xg and,381

ν f (i) is

{

nonnegative, if i ≥ x f

negative, if i < x f

382

νg(i) is

{

nonnegative, if i ≥ xg

negative, if i < xg.
383

Assumption 1 is valid for Theorems 4, 5 and 6. We introduce the following inequality as a384

useful condition:385

m
∑

i=x f

i−1
∑

j

ν f (i) fi f j +

m
∑

i=x f

0.5ν f (i) f 2
i ≤

m
∑

i=x f

i−1
∑

j

νg(i)gi g j +

m
∑

i=x f

0.5νg(i)g
2
i . (16)386

387

Theorem 4 If condition (16) is met, the optimal solution has the following structure:388

a∗
i (i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i ≥ x f ∧ i > j

0.5 if i ≥ x f ∧ i = j

0 o.w.

∀(i, j) ∈ T 2.389

390

Proof We aim to maximize the minimum expected revenue over distributions f and g.391

Solution a∗ gives the maximum expected revenue if distribution f is known to be true392

valuation distribution (Vohra 2011). Since maximum expected revenue with respect to f is393

the minimum over set P in the case of (16), a∗ is an optimal solution. ⊓⊔394

We also need the following:395

m
∑

i=xg

i−1
∑

j

ν f (i) fi f j +

m
∑

i=xg

0.5ν f (i) f 2
i ≥

m
∑

i=xg

i−1
∑

j

νg(i)gi g j +

m
∑

i=xg

0.5νg(i)g
2
i . (17)396

397
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Theorem 5 When condition (17) is satisfied, the optimal solution has the following form:398

a∗
i (i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i ≥ xg ∧ i > j

0.5 if i ≥ xg ∧ i = j

0 o.w.

∀(i, j) ∈ T 2.399

400

Proof Solution a∗ gives the maximum expected revenue for the distribution g (Vohra 2011)401

which is the minimum in the case of (17). ⊓⊔402

Now, we propose Algorithm 1 to find the optimal solution to the robust auction design problem403

with ambiguity averse seller when (16) and (17) fail to hold. Algorithm 1 is instrumental in404

proving the structural form of the optimal auction mechanism.405

During initialization, Algorithm 1 fixes a∗ for profile outcomes in which both ν f and406

νg values of the highest bid reported are nonnegative and leads to an allocation rule that407

allocates the good to the highest bidders with equal probability. All other allocation variables408

take initial value 0. The algorithm calculates right hand side values of (10) with the initial409

a∗ as obj f and objg . If obj f is lower than or equal to objg then the algorithm stops at the410

current solution. The algorithm also determines Ŵ(t) values for t profile outcomes such that411

ν f is negative but νg takes a value greater than or equal to 0 at the highest bid reported.412

If there is no such t profile, the algorithm again stops at the current solution. Otherwise, at413

step 2, Algorithm 1 checks whether the objective value z can be improved. Starting from414

minimum Ŵ(t) value over t profile outcomes as described before, the algorithm changes a∗
415

in such a way that the highest bid in t wins the object and continues with a profile giving416

the next minimum Ŵ(t) value until obj f is equal to objg or all allocation variables are set417

to their upper bound (equal to 1) for all t profiles. The procedure is clearly polynomial. The418

next result shows correctness of Algorithm 1.419

Theorem 6 If neither (16) nor (17) hold, Algorithm 1 gives an optimal solution when ν f (i) fi420

and νg(i)gi are non-decreasing in i ∈ T and hazard function is monotone.421

Proof Assume that a∗ from the algorithm violates monotonicity of interim allocations. Then422

∃i such that at least one of
∑m

j=1 a∗
i−1(i − 1, j) f j >

∑m
j=1 a∗

i (i, j) f j or
∑m

j=1 a∗
i−1(i −423

1, j)g j >
∑m

j=1 a∗
i (i, j)g j holds. Note that f j and g j are positive ∀ j ∈ T . Once we prove424

that a∗
i (i, j) ≥ a∗

i−1(i − 1, j) ∀ j ∈ T , this creates a contradiction.425

For arbitrary j ∈ T , consider Ŵ(i, j) and Ŵ(i − 1, j). By assumption, vg(i)gi g j ≥426

vg(i − 1)gi−1g j ≥ 0 and 0 ≥ v f (i) fi f j ≥ v f (i − 1) fi−1 f j . Therefore, we should have427

Ŵ(i, j) ≤ Ŵ(i − 1, j). Hence, the algorithm increases a∗
i (i, j) before a∗

i−1(i − 1, j).428

If i �= j ,429

Case 1.1: a∗
i (i, j) = 1. Then, a∗

i (i, j) > a∗
i−1(i − 1, j).430

Case 1.2: a∗
i (i, j) =

obj f −objg
ν f (i) fi f j −νg(i)gi g j

≥ 0. Then, the algorithm stops so that a∗
i−1(i −431

1, j) = 0.432

433

Else if i = j ,434

435

Since i − 1 < j , the algorithm sets a∗
i−1(i − 1, j) = 0.436

This proves that a∗ yields monotonic interim allocations.437
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Algorithm 1

1: Initialize:

x ← x f

a∗
i (i, j) =

⎧

⎪

⎨

⎪

⎩

1 if i ≥ x and i > j

0.5 if i ≥ x and i = j

0 ow.

∀(i, j) ∈ T 2

obj f =

m
∑

i=x

i−1
∑

j

ν f (i) fi f j +

m
∑

i=x

(0.5)ν f (i) f 2
i

objg =

m
∑

i=x

i−1
∑

j

νg(i)gi g j +

m
∑

i=x

(0.5)νg(i)g2
i

Ŵ = {(i, j) ∈ T 2|x ≥ i ≥ xg and i ≥ j}

Ŵ(i, j) =
vg(i)gi g j

v f (i) fi f j
∀(i, j) ∈ Ŵ

2: while Ŵ is not empty & obj f > objg do

3: Determine (i, j) ∈ Ŵ st. Ŵ(i, j) = min
(k,l)∈Ŵ

Ŵ(k, l)

4: if i �= j then

5: if ν f (i) fi f j + obj f > νg(i)gi g j + objg then

6: a∗
i
(i, j) ← 1

7: obj f ← obj f + ν f (i) fi f j

8: objg ← objg + νg(i)gi g j

9: else ν f (i) fi f j + obj f ≤ νg(i)gi g j + objg

10: a∗
i
(i, j) ←

obj f −objg
ν f (i) fi f j −νg(i)gi g j

11: Stop at the current solution.

12: end if

13: end if

14: if i = j then

15: if (0.5)ν f (i) fi f j + obj f > (0.5)νg(i)gi g j + objg then

16: a∗
i
(i, j) ← 0.5

17: obj f ← obj f + (0.5)ν f (i) fi f j

18: objg ← objg + (0.5)νg(i)gi g j

19: else (0.5)ν f (i) fi f j + obj f ≤ (0.5)νg(i)gi g j + objg

20: a∗
i
(i, j) ←

obj f −objg
(0.5)ν f (i) fi f j −(0.5)νg(i)gi g j

21: Stop at the current solution.

22: end if

23: end if

24: Exclude (i, j) from Ŵ

25: end while

26: Stop at the current solution.

The algorithm considers ai (i, j) values only if i ≥ j and always assigns values between438

1 and 0. Therefore, a∗ is feasible.439

Now assume that ∃a′ �= a∗ such that it is feasible and gives z′ > z∗. Lets consider the440

constraint on z.441

z∗ ≤ µ∗
f + obj f ∀ f ∈ P442

443
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where444

∑

j∈T

xg−1
∑

i=1

ν f (i)a
∗
i (i, j)π f (i, j) = 0 ∀ f ∈ P445

∑

j∈T

x f −1
∑

i=xg

ν f (i)a
∗
i (i, j)π f (i, j) = µ∗

f ∀ f ∈ P446

∑

j∈T

m
∑

i=x f

ν f (i)a
∗
i (i, j)π f (i, j) = obj f ∀ f ∈ P.447

448

The point a∗ follows the structure in Theorem 3 for profiles where highest type is greater449

than or equal to x f or both reported types are less than xg . Therefore, it is obvious that a∗
450

and a′ are equal for these profile outcomes.451

Let us first assume a∗ leads to µ∗
f + obj f = µ∗

g + objg . Note that this is a stop condition452

for the algorithm. In this case, if z′ > z∗, we have the folowing:453

µ′
f + obj f > µ∗

f + obj f454

µ′
g + objg > µ∗

g + objg.455
456

Then µ′
f > µ∗

f and µ′
g > µ∗

g should be satisfied so that we have:457

µ∗
f =

∑

j∈T

x f −1
∑

i=xg

ν f (i)a
∗
i (i, j)π f (i, j) <

∑

j∈T

x f −1
∑

i=xg

ν f (i)ai (i, j)π f (i, j) = µ′
f458

µ∗
g =

∑

j∈T

x f −1
∑

i=xg

νg(i)a
∗
i (i, j)πg(i, j) <

∑

j∈T

x f −1
∑

i=xg

νg(i)ai (i, j)πg(i, j) = µ′
g.459

460

However, ν f (i) < 0 and νg(i) ≥ 0 ∀i ∈ T such that xg ≤ i < x f . This creates a contradiction461

to µ′
f > µ∗

f and µ′
g > µ∗

g .462

Now assume µ∗
f +obj f �= µ∗

g +objg . If µ∗
f +obj f < µ∗

g +objg , obtained solution a∗ is463

optimal by Theorem 4. Otherwise, µ∗
f + obj f > µ∗

g + objg . To let z′ > z∗, we should have464

µ′
g + objg > µ∗

g + objg.465
466

This requires µ′
g > µ∗

g . Note that Ŵ is empty in this case. Hence, a∗
i (i, j)’s ∀(i, j) ∈ T 2

467

such that xg ≤ i < x f and i ≥ j are at their upper bound. One can increase a∗
j (i, j) values.468

However, this increase leads to an equal amount of decrease in corresponding a∗
i (i, j)’s469

which have a higher opportunity cost. This creates a contradiction to existence of an optimal470

a′ and completes the proof. ⊓⊔471

Theorem 7 For a given allocation rule a∗,472

p∗
i (i, j) = ia∗

i (i, j) −
∑

k<i

a∗
k (k, j) ∀(i, j) ∈ T 2 (18)473

474

is a corresponding payment rule.475
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Proof Recall that in Sect. 3.2.1, we set expected payments to their tightest upper bounds:476

P f (i) = i A f (i) −

i−1
∑

j=0

A f ( j) ∀i ∈ T,∀ f ∈ P. (19)477

478

Also, by definition, we have:479

P f (i) =
∑

j∈T

pi (i, j) fi f j ∀i ∈ T, ∀ f ∈ P (20)480

A f (i) =
∑

j∈T

ai (i, j) fi f j ∀i ∈ T, ∀ f ∈ P. (21)481

482

Now, (19) together with (20) and (21) gives (18). ⊓⊔483

We do not claim that p∗ in Theorem 7 is the unique optimal payment rule. In certain cases,484

it is likely to have multiple payment rules consistent with allocation rule a∗. However, a∗ is485

the unique optimal allocation rule as it is seen in proof of Theorem 6. We show that there is486

no such a′ providing a higher expected revenue to the seller but it is also clear that no other487

allocation rule can lead to the objective value resulting from a∗.488

In the optimal mechanism, under assumptions of Theorem 6, only the highest bidder has489

a chance to win the object. Furthermore, an agent makes a payment only if he gets the object,490

and this payment does not exceed agent’s type. If x f denotes a threshold in the optimal491

mechanism, for profile outcomes where the highest bid is equal to or exceeds x f , we observe492

a mechanism which resembles the Vickrey auction. The highest bidder wins the object and493

pays an amount between the second highest bid and his own bid. When the highest bid494

reported is less than x f but bigger than or equal to xg , for certain profile outcomes—detected495

by the algorithm—, the good is allocated to the highest bidder. The winner pays at most what496

he reported. If reported types are less than xg , then the seller keeps the object.497

On the other hand, if we relax the assumption ν f (i) fi and νg(i)gi being non-decreasing498

in i ∈ T , a buyer who did not report the highest bid may have the object for certain profile499

outcomes. In this case, the seller makes a payment to the highest bidder.500

In summary, we derived an applicable optimal mechanism for robust auction design prob-501

lem. Our mechanism does not require payments higher than an agent’s offer, and only the502

winner makes a payment to the seller, which are reasonable and fair from buyers’ perspec-503

tive. Moreover, the mechanism we proposed is easy to understand and it resembles the504

well-known Vickrey auction so that the implementation will not lead to much increased505

complexity.506

4 Auction design problem with ambiguity averse seller and buyers507

In this section, we investigate the case where the buyers are ambiguity averse too, in addition508

to the seller. The setting and the notation of the previous section apply. The objective of the509

problem remains identical to our setting in Sect. 3. To formulate this problem, we invoke510

again the Revelation Principle, and focus on direct mechanisms.511
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4.1 Formulation512

The robust auction design problem with ambiguity averse seller and buyers is formulated as513

follows:514

max
p,a

{

min
f ∈P

∑

i∈T

fi

∑

j∈T

pi (i, j) f j

}

(22)515

s.t. min
f ∈P

{

i
∑

j∈T

ai (i, j) f j −
∑

j∈T

pi (i, j) f j

}

≥ 0 ∀i ∈ T (23)516

min
f ∈P

{

i
∑

k∈T

ai (i, k) fk −
∑

k∈T

pi (i, k) fk

}

≥ (24)517

min
f ∈P

{

i
∑

k∈T

a j ( j, k) fk −
∑

k∈T

p j ( j, k) fk

}

∀i, j ∈ T518

∑

i∈T

ni (t)ai (t) ≤ 1 ∀t ∈ T 2 (25)519

ai (i, j) ≥ 0 ∀i, j ∈ T (26)520

pi (i, j) ≥ 0 ∀i, j ∈ T . (27)521

For ease of notation, we give the formulation for the case where there are two agents. Indi-522

vidual Rationality constraints (23) ensure that each agent gains at least zero payoff from523

participation. Incentive Compatibility constraints, which force agents to truthfully report524

their types, are given in (24) because the bidders consider the worst case payoffs due to525

ambiguity aversion. This model is reformulated as the following Mixed Integer Program-526

ming (MIP) Problem:527

max
z,p,a,D,b

z528

s.t. z ≤
∑

i∈T

fi

∑

j∈T

pi (i, j) f j ∀ f ∈ P (28)529

i
∑

j∈T

ai (i, j) f j −
∑

j∈T

pi (i, j) f j ≥ 0 ∀ f ∈ P,∀i ∈ T (29)530

Di j ≤ i
∑

k∈T

a j ( j, k) fk −
∑

k∈T

p j ( j, k) fk ∀ f ∈ P,∀i, j ∈ T (30)531

Di j + Mb f (i, j) ≥ (31)532

i
∑

k∈T

a j ( j, k) fk −
∑

k∈T

p j ( j, k) fk ∀ f ∈ P,∀i, j ∈ T533

∑

f ∈P

b f (i, j) ≤ |P| − 1 ∀i, j ∈ T (32)534

i
∑

k∈T

ai (i, k) fk −
∑

k∈T

pi (i, k) fk ≥ Di j ∀ f ∈ P,∀i, j ∈ T535

b f (i, j) ∈ {0, 1} ∀ f ∈ P,∀i, j ∈ T536

(33)537

where M is a sufficiently large number, and (25)–(27) hold.538

We introduced the dummy variables Di j which take the value of minimum expected payoff539

over f ∈ P if an agent with true valuation i reports j by (30), (31) and (32). The number540
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of distributions in P leads to a considerable increase in the number of constraints, which541

contributes to the difficulty of the problem. Furthermore, the optimal solution does not seem542

to give a recognizable auction mechanism. Next, we introduce a numerical algorithm which543

enables to achieve an optimal solution with a reduced version of the formulation.544

4.2 A hybrid algorithm545

Assume P = { f 0, f 1, . . . , f m}. Let P
′ be a subset of P and MIP(P ′) is a reformulation of546

MIP in which set P is replaced by P
′. In other words, we take a subset of distributions in P547

and eliminate constraints and variables corresponding to remaining distributions.548

Algorithm 2

1: Initialize:

P ′ = { f 0}

2: while exi t = f alse do

3: Set Pini tial = P ′

4: Solve M I P(P ′): power * denotes optimal solution

5: Set zmin = min
f ∈P

∑

i∈T fi
∑

j∈T p∗(i, j) f j

6: Determine ḟ ∈ P st. zmin =
∑

i∈T ḟi
∑

j∈T p∗(i, j) ḟ j

7: if zmin < z∗ then

8: Update P ′ = P ′ ∪ ḟ

9: end if

10: Set I Rmin = min
f ∈P,i∈T

i
∑

j∈T a∗(i, j) f j −
∑

j∈T p∗(i, j) f j

11: Determine f̈ ∈ P st.

12: I Rmin = min
i∈T

i
∑

j∈T a∗(i, j) f̈ j −
∑

j∈T p∗(i, j) f̈ j

13: if f̈ /∈ P ′ and I Rmin < 0 then

14: Update P ′ = P ′ ∪ f̈

15: end if

16: Set

17: I Cr
min

(i, j) = min
f ∈P

i
∑

k∈T a∗( j, k) fk −
∑

k∈T p∗( j, k) fk ∀(i, j) ∈ T 2

18: I Cl
min

(i) = min
f ∈P

i
∑

k∈T a∗(i, k) fk −
∑

k∈T p∗(i, k) fk ∀i ∈ T

19: I Cmin = min
i∈T, j∈T

I Cl
min

(i) − I Cr
min

(i, j)

20: Determine

21: ī ∈ T st. I Cmin = min
j∈T

I Cl
min

(ī) − I Cr
min

(ī, j)

22: f̄ ∈ P st. I Cl
min

(ī) = ī
∑

k∈T a∗(ī, k) f̄k −
∑

k∈T p∗(ī, k) f̄k

23: if f̄ /∈ P ′ and I Cmin < 0 then

24: Update P ′ = P ′ ∪ f̄

25: end if

26: if P ′ = Pini tial and min
i∈T, j∈T

I Cr
min

(i, j) − D∗
i j

≥ 0 then

27: Set exi t = true

28: else P ′ = Pini tial and min
i∈T, j∈T

I Cr
min

(i, j) − D∗
i j

< 0

29: Set Dmin(i, j) = min
i∈T, j∈T

I Cr
min

(i, j) − D∗
i j

= I Cr
min

(ī, j̄) − D∗
ī j̄

30: Determine f̃ ∈ P st.

31: I Cr
min

(ī, j̄) = ī
∑

k∈T a∗( j̄, k) f̃k −
∑

k∈T p∗( j̄, k) f̃k

32: Update P ′ = P ′ ∪ f̃

33: end if

34: end while

35: Stop at current solution
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According to our computational study, Algorithm 2 obtains very accurate solutions to the549

MIP formulation. The algorithm starts by solving MIP only over one distribution function,550

f 0. Using the optimal solution obtained, rows 5–9 check whether the constraint type (28)551

is satisfied by remaining distribution functions in P and determine the most violated one.552

The distribution function which causes the most violated constraint is added to P
′. Violation553

in Individual Rationality constraints (29) is detected in 10–15. Again, detected distribution554

function is added to P
′ if it is not already in it. Note that it is possible to observe identical555

distribution functions from 5 to 9 and 10 to 15.556

The algorithm does not consider constraints (30) to (32) in MIP. The reason is that it also557

updates the right hand side of constraint (32) according to P
′. This corresponds to the fact558

that Di j ’s now take the value of minimum expected payoff over f ∈ P
′ instead of f ∈ P if559

an agent with true valuation i reports j . This causes a restriction rather than a relaxation.560

From row 16 to row 25, the algorithm detects violation in constraint (33). However, the561

algorithm does not utilize the Di j ’s for the right-hand side as explained above. The algorithm562

calculates the right hand side of each constraint as I Cr
min(i, j), the minimum expected payoff563

with observed optimal solution values over f ∈ P if an agent with true valuation i reports564

j . Using these right hand side values, the most violated constraint is determined, and the565

corresponding distribution function is included in P
′.566

If at least one distribution function is added to P
′, the algorithm repeats the process starting567

from row 3. If P
′ remains the same, it is concluded that observed solution is feasible to original568

formulation. Since the algorithm also restricts the problem, it may not be optimal. Therefore,569

this restriction is questioned by looking at the difference between D∗
i j and I Cr

min(i, j) for570

all (i, j) ∈ T 2. The distribution function causing the highest difference is added to P
′ and571

the process is repeated from 3 until no restriction or violation is detected.572

In each step, the algorithm gives a bound to the optimal value of the problem. However,573

it is hard to determine if it is a lower or an upper bound because some constraints of MIP574

formulation are relaxed while some are restricted. On the other hand, under certain conditions575

we can say more about the bound observed. If P
′ remains unchanged until row 25, the576

previously observed solution is feasible to MIP. Therefore, it is a lower bound for the problem.577

The algorithm can be adjusted to obtain an upper bound for MIP formulation. If |P| − 1578

in constraint (32) is not updated depending on P
′ and remains the same throughout the579

algorithm, then we observe an upper bound in each step.580

4.3 Computational results581

We have two buyers in all instances reported in this section.582

In Tables 1 and 2, each row corresponds to one problem instance. Solution times are583

given in seconds. |P| is the total number of distributions in set P and |T | is the number of584

valuations. Iterations column shows how many times the while loop in the algorithm was585

executed to obtain the solution. |P ′| represents the final number of distributions in set P
′

586

when the algorithm stops. P sets belonging to instances grouped in double lines are randomly587

generated within an ( f 0 ± ǫ) interval from the same given f 0 and ǫ. While randomizing588

input data, we ensure that distribution values do not take negative values. Input data can be589

obtained from the authors upon request. We used NetBeans IDE 8.0.1 and CPLEX Studio590

12.6.1 for solving all instances. In all rows, we give the optimal objective value (or the best591

objective function value within allotted time if applicable) and total solution time for MIP.592

However, for the values written in italic, as in row 14, we set a time limit and observed the best593

integer solution within the allotted time. The idea was to see whether the algorithm is capable594

of obtaining an optimal solution within 15 min of computing time while the state-of-the-art595
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Table 1 Numerical results 1

|P| |T | MIP formulation Algorithm

Objective value Solution time Objective value Solution time Iterations |P ′|

1 20 5 1,293,066 17,914 1,293,066 10,583 7 12

2 20 5 1,290,019 23,493 1,290,019 5304 6 10

3 20 5 1,281,526 34,728 1,281,526 9345 6 10

4 20 5 122,677 22,275 122,677 15,883 8 12

5 20 5 1,223,931 25,897 1,223,931 28,167 9 13

6 20 5 1,222,235 51,394 1,222,235 2559 5 7

7 20 5 1,346,207 8332 1,346,207 4289 5 10

8 20 5 1,304,475 52,233 1,304,475 9357 7 11

9 20 5 1,293,792 943 1,293,792 7221 6 10

10 20 6 1,714,115 884,722 1,714,115 970,904 10 18

11 20 6 175,066 919,362 175,066 11,223 8 15

12 20 6 1,724,949 1,535,607 1,724,949 788,868 11 15

13 20 6 1,637,257 6,070,151 1,637,257 596,016 7 11

14 20 6 1,672,065 90,002 1,672,065 142,404 6 11

15 20 6 1,661,494 90,002 1,661,494 255,527 7 11

16 20 6 1,076,266 375,062 1,076,266 318,536 11 13

17 20 6 1,082,449 518,958 1,082,449 462,247 13 16

18 20 6 1,089,408 408,33 1,089,408 164,907 10 12

19 20 6 1,124,627 90,003 1,124,869 663,018 8 12

20 20 6 110,295 90,002 110,295 102,121 6 10

21 20 6 1,116,765 90,002 1,116,765 45,376 9 13

MIP solver runs into the time limit. Indeed, for all five instances where the MIP solver stops596

because of time limit, our algorithm produced the optimal solution in considerably shorter597

time.598

From Tables 1 and 2, we see that the hybrid algorithm for the robust auction design problem599

leads to significant time efficiency, and obtains optimal solution for all instances. We note600

some minor differences between objective values from MIP formulation and the algorithm601

in rows 24, 32 and 40 due to tolerances in Java Programming Language.602

Increasing number of iterations and the expanding cardinality of P
′ have a marked effect on603

the improvement that our algorithm brings. Consider instances 4–6. For solving the instance604

reported in row 6, the number of iterations is equal to 5, and the final number of distributions605

included in P
′ is 7, when compared to instances 4 and 5, this is very low. Hence, as expected,606

the reduction in solution time by the algorithm is noticeably higher than in rows 4 and 5 both607

in percentage and net amount.608

Total solution times seem to depend on all randomized distributions in P rather than609

only given f 0 and ǫ. For example, although P sets corresponding to instances 34–36 are610

randomized in a similar fashion, instance 36 has a huge solution time compared to others. This611

difference is reduced for our algorithm solution time even though the number of iterations612

and |P ′| values of 36 are not the lowest in this sample. This tells us that the number of613

iterations and the final number of distributions are not the only elements determining the614

time efficiency brought about by the algorithm.615
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Table 2 Numerical results 2

|P| |T | MIP formulation Algorithm

Objective value Solution time Objective value Solution time Iterations |P ′|

22 20 6 1,064,647 263,756 1,064,647 149,095 8 13

23 20 6 1,078,787 67,818 1,078,787 34,016 7 11

24 20 6 1,073,474 156,101 1,073,538 81,204 8 13

25 15 6 1,092,282 835,478 1,092,282 28,419 6 9

26 15 6 1,105,905 196,086 1,105,905 101,928 6 10

27 15 6 1,092,442 59,869 1,092,442 22,295 5 8

28 15 6 1,103,278 38,192 1,103,278 25,897 6 8

29 15 6 1,114,296 332,558 1,114,296 170,605 8 11

30 15 6 1,111,806 238,398 1,111,806 335,704 8 11

31 15 6 1,084,282 78,431 1,084,282 51,805 7 11

32 15 6 1,041,195 142,567 1,041,202 83,884 9 11

33 15 6 1,050,686 157,032 1,050,686 78,218 7 9

34 10 7 0,765,615 9512 0,765,615 10,727 3 5

35 10 7 0,746,313 70,392 0,746,313 141,371 5 6

36 10 7 0,777,228 1,426,343 0,777,228 120,816 4 6

37 10 7 1,052,553 33,193 1,052,553 75,399 6 9

38 10 7 1,070,767 960,996 1,070,767 417,991 6 8

39 10 7 1,085,262 227,791 1,085,262 74,282 6 8

40 10 7 1,027,729 156,642 1,027,727 92,235 5 8

41 10 7 1,065,472 209,731 1,065,472 343 6 6

42 10 7 104,994 226,327 104,994 223,999 6 8

While we cannot make a precise conclusion on the class of instances for which the algo-616

rithm will be efficient, we can conclude that the algorithm effectively reduces the solution617

time in most cases.618

5 Conclusion619

In this paper we focused on the auction design problem with discrete valuations for a single620

good when buyers’ valuation distribution comes from a set of distributions P rather than being621

unique and known to all parties. We assumed both the seller and the buyers are risk neutral.622

In Sect. 3, we gave a formulation for robust auction design problem with an ambiguity averse623

seller and n ambiguity neutral buyers. Then, we reformulated the problem with the help of624

standard results from linear programming. We derived the structure of the optimal solution625

for the case where there are two buyers and P consists two discrete distributions under626

certain assumptions. For the case where the assumptions do not hold, we gave an algorithm627

to determine the optimal auction mechanism. In the optimal mechanism, the highest bidders628

win the object with equal probability until the highest bid reported falls under a threshold.629

Only the winner makes a payment and he pays an amount between his own bid and second630

highest bid. Under the threshold, there may be allocation to the highest bid for some profile631

outcomes and these are determined by the algorithm. Although there have been studies in632
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the literature underlying few properties of the optimal mechanism to robust auction design633

problem (Bose et al. 2006), a specific mechanism was not given, to the best of our knowledge.634

The optimal mechanism we derived is both detailed and applicable. It is easy to understand635

because it resembles the well-known Vickrey auction and it does not require payments which636

exceed the buyer’s offer. Furthermore, only the winner makes a payment, which is reasonable637

and fair from buyers’ perspective. Hence, the implementation of our study will not lead to638

much increased difficulty of implementation.639

In Sect. 4, we analyzed the same problem when the buyers are also ambiguity averse.640

This problem is known to be very complex, and consequently the literature is very limited641

(Bose et al. 2006). We formulated the problem as a mixed integer programming problem,642

and to the best of our knowledge our formulation is novel. Then, we proposed an algorithm643

which enables to solve the problem more efficiently than state-of-the-art general purpose644

MIP solvers. Our computational results show that the algorithm leads to time efficiency, and645

computes an accurate solution for the instances considered.646

There are several research directions arising from our study. In Sect. 3, while deriving an647

optimal mechanism, we assumed that there are two distinct distributions in set P . Perhaps,648

under certain assumptions, it might be possible to consider other forms for the set P . The649

effect of additional constraints such as budget constraints on the optimal mechanism can also650

be considered as future work.651
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