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Abstract

An introductory study of Large Deviations upper bounds from a worst-case perspective

under parameter uncertainty (referred to as ambiguity) of the underlying distributions is

given. Borrowing ideas from robust optimization, suitable sets of ambiguity are defined for

imprecise parameters of underlying distributions. Both univariate and multivariate i.i.d.

sequences of random variables are considered. The resulting optimization problems are chal-

lenging min-max (or max-min) problems that admit some simplifications and some explicit

results, mostly in the case of the Normal probability law.

Keywords: Large deviations, ambiguity, robust optimization, ellipsoids, Legendre-Fenchel

transform, min-max theorem.

1 Introduction

The purpose of this paper is to present an investigation of Large Deviations (see [9, 13] for

gentle introductions to Large Deviations) upper bounds for i.i.d. sequences of random vectors

(or random variables) when ambiguity believed to affect parameters of the underlying probabil-

ity law is taken into account in a pessimistic, i.e., worst-case fashion for an unwelcome event.

It is well accepted that key parameters of commonly used distributions are rarely known with

precision in practice. Therefore, addressing this imprecision is of great importance in modelling

probabilistic phenomena. The present study is the result of an effort to apply some ideas from

robust optimization to Large Deviations. Robust optimization was initiated by the seminal con-

tributions of Ben-Tal and Nemirosvki [1], and El-Ghaoui and Lebret [10], and is presently a very
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active field of investigation; see [3] for a comprehensive review. The spirit of robust optimiza-

tion can be summarized as follows: faced with an optimization problem (e.g., an engineering

design problem) where the data are subject to imprecision (typically, imprecision due to errors

of estimation), find the best solution against the worst possible values of imprecise data in a

judiciously chosen set of ambiguity. The specification of the set of ambiguity for the imprecise

parameters typically reflects the degree to which one wishes to preserve one’s design in the face

of adversities of nature. In other words, a set of ambiguity which takes into account all possible

occurrences of imprecise data may result in a very conservative or expensive solution which may

be impossible to implement. At the other extreme, a set of ambiguity leaving important infor-

mation out may result in an unstable or fragile solution. Hence, the need to strike a balance in

the choice of the ambiguity set. A second issue in the choice of ambiguity set is the geometry

of the set which affects the numerical solvability of the resulting problem Here, it is important

to specify sets leading to convex, and thus numerically solvable robust optimization problems,

namely the so-called ellipsoidal, polyhedral or norm sets; see [3]. On the other hand, the level of

conservatism of the optimal robust solution also depends on the specification of the ambiguity

set, e.g., a polyhedral ambiguity set based on the infinity norm may ignore dependencies among

parameters, and result in the worst values of all parameters at once. Ellipsoidal uncertainty sets

are preferable in that respect since they mimic the engineering design approach that the value

of a random quantity should not exceed a constant times its standard deviation. The reader is

referred to the recent book [2] for a comprehensive coverage of robust optimization.

The present paper is not the first to explore worst-case large deviations asymptotics; see

e.g. [12, 14, 16]. The worst-case probability of an event A with respect to a set of probability

measures (a capacity) is defined, and a general version of Cramér’s theorem is proved in [12].

In [14], univariate i.i.d. processes are considered on a compact metric space with marginal

distribution assumed to lie in a so-called moment class (a set of distributions with fixed first,

and/or second, and/or third moment and so on). Then the worst-case rate function with respect

to this moment class is studied in detail with application to queueing and information theory. In

[16], large deviations theory is used to study the exponential rate of decrease of error probabilities

for a sequence of decisions based on a test statistic sequence whose distribution is a member

of a parametric class of distributions. An application to i.i.d. detection is also given. In

particular, the set of distributions is specified as the ε-contamination class around a nominal

distribution. This reference also studies the impact of applying convex conjugation to a worst-

case cumulant generating function with respect to the set of distributions, instead of finding

the convex conjugate function first and then passing to the worst-case estimate. The former

operation leads to a lower bound to the tightest exponential rate, which is exact if the cumulant

generating function is a closed, proper convex function for each distribution. Our research effort

is also linked to a thread of research in mathematical finance referred to as “model uncertainty”;

see e.g., [5], where a set of distributions is given as potentially governing the evolution of a

financial variable (e.g., a stock) and worst-case calculations are performed with respect to that
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set. In a reference related to the present paper [11], robust large deviations (among other things)

for a coherent version of the entropic risk measure applied to risk pooling in the insurance

industry are studied. In contrast to these references that usually deal with function spaces,

the present paper focuses on specific distributions with uncertain parameters taking values in a

specific set of ambiguity (ellipsoidal in the multivariate case) and explores (explicit) solvability of

resulting optimization problems, with the exception of section 4 where we deal with all discrete

probability vectors resulting in a fixed mean for finite alphabets.

Consider the empirical means S̄n = 1
n

∑n
j=1Xj , for i.i.d. d-dimensional random sequence

{Xn} . Let θ be a vector of parameters controlling the probability law of X1 , and for n ≥ 1, let

µ
(θ)
n be the law of the empirical mean of the n i.i.d. random variables. The “true” value of θ

is assumed to lie in an ambiguity set Uε where ε controls the level of ambiguity against which

one is prepared to protect oneself.

The logarithmic moment generating function (a.k.a. cumulant generating function) associ-

ated with the probability law µ
(θ)
1 of X1 is defined as

Λ(z) = lnE[ez
TX1 ]. (1)

The Legendre-Fenchel transform of Λ(z) is

Λ∗(x) = sup
z∈Rd
{zTx− Λ(z)}.

For fixed θ , it is well-known that (see e.g., [8], pp. 36–42)

1

n
lnµ(θ)

n (C) ≤ − inf
y∈C

Λ∗(y) (2)

for every closed set C . In the present paper we shall be dealing with the problem of obtaining

upper bounds for the following quantity:

sup
θ∈Uε

1

n
lnµ(θ)

n (C)

for every closed set C , i.e., we shall concern ourselves with studying optimization problems of

the form

sup
θ∈Uε
{− inf

y∈C
Λ∗(y)}

since we have immediately using (2) the worst-case upper bound:

sup
θ∈Uε

1

n
lnµ(θ)

n (C) ≤ sup
θ∈Uε
{− inf

y∈C
Λ∗(y)}. (3)

The paper is organized as follows. In section 2, we shall treat the problem in two cases of

univariate random sequences where the controlling parameter(s) are subject to ambiguity. In

section 3, we pass to random vector sequences. We obtain our most explicit worst-case bounds

in the Gaussian case. A slightly more general result is obtained for a “shifted” sequence where
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ambiguity is placed on the shift parameter and no specific assumption on the ambiguity set is

made except for closedness and convexity. We also look at a Poisson random vector sequence

example from Queueing Theory. A brief excursion into Sanov Theorem and the method of types

is given in section 4. It is our hope that the present paper will trigger further work on the

subject of Large Deviations estimation under model uncertainty.

2 Univariate examples

In this section as an introduction two cases illustrate the ideas of the paper in the context of

unidimensional i.i.d. sequences.

2.1 An exponentially distributed sequence

We begin with the exponential distribution, i.e., we assume the law governing the i.i.d. sequence

Xi is the exponential law with mean 1/λ . It is well-known that Λ∗ is given as:

Λ∗(x) = λx− lnλx− 1, for x > 0,

(it is equal to ∞ otherwise). Specifying the natural ambiguity set U = [a, b] (we omit ε),

after straightforward algebraic calculation one obtains for any closed interval C the following

worst-case Large Deviations Principle (LDP) upper bound:

sup
λ∈[a,b]

1

n
lnµ(λ)

n (C) ≤ − inf
x∈C

φ(x)

where

φ(x) =


bx− ln bx− 1 x < 1/b

ax− ln ax− 1 x > 1/a

0 1/b ≤ x ≤ 1/a.

Figure 1 exhibits plots of the functions Λ∗ and the piecewise function above resulting from the

worst-case LDP bound for a = 1 and b = 2 and λ = 1.8 for Λ∗ . Figure 2 contains the two

functions when λ = 1.2 in Λ∗ . In both figures, the dotted curve is the piecewise function of the

worst-case LDP bound, while the dashed curve is the Legendre-Fenchel function Λ∗ .

Note that for “true” λ close to the upper end of the interval the two functions are very close

for small values of x , and differ for larger values. This observation is reversed when the true λ

is closer to the lower end of the interval. We note that the rate function is zeroed out in the

ambiguity interval (or an interval induced by the ambiguity interval), an observation also made

in [14] (see Fig 2. of [14]).
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Figure 1: Exponential case: The Legendre-Fenchel function Λ∗ for λ = 1.8 (dashed curve) and

the worst-case LDP bound function (dotted curve) for a = 1 and b = 2.

2.2 A normally distributed sequence under joint (µ, σ)-ambiguity

The final example in this section is for a Normally distributed i.i.d. sequence Xi with the

Legendre-Fenchel transform of the cumulant generating function given as

Λ∗(x) =
(x− µ)2

σ2

where µ and σ2 are the mean and the variance of the Normal probability law governing X1 .

For ease of notation, we use s for the variance σ2 . We shall consider a joint ambiguity structure

on µ, s of the form :

Uε = {(µ, s) :
√

(µ− µ̂)2 + (s− ŝ)2 ≤ ε}.

One could certainly consider separate/independent ambiguity in µ and σ2 . However, this

independent structure again leads to rather predictable extreme behaviour for µ and σ as the

reader can easily verify. Furthermore, a joint structure remains tractable in the univariate case

as opposed to the multivariate Normal case which is treated in the next section.

We are thus dealing with the problem:

sup
(µ,s)∈Uε

− inf
x∈C

(x− µ)2

s
,

or equivalently with

sup
x∈C

sup
(µ,s)∈Uε

−(x− µ)2

s
.

The solution of the inner sup problem boils down to a unidimensional root finding problem for

a second-degree polynomial equation.
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Figure 2: Exponential case: The Legendre-Fenchel function Λ∗ for λ = 1.2 (dashed curve) and

the worst-case LDP bound function (dotted curve) for a = 1 and b = 2.

Proposition 1 For a Normally distributed i.i.d. sequence {Xn} where the parameters µ and

σ2 are confined to the ball Uε = {(µ, s) :
√

(µ− µ̂)2 + (s− ŝ)2 ≤ ε} the following hold:

1. for x > µ̂+ ε we have

sup
(µ,σ2)∈Uε

1

n
lnµ(θ)

n (C) ≤ sup
x∈C
−(x− µ∗)2

s∗
,

where µ∗ = µ̂ + γ∗ , s∗ = (x−µ̂−γ∗)γ∗

2
√
ε2−(γ∗)2

and γ∗ is a positive root (in the interval (0, ε)) of

the equation

γ2 + γ(x− µ̂)− 2ŝ
√
ε2 − γ2 − 2ε2 = 0.

2. for x < µ̂− ε we have

sup
(µ,σ2)∈Uε

1

n
lnµ(θ)

n (C) ≤ sup
x∈C
−(x− µ∗)2

s∗
,

where µ∗ = µ̂− γ∗ , s∗ = (−x+µ̂−γ∗)γ∗

2
√
ε2−(γ∗)2

and γ∗ is a positive root (in the interval (0, ε)) of

the equation

γ2 + γ(µ̂− x)− 2ŝ
√
ε2 − γ2 − 2ε2 = 0.

3. for x ∈ [µ̂− ε, µ̂+ ε]

sup
(µ,σ2)∈Uε

1

n
lnµ(θ)

n (C) ≤ 0

i.e., µ∗ = x, s∗ = ŝ (s∗ is irrelevant).
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Proof: The inner problem sup(µ,s)∈Uε −
(x−µ)2

s is a convex optimization problem (the objective

function is concave and the set of feasible solutions is convex). Since the set of feasible solutions

is compact, we can replace the sup by max. The necessary and sufficient Karush-Kuhn-Tucker

(with non-negative multiplier λ) conditions give:

−1

s
(x− µ) + λ(µ− µ̂) = 0, (4)

−(x− µ)2

s2
+ 2λ(s− ŝ) = 0, (5)

(µ− µ̂)2 + (s− ŝ)2 = ε2, (6)

λ
(
ε2 − (µ− µ̂)2 − (s− ŝ)2

)
. (7)

We ignore momentarily the requirement that s > 0. We make the ansatz µ∗ = µ̂ + γ where γ

is positive. If we can find µ∗, s∗, λ∗ satisfying the KKT optimality conditions (with a positive γ

and s∗ ), the proof is complete. From (6) we have s− ŝ = ε2 − γ2 . Using this in (4) we obtain

λ =
2
√
ε2−γ2
γ2

. Since we have two expressions for s∗ from (5) and (6) they should agree, i.e., we

have the equation
(x− µ̂− γ)γ

2
√
ε2 − γ2

= ŝ+
√
ε2 − γ2,

which gives the non-linear equation

γ2 + γ(x− µ̂)− 2ŝ
√
ε2 − γ2 − 2ε2 = 0.

The function on the left of the equation has a negative value at γ = 0 and a positive value at

γ = ε , which implies by continuity that the equation has a positive root in the interval (0, ε)

provided that x > µ̂+ ε .

If x ≤ µ̂− ε then we take the ansatz µ = µ̂ = γ for γ > 0, and we proceed exactly as in the

previous part to obtain the non-linear equation:

γ2 + γ(−x+ µ̂)− 2ŝ
√
ε2 − γ2 − 2ε2 = 0

where the function on the left of the equation has a negative root at γ = 0, and a positive root

at γ = ε provided x < µ̂− ε .
Finally for part 3, it is easy to verify that µ∗ = x and s∗ = ŝ satisfy the optimality conditions

with λ = 0 and the constraint inactive.

3 The multivariate case

In this section we examine worst-case uniform LDP bounds under model uncertainty for the

empirical means S̄n = 1
n

∑n
j=1Xj , for i.i.d. d-dimensional random sequences. We start with

the Gaussian case.
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3.1 Gaussian sequences

Let S̄n = 1
n

∑n
j=1Xj denote the empirical means for i.i.d. d-dimensional Gaussian sequence

{Xn} with mean m and covariance matrix K assumed invertible. For all m ∈ Rd and n ≥ 1,

let µ
(m)
n be the law of the empirical mean of n i.i.d. N (m,K) random variables. The “true”

value of m is assumed to lie in an ellipsoid Uε = {m|‖K−1/2(m − m̄)‖ ≤ ε} around a nominal

mean value m̄ , where ε controls the ambiguity, We define the weighted norm of vector x ∈ Rd

as ‖x‖K =
√
xTK−1x . Therefore, the set U is the closed ε-ball centred at m̄ , B̄(m̄; ε), with

respect to that norm.

We give below, for each closed subset C of Rd , an upper bound for n−1 lnµ
(m)
n (C), uniform

in m ∈ Uε (and n ≥ 1). The proof is a simple exercise in Karush-Kuhn-Tucker optimality

conditions.

Proposition 2 Under the above hypotheses,

sup
m∈Uε

1

n
lnµ(m)

n (C) ≤ − inf
y∈C

[
1y∈Uc

1

2
(‖y − m̄‖K − ε)2

]
for every closed set C .

Proof: For fixed m and K , we have

1

n
lnµ(m)

n (C) ≤ − inf
y∈C

Λ∗(y) = − inf
y∈C

1

2
‖y −m‖2K ,

for every closed set C . Now, consider the worst-case bound:

sup
m∈Uε

1

n
lnµ(m)

n (C) ≤ sup
m∈U

sup
y∈C
−1

2
‖y −m‖2K .

We have

sup
m∈Uε

sup
y∈C
−1

2
‖y −m‖2K =

{
0 if C ∩ U 6= ∅
supy∈C −1

2 (‖y − m̄‖ − ε)2 otherwise.

Notice that this computation of the supremum admits a nice geometric interpretation: it is the

problem of computing the projection of y onto U with respect to the weighted norm ‖.‖K .

Obviously, when y ∈ Uε , the solution is to take m∗ = y . It is geometrically evident that the

point in Uε closest to y with respect to the norm ‖.‖K is the point

m∗ = m̄+
ε

‖y − m̄‖K
(y − m̄).

This solution can be obtained by direct application of the Karush-Kuhn-Tucker theorem to the

convex optimization problem over m for fixed y :

max
m∈Uε

−1

2
(y −m)TK−1(y −m).

One forms the Lagrange function with a non-negative multiplier λ :

L(m,λ) = −1

2
(y −m)TK−1(y −m) + λ(ε2 − (y −m)TK−1(y −m)).
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The first-order conditions yield m∗ = y+2λm̄
2λ+1 . Substituting into the constraint assumed to be

active, one gets λ∗ =

√
(y−m)TK−1(y−m)

2ε − 1
2 , from which the result follows after straightforward

algebra.

Remark. We note that the Legendre-Fenchel transform expression of the multivariate Gaussian,

given as (y−m)TK−1(y−m) is equal to (up to a constant) the Mahalanobis distance between

two Gaussian distributions with means m and y , and common variance-covariance matrix K ,

which is in turn equal to the differential relative entropy between these two Gaussians; see e.g.,

[7] for this connection to machine learning and information theory.

Now, we assume that K is also ambiguous, independently from m . Hence, we consider

ambiguity in (µ,K) where µ ∈ Uε as above and K takes values in the set Kδ = {K �
0|‖K−K̂‖F ≤ δ} , where K̂ is a symmetric positive definite matrix. Here, ‖X‖F is the Frobenius

norm of the matrix X , given as Tr(XTX). Recalling the trace inner product of symmetric n×n
matrices X and Y as 〈X,Y 〉 = Tr(XY ), the norm constraint on K is equivalently written as√
〈K − K̂,K − K̂〉 ≤ δ .

Now, we consider the problem

sup
m∈Uε,K∈Kδ

1

n
lnµ(m)

n (C) ≤ sup
m∈Uε,K∈Kδ

{
− inf
y∈C

Λ∗(y)

}
︸ ︷︷ ︸

RHS

.

Proposition 3 For i.i.d. d-dimensional Gaussian random sequence {Xn} with mean m and

covariance matrix K taking values in Uε and Kδ , respectively, we have

sup
m∈Uε,K∈Kδ

1

n
lnµ(m)

n (C) ≤ sup
y∈C

inf
λ∈Rd

F (λ),

where

F (λ) =
1

2
λT K̂λ+ δ‖λλT ‖F + ε

√
λT K̂λ+ δ‖λλT ‖F + λT (m̄− y).

Proof: Here, we shall deviate from the proof of the previous result since the Legendre-Fenchel

transform of the cumulant generating function depends on K−1 whereas we wish to work directly

on K when K is ambiguous. We proceed as follows. Re-write the RHS:

sup
m∈Uε,K∈Kδ

{
− inf
y∈C

Λ∗(y)

}
= sup

K∈Kδ
sup
m∈Uε

{
sup
y∈C
−Λ∗(y)

}
.

Using the definition of Λ∗ we have

sup
K∈Kδ

sup
m∈Uε

sup
y∈C

{
− sup
λ∈Rd
{λT y − Λ(λ)}

}
.

Since the sequence {Xn} is Gaussian, we have

E[eλ
TX1 ] = eλ

Tm+ 1
2
λTKλ,
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and therefore, after exchanging the order of the suprema, we can re-write the RHS as

sup
y∈C

sup
K∈Kδ

sup
m∈Uε

{
− sup
λ∈Rd

[λT y − λTm− 1

2
λTKλ]

}
,

or, as

sup
y∈C

sup
K∈Kδ

sup
m∈Uε

{
inf
λ∈Rd

[−λT y + λTm+
1

2
λTKλ]

}
.

Now, using an appropriate min-max theorem for exchanging the order of the third sup and the

inf (see e.g., [15], Cor. 37.3.2) since the function is concave (linear) in m and (strictly) convex

in λ , and U is compact, the above is equal to

sup
y∈C

sup
K∈Kδ

{
inf
λ∈Rd

sup
m∈Uε

[−λT y + λTm+
1

2
λTKλ]

}
,

We can calculate the inner supremum

sup
m∈Uε

[−λT y + λTm+
1

2
λTKλ]

in closed-form as

−λT y + λT m̄+
1

2
λTKλ+ ε

√
λTKλ

since the function to be maximized is linear, and the set U is a convex, compact (and conic)

set. This follows easily from Karush-Kuhn-Tucker optimality conditions. Thus, the RHS has

been transformed into

sup
y∈C

sup
K∈Kδ

inf
λ∈Rd

−λT y + λT m̄+
1

2
λTKλ+ ε

√
λTKλ.

Now, invoking the min-max theorem one more time, we can equivalently re-write the above

sup
y∈C

inf
λ∈Rd

sup
K∈Kδ

−λT y + λT m̄+
1

2
λTKλ+ ε

√
λTKλ,

and concentrate on the problem:

sup
K∈Kδ

1

2
λTKλ+ ε

√
λTKλ.

One can further rewrite the objective function as

1

2
〈C,K〉+ ε

√
〈C,K〉,

where C ≡ λλT , or as
1

2
〈C,X + K̂〉+ ε

√
〈C,X + K̂〉,

and treat the problem over the symmetric matrix variable X ≡ K − K̂ . Now, one writes the

Lagrange function

L(X, γ) =
1

2
〈C,X + K̂〉+ ε

√
〈C,X + K̂〉+ γ(δ2 − 〈X,X〉)
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with a positive multiplier γ . First-order conditions give

X =
1

4γ
(1 +

ε

σ
)C

where σ ≡
√
〈C,X + K̂〉 . Using the definition of σ and supposing that the constraint is active

we have two equations in two unknowns σ, γ :

1

4γ
(1 +

ε

σ
)B +A = σ2,

1

16γ2
(1 +

ε

σ
)2B = δ2,

where B ≡ ‖C‖2F and A ≡ 〈C, K̂〉 . The solutions are obtained as σ =
√
A+ δ

√
B and

γ = 1
4

(
√
A+δ

√
B+ε)

√
B√

A+δ
√
B

, which results in X∗ = δ
‖C‖F C after evident simplification, thus giving

K∗ = K̂ + δ C
‖C‖F , a positive definite matrix.

Note that G(y) ≡ infλ∈Rd F (λ) is a concave function of y since it is the infimum of a collection

of affine functions.

As a variation on the theme of Proposition 2, consider the mean ambiguity set defined as a

box around a nominal value m̄ :

U∞ = {m|‖m− m̄‖∞ ≤ ε}.

We assume K known with certainty. We obtain the following result which is less explicit than

our Proposition 2 above.

Proposition 4 Under the hypotheses of Proposition 2,

sup
m∈U∞

1

n
lnµ(m)

n (C) ≤ sup
y∈C

[
(m̄− y)Tλ∗ +

1

2
(λ∗)TKλ∗ + ε‖λ∗‖1

]
for every closed set C , where λ∗ is any d-vector satisfying the inclusion

0 ∈ (m̄− y) +Kλ+ ε{g ∈ Rd : ‖g‖∞ ≤ 1, gTλ = ‖λ‖1}.

Proof: We proceed as in the proof of previous proposition to arrive at the right-hand side

RHS ≡ sup
y∈C

{
inf
λ∈Rd

sup
m∈U∞

[−λT y + λTm+
1

2
λTKλ]

}
.

Now, taking the inner supremum over m yields

RHS = sup
y∈C

{
inf
λ∈Rd

[−λT y + λT m̄+ ε‖λ‖1 +
1

2
λTKλ]

}
.

Now, since the function in the expression above is convex in λ , however not everywhere dif-

ferentiable, we use the sub-differential characterization of the minimizer [15], and the proof is

complete.
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The above proposition serves to appreciate the virtues of the specific ellipsoidal ambiguity set

used in the present paper (defined via the covariance matrix K ), which allows closed-form

expressions for multivariate Gaussian random sequences, essentially the only case in multivariate

analysis where we were able to obtain explicit bounds. Yet, another case allowing to make

progress towards explicit bounds is discussed next.

3.2 A shifted sequence

Consider a sequence of d-dimensional random vectors X1, X2, . . . where Xn = m + Yn with

m a deterministic but ambiguous vector (the shift) and Yn a random d-dimensional vector

sequence. No specific assumption about the probability law governing Y is made. However, we

shall assume the shift vector m takes values in the closed, convex set U . After straightforward

algebra, we have that the cumulant generating function Λ(z) of X1 is given as

Λ(z) = zTm+ λ(z)

where λ(z) is the cumulant generating function corresponding to Y1 . Let µ
(m)
n denote the

probability law of S̄n =
∑n

i=1Xi as usual. Then, from the worst-case Cramér bound we have

that for every closed set C

sup
m∈U

1

n
lnµ(m)

n (C) ≤ sup
x∈C

inf
z∈Rd
{λ(z)− zTx+ sup

m∈U
zTm}

using the definition of the Legendre-Fenchel transform, and the usual infimum/supremum ma-

nipulations (we use again the min-max theorem for exchanging the order of the third sup and

the inf [15], Cor. 37.3.2). Now, the term supm∈U z
Tm is actually the support function SU (z)

(evaluated at z ) of the closed convex set U from convex analysis [15]. Hence, the right-hand

side of the inequality above becomes

sup
x∈C

inf
z∈Rd
{g(z)− zTx},

where g(z) ≡ λ(z) + SU (z). Therefore, we have proved:

Proposition 5 For a sequence of d-dimensional random vectors X1, X2, . . . where Xn = m+Yn

with m (the shift) taking values in the closed, convex set U , and Yn is a random d-dimensional

vector sequence we have

sup
m∈U

1

n
lnµ(m)

n (C) ≤ − inf
x∈C

g∗(x)

for every closed set C , where g∗ is the Legendre-Fenchel transform of g defined as λ(z)+SU (z).

The above result furnishes a way to incorporate different probability laws and ambiguity sets

into Large Deviations.

Now, as an application consider the case where {Yn} is a d-dimensional normally dis-

tributed random sequence with mean 0 and variance-covariance K (we do not need mean
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equal zero here, it is only for convenience). Furthermore, we revert to ellipsoidal ambiguity set

Uε = {m|‖K−1/2(m − m̄)‖ ≤ ε} instead of the unspecified closed, convex set U . The term

supm∈Uε z
Tm is equal to zT m̄ + ε

√
zTKz (notice that the term zT m̄ + ε

√
zTKz can be inter-

preted to reflect the engineering design methodology that random variable zTm with mean zT m̄

most likely lies within ε standard deviation, i.e., ε
√
zTKz , of its mean.) For the multivariate

Gaussian we have that λ(z) = 1
2z
TKz . Now, we can evaluate g(z) and its Legendre-Fenchel

transform explicitly. We solve the inner inf problem, which is a quadratic-norm problem

zT (m̄− x) +
1

2
zTKz + ε‖z‖K ,

(there is a quadratic and a weighted norm term: ‖z‖K =
√
zTKz ) in closed-form. From the

first-order conditions (they are sufficient as the function is convex), one obtains:

m̄− x+Kλ+
ε√

zTKz
Kz = 0,

which gives

z∗ =
σ

σ + ε
K−1(x− m̄)

where we have defined σ =
√
zTKz . Substituting the expression for z∗ into the definition of σ

one obtains the quadratic equation in σ

σ2 + 2εσ + ε2 −H2 = 0,

where H =
√

(x− m̄)TK−1(x− m̄). The positive root of the equation is given by H − ε , for

H ≥ ε . The result, which is identical to the result of Proposition 2, follows by substituting the

solution

z∗ =
H − ε
H

K−1(x− m̄)

into the function. When H < ε , one simply takes z∗ = 0. Therefore, we have

sup
m∈Uε

1

n
lnµ(m)

n (C) ≤ − inf
x∈C

[
1x∈Uc

1

2
(‖x− m̄‖K − ε)2

]
for every closed set C .

3.3 A multivariate Poisson sequence

Now, we consider an example from Queueing Theory [17]. Suppose yij are i.i.d. random variables

following a Poisson law with rate λj . Define the vectors

xi =

J∑
j=1

yijej ,

where ej ∈ Rd are given vectors for j = 1, . . . , J . We shall be interested in a worst-case LDP

upper bound estimate for the average x1+...+xn
n as in the previous paragraphs. For n ≥ 1, let
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µ
(Λ)
n be the law of the empirical mean of the n i.i.d. random variables, where Λ is the J -vector

with components λj . We shall confine ambiguity in the rates λj to the ambiguity set

L = {Λ ∈ RJ : ‖Λ− Λ̂‖2 ≤ ε}.

We are interested in the bound:

sup
Λ∈L

1

n
lnµ(m)

n (C) ≤ sup
Λ∈L
{− inf

x∈C
`(x)}.

where `(x) is given as

`(x) = sup
θ
{θTx− g(θ)}

with the cumulant generating function

g(θ) =

J∑
j=1

λj(e
θT ej − 1).

Going through the usual motions we have the right-hand side of the inequality as

sup
x∈C

inf
θ∈Rd

sup
Λ∈L
{−θTx+

J∑
j=1

λj(e
θT ej − 1)}.

For ease of notation denote by ξj(θ) the quantity eθ
T ej − 1, and hence by ξ(θ) the J -vector

with components ξj(θ). Now, evaluation of the innermost supremum gives the right-hand side

sup
x∈C

inf
θ∈Rd
{−θTx+ ξ(θ)T Λ̂ + ε‖ξ(θ)‖2}.

We note that the function H(x) defined as

H(x) ≡ inf
θ∈Rd
{−θTx+ ξ(θ)T Λ̂ + ε‖ξ(θ)‖2},

is a concave function since it is the pointwise infimum of a collection of affine functions. However,

an explicit expression for H is not possible. Hence, calculations involving H have to be done

numerically. For illustration, we consider d = 2 = J with e1 = (1 0)T and e2 = (0 1)T , the

unit vectors, Λ̂ = (10 10)T . For x1 ≥ 100 and x2 ≥ 100, the function H attains its maximum

at (100, 100). Figure 3 shows the behaviour of H(100, 100) as ε increases. It is almost a linear

curve.

4 Sanov’s theorem under ambiguity

In this section, we shall briefly explore worst-case bounds within the method of types and Sanov’s

theorem which can be viewed as an application of Large Deviations theory (more precisely, of

the Gärtner-Ellis Theorem, see e.g., [4]). Sanov’s Theorem is also heavily used in Information
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Figure 3: A plot of H(100, 100) versus ε with Λ̂ = (10 10)T .

Theory; [6]. This section is related to the work reported in [14] where the worst-case rate

function is characterized using a variational formula involving the solution of a semi-infinite

linear optimization problem.

Our desktop reference for Sanov’s Theorem is [8]. We denote by Σ the finite alphabet

{a1, a2, . . . , aN} (we also use the N -vector a to denote the vector with components (a1, a2, . . . , aN )).

Let Y1, Y2, . . . , Yn be a sequence of random variables that are i.i.d. according to the law

µ ∈ M1(Σ) where M1(Σ) denotes the space of all probability laws on Σ. The type Ly
n of

a finite sequence y = (y1, . . . , yn) ∈ Σn is the empirical measure induced by that sequence, i.e.,

Ly
n(ai) is the fraction of occurrences of ai in the sequence y = (y1, . . . , yn). The relative entropy

of a probability vector ν with respect to another probability vector µ is

H(ν|µ) =

|Σ|∑
i=1

ν(ai) ln
ν(ai)

µ(ai)
.

Let P denote the set of probability measures of which µ is a member. The following estimate

follows immediately from Sanov’s theorem (see Th. 2.1.10 [8]).

Proposition 6 For every set Γ of probability vectors in M1(Σ), we have

lim sup
n→∞

sup
µ∈P

1

n
lnP (Ly

n ∈ Γ) ≤ sup
µ∈P
{− inf

ν∈Γ
H(ν|µ)}.

Proposition 6 notes that when one would like to generalize Sanov’s theorem to a case where the

actual measure is known to come from a given set of measures, the LDP rate for the empirical

measure is exactly the relative entropy distance between two sets of measures. Computing such

distances is a topic currently studied in computer science, the reference [7] cited above in the
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remark after the proof of Proposition 2 is an example. Thus, Proposition 6 provides a connection

between these two problems and research areas.

In general, it is extremely difficult to obtain explicit expressions for the right-hand side in

the above bound. However, considering the case Pm = {µ : 1Tµ = 1, µ ≥ 0, aTµ = α} (we

assume now that the alphabet has numeric values), i.e., the set of probability vectors resulting

in a mean value equal to α we were able to show a (somewhat limited) result. Assuming that

a1 < a2 < a3 , for every set Γ of probability vectors in M1(Σ), we have for N = 3 and α = a2 :

lim sup
n→∞

sup
µ∈Pm

1

n
lnP (Ly

n ∈ Γ) ≤ − inf
ν∈Γ

H(ν|µ∗),

where µ∗1 = a1(a2−a3)(ν1+ν3)
a1−a3 , µ∗2 = ν2 , µ∗3 = (a1−a2)(ν1+ν3)

a1−a3 . Admittedly, the specification α = a2

is restrictive. However, an explicit result for general α was not possible. In general, one has to

solve N -th degree polynomial equations to find the solution of the inner problem. Hence one

must resort to numerical methods. As a result, our efforts to extend the above result to general

N , different α and other specifications of P (e.g., P = {p ∈ M1(Σ) : dist(P, P̄ ) ≤ ε} for a

nominal probability vector P̄ and a suitable distance measure) have so far borne no fruit. This

is the subject of future investigations.

5 Concluding remarks

We investigated the impact of ambiguity in parameters for common distributions on Large De-

viations upper bounds in a worst-case sense inspired by the last decade of development in robust

optimization. In particular, we adopted the ellipsoid specification of ambiguity for multivariate

random sequences since ellipsoids help mimic the engineering design approach that a random

variable affecting the design will most likely not exceed a constant times its standard deviation,

and leads to tractable (at least in some cases) optimization problems and explicit worst-case

bounds. Much remains to be explored: some examples are hypothesis testing under ambiguity,

Large Deviations for Markov Chains under ambiguity among others.
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