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Abstract The problem of designing a trade mechanism (for an indivisible good)
between a seller and a buyer is studied in the setting of discrete valuations of both
parties using tools of finite-dimensional optimization. A robust trade design is defined
as one which allows both traders a dominant strategy implementation independent
of other traders’ valuations with participation incentive and no intermediary (i.e.,
under budget balance). The design problem which is initially formulated as a mixed-
integer non-linear non-convex feasibility problem is transformed into a linear integer
feasibility problem by duality arguments, and its explicit solution corresponding to
posted price optimal mechanisms is derived along with full characterization of the
convex hull of integer solutions. A further robustness concept is then introduced for a
central planner unsure about the buyer or seller valuation distribution, a corresponding
worst-case design problem over a set of possible distributions is formulated as an
integer linear programming problem, and a polynomial solution procedure is given.
When budget balance requirement is relaxed to feasibility only, i.e., when one allows
an intermediary maximizing the expected surplus from trade, a characterization of the
optimal robust trade as the solution of a simple linear program is given. A modified
VCG mechanism turns out to be optimal.
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1 Introduction and background

The trade of a good between a seller and a buyer is a ubiquitous situation in several
economic contexts. Theway inwhich this trade is carried out is a fundamental object of
study inmicroeconomic theory. However, it is a questionwhich received little attention
from the optimization community. Departing from the assumption of continuous type
space in Hagerty and Rogerson (1987) we consider the problem of designing a robust
trading mechanism between a single buyer and a single seller where valuations (or
types) of both parties are private information (we have a discrete type space) and take
values in finite sets according to some given probability mass functions (referred to as
a “prior”) using tools of finite-dimensional optimization. Robustness in this context is
understood as a dominant strategy implementation where each trader has an optimal
strategy independent of others’. Besides dominant strategy implementation, the robust
mechanism should fulfil ex-post individual rationality (no trader is worse off by partic-
ipating) and budget balance (i.e., the seller gets exactly what the buyer pays) for both
parties. The problem of robust trade design is initially formulated here as a mixed-
integer non-linear and non-convex feasibility problem. While the constraints causing
non-linearity can be ignored initially to be addressed later (see proof of Theorem 2), a
more interesting avenue is opened via linear programming/network optimization dual-
ity. The initial formulation is shown to be equivalent to an integer linear programming
formulation of which the linear relaxation polytope has all extreme points integral,
and constructed explicitly. The number of extreme points is equal to the cardinality
m of the discrete type space (assumed to be common for simplicity) plus one, which
implies that the polytope is an m-simplex (m is the number of valuations as well as
the largest valuation in our context). Hence, we obtain an explicit representation of
the convex hull. This result immediately leads to the fact that all extreme point solu-
tions of the linear relaxation correspond to posted price mechanisms. A posted price
mechanism is one in which a price is announced in advance, and trade occurs if the
valuation of the seller is smaller or equal to the posted price and the valuation of the
buyer is greater or equal to the posted price and both agree to trade at that price.

For the case where a central planner is involved in the design process, and he/she
may want to maximize the expected proceeds from the trade but is unsure about either
the probability mass of the buyer or of the seller, we specify an uncertainty set for the
unknown probability mass which constrains the mean valuation to a fixed value. Then
we obtain a mixed-integer programming formulation for the maximization of worst-
case expected proceeds from trade. The problem is solved by a simple procedure using
the extreme point characterization and graphical linear programming on the plane. The
extreme point solutions are still posted price mechanisms. However, it is shown, as
expected, that the specification of the mean valuation affects the optimal posted price
in the foreseeable direction, e.g., for increasingmean valuation of the seller, the posted
price advocated by the optimal mechanism also increases.

In a continuous type space setting, Hagerty and Rogerson (1987) studied the prob-
lem of designing a robust trade mechanism for a seller and a buyer where each trader
is entitled to a dominant strategy implementation. Their approach has the benefit of
rendering the optimal mechanism independent of any common prior assumption on
the valuations of other parties involved, hence the term “robust”. Formally, this class of
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robust mechanisms is obtained by enforcing the so-called dominant strategy incentive
compatibility (DIC), ex-post individual rationality (EIR) and budget balance require-
ments on both parties. They establish that posted price mechanisms are essentially the
onlymechanisms such that the traders have a dominant strategy implementation. Their
proofs use the classical tools of calculus as introduced by Myerson and Satterthwaite
(1983).

Our contribution, with respect to previous work and in particular (Hagerty and
Rogerson 1987), is threefold. First, we shall place the trade design problem into the
realmofmixed-integer (non-linear and non-convex) feasibility (or, optimization) prob-
lems in the spirit of Vohra (2011, 2012) where a study of mechanism design problems
wasundertakenusing the tools offinite-dimensional optimization, and especially linear
programming. The problem is then equivalently posed as a linear integer optimization
problem, and analyzed using the tools of finite dimensional optimization. Second, we
introduce an added robustness concept, and give a simple polynomial procedure to
solve the associated design problem. Third, we extend our result to the case where
budget balance is relaxed to feasibility, i.e., an intermediary maximizing the expected
surplus from trade acts as the designer of the mechanism under the constraints of dom-
inant strategy incentive compatibility and ex-post individual rationality. Schwartz and
Wen (2012) showed that this relaxation may increase the expected gains from trade,
and posed the question of characterization of such robust trade mechanisms.We give a
simple linear programming characterization of suchmechanisms. In a yet unpublished
reference by Kos and Manea (2009) bilateral trade with discrete values is studied to
characterize the necessary and sufficient conditions on the distribution of valuations
for the existence of a budget balanced, efficient mechanism. A VCG-like mechanism
(VCG’) is also proposed as a solution to the problem, and conditions guaranteeing
its validity are established. In connection to Sect. 5 of the present paper where an
intermediary is present, it is shown in Kos and Manea (2009) that efficient, budget
balanced, incentive compatible and individually rational trade is possible if and only
if the broker running the VCG’ mechanism makes a non-negative expected profit. Our
result in Sect. 5 also yields optimal mechanisms which are of VCG’ type.

A readable summary of bilateral trademechanism design can be found in themono-
graph by Spulber (1999). A more general reference is Laffont and Mortimer (2002).
More recent and relevant literature includes Čopič and Ponsati (2016) where it is
proved that optimal robust bilateral trade mechanisms are payoff equivalent to non-
wasteful randomized posted prices, and Drexl and Kleiner (2015) where the focus is
on strategy proof mechanisms maximizing the agents’ residual surplus in an indepen-
dent private value auction environment. It is shown that optimal mechanisms are of a
posted price nature under a monotonicity condition of the hazard rate of type distri-
butions. In a bilateral trade environment, optimality of posted price is shown without
any monotonicity assumption. It appears that posted price mechanisms are a recurrent
theme in bilateral trade. In this context, the present paper may be seen as yet another
justification for the pervasive nature of posted price mechanisms.

In Sect. 4 of the present paper we investigate the impact of imprecision in the type
distribution (referred to as ambiguity) of the seller (or, the buyer) on the optimization
problem of a central planner who is averse to ambiguity. This section was inspired
by both the progress in robust optimization, a research effort initiated by Ben-Tal and
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Nemirovski (1998, 1999), and robust mechanism design research that started with
a paper by Bergemann and Morris (2005). The research of Ben-Tal and Nemirovski
spawned a new field of research in optimization. The idea is to treat imprecise parame-
ters of an optimization problem by means of a worst-case optimization with respect to
an uncertainty set for the imprecise parameters for which the robust solution assumes
full responsability. On the other hand, Bergemann and Morris relaxed the common
knowledge assumptions pervasive in mechanism design in a similar worst-case frame-
work in the spirit of Knightian uncertainty (Gilboa and Schmeidler 1989). An in-depth
review can be found in Bergemann and Morris (2013). Relevant references in mech-
anism design include Bergemann and Schlag (2008, 2011) where the problem of a
max–min utility seller with imperfect information about the valuation distribution of
the buyer is studied, and optimal pricing schemes are investigated as well as Auster
(2013) where a privately informed seller is assumed, Bandi and Bertsimas (2014)
where a robust optimization approach is applied in the context of auction design,
and Wolitzky (2016) where the buyer and the seller know only the mean of each
other’s valuations. We cite Bodoh-Creed (2012), Boze et al. (2006), Dong (2004) and
Lopomo et al. (2009) for other related research where more complex settings were
used. Lopomo et al. (2009) consider mechanism design problems with Knightian
uncertainty formalized using incomplete preferences. In a related study Bodoh-Creed
(2012) develops a payoff equivalence theorem for mechanisms with ambiguity averse
participants in the sense of Gilboa and Schmeidler (1989). Dong studies the impact
of ambiguity aversion of bidders on their bidding strategies in four classical auction
mechanisms. Boze et al. (2006) reports on the optimal auction problem allowing for
ambiguity about the distribution of valuations

The rest of the paper is organized as follows. In Sect. 2we introduce the notation and
the initial formulation. In Sect. 3, we transform the problem and study the structure
of the resulting transformed problem. We apply the results of Sect. 3 to a further
robust trade design problem in Sect. 4 in the presence of a central planner averse to
ambiguity in type distribution. In Sect. 5, the budget balance requirement is relaxed
into feasibility in the presence of a surplus maximizing intermediary, and the robust
trades are characterized as the solution of a linear programming problem.

2 Initial formulation

We followHagerty andRogerson (1987) for the notation. Individual 1 owns a good that
he/she wishes to sell while individual 2 is interested in acquiring the good. Both parties
attach a value to the good as one of the integers T ≡ {1, . . . , m},1 independently. We
shall refer to the valuation of the seller by i , and the valuation of the buyer as j . An
allocation rule is a pair of discrete functions (p, x) mapping the pair of integers from
T ×T to appropriate values. Namely, pi j ∈ [0, 1] is the probability that trade occurs if
valuation of seller is equal to i , and the valuation of the buyer is equal to j . Similarly,

1 This is only for simplicity; one can define different (for each participant) and more general finite type
sets. However, this only complicates the notation, and offers no added insight.
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xi j is the expected payment (which can be zero) from the buyer to the seller if valuation
of seller is equal to i , and the valuation of the seller is equal to j .

We shall seek allocation rules where each trader has a dominant strategy implemen-
tation as detailed further below. By the Revelation Principle (see e.g., Myerson and
Satterthwaite 1983) it is sufficient to consider mechanisms where traders truthfully
report their type or choose not to participate.

A trading mechanism is defined as a triplet of functions (p, g, x) giving the prob-
ability of trade and the price at which trade occurs if it occurs at all. Let r denote
the price at which trade occurs if it occurs and g(r; i, j) denote the probability of r
conditional on the valuations equal to i and j , respectively. The expected payment xi j

conditional on valuations i and j is determined by the relation:

xi j = pi j

∑

r∈{i,..., j}
rg(r; i, j), ∀i, j ∈ T . (1)

Since for given p and g, x can be inferred from the above we henceforth refer to as a
mechanism using the couple (p, g). The utility to individual 1 (the seller) conditional
on valuations i and j is denoted U1(i, j) and given by

U1(i, j) = xi j − i pi j , (2)

whereas the utility for individual 2 (the buyer), U2(i, j) is defined as

U2(i, j) = j pi j − xi j . (3)

Now, we can define the DIC and EIR requirements. A mechanism satisfies DIC if for
every i, j ∈ T and k, � ∈ T one has

U1(i, j) ≥ xk j − i pk j , (4)

and
U2(i, j) ≥ j pi� − xi�. (5)

These inequalities say that reporting his/her type truthfully is a dominant strategy for
both parties. A mechanism is said to satisfy EIR if

support g(.; , i, j) ⊆ [i, j] (6)

for i, j such that pi j > 0. An allocation rule (p, x) is said to be DIC–EIR imple-
mentable if there exists a mechanism (p, g) such that (i) (p, g) satisfies DIC and EIR,
and (ii) (p, g) induces an expected payment rule x according to (1).

A posted price mechanism is defined as one where pi j = 1 and xi j = a for i, j
such that i ≤ a and j ≥ a, and both seller and buyer agree to trade at a price equal to
a.

Summarizing the above development we are interested in computing (p, g, x) sat-
isfying the following constraints (budget balance is trivially satisfied since we deal
with a single payment function x):
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xi j = pi j

∑

r∈{i,..., j}
rg(r; i, j), ∀i, j ∈ T, (7)

xi j − i pi j ≥ xk j − i pk j , ∀i, j, k, (8)

j pi j − xi j ≥ j pi� − xi�, ∀i, j, �, (9)

g(r; i, j) = 0, if r < i or r > j, (10)

pi j ∈ {0, 1} and g(r; i, j) ∈ [0, 1] ∀i, j, r ∈ T, (11)
∑

r∈{i,..., j}
g(r; i, j) = 1, ∀i, j ∈ T . (12)

We refer to the mixed-integer non-linear and non-convex feasibility problem (7)–(12)
as TR1.

3 The transformed problem and its solution

The following result, which is a rephrasing of Theorem 1 of Hagerty and Rogerson
(1987) in discrete type space, gives an equivalent formulation as a linear integer opti-
mization problem. We shall give a proof partially based on network duality different
from Hagerty and Rogerson (1987) since the proof of Hagerty and Rogerson (1987)
relies on calculus arguments which do not apply in our setting.

Theorem 1 The allocation rule is DIC–EIR implementable if and only if the following
conditions are satisfied:

xi j = j pi j −
j−1∑

k=i

pik, ∀i ≤ j, (13)

xi j = i pi j +
j∑

�=i+1

p�j , ∀i ≤ j, (14)

p is weakly monotone increasing in j for fixed i (15)

i.e., for each i ∈ T

pi1 ≤ pi2 ≤ · · · ≤ pim, . . .

p is weakly monotone decreasing in i for fixed j (16)

i.e., for each j ∈ T

p1 j ≥ p2 j ≥ · · · ≥ pmj , . . .

pi j = 0, xi j = 0 ∀i > j, and pi j ∈ {0, 1}, ∀i, j ∈ T . (17)

Proof We shall first deal with necessity, i.e., we shall assume an allocation rule which
is DIC–EIR implementable, and establish that the conditions given in the body of the
theorem are implied.
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The conditions (17) are immediate from (10). Now, let us consider inequalities (8)
first. We shall follow a reasoning similar to Vohra (2011, 2012), namely we shall
interpret these inequalities as dual constraints corresponding to a (multiple) longest
path problem on an appropriate layered graph as follows (there is no connection
between layers): let us define a node for each pair (i, j) such that i ≤ j . For fixed j ,
we define an arc from node (i, j) to node (k, j) for k < i with length k[pkj − pi j ]
and an arc from (k, j) to (i, j) with length i[pi j − pkj ]. We also define a dummy
node (0, j) and connect it with a forward arc to every node (i, j) at the same level j
with length i pi j . The variables x0 j and p0 j are set to zero. That is, we act as if we are
looking for the longest path from (0, j) to every other node of the same layer j . By the
duality theorem of linear programming applied to the longest path problem from node
(0, j) to node (i, j) at the same level j (see e.g., Ahuja et al. 1993), the inequalities

x�j − xi j ≤ i(p�j − pi j )

are feasible if and only if no positive cycle is present in the graph, which is equivalent to
the fact p is weaklymonotone decreasing in i for fixed j . This proves themonotonicity
property (14). Now, since the above inequalities constitute necessary and sufficient
conditions for xi j to be equal to the length of the longest path from (0, j) to (i, j) and

the longest path length in our graph is easily found to be equal to i pi j + ∑ j
k=i+1 pkj

we have

xi j = i pi j +
j∑

k=i+1

pkj , ∀i ≤ j,

which gives (14).
On the other hand, the inequalities (9) are viewed as the dual constraints of amultiple

shortest path problem on a layered graph: define a node (i, j) for each pair (i, j) such
that i ≤ j , and a dummy node (i, 0) for each layer i = 1, . . . , m − 1. There is an arc
from (i, j) to (i, k) for k > j with length k[pik − pi j ] and an arc from (i, k) to (i, j)
with length j[pi j − pik]. For the inequalities to be consistent no negative cycle should
be allowed in any layer, hence the weakly monotone increasing property of p in j for
fixed i . From (i, 0) we make an arc to every (i, j) in the same layer with length j pi j .
Now we are looking for the shortest path from (i, 0) to every other node (i, j) in the
same layer i . Assuming xi j to represent the length of a path from (i, 0) to (i, j), (the
variables xi0 and pi0 are again set to zero) we arrive by a reasoning similar to that for
the longest path above at

xi j = j pi j −
j−1∑

k=i

pik,

i.e., xi j equals the length of the shortest path from (i, 0) to (i, j), which gives (13).
Now, we turn to sufficiency of the conditions stated in the theorem for implying

DIC–EIR implementability.We shall do the proof for the buyer. The proof for the seller
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is similar and thus omitted. If (13) is satisfied, then using the definition of U2(i, j)
and (13) we have

U2(i, j) =
j−1∑

k=i

pik . (18)

Now, we want to show that (9) holds, i.e.,

U2(i, j) ≥ j pi� − xi�.

Now, substituting for U2(i, j) from (18) we have to show

j−1∑

k=i

pik ≥ j pi� − xi�.

We can re-write xi� as

xi� = �pi� −
�−1∑

k=1

pik

using (17). Hence we have to show

j−1∑

k=i

pik ≥ j pi� − �pi� +
�−1∑

k=1

pik .

However, this last inequality holds by weakly monotone increasing property of p in
j for fixed i . To complete the proof, under the conditions stated in the theorem, one
can create g(.; i, j) to have a single mass point on xi j/pi j since g need to be defined
only for i, j such that pi j > 0. �	
We remark that the above proof does not make use of the binary nature of the variables
pi j . Therefore, one can replace conditions (11) by

pi j ∈ [0, 1] and g(r; i, j) ∈ [0, 1] ∀i, j, r ∈ T, (19)

and thus also replace (17) by

pi j = 0, xi j = 0 ∀ i > j, and pi j ∈ [0, 1], ∀i, j ∈ T, (20)

i.e., one can allow a probability of trade strictly between 0 and 1 without affecting the
validity of Theorem 1.

We refer to the system of constraints (13)–(17) as TR2. The problem TR2 can be
equivalently cast as a binary feasibility problem TRB with constraints (15), (16), (17)
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and the equations obtained by equating (13) and (14) thereby eliminating the variables
xi j :

( j − i)pi j =
j−1∑

k=i

pik +
j∑

�=i+1

p�j , ∀i ≤ j. (21)

Let TRB-LP denote the LP relaxation of TRB, i.e., the problem obtained by relaxing
the requirements pi j ∈ {0, 1} to pi j ∈ [0, 1] for all i, j . Then we have the following
theorem which establishes that every extreme point of TRB-LP is a binary vector
corresponding to a posted price mechanism and therefore the polytope associated
with the problem is an integral polytope with a restricted number of extreme points.

Theorem 2 1. The polytope associated with TRB-LP with type space T =
{1, . . . , m} is an m-simplex with m + 1 integer extreme points, enumerated as
k = 0, 1, 2, . . . , m where extreme point indexed k corresponds to a posted price
mechanism with price equal to k.

2. The convex hull Xm of binary solutions to TRB-LP with type space T =
{1, . . . , m} is given as

Xm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2

α2 + α3
α3

α2 + α3 + α4
α3 + α4

...∑m+1
j=2 α j∑m+1
j=3 α j
...

αm+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:
m+1∑

j=2

α j ≤ 1, α j ≥ 0, j = 2, . . . , m + 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

Proof We first give a simple procedure to construct recursively all binary solutions to
TRB-LP. Start from m = 2. It is easy to verify that the following table gives the three
binary solutions to TRB-LP:

k 0 1 2
p11 0 1 0
p12 0 1 1
p22 0 0 1

Now, passing to m = 3, one simply adds the variables p13, p23, p33 in this order ver-
tically to the leftmost column, fills the now empty portion of the second column with
zeros (the origin is always a feasible binary solution), and adds an m × m upper trian-
gular matrix filled with ones on the diagonal and above the diagonal. The remaining
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entries of the upper now empty portion of the right most column is filled with zeros.
This operation results in the table:

k 0 1 2 3
p11 0 1 0 0
p12 0 1 1 0
p22 0 0 1 0
p13 0 1 1 1
p23 0 0 1 1
p33 0 0 0 1

The fact that these four points are the only feasible binary solutions is verified by direct
calculation. Let us do one more step of the above procedure for m = 4, which should
now be obvious. We add p14, p24, p34, p44 to the leftmost column, fill the second
column with zeros, and next to it add a 4× 4 upper triangular matrix with ones on and
above diagonal. The upper portion of the rightmost newly added column is filled with
zeros.

k 0 1 2 3 4
p11 0 1 0 0 0
p12 0 1 1 0 0
p22 0 0 1 0 0
p13 0 1 1 1 0
p23 0 0 1 1 0
p33 0 0 0 1 0
p14 0 1 1 1 1
p24 0 0 1 1 1
p34 0 0 0 1 1
p44 0 0 0 0 1

Using this procedure we can generate all binary feasible solutions to TRB-LP for
any positive integer m recursively. The point p(k) indexed k for k = 1, . . . , m has the
general form

p(k)
i j =

{
1 i = 1, . . . , k, j = k, . . . , m
0 otherwise,

and p(0)
i j = 0 for all i, j . It is verified by simple algebra using (13) or (14) that the

posted price assertion holds, i.e., that for the extreme point indexed k, a posted price
mechanism with payment equal to k is optimal.

The second part of the theorem is verified by induction starting with m = 2. Let
P(m) represent the polytope corresponding to TRB-LP. Then it is easy to show that
P(2) = X2 where X2 is given as
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X2 =
⎧
⎨

⎩

⎛

⎝
α2

α2 + α3
α3

⎞

⎠ : α2 + α3 ≤ 1, α j ≥ 0, j = 2, 3

⎫
⎬

⎭ .

Then, assuming the result true for n one easily verifies for n + 1. �	
The above result confirms the belief by Hagerty and Rogerson (1987) that essentially
the only trade mechanisms satisfying the constraints of their setting are posted price
mechanisms. We note that solving the linear relaxation by the simplex method will
result in a binary solution among the binary extreme points which are all posted price
mechanisms. Therefore, at least in theory, the linear relaxation could have multiple
optimal extreme point solutions, which implies that any convex combination is also
optimal, and hence a mechanism allowing probabilistic trade (pi j strictly between 0
and 1) could also be optimal.

4 Ambiguity averse planner

Now, we consider the problem of a central planner who wishes to maximize the
expected proceeds from the trade, e.g., by maximizing the objective function

m∑

i=1

m∑

j=1

fi h j xi j (23)

where fi is the probability that the seller is of type i , and h j is the probability that the
buyer is of type j over the constraints of TR1. By virtue of Theorem 2, this problem
is solved by simply enumerating all integer extreme points (we have m + 1 of them)
and choosing the best. This is an O(m3) procedure.

Now, we shall assume that the central planner is uncertain about the probabilities
fi or h j and wishes to have some protection against fluctuations in expected proceeds
from trade. Therefore he/she takes an ambiguity-averse attitude by maximizing the
worst-case expected proceeds. For illustration, let us consider the case where the
central planner specifies an ambiguity set for fi ’s of the form

U f =
{

f ∈ R
m :

m∑

i=1

fi = 1,
m∑

i=1

i fi = α, fi ≥ 0, i = 1, . . . , m

}
,

where α ∈ [1, m] is a given number. We refer to the specification above as a mean-
constrained ambiguity specification. Here, the central planner is assumed to have an
idea of the mean valuation of the buyer, and includes this information into the set
of probability distributions U f . A similar set of distributions was used in Neeman
(2003) to describe the average magnitudes of the buyer valuations in an English auc-
tion setting. Neeman (2003) performed a worst-case analysis of the performance of
the English auction from the viewpoint of a seller who is uncertain about which envi-
ronment he is facing within a certain class of environments. Specifying a mean value
and seeking a robust solution in a worst-case sense over all distributions resulting
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in the given mean value is also practised in portfolio optimization; see e.g., Chen
et al. (2011) and El Ghaoui et al. (2003). The main point of the present section is that
incorporating ambiguity aversion into the decision problem of a planner unsure about
type distributions does not result in a more difficult problem since it can be solved
efficiently using the posted price characterization and a very simple linear program.

Now, the central planner wishes to devise a trademechanismmaximizing the worst-
case expected proceeds: i.e.,

max
p,g,x

min
f ∈U f

m∑

i=1

m∑

j=1

fi h j xi j (24)

over the constraints defining TR1. Using Theorem 1, the above problem is equivalent
to

max
p

min
f ∈U f

m∑

i=1

fi

m∑

j=i

pi j

⎛

⎝ jh j −
m∑

�= j+1

h�

⎞

⎠ (25)

over the constraints defining TRB. Now, by linear programming duality the previous
problem is equivalent to

max
p,y,z

y + αz (26)

subject to the constraints defining TRB and the inequalities

y + i z ≤ γi , ∀i = 1, . . . , m,

where we defined for readability γi = ∑m
j=i pi j ( jh j − ∑m

�= j+1 h�). We refer to
this problem as AASPf. By virtue of Theorem 2 we have the following result which
describes a simple solution procedure for problem AASPf.

Proposition 1 Problem AASPf is solved by enumerating each of m + 1 vertices of
the TRB-LP polytope, and solving a two-variable LP over (y, z) for each vertex.

It is expected that increasing α will result in a larger posted price mechanism. This
is indeed observed. Consider, for example, m = 10 with uniform probabilities h j =
1/m for all j = 1, . . . , m. With α = 2, there is trade for seller valuations i in
I ∗ = {1, . . . , 6} and j ∈ J ∗ = {6, . . . , 10} for pairs (i, j) ∈ I ∗ × J ∗ with i ≤ j . The
posted price is equal to 6. For α = 5, the posted price is equal to 7, and there is trade
for I ∗ = {1, . . . , 7} and j ∈ J ∗ = {7, . . . , 10}. For α = 8, the posted price is equal
to 10 with I ∗ = {1, . . . , 10} and j ∈ J ∗ = {10}.

We remark that one could equally treat the probability mass h of the buyer using
a similar ambiguity set, say Uh for a fixed (known) seller probability mass f . The
ensuing development is parallel to the above, and is therefore omitted.

5 Robust mediated trade

Consider now the trade problem in the presence of a third party who acts an interme-
diary by extracting some surplus for his/herself from the trade. The presence of the
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intermediary serves to relax the budget balance requirement of the previous sections
in that the payment made by the buyer is larger than the payment received by the
seller where the difference goes to the intermediary. The problem of robust trade in
the presence of an intermediary can be easily cast in the formulation of the previous
sections. In this case, we are dealing with the expected payment xi j by the buyer and
the expected payment yi j received by the seller when the seller valuation is equal to i
and the buyer valuation is equal to j . Let pi j represent the probability of trade at the
pair (i, j) as usual, and g(k; i, j) denote the probability of trade with surplus equal to
k conditional on the respective seller and buyer valuations i and j .

Kos and Manea (2009) defines a VCG’ mechanism for this setting as follows: the
buyer receives the object when his/her reported value is larger than the seller’s reported
value, and in such instances he/she pays the lowest value he/she may have reported
to win the object given the seller valuation. The seller trades the object when his/her
reported value is smaller than the buyer valuation, and in such instances he/she gets
the maximum she/she could have reported to let go of the object. Formally, a VCG’
mechanism in our context is defined as pi j = 1 if i ≤ j and pi j = 0 if i > j with
payment rules:

xi j =
{
min{ j : j ≥ i} if j ≥ i
0 otherwise,

yi j =
{
max{i : j ≥ i} if j ≥ i
0 otherwise.

We shall establish an important connection to VCG’ mechanisms below.
Maximizing the expected surplus, we are dealingwith the following design problem

referred to as ITR1:

max
m∑

i=1

m∑

j=1

fi h j (xi j − yi j ) (27)

subject to

xi j − yi j = pi j

∑

k∈{0,..., j−i}
kg(k; i, j), ∀i, j ∈ T . (28)

yi j − i pi j ≥ y�j − i p�j , ∀i, j, �. (29)

j pi j − xi j ≥ j pik − xik, ∀i, j, k (30)

g(k; i, j) = 0, if k /∈ {0, . . . , j − i}. (31)

pi j ∈ {0, 1} and g(k; i, j) ∈ [0, 1] ∀i, j ∈ T and k ∈ {i, . . . , j}. (32)
∑

k∈{0,..., j−i}
g(k; i, j) = 1, ∀i, j ∈ T . (33)

Using the proof techniques of Theorem 1 we have the following result which gives an
integer linear programming description of (ITR1) and a structural property of optimal
mechanisms. An implication of the result is that the integer requirement on pi j can be
ignored.
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Theorem 3 1. Problem ITR1 is equivalent to the following optimization problem
(ITR2):

max
m∑

i=1

m∑

j=1

fi h j (xi j − yi j ) (34)

subject to

xi j = j pi j −
j−1∑

k=i

pik, ∀i ≤ j, (35)

yi j = i pi j +
j∑

�=i+1

p�j , ∀i ≤ j, (36)

p is weakly monotone increasing in j for fixed i (37)

p is weakly monotone decreasing in i for fixed j (38)

pi j = 0, xi j = 0, yi j = 0, ∀ i > j, and pi j ∈ {0, 1}, ∀i, j ∈ T .

(39)

2. ITR2 admits an optimal VCG’ mechanism.

Proof The equivalent reformulation ITR2 is obtained exactly as in Theorem 1. By
eliminating the variables xi j and yi j in ITR2 and by substituting in the objective
function, we get a linear optimization problem over the simple 0/1 polytope defined
by constraints (37), (38) (i.e., we can relax the binary requirements). For part 2, observe
that an optimal (extreme point) solution pi j corresponds to an upper triangular m × m
matrix P with all non-zero entries equal to one. For such feasible P, computing xi j

and yi j shows by simple algebra that one deals with a VCG’ mechanism. �	

Thus, Theorem 3 gives a simple linear programming characterization for DIC, EIR
and feasible (not budget balanced) optimal robust trades, a problem also studied by
Schwartz andWen (2012) in the continuous type case (they show, among other things,
that relaxing the budget balance to feasibility increases the expected gains from trade)
and by Kos and Manea (2009) in the discrete type case.

For illustration, let us consider the case m = 10 with fi = h j = 1/m, i.e., uniform
probabilities. Then the optimal expected payments x and y are given in the tables
below.

6 7 8 9 10
1 6 6 6 6 6
2 7 7 7 7
3 8 8 8
4 9 9
5 10
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for x (payment by buyer), and

6 7 8 9 10
1 1 2 3 4 5
2 2 3 4 5
3 3 4 5
4 4 5
5 5

for y (seller). The empty entries (as well as the other i, j pairs not present in the tables)
correspond to points of no-trade. For example, when the seller’s value is equal to 1,
for all buyer values from 6 to 10, the buyer makes a fixed payment equal to 6, of which
the seller gets only 1, or 2, or 3, or 4 or 5 units, respectively for increasing valuations
of the buyer. In other words, the optimal trade mechanism advocates charging a fixed
fee to the buyer (the smallest valuation he can declare to get the object given the
seller valuation) for a given fixed seller valuation, while reserving an increasing fee
to the seller for increasing valuation of the buyer, i.e., for a fixed seller valuation, the
intermediary retains less surplus for increasing buyer values. Likewise, for a fixed
buyer valuation, the seller gets the same payment for his/her increasing valuations
(the largest he can declare to relinquish the object for fixed buyer valuation), while the
intermediary retains an increasing amount since the buyer is charged a higher price
for increasing seller valuations. The above mechanism is exactly a VCG’ mechanism
as defined in Kos and Manea (2009) and revisited above.

Themain contribution of the present section was to show a linear programming rep-
resentation of DIC, EIR and feasible (not budget balanced) robust trades maximizing
the expected revenue of the intermediary, and show optimality of VCG’ mechanisms.

6 Concluding remarks

In a departure from common practice in the economics literature we studied bilateral
trade problems in discrete type spaces instead of continuous type spaces, which opens
the way to finite-dimensional optimization formulations and combinatorial problems.
We derived formulations amenable to solution by linear programming after trans-
forming the associated optimization problems into integer programming problems by
means of duality arguments. We completely characterized the convex hull of binary
solutions to the problem of robust trade design, and explored a further layer of robust-
ness when probabilities governing buyer or seller types are uncertain as well as the
characterization of robust trade when budget balance is relaxed. The main points to
retain from the present study is 1. that posted price mechanism which is a common
thread of the results (at least in Sects. 3, 4) is “robust” to variations (e.g., discrete type
space, probability of trade continuous between 0 and 1, worst-case expected proceeds
maximization under mean-constrained ambiguity specification) in the classical setup,
and 2. that the presence of an surplus maximizing intermediary leads to a VCG-like
optimal mechanism.
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