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Abstract Effect of the availability of a riskless asset on the performance of naïve diversifica-
tion strategies has been a controversial issue. Defining an investment environment containing
both ambiguous and unambiguous assets, we investigate the performance of naïve diver-
sification over ambiguous assets. For the ambiguous assets, returns follow a multivariate
distribution involving distributional uncertainty. A nominal distribution estimate is assumed
to exist, and the actual distribution is considered to be within a ball around this nominal
distribution. Complete information is assumed for the return distribution of unambiguous
assets. As the radius of uncertainty increases, the optimal choice on ambiguous assets is
shown to converge to the uniform portfolio with equal weights on each asset. The tendency
of the investor to avoid ambiguous assets in response to increasing uncertainty is proven,
with a shift towards unambiguous assets. With an application on the CVaR risk measure, we
derive rules for optimally combining uniform ambiguous portfolio with the unambiguous
assets.

Keywords Naïve diversification · Robust portfolio optimization · Ambiguous and
unambiguous assets · Conditional Value-at-Risk · Worst-case risk measures
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1 Introduction

Uncertainty in the asset return distribution has received considerable attention in the portfolio
selection literature. Ambiguity in the type of distribution for the asset returns has been
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addressed in several studies, leading to distributionally robust portfolio selection. Often,
the information regarding asset returns consists of the moment estimates, and parametric
uncertainty approaches robustify the portfolio selection against uncertainty in the moment
estimates. For a review on robust optimization and portfolio selection with coverage of
parametric uncertainty applications, see e.g., Bertsimas et al. (2011), Fabozzi et al. (2007),
Fabozzi et al. (2010), Pachamanova (2013), Guidolin and Rinaldi (2013). In this study, we
adopt a non-parametric model of distribution uncertainty rather than uncertainty based on
knownmoments, albeitwith some error in themoment information.Rather than an ambiguous
distribution type given mean/covariance information, we assume that a nominal multivariate
probability distribution for asset returns is known. The uncertainty set is defined as a ball
around this nominal distribution, and the probability metric used for defining the ball is the
Kantorovich distance (also called the Wasserstein metric).

While adopting the uncertainty model introduced by Pflug et al. (2012), a specific invest-
ment strategy is in the focus of our studies: naïve diversification, i.e., investing in all assets
with equal shares of thewealth. In Pflug et al. (2012), it is demonstrated that when uncertainty,
i.e., the radius of the ball, increases, the worst-case risk minimizing portfolio converges to
the uniform portfolio (also called the equally weighted, 1/N or naïvely diversified portfolio),
in which each asset receives equal portions of the wealth. This result is proven for any risk
measure chosen from a class of convex, law invariant functionals. Following the result in
Pflug et al. (2012), we investigate optimality of the uniform portfolio for assets involving
distributional uncertainty (referred to as ambiguous assets/market), in the existence of an
alternative market to invest in—a group of assets whose return distribution is known with
full information (the unambiguous assets/market).

Benartzi and Thaler (2001) point out that naïve diversification is a common practice both
as a general heuristic of choice and an investment strategy. Behavioral experiments indicate
that subjects asked to choose multiple items from a list of possible selections simultane-
ously, tend to diversify their decisions, i.e., they pick as diverse a group of items as possible.
Similar behavioral experiments investigate decisions on investment plans. Employees pre-
sented with a fictive mix of assets for their retirement saving plans predominantly use the
naïve diversification strategy, where the ratio of the total amount invested in stocks/bonds
is in strong correlation with the ratio of the number of stocks/bonds in the asset mix. These
behavioral studies are supported by investor behavior elicited from archives of investment
history: prevalence of the asset type in the portfolio determines the total allocation to that
type. Such behavior is deemed to contradict rational choice, i.e., optimized diversification
based on portfolio models, such as the mean-variance portfolio. In addition to contradicting
optimized portfolio rules, the psychological bias towards naïve diversification can be consid-
ered irrational since it is difficult to imagine that a rational model fits the diverse preferences
of people expressing this choice. However, DeMiguel et al. (2009b) point out that the antic-
ipation of some form of uncertainty in the environment might be intuitively leading people
to naïve diversification. The authors study 14 models, mostly the mean-variance model and
its extensions, testing on 7 real market data sets. The result is fascinating: none of the 14
models investigated consistently outperform naïve diversification in terms of out-of-sample
Sharpe ratio, certainty-equivalent return (CER) and turnover measures. Parameter estima-
tion errors outweigh the theoretical gains promised by models, and the authors point out
the need for an unrealistic amount of data for the models to perform better than the 1/N
rule. The result is significant, providing justification based on real market data for the fact
that naïve diversification is not necessarily irrational, being hard to outperform. With grow-
ing interest in 1/N portfolio, many studies follow both supporting this view, or challenging
naïve diversification under different settings and with more sophisticated portfolio strategies.
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Murtazashvili and Vozlyublennaia (2013) support the claim that naïve diversification out-
performs enhancements on mean-variance portfolio rules, comparing out-of-sample mean to
standard deviation ratios. A similar result is reported by Jacobs et al. for global equity diver-
sification and diversification over asset classes (Jacobs et al. 2014). Again, out-of-sample
performance of naïve diversification is either better or as good, compared to the shortfall
minimizing portfolio (Haley 2016). Brown et al. (2013) also confirm that optimal diversifica-
tion can not consistently outperform naïve diversification, considering out-of-sample Sharpe
ratio, CER and turnover measures, but remark that performance of 1/N comes at a cost:
increase in the tail risk as measured by skewness and kurtosis, and increased concavity of
the return distribution. Frahm et al. (2012) test the results in DeMiguel et al. (2009b) using
out-of-sample multiple testing techniques, and combining naïve diversification with risk-free
investment. The study also considers robust portfolio strategies and minimum variance port-
folio rules. Extensions of minimum variance strategies are shown to (slightly) outperform
trivial strategies (strategies formed by combination of 1/N risky portfolio and the riskless
asset in different ratios). The share riskless asset receives in the trivial strategy considerably
affects the performance, and it is emphasized that including a riskless asset in the setting is
critical for the comparison of optimized diversification strategies and naïve diversification.
There are many studies countering the efficiency of naïve diversification, testing in different
settings, or offering more sophisticated portfolio selection strategies. Cesarone et al. (2016)
modify known portfolio models adding cardinality constraints to restrict number of assets in
the portfolio. This seems to work, as the out-of-sample performance of (unrestricted) 1/N
is inferior in terms of return standard deviation and Sharpe ratio compared to most models
and for most data sets. Similarly, Behr et al. (2013) devise a constrained minimum variance
portfolio model with shrinkage. The model celebrates a consistent and significant improve-
ment in out-of-sample Sharpe ratio over naïve diversification. Similarly, higher Sharpe ratio
and Omega measures and lower volatility than the 1/N portfolio indicates superiority of
the sample based version of the Black–Litterman model (1992) developed by Bessler et al.
(2017). Fugazza et al. (2015) emphasize two aspects that are critical for the superiority of
naïve diversification: the investment horizon (1 month) and asset types in the portfolio. The
linear vector autoregressive strategy offered can improve out-of-sample CER and Sharpe
ratio when real estate assets are available and the investment horizon is longer than a year.
DeMiguel et al. (2009a) provide a norm-constrained minimum-variance portfolio selection
framework achieving higher out-of-sample Sharpe ratios. Tu and Zhou (2011) form strate-
gies as a hybrid of naïve diversification and the three fund strategy of Kan and Zhou (2007),
optimizing their combination. The resulting portfolio rule outperforms the pure 1/N strat-
egy. Kirby and Ostdiek (2012) show that the mean-variance strategies can be enhanced with
timing strategies, and outperform naïve diversification. Fletcher (2011) tests the models in
Tu and Zhou (2011) and Kirby and Ostdiek (2012) with U.K. stock return data and confirms
superiority over 1/N .

The study by Pflug et al. (2012) has a unique position in the debate. Studies aforemen-
tioned are empirical, focusing on the effect of parameter estimation errors and deciding based
on out-of-sample statistics. Pflug et al. (2012), on the other hand, construct a mathematical
framework to model uncertainty, and state that naïve diversification stands as an efficient
portfolio strategy not because optimization is unviable under uncertainty, proving the opti-
mality of 1/N strategy in this case. Given a nominal distribution for asset returns, they define
the distribution uncertainty by a ball of probability distributions around the nominal dis-
tribution. It is proven that as the radius of the ball, i.e. the level of uncertainty, increases,
the optimal investment vector converges to the uniform investment. The choice of metric
is important in this result. Kantorovich distance has stronger convergence properties (in
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unbounded spaces), being bounded from below by the square of Prokhorov metric (Gibbs
and Su 2002), which metrizes weak convergence on any separable metric space. The con-
vergence of optimal investment to 1/N based on Kantorovich distance does not generally
imply the result if Prokhorov metric is used. Indeed, robust portfolio models assuming non-
parametric distribution ambiguity are studied with other metrics. Calafiore (2007), defines
uncertainty based on a nominal discrete distribution and the Kullback–Leibler divergence.
Under this model, worst-case mean-variance and mean-absolute deviation risk measures are
studied. In the former, an interior point barrier method in conjunction with an analytic center
cutting plane technique is used, and in the latter case, a line search algorithm is incorpo-
rated to the solution procedure, additionally. In Erdoğan and Iyengar (2006), asset return
distribution is considered to lie within a ball based on Prokhorov metric, and an ambiguous
chance constrained problem is defined. The problem is approximated by robust sampling of
probability distributions, which results in problem formulations having the same complexity
as the nominal problem with certain distribution.

In this study, we adopt the framework in Pflug et al. (2012), and add a group of assets with
known return distribution to the investment environment. The group of assets can be consid-
ered to represent an alternative market where the investor can invest part of the initial wealth,
for instance a developed market allowing reliable estimation of the return distribution for a
certain group of assets. The group of assets with ambiguous return distribution, on the other
hand, can be considered to represent an emerging market with rapid growth promising high
return rates, while the lack of consolidation and historical data might pose difficulty to the
estimation of asset return information. Since the key factor for the optimality of the uniform
portfolio is the increasing level of uncertainty, by introducing the alternative assets, we assess
the willingness to invest in the ambiguous market under high uncertainty. We first extend
the result in Pflug et al. (2012) showing that optimal investment in the ambiguous market
converges to uniform portfolio for both positive and negative allocations to this market, after
fixing the allocation to the unambiguous assets. While having this convergence effect, we
show that increasing uncertainty may cause the investor to steer away from the ambiguous
market. With this analysis we aim to shed light on the desirability of investing in environ-
mentswhere the naïve diversificationheuristic becomes anoptimal strategy. Indeed, in such an
environment, allocation to ambiguous assets diminishes as the radius of uncertainty tends to
infinity. Nevertheless, optimality of the uniform portfolio persists while the total amount allo-
cated to the ambiguous assets diminishes. This mathematically describes investor behavior in
avoiding uncertainty by pulling out of the ambiguous market, and explains the phenomenon
addressed, for instance, by Kan et al. (2016): an alternative/riskless asset in the environment
significantly changes the performance of optimal portfolio strategies and promotes them to
consistently outperform naïve diversification. If naïve diversification is also combined with
a riskless asset, such as the 25/50/75% naïve and riskless portfolio combinations in Frahm
et al. (2012), a similar performance effect of exploiting a riskless asset is also observed on the
naïve diversification strategy. Our study mathematically validates the optimality of a hybrid
strategy combining riskless/unambigous portfolio with uniform investment into ambiguous
assets. Using CVaR as the risk measure, we derive rules to optimally combine the uniform
ambiguous portfolio with the portfolio selection on unambiguous assets.With the uncertainty
structure in Pflug et al. (2012), a riskess asset can not be defined in the asset collection, and
with the extension in this study, it is possible to model riskless assets as a special case, to
seek optimal combination of risky naïve portfolio and the riskless asset.

To the best of our knowledge, our study is unique in offering a mathematical model
that brings together in an investment environment assets involving distribution ambiguity
and assets with complete information on return distribution. In this environment, a decision
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heuristic is promoted on one side, while conditions on the other side allow for optimized
diversification. We prove that increasing uncertainty renders naïve diversification an optimal
investment strategy for the ambiguous assets in combination with an optimized portfolio over
the unambiguous assets. We prove divestment of the ambiguous market as the uncertainty
level tends to infinity. While our convergence results are valid for a class of convex, law
invariant risk functionals, we consider the Conditional Value-at-Risk (CVaR) measure as a
core representative of this class and derive rules for optimally combining uniform ambiguous
portfoliowith optimal unambiguous portfolio. Ourmodel covers the combination of a riskless
asset with the ambiguous assets as a special case. This provides a clear justification for
the optimality of portfolios that combine naïve diversification with a riskless asset. With
the addition of a riskless asset to the environment, naïve diversification continues to be
the optimal strategy on ambiguous assets, and this is a result based on a single factor: the
level of uncertainty in the ambiguous market—not the existence of alternative assets in the
environment.

The organization of this paper is as follows: In Sect. 2 the problem definition is provided,
presenting the risk measure and uncertainty structure adopted in the model. In Sect. 3 we
present the results establishing that investment in the ambiguous market converges to unifor-
mity with increasing ambiguity level, fixing allocation to unambiguous assets. The result on
diminishing investment in ambiguous market with increasing uncertainty follows. In Sect.
4, we derive rules for optimally combining unambiguous and uniform ambiguous portfolio,
with (worst-case)CVaR as the riskmeasure. An example with theMarkowitz functional and a
riskless asset demonstrates the loss of interest in the ambiguous market when the uncertainty
level is high enough to promote naïve diversification. For a more fluent presentation of the
main results therein, the proofs of the results in Sect. 3 are collected in “Appendix”.

2 Problem definition

In a market involving ambiguity in asset return distributions, there are N assets, with return
distribution Q1 on R

N , which is known to be inside an open ball around a known nomi-
nal distribution P1 on R

N . The definition of the ball of radius κ , Bκ (P1), is based on the
Kantorovich/Wasserstein distance of degree p:

dp(P1, Q1) = inf
π

{(∫
RN×RN

‖x − y‖p
pdπ(x, y)

) 1
p : proj1(π) = P1, proj2(π) = Q1

}
,

as defined for two measures P1 and Q1 on R
N (for further discussion on Kan-

torovich/Wasserstein metrics see Chapter 6 in Villani (2008)). proj denotes projection of
the measure, i.e., marginal distributions in the first and last N dimensions with P1 (A) =
π
(
A × R

N
)
, Q1 (B) = π

(
R

N × B
)
for all members A and B of the Borel σ -algebra

B (
R

N
)
. π is a measure on R

N × R
N , with marginals P1 and Q1. The infimum is known

to be attained by some distribution π on R
N × R

N (Villani 2003), and the minimizing
distribution is called the optimal transportation plan between P1 and Q1. When necessary,
superscripts are used to clarify the space the Kantorovich distance is defined on, such as dR

N

p

or dR
N+L

p .
Based on the uncertainty set Bκ (P1), a robust portfolio selection problem arises, and is

defined by Pflug et al. (2012) as follows:
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inf
w∈RN

sup
Q1∈Bκ (P1)

R(〈XQ1 , w〉) (1)

s.t. 〈1, w〉 = 1. (2)

Here, XQ1 : Ω → R
N is a random variable in L p (Ω,Σ,μ) with image measure Q1, that

is, μ ◦ (XQ1
)−1

(A) = Q1 (A) for all A ∈ B (
R

N
)
.

The risk functional R : L p (Ω,Σ,μ) → R is convex, law invariant and can be stated in
dual form as:

R(X) = max
{
E (X Z) − R (Z) : Z ∈ Lq} .

Here, R : Lq (Ω,Σ,μ) → R is a convex functional. Convexity in this context requires for
randomvariables X ,Y ∈ L p (Ω,Σ,μ) thatR (λX + (1 − λ) Y ) ≤ λR (X)+(1 − λ)R (Y )

for all λ ∈ (0, 1). Law invariance, also known as version independence, means that the value
of R (X) depends on the law, i.e., the probability distribution, of X and not on the specific
mapping of outcomes in Ω to the range of X . For any other random variable Y with the
same image measure μ ◦ Y−1 = μ ◦ X−1, thus distribution, R (Y ) is equal to R (X). The
domain of the risk functionalR determines the degree p of the Kantorovich metric. At each
X ∈ L p (Ω,Σ,μ), by abuse of notation we denote argmaxZ∈Lq {E (X Z) − R (Z)} by the
set of subgradients ∂R (X), although these sets might not coincide in general (see Pflug et al.
2012; Romisch and Pflug 2007).

As the uncertainty radius κ increases, the optimal solution of (1)–(2) either turns equal to
or otherwise converges to the uniform portfolio wu = 1

N 1 (we use 1 to denote both charac-
teristic functions and vectors composed of ones, discrimination to be made and dimension
to be inferred by context). In this problem, the investor is forced to invest entire wealth to
the market of N assets. The decision in this case is not informative on whether he is really
interested in entering the market under high uncertainty. By introducing an alternative market
with unambiguous asset return distribution, we try to assess whether the investor is willing
to invest in, and with how large an allocation for the ambiguous market, under high uncer-
tainty levels that theoretically prescribe naïve diversification therein. The alternative market
consists of L assets with known return distribution. In this study, the correlation of the two
markets is not incorporated in the model, thus the distribution Q of N + L assets together is
product formed, i.e., Q = Q1 × P2, where P2 is the return distribution of the assets in the
second market. The uncertainty set for the probability distribution is defined as:

B̃κ (P) =
{
Q : Q = Q1 × P2, dR

N+L

p (P, Q) ≤ κ
}

,

where P = P1 × P2 is the nominal distribution for the entire collection of N + L assets,
P , Q are Borel probability measures on R

N+L , P1, Q1 are Borel probability measures on
R

N , and P2 is a Borel probability measure on RL . Since Q is product formed, the condition
dR

N+L

p (P, Q) ≤ κ is equivalent to dR
N

p (P1, Q1) ≤ κ (as discussed in Lemma 3) but the
preferred definition has advantages in representing the relationship between the distribution
Q on

(
R

N+L ,B (
R

N+L
))

and the random variable XQ : Ω → R
N+L . Our problem is

redefined as follows:

inf
w∈RN

v∈RL

sup
Q∈B̃κ (P)

R
(〈

XQ,

[
w

v

]〉)
(3)

s.t. 〈1, w〉 + 〈1, v〉 = 1. (4)
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We assume that the nominal problem corresponding to (3)–(4) defined as

inf
w∈RN

v∈RL

R
(〈

X P ,

[
w

v

]〉)
(5)

s.t. 〈1, w〉 + 〈1, v〉 = 1 (6)

is well-posed, being bounded below with an optimal solution.
We first fix the amount v invested into the unambiguous assets, to prove that the optimal

choice on ambiguous assets with the remaining wealth converges to the uniform portfolio
wu,v = 1−〈1,v〉

N 1. Fixing v at a value in RL , we define an inner problem as follows:

inf
w∈RN

sup
Q∈B̃κ (P)

R
(
〈XQ1 , w〉 +

〈
XQ2 , v

〉)
(7)

s.t. 〈1, w〉 = 1 − 〈1, v〉 . (8)

Given a distribution Q on
(
R

N+L ,B (
R

N+L
))
, a random variable XQ : (Ω,Σ,μ) →(

R
N+L ,B (

R
N+L

))
exists with image measure Q (see Lemma 2 in Pflug et al. 2012), i.e.,

for all A ∈ B (
R

N+L
)
, μ ◦ (XQ

)−1
(A) = Q (A). Since R is law invariant, we legitimately

use random variables (e.g., X P ) in computations corresponding to Borel measures defined
on R

N , RL , RN+L (e.g., P). A remark regarding notation abuse is the usage of indexing in
XQ1 , XQ2 . Former represents the first N entries of the N + L dimensional random variable
XQ and latter the last L entries. Then, image measures of XQ1 and XQ2 coincide with
the marginals Q1 and Q2 of Q on the first N and last L dimensions, respectively (for all

A ∈ R
N , μ ◦ (

XQ1
)−1

(A) = Q
(
A × R

L
) = Q1 (A) × Q2

(
R

L
) = Q1 (A)). Via this

notation we write 〈XQ,

[
w

v

]
〉 = 〈XQ1 , w〉 + 〈

XQ2 , v
〉
. We denote by σ

(
X Pi

) ⊂ Σ the

smallest sigma algebra with respect to which X Pi is measurable, i = 1, 2, and by F⊥ the
largest sigma algebra independent from σ(X P2). Note that σ(X P1) ⊂ F⊥, if X P1 and X P2

are independent.

3 Uniform investment and divestment of ambiguous market

Toprove (approximate) optimality ofwu,v for (7)–(8), somepreliminary results are necessary.
The first step for solution is to compute

sup
Q∈B̃κ (P)

R
(
〈XQ1 , w〉 +

〈
XQ2 , v

〉)

given P , v and w. In the following proposition, we present the computation. Proofs are
deferred until “Appendix” to present the main results in this section earlier and in a more
fluent manner. Proofs contain similar lines to those in Pflug et al. (2012), and differences
arise mainly due to the steps necessary to accommodate the additional unambiguous return
term in the return/loss function and to assure that the ambiguous distribution Q is product
formed.

Proposition 1 Let R : L p (Ω,Σ,μ) → R be a convex, law invariant risk measure. Let
P = P1 × P2 be a probability measure on R

N+L with P1, P2 probability measures on R
N ,

R
L , respectively. Let X P ∈ L p (Ω,Σ,μ) be a random variable with image measure P, and
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F⊥ ⊂ Σ be the largest σ -algebra independent from σ
(
X P2

)
. Let p = 1 (q = ∞ in this

case) and assume

‖Z‖L∞ = C, μ ({ω ∈ Ω : |Z | (ω) /∈ {0,C}}) = 0 (9)

for all Z ∈ ∂R (X), X ∈ L1 (Ω,Σ,μ). In addition, assume for all ε ∈ (
0, 1

2

)
that there

exists B ∈ F⊥ such that μ(B) > 0, and either

μ (B ∩ {ω ∈ Ω : Z (ω) = C}) > (1 − ε) μ (B)

or

μ (B ∩ {ω ∈ Ω : Z (ω) = −C}) > (1 − ε) μ(B)

holds.
Or, let 1 < p < ∞, q be such that 1

p + 1
q = 1, and assume

‖E
[
Z |F⊥] ‖Lq = C for all Z ∈

⋃
X∈L p

∂R (X)with R (Z) < ∞.

Then it holds for every κ > 0 and every (w, v) ∈ R
N × R

L that

sup
Q∈B̃κ (P)

R
(
〈XQ1 , w〉 +

〈
XQ2 , v

〉)
= R

(
〈X P1 , w〉 +

〈
X P2 , v

〉)
+ Cκ‖w‖q .

The assumptions in Proposition 1 for the case p = 1 are not as restrictive as they might
seem to be, particularly for our purposes. In Sect. 4, we will be working with the CVaR risk
measure (Romisch and Pflug 2007), and it has the dual representation

CVaRα (X) = sup

{
E (X Z) : E (Z) = 1, 0 ≤ Z ≤ 1

1 − α

}
.

For A ∈ Σ with μ (A) = 1 − α and {X ≥ VaRα (X)} ⊂ A, Z ∈ ∂CVaRα (X) holds true
for

Z (ω) =
{

1
1−α

, ω ∈ A

0, otherwise

and X ∈ L1 (Ω,Σ,μ). With such Z ∈ ∂CVaRα

(〈
X P1 , w

〉 + 〈
X P2 , v

〉)
, if

μ
({

ω ∈ Ω :
〈
X P1 (ω) ,w

〉
< −k

})
> 0

for all k ∈ N and w �= 0, then, with increasing k, the ratio of

μ

({
ω ∈ Ω :

〈
X P1 (ω) ,w

〉
< −k

}
∩
{
ω ∈ Ω : Z (ω) = 1

1 − α

})

to μ
({

ω ∈ Ω : 〈X P1 (ω) ,w
〉
< −k

})
converges to 1. Thus, any elliptical distribution com-

monly used for modeling asset returns (Owen and Rabinovitch 1983), such as multivariate
Normal and t-distributions, and the Laplace distribution as well, satisfy the assumptions in
Proposition 1, case p = 1. The assumptions for 1 < p < ∞ fixing ‖E [

Z |F⊥] ‖Lq to a
constant, on the other hand, might be very restrictive in certain cases. For the Markowitz
functional Mγ (X) = E [X ]+γ

√
Var (X), for instance, definition in dual form is (see Pflug

et al. 2012 for derivations)

Mγ (X) = sup

{
E [X Z ] : E [Z ] = 1, ‖Z‖L2 =

√
1 + γ 2

}
,
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thus ‖Z‖L2 is constant for all Z ∈ ∂R (X) and all X ∈ L2. It holds that 1 ≤ ‖E [
Z |F⊥] ‖L2 ≤√

1 + γ 2, but unless further restrictions are posed on P1 and P2, ‖E [
Z |F⊥] ‖L2 = C for

all Z ∈ ∂R (X) and some C ∈ R does not hold true in general. For ‖E [
Z |F⊥] ‖L2 =

‖Z‖L2 = C to hold true for all Z , σ(X P2) = {∅,Ω}, thus a constant X P2 is necessary,
and P2 represents asset(s) with fixed return(s). Using a single riskless asset, it is possible to
observe the willingness of the investor to enter the market constituted by ambiguous assets
as the uncertainty radius increases and uniform investment in the ambiguous assets becomes
optimal, as discussed in Sect. 4.

By Proposition 1, we transform the objective function of the inner problem (7)–(8) [also
the main problem (3)–(4)], and restate without taking supremum:

inf
w∈RN

R(〈X P1 , w〉 + 〈X P2 , v〉) + Cκ‖w‖q (10)

s.t. 〈1, w〉 = 1 − 〈1, v〉. (11)

With the result of Proposition 1, it is possible to state the worst-case risk measure as a
functional whose input is based only on w, v, and the nominal distribution P . In this sense
we are able to fix the distribution. Portfolio choice for the unambiguous assets, v, is also fixed
in the inner problem, and we can now derive a bound for the change in the risk measure R
due to change in the ambiguous portfolio vector w. This bound is presented in Lemma 1,
leading to the result in Lemma 2, and is critical to the results on convergence to the uniform
portfolio for the ambiguous assets, hence the derivation of the optimality rules of the inner
problem. From this point on, we do not restate the assumptions on R and P for the results
to be presented. Each result is presented for R and P satisfying the conditions required by
the appropriate case of Proposition 1 depending on the space R is defined on (p = 1 or
1 < p < ∞). We keep with the notation F⊥ for the (largest) σ -algebra such that F⊥ and
σ
(
X P2

)
are independent.

Lemma 1 For all w1, w2 ∈ R
N , and Z ∈ ∂R (〈X P1 , w1〉 + 〈X P2 , v〉),

R
(
〈X P1 , w1〉 + 〈X P2 , v〉

)
− R

(
〈X P1 , w2〉 + 〈X P2 , v〉

)
≤ C‖w1 − w2‖qE

[
‖X P1‖p

p1{Z̄ �=0}
] 1

p .

Here, Z̄ = E
[
Z |F⊥].

In Lemma 1, a bound is presented for the difference in risk measure caused by different
ambiguous portfolio selections w1 and w2 with the same allocation for the unambigu-
ous assets. Analyses that follow make clear the desirability of that bound being smaller,
for reducing the threshold for the uncertainty parameter κ for the optimality of uniform
ambiguous investment (for the case p = 1), or reducing the upper bound reported for the
distance of wu,v to the optimal solution of (10)–(11) (for the case p = 2). Notice how
the characteristic function of

{
ω ∈ Ω : Z̄ (w) �= 0

}
is used in (53) in the proof of Lemma

1 to reduce the final value derived. To continue with Z instead of Z̄ is an option in the
derivations. If ‖Z‖Lq is also known to be constant on ∂R (X) for all X ∈ L p , say C̄ ,
E
[‖X P1‖p

p1{Z �=0}
] ‖w1−w2‖qC̄ is also a valid upper bound on the difference of risk and can

be used instead of the bound derived in Lemma 1. For p = 1,
∥∥E [

Z |F⊥]∥∥
L∞ = ‖Z‖L∞ = C

as noted in the remarks following Lemma 5 in “Appendix”. L p-norm is otherwise reduced by
the conditional expectation operator. For instance, for the Markowitz functional Mγ , we can
write 1 ≤ ∥∥E [

Z |F⊥]∥∥
L2 ≤ ‖Z‖L2 = √

1 + γ 2. Thus, using Z̄ = E
[
Z |F⊥] may lead to a
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tighter bound in Lemma 1, but this is not certain, since the effect of the indicator functions
1{Z̄ �=0} and 1{Z �=0} can not be compared in general. Either form can be preferred considering
the quality of the bound obtained or computational ease.

The objective function of (10)–(11) is composed of two terms, the term involving the
risk functional and the term Cκ‖w‖q . In Lemma 1, an upper bound for the difference in
the former term for two vectors w1 and w2 is given, which is based on

∥∥w1 − w2
∥∥
q . For

the latter term, the difference is Cκ
(∥∥w1

∥∥
q − ∥∥w2

∥∥
q

)
. In the following lemma, w1 will be

fixed as wu,v , and the ratio ‖w−wu,v‖q
‖w‖q−‖wu,v‖q will determine whether a solution w outperforms

wu,v in worst-case risk. This result critical to the optimality conditions of wu,v for the inner
problem (10)–(11) follows.

Lemma 2 For fixed v ∈ R
L , the uniform portfolio wu,v is no worse than solutions in a set

B ⊂ R
N , i.e.:

R
(
〈X P1 , wu,v〉 + 〈X P2 , v〉

)
+ Cκ‖wu,v‖q ≤ R

(
〈X P1 , w〉 + 〈X P2 , v〉

)
+ Cκ‖w‖q ,

for all w ∈ B, if

κ ≥ ‖w − wu,v‖q
‖w‖q − ‖wu,v‖q E(‖X P1‖p

p1{Z̄ �=0})
1
p ,

for all w ∈ B. Here, Z ∈ ∂R (〈X P1 , wu,v〉 + 〈X P2 , v〉).
The result in Lemma 2 can be interpreted in two perspectives. Firstly, it defines the part of the
feasible region that is outperformed by the uniform portfolio wu,v , where the criteria is that

the ratio ‖w−wu,v‖q
‖w‖q−‖wu,v‖q is less than a constant, in the sense that κ is a constant for the problem

(10)–(11), and E(‖X P1‖p
p1{Z̄ �=0})

1
p is again a constant computable given the knowledge

of the nominal distribution P , the fixed value of v, and the intrinsic properties of the risk
measureR that define Z at

〈
X P1 , wu,v

〉+ 〈
X P2 , v

〉
. Secondly, this result indicates that κ , the

radius of uncertainty, is the threshold of acceptance determining the region outperformed
by the uniform portfolio. This presents in three different shapes, as discussed in Proposition
2. For Kantorovich distance of degree p = 1, if κ is larger than a threshold value, the
uniform portfolio is the exact optimal solution of the inner problem (10)–(11) regardless of
the amount 1− 〈1, v〉 allocated to the first N assets. For p = 2, the rule of optimality rather
directly reflects the result in Lemma 2: wu,v is shown to be in the proximity of the optimal
solution of (10)–(11) and outperform all the feasible region except a ball around itself. As the
uncertainty radius κ increases, this ball becomes smaller and the optimal solution converges
to wu,v . The size of the ball is dependent on the allocation to the ambiguous assets, i.e.,
1 − 〈1, v〉. Structurally the result for p �= 1, 2 is similar to the case p = 2, that is, as κ

increases, the region containing the optimal solution to (10)–(11) gets confined to a smaller
neighborhood of wu,v . Convergence of the optimal to the uniform portfolio as κ → ∞
is proven without reporting a relationship between the magnitude of κ and the radius of
convergence. Proposition 2 follows, presenting the main result on the optimality of uniform
portfolio for the inner problem (10)–(11).

Proposition 2 Given fixed v ∈ R
L , and considering N ≥ 2,

1. For p = 1, wu,v is the optimal solution to (10)–(11) if κ ≥ κ∗, where:

κ∗ =
⎧⎨
⎩

(N − 1)E
[
‖X P1‖11{Z̄ �=0}

]
if 〈1, v〉 �= 1

E

[
‖X P1‖11{Z̄ �=0}

]
if 〈1, v〉 = 1.

(12)
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2. For p = 2, the optimal portfolio for (10)–(11) lies in
{
w ∈ R

N : ‖w − wu,v‖q < D
}
if:

κ ≥
⎛
⎝( (1 − 〈1, v〉)2

ND2 + 1

) 1
2

+ |1 − 〈1, v〉|√
ND

⎞
⎠[

E‖X P1‖221{Z̄ �=0}
] 1
2
. (13)

3. For p /∈ {1, 2}, for every ε > 0, there is a κε such that for κ ≥ κε the optimal solution
w∗ of (10)–(11) is inside

{
w ∈ R

N : ‖w − wu,v‖q < ε
}
.

The conditions stated in Proposition 2 for the uncertainty parameter κ are localized, that is,
specific to the value of v ∈ R

L . For the uniform portfolio wu,v to be set as the optimal or
approximately optimal solution of the inner problem (10)–(11) at each v ∈ R

L , κ has to
satisfy the condition required in Proposition 2 for all v ∈ R

L . The terms in (12) and (13)
that involve Z are critical in this regard, since Z ∈ ∂R (〈

X P1 , wu,v
〉 + 〈

X P2 , v
〉)
, and being

specific to the value of v, we now use the notation Zv . For (12) to be satified at each v ∈ R
L ,

we have to alleviate the dependency on v and modify the threshold as

κ∗ = (N − 1) sup
v∈RL

E

[
‖X P1‖11{Z̄v �=0}

]
. (14)

Although it is presented with an exception for 〈1, v〉 = 1 in Proposition 2, this is the actual
threshold for κ , since we need the result of the inner problem to hold for all v ∈ R

L to be able
to proceed with the optimization for v. Once κ exceeds this exact threshold, we know that
wu,v is the optimal solution of the inner problem for all v ∈ R

L . The situation is different
with p = 2. The condition in (13) is flexible due to the term D. D can be picked as the
smallest positive value satisfying (13), and the condition can be satisfied for all κ > 0 and
v ∈ R

L , with different values of D. To keep D specific to v/Zv as Dv is possible, but for
practicality of computation it is reasonable to fix a value for D for all v ∈ R

L . Since D
determines the proximity of the optimal solution w∗,v to the uniform portfolio wu,v , given
κ , it is sensible to take D as the smallest positive number such that (13) is satisfied. Given
D > 0 that satisfies

κ =
((

1

ND2 + 1

) 1
2 + 1√

ND

)
sup
v∈RL

E

[
‖X P1‖221{Z̄v �=0}

] 1
2
, (15)

for v ∈ R
L , 〈1, v〉 �= 1, w∗,v ∈ {

w ∈ R
N : ‖w − wu,v‖2 < |1 − 〈1, v〉| D} since (13) is

satisfied at v with D replaced by |1 − 〈1, v〉| D. Note that (15) fails if

κ < sup
v∈RL

E

[
‖X P1‖221{Z̄v �=0}

] 1
2
.

As the magnitude of allocation |1 − 〈1, v〉| increases, the ability of the uniform ambiguous
investment to approximate the optimal reduces. Let’s consider the difference between the
objective values attained in (10)–(11) by w∗,v and wu,v:
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0 ≤ R
(
〈X P1 , wu,v〉 +

〈
X P2 , v

〉)
+ Cκ‖wu,v‖2

− R
(
〈X P1 , w∗,v〉 +

〈
X P2 , v

〉)
− Cκ‖w∗,v‖2

≤ C‖wu,v − w∗,v‖2 sup
v∈RL

E

[
‖X P1‖221{Z̄v �=0}

] 1
2 + Cκ

(‖wu,v‖2 − ‖w∗,v‖2
)

≤ C‖wu,v − w∗,v‖2 sup
v∈RL

E

[
‖X P1‖221{Z̄v �=0}

] 1
2 + Cκ‖wu,v − w∗,v‖2

< |1 − 〈1, v〉|CD sup
v∈RL

E

[
‖X P1‖221{Z̄v �=0}

] 1
2 + |1 − 〈1, v〉|CDκ,

where the first three inequalities follow due to optimality of w∗,v , Lemma 1, and the triangle
inequality, respectively, and the last inequality is due to the fact that ‖w∗,v − wu,v‖2 <

|1 − 〈1, v〉| D. With this derivation, we can see that a band between two functions of v ∈ R
L

contains the optimal values for the inner problems (10)–(11). Once the optimal solutionw∗,v

of the inner problem is at hand for all v ∈ R
N , the outer problem can be defined as

inf
v∈RL

R
(〈
X P1 , w∗,v

〉
+
〈
X P2 , v

〉)
+ Cκ

∥∥w∗,v
∥∥
q , (16)

which does not necessarily coincide with the problem that takes the uniform portfolio as the
solution to the inner problem, unless p = 1:

inf
v∈RL

R
(
1 − 〈1, v〉

N

〈
X P1 ,1

〉
+
〈
X P2 , v

〉)
+ Cκ

|1 − 〈1, v〉|
N

. (17)

The objective function f ∗ (v) to be minimized in (16) is inside a band between the objective
function f (v) of (17) and g (v) defined as:

g (v) = f (v) − |1 − 〈1, v〉|CD

(
sup

v∈RL
E

[
‖X P1‖221{Z̄v �=0}

] 1
2 + κ

)
.

f (v) ≥ f ∗ (v) > g (v), for 〈1, v〉 �= 1. The uniform portfolio wu,v is at hand, and f (v)

is an attainable objective value for all v ∈ R. However, there are no guarantees that f ∗ gets
any near g, indeed, it is possible that w∗,v = wu,v , thus f ∗ (v) = f (v) for some v ∈ R.
The difference between f and g increases linearly with |1 − 〈1, v〉|, along with the reduced
quality of approximation of f ∗ by f . f − g is a bound—without guarantees—for the risk
reduction opportunity, lost due to preferringwu,v instead of searching forw∗,v . Nevertheless,
with wu,v and f at hand, it is possible to evaluate the performance of v based on an actual
figure that estimates f ∗ within a certain error. While f and f ∗ are defined for p /∈ {1, 2},
it is not possible to provide a lower bound such as g for the quality of approximation, since
the relationship between the approximation radius ε and the uncertainty parameter κε is not
quantified. Nevertheless, the following result proves that the investor divests of the assets
involving ambiguity as the uncertainty parameter κ tends to infinity, for all p ∈ [1,∞).

Proposition 3 As κ → ∞, all solutions with 〈1, v〉 �= 1 turn suboptimal.

For p /∈ {1, 2}, Proposition 2 establishes the convergence to the uniform portfolio wu,v but
does not provide any quantitative relationship between the uncertainty parameter κ and the
proximity of the uniform portfolio to the actual optimal of the inner problem (10)–(11). This
reflects in Proposition 3, thus it is not possible to infer about the rate at which the investor is
driven out of the ambiguous market. The figures in the proof of Proposition 3 for the cases
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p = 1 and p = 2 can be used to report the rate at which the total allocation to the ambigu-
ous market diminishes. For instance, if v∗ is the optimal solution of inf〈1,v〉=1 R

(〈
X P2 , v

〉)
,

and v∗,s is the optimal solution of inf〈1,v〉=1−s R
(〈
X P1 , wu,v

〉 + 〈
X P2 , v

〉)
, then an allo-

cation to the ambiguous market at a level s is ruled out by suboptimality when κ

exceeds N
C |s|

[R(〈X P2 , v∗〉) − R( s
N

〈
X P1 ,1

〉 + 〈
X P2 , v∗,s

〉
)
]
. Similarly, it is possible to

derive approximate divestment rates for the case p = 2, as (15) can be solved for D given
κ:

D = 2κΠ√
N
(
κ2 − Π2

) ,
for κ > supv∈RL

[
E‖X P1‖221{Z̄v �=0}

] 1
2 = Π . Then f ∗ (v) can be bounded below by

R
( s

N

〈
X P1 ,1

〉
+
〈
X P2 , v∗,s

〉)
+ Cκ

|s|√
N

(
1 − 2Π2

κ2 − Π2 − 2Πκ

κ2 − Π2

)
,

and comparing this figure toR(〈X P2 , v∗〉) provides an approximate rate for the divestment of
ambiguous assets. However, these figures involve an abstract measure and optimal solutions
of problems based on this measure, which do not provide practical insight. In the following
section, weworkwithCVaR andMarkowitz functionals asmeasures, and construct numerical
examples to depict optimal ambiguous and unambiguous portfolio allocation combinations
in practice.

4 Applications with the CVaR and Markowitz functionals

After the inner optimization problem (7)–(8) is solved, and (approximate) optimality of the
uniform portfolio wu,v corresponding to the fixed value of v is proven, it remains to solve
for the optimal value of v that minimizes the risk measure R, when combined with its
corresponding uniform portfolio wu,v for the ambiguous assets. Up to this point, the abstract
definition ofR, with a dual formulation and the requirement of convexity and law invariance,
was sufficient for deriving optimal portfolio rules. However, for characterizing the optimality
rules for the investment into the assets that do not involve ambiguity, we will need to study
specific risk measures. The Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev
2002) measure is one possible choice, satisfying all assumptions on R, and popular in risk
minimizing optimization applications due to its desirable characteristics such as translation
equivariance, positive homogeneity and Lipschitz continuity. Despite its simple form and
computational practicality, it is the core representative of the class of convex law invariant
risk functionals as many risk functionals in this class can be defined as functions of CVaR
(Romisch and Pflug 2007). Integrability of the loss function is sufficient for the computation
of CVaR, thus we will work on L1, and the assumptions in Proposition 1, case p = 1, and
Lemma 5 apply in this case. We assume normal return distributions P1, and P2, while only
P1 being a member of the family of elliptical distributions would be sufficient to satisfy the
assumptions.

CVaRα (X) for X ∈ L1 is defined for loss functions, hence we negate the return variable.
CVaRα (X) is the expected loss given that the loss exceeds the Value-at-Risk, VaRα (X),
which is the (minimum) amount of loss abovewhich a loss can occurwith probability nomore
than 1 − α. α is generally chosen around 0.95. CVaRα can be defined as [see Rockafellar
and Uryasev (2002) for details and the definition of Value-at-Risk (VaR)]
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CVaRα (X) = 1

1 − α

∫
{X>VaRα(X)}

Xdμ.

If κ exceeds (14), then the solution for the inner problem (10)–(11) is known for all v ∈ R
L ,

and there remains to solve the outer problem:

inf
v∈RL

CVaRα

(
−〈X P1 , wu,v〉 −

〈
X P2 , v

〉)
+ Cκ

∥∥wu,v
∥∥∞ .

Plugging in wu,v = 1−〈1,v〉
N 1with the addition of a variable s for simplification, we have the

equivalent formulation :

inf
s∈R

v∈RL

CVaRα

(
− s

N
〈1, X P1〉 −

〈
X P2 , v

〉)
+ Cκ

|s|
N

s.t. s + 〈1, v〉 = 1.

For a normal loss function X ∼ N (μ, σ ), one can easily compute CVaRα (X) to be

σ
φ
(
Φ−1(α)

)
1−α

+ μ. Here, φ is the standard normal density function, and Φ is the standart
normal cumulative distribution function. Thus we redefine the objective function:

f (v, s) = σ
φ
(
Φ−1 (α)

)
1 − α

+ μ + Cκ
|s|
N

,

since the loss function is the sum of two linearly transformed normal random variables, and
is itself normal. Let X P1 and X P2 have mean vector and invertible covariance matricesμ1, Γ1

and μ2, Γ2, respectively. Then μ = − s
N 〈μ1,1〉 − 〈μ2, v〉 and σ =

√
s2

N21
TΓ11 + vTΓ2v,

and we have the following mathematical programming formulation:

inf
s∈R

v∈RL

a
√
bs2 + vTΓ2v − cs − 〈μ2, v〉 + d|s|

s.t. s + 〈1, v〉 = 1,

or with the linearization of the absolute deviation term:

inf
s∈R
s̄∈R

v∈RL

a
√
bs2 + vTΓ2v − cs − 〈μ2, v〉 + ds̄ (18)

s.t. s + 〈1, v〉 = 1 (19)

s − s̄ ≤ 0 (20)

−s − s̄ ≤ 0, (21)

where a = φ
(
Φ−1(α)

)
1−α

, b = 1
N21

TΓ11, c = 1
N 〈μ1,1〉, d = 1

N Cκ , and s̄ is the auxiliary
variable for modeling |s|. Since the constraints are linear, and the objective function is convex
(by convexity of the CVaR measure), Slater’s condition is trivially satisfied, and by KKT
conditions we derive the optimal solution of (18)–(21). We have the KKT conditions

∇ f + λ1∇ f1 + λ2∇ f2 + λ3∇ f3 = 0, (22)

with λ1 ∈ R, λ2, λ3 ∈ R+, and

λi fi (v, s, s̄) = 0, i = 2, 3. (23)
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Here, f1 (v, s, s̄) is the function corresponding to the equality constraint in (18)–(21),
f2 (v, s, s̄) and f3 (v, s, s̄) correspond to the inequality constraints. f , with its modified
definition as a function of v, s and s̄, is the objective function. With 0, 1 ∈ R

L , the gradients
are:

∇ f = a

σ

⎡
⎣Γ2v

bs
0

⎤
⎦ +

⎡
⎣−μ2

−c
d

⎤
⎦ , ∇ f1 =

⎡
⎣1

1
0

⎤
⎦ , ∇ f2 =

⎡
⎣ 0

1
−1

⎤
⎦ , ∇ f3 =

⎡
⎣ 0

−1
−1

⎤
⎦ .

The last row in (22), d = λ2 + λ3, along with the complementary slackness constraints
(23) imply that d = λ2 if s > 0 (s̄ = s) and d = λ3 if s < 0 (s̄ = −s). From the first
two rows of (22), we have v = σ

a Γ −1
2 (μ2 − λ11) and s = σ

ab (c − λ1 − λ2 + λ3). Since
−λ2 + λ3 = −sign(s)d , we define e = c − sign(s)d , and write s = σ

ab (e − λ1). Plugging
v and s into σ (v, s):

σ 2

a2b
(e − λ1)

2 + σ 2

a2

(
μT
2 Γ −1

2 μ2 − 2λ1μ
T
2 Γ −1

2 1 + λ211
TΓ −1

2 1
)

= σ 2,

we obtain the quadratic equation of λ1:

λ21 (1 + bD) + λ1 (−2e − 2bB) + (
e2 + bA − a2b

) = 0,

where A = μT
2 Γ −1

2 μ2, B = μT
2 Γ −1

2 1, D = 1TΓ −1
2 1. Solutions for the quadratic equation

are:

λ1 = e + bB ± √
�

1 + bD
,

where � = b2
(
B2 − DA + a2D

)+ b
(
2eB − A − e2D + a2

)
. Having λ1, we check (19):

σ

ab
(e − λ1) + σ

a
(B − λ1D) = 1,

thus σ = ab
∓√

�
. Since σ = √

σ 2, we pick λ1 = e+bB−√
�

1+bD . Finally, we plug the solution of
σ into the solution of (18)–(21):

v∗ = b√
�

Γ −1
2

(
μ2 − e + bB − √

�

1 + bD

)

s∗ = 1√
�

(
ebD − bB + √

�

1 + bD

)
.

There are two points to check in this solution, one is the positivity of the discriminant
�. The other is the compliance of the sign of the solution for s with the value of e. Either
e = c − d , the respective value for � is positive, and s∗ > 0 is a solution, or e = c + d , the
respective value for� is positive, and s∗ < 0 is a solution. Thus, if� > 0 with e = c−d , and
the nominator in the solution of s∗, i.e., bcD − bdD − bB + √

�, is positive then (18)–(21)
has a solution with s∗ > 0, or if � > 0 with e = c + d , bcD + bdD − bB + √

� < 0
then a solution exists with s∗ < 0. Since the latter nominator term is larger (note the increase
in both ebD and � when e = c + d), (18)–(21) has at most one solution, in accordance
with the convexity of the problem. By convexity (thus continuity) of the objective function
and convexity of the feasible region, if a solution such that s∗ < 0 or s∗ > 0 exists, then it
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Fig. 1 Allocation for the ambiguous market and worst-case CVaR for different levels of κ . Γ2 is held larger
than Γ1 in this case. For the reader who wants to replicate the figures, we can supply data upon request

dominates the solution of the KKT equations with s = 0. One can similarly check with the
KKT conditions that if s∗ = 0, then

v∗ = 1√
B2 − D

(
A − a2

)Γ −1
2

⎛
⎝μ2 −

B −
√
B2 − D

(
A − a2

)
D

1

⎞
⎠

is the optimal solution given B2 − D
(
A − a2

)
> 0. If B2 − D

(
A − a2

) ≤ 0, there is
no KKT solution with s = 0. If both discriminants are non-positive for s �= 0, or there
is no sign consistency between s and e on both sides, then there is no KKT solution with
s �= 0. If there are no KKT points, the problem does not have an optimal solution and might
also be unbounded. As we assume (5)–(6), thus (17) is a well-posed problem, we consider
examples/problems whose optimal solutions exist, without presenting further details on the
setting of parameters for the existence of a solution.

In Fig. 1, left, the change in s∗, the allocation to the ambiguous assets in the optimal
combined portfolio, in response to κ is depicted. The solution is valid after κ exceeds κ∗, and
soon the investor pulls out of the ambiguous market. Until that point, the ambiguous market
receives the major portion of the wealth, persistently. Here, naïve diversification combines
with optimized portfolio choice to attain better results than any of the two strategies alone
could achieve. On the right, we observe that the worst-case risk increases steadily until the
investor immunizes portfolio against increasing uncertainty in the ambiguous market by
moving out.

In a second example, we will consider the Markowitz functional Mγ (X) = E [X ] +
γ
√
Var(X) for the case p = 2, whose natural domain is L2 (Ω,Σ,μ). As noted in the

remarks following Proposition 1, the conditions for Proposition 1, p > 1, are restrictive on
the choice of return distributions P1 and P2. In this setting, these conditions are satisfied by a
choice of atomic P2 with a single atom {η} , η ∈ R

L , thus, when X P2 is constant. In this case,
it is sensible to take L = 1, since a single asset dominates when returns are constant. Hence,
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we work on RN × R,

[
X P1

X P2

]
: Ω → R

N × R, X P2 (ω) = η for all ω ∈ Ω , and E
[
X P1

] =
μ ∈ R

N , E
[(
X P1 − μ

)T (
X P1 − μ

)] = Γ ∈ R
N×N is sufficient information on P1 for

an application with the Markowitz functional. Since the dual formulation of the Markowitz

functional is Mγ (X) = sup
{
E [X Z ] : E [Z ] = 1, ‖Z‖L2 = √

1 + γ 2
}
, the constant C in

Proposition 1 and the derivations that follow has the value
√
1 + γ 2 (by the choice of P2,

F⊥ = Σ and E
[
Z |F⊥] = Z for all X ∈ L2). Let us assume that the uncertainty radius κ

exceeds Π = supv∈RL

[
E‖X P1‖221{Z̄v �=0}

] 1
2
and we set D = 2κΠ√

N(κ2−Π2)
to satisfy (15).

As discussed in Sect. 3, in this casewu,v and f (v) stand as approximations.Wework with
f for an approximate solution for v, while keeping an eye on the approximation quality with
g. Plugging in the Markowitz functional for R, again negating the return random variable
for loss, f takes the form:

f (v) = E

[
−
〈
X P1 , wu,v

〉
− ηv

]
+ γ

√
Var

(− 〈
X P1 , wu,v

〉 − ηv
)
) +

√
1 + γ 2κ‖wu,v‖2

= − 〈
μ,wu,v

〉 − ηv + γ
√

(wu,v) TΓ wu,v +
√
1 + γ 2κ

|1 − v|√
N

= −1 − v

N
〈μ,1〉 − ηv + |1 − v|

N
γ
√
1TΓ 1 +

√
1 + γ 2κ

|1 − v|√
N

,

and g, the lower bound for f ∗, becomes:

g (v) = f (v) −
√
1 + γ 2D (Π + κ) |1 − v|

= f (v) − 2

(
Π2 + κΠ

κ2 − Π2

) √
1 + γ 2κ√

N
|1 − v| .

Denoting 〈μ,1〉 by μ̄ and
√
1TΓ 1 by σ̄ , and rearranging terms, we have the following form:

f (v) = − μ̄

N
(1 − v) − ηv + γ σ̄

N
|1 − v| +

√
1 + γ 2κ√

N
|1 − v| .

The functions f and g have piecewise linear form, and since no limits are posed on short
selling, lead to unbounded investments if the problem is not well-posed:

f (v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v

(
μ̄
N − η − γ σ̄

N −
√

1+γ 2κ√
N

)
− μ̄

N + γ σ̄
N +

√
1+γ 2κ√
N

i f v < 1

−η i f v = 1

v

(
μ̄
N − η + γ σ̄

N +
√

1+γ 2κ√
N

)
− μ̄

N − γ σ̄
N −

√
1+γ 2κ√
N

i f v > 1,
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Fig. 2 Possible shapes that f attains (left), f and g disagreeing in whether to enter the ambiguous market
(middle), and convergence of the first order coefficients of g to those of f with increasing κ (right)

g (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v

(
μ̄
N − η − γ σ̄

N −
√

1+γ 2κ√
N

(
1 − 2

(
Π2+κΠ
κ2−Π2

)))
− μ̄

N + γ σ̄
N +

√
1+γ 2κ√
N

(
1 − 2

(
Π2+κΠ
κ2−Π2

))
i f v < 1

−η i f v = 1

v

(
μ̄
N − η + γ σ̄

N +
√

1+γ 2κ√
N

(
1 − 2

(
Π2+κΠ
κ2−Π2

)))
− μ̄

N − γ σ̄
N −

√
1+γ 2κ√
N

(
1 − 2

(
Π2+κΠ
κ2−Π2

))
i f v > 1.

Noting the larger coefficient of v to the right of 1, f extendswith a higher slope towards the
right at the point the pieces join. f can bemonotone decreasing or v-shaped, but notmonotone
increasing (Fig. 2, left), excluding the caseswith either first order coefficient equal to 0-there is
divergence on the other side in this case. For X ∈ L1, {X �= E [X ]} = {Z �= 0} for Z ∈ R (X)

(seePfluget al. 2012), andΠ canbe simply taken asE
[∥∥X P1

∥∥2
2

] 1
2 =

(
〈μ,μ〉 + ∑N

i=1 Γi i

) 1
2
.

Since ‖1‖2 = √
N , with an application of Cauchy-Schwarz inequality it can be proven that

Π√
N

>
μ̄
N so that the first order coefficient of f for v < 1 is always negative unless η < 0.

We observe that investment on the buying side is already prohibited in the ambiguous market
when κ reaches the threshold for uniformity. For v > 1, the first order coefficient in f is
positive unless mean returns are low in the ambiguous market, and the riskless rate η is
high enough to compensate for the risk terms (the last two) in the coefficient and allow
risk reduction by short selling of ambiguous assets (Fig. 2, left, dashed curve). This is quite
unexpected of a riskless asset and a favorable market. High σ̄ , κ and γ are prohibitive for
both buying and short selling in the ambiguous market, since the first two terms represent
risk, and the third represents risk aversion. For the Markowitz functional case, we clearly
observe that investing in the ambiguous assets is not an optimal option for the worst-case
risk minimizer at the uncertainty levels justifying uniform ambiguous portfolio (Fig. 2, left,
solid curve).
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The extra term in the function g diminishes as κ increases, and g improves as a lower
bound for f ∗ while it gets closer to f . Figure 2, right, depicts the convergence of first order
coefficients of g to those of f , and difference in coefficients indicate that uniform portfolio
is a very weak approximation when the uncertainty level is low. Lowering both sides, the
extra term in g might cause an upward pointing side of f to turn downwards in g. If f and g
agree on the sign of the slope on both sides of v = 1, then g confirms the overall allocation
decision to the ambiguous and unambiguos markets, while being a reminder and a bound
for the risk reduction opportunity that might be lost by using wu,v instead of w∗,v . The only
interesting case of g flipping below the x-axis is when f is v-shaped (Fig. 2, middle). While
f prescribes avoiding the ambiguous market, g indicates possible opportunities there with
the possibility of investments performing higher than wu,v . The investor might prefer further
investigations and research in the ambiguous market to allow for a better decision than naïve
diversification. g has no guarantees, therefore if the uniform solution is the best solution at
hand, g will not be a decision changer for the worst-case risk minimizing investor.

5 Conclusion

Aprevious result in Pflug et al. (2012) on the optimality of uniform portfolio under increasing
uncertainty is a solid evidence supporting the rationality of naïve diversification strategies.
Adopting this framework, we extend the model to investigate validity of naïve diversification
when there is an alternative group of risky assets with known distribution. We prove for
a division of wealth to the two groups of assets that naïve diversification persists as the
optimal strategy for the allocation into the ambiguous assets, despite the diminishing total
allocation therein as the level of uncertainty increases. TakingCVaR as a representative of the
class of convex and law invariant risk measures, we derive rules for efficient combinations of
optimal diversification in the unambiguous assets with naïve diversification in the ambiguous
assets. Modeling the existence of a riskless asset as a special case, we describe the attitude
of the investor towards taking risk in an uncertain environment where naïve diversification is
justified to be an optimal strategy. Indeed, while it renders uniform investment to risky assets
optimal, increasing uncertainty radius drives the investor out of the ambiguous market.

Similar to the manner the strength of naïve diversification strategy under uncertainty is
somewhat an expected result pointed out by previous studies (DeMiguel et al. 2009b), the
result in this study provides the rationale for an expected behavior: divestment of ambiguous
assets as uncertainty increases and naïve diversification becomes optimal. For instance, in
Pınar and Paç (2014) and Paç and Pınar (2014) parametric uncertainty for return means is
modeled, and their solutions display diminishing risky investment as the uncertainty radius
for the mean return estimate increases. Nevertheless, in this study we were able to prove
persistence of the uniform portfolio while diminishing in total allocation, providing formal
mathematical justification for this behavior under a non-parametric model of uncertainty.

A shortcoming in this study is absence of correlation between the ambiguous market
and the unambiguous market. Since global financial trends can affect financial markets on
a parallel basis or investor movements can have effects in opposite directions, this would
be a valuable aspect of the model. A research direction is to extend the framework in this
study to incorporate correlation between the returns for the ambiguous and unambiguous
asset groups.

Acknowledgements Many thanks to our anonymous refrees. The manuscript greatly benefited from their
constructive comments regarding both presentation of ideas and depth of content.
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Appendix: Intermediate results and proofs

We begin by proving an upper bound for the absolute deviation in the risk measure caused
by the difference in distributions P and Q, while holding the ambiguous portfolio selection
vector w fixed. The bound is the product of a constant related to the risk measure R, the
norm of the ambiguous portfolio ‖w‖q , and the distance between the two measures P and
Q, which is shown to be equal to the distance between marginals P1 and Q1.

Lemma 3 Let R : L p (Ω,Σ,μ) → R be a convex, law invariant risk measure with dual
representation as discussed in Sect.2, where1 ≤ p < ∞and 1

p+ 1
q = 1. Let P = P1×P2 and

Q = Q1 × P2 be product measures on
(
R

N+L ,B (
R

N+L
))
, for arbitrary Borel probability

measures P1, Q1 on
(
R

N ,B (
R

N
))

and P2 on
(
R

L ,B (
R

L
))
. We denote by F⊥ the largest

sigma algebra independent from σ(X P2). Note that σ(X P1) ⊂ F⊥ ⊥ σ(X P2), since X P1

and X P2 are independent. Then,

dR
N+L

p (P, Q) = dR
N

p (P1, Q1) ,

and ∣∣∣R (〈
X P1 , w

〉
+
〈
X P2 , v

〉)
− R

(〈
XQ1 , w

〉
+
〈
X P2 , v

〉)∣∣∣
≤ sup

Z :R(Z)<∞
‖E[Z |F⊥]‖Lq ‖w‖q dp (P, Q) . (24)

Proof Let π̂1 be the optimal transportation plan, i.e., the minimizing distribution giving
the Kantorovich distance between P1 and Q1. We will define a transportation plan π̂ on
(RN+L × R

N+L ,B(RN+L × R
N+L )) between P and Q as follows:

π̂(A × B × C × D) = π̂1(A × C) × P2(B ∩ D), (25)

where A, C ∈ B(RN ) and B, D ∈ B(RL ). The π -system defined as the product A × B ×
C × D of Borel sets generates B(RN+L × R

N+L ), and (25) uniquely defines a measure
on (RN+L × R

N+L ,B(RN+L × R
N+L )). π̂ is a transporation plan between P and Q, as

projections π̂(A× B ×R
N+L ) = π̂1(A×R

N ) × P2(B) = P1(A) × P2(B) and π̂(RN+L ×
C ×D) = π̂1(R

N ×C)× P2(D) = Q1(C)× P2(D) coincide with P and Q, respectively on
the π-system of measurable rectangles in B (

R
N
)×B (

R
L
)
. π̂ is a horizontal transportation

plan, in the sense that it adopts the plan indicated by π̂1 at each (xN+1, . . . , xN+L) ∈ R
L to

redistribute the weight between P and Q, and does not shift the distributional weight between
two locations (x̄N+1, . . . , x̄N+L ) �= (xN+1, . . . , xN+L ) to reach Q from P .

We begin by showing dR
N

p (P1, Q1) ≤ dR
N+L

p (P, Q), denoting by π the optimal trans-

portation plan between P and Q, and by π1 its projection π(· ×R
L × · ×R

L) (that this is a
transportation plan between P1 and Q1 can be checked as above):

dR
N+L

p (P, Q) =
(∫

RN+L×RN+L

N+L∑
i=1

|xi − yi | pdπ (x, y)

)
1
p

≥
(∫

RN+L×RN+L

N∑
i=1

|xi − yi | pdπ (x, y)

)
1
p

=
(∫

RN×RN

N∑
i=1

|xi − yi | pdπ1 (x, y)

)
1
p (26)
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≥
(∫

RN×RN

N∑
i=1

|xi − yi | pdπ̂1 (x, y)

)
1
p

= dR
N

p (P1, Q1) . (27)

In the above derivations, (26) follows since the integrand is constant with respect to
xN+1, . . . , xN+L , yN+1, . . . , yN+L and (27) follows due to the optimality of π̂1 among the
transportation plans between P1 and Q1. The reverse, that is, dR

N

p (P1, Q1) ≥ dR
N+L

p (P, Q),
follows in a similar fashion. In the derivations, we evaluate the integral with respect to π̂ sep-
arately over complementary sets S = {

(x1, x2, x3, x4) ∈ R
N × R

L × R
N × R

L : x2 = x4
}

and S̄ = {
(x1, x2, x3, x4) ∈ R

N × R
L × R

N × R
L : x2 �= x4

}
, which consist of ordered

pairs in RN+L × R
N+L that agree on the last L coordinates and those that disagree, respec-

tively. S is closed, S̄ is open and can be considered as a countable union of open sets of the
form O = O1 × O2 × O3 × O4, where O1, O3 ⊂ R

N and O2, O4 ⊂ R
L . O ⊂ S̄ implies

O2 ∩ O4 = ∅, since otherwise O �= ∅ would contain (x1, x2, x3, x4) ∈ R
N+L ×R

N+L such
that x2 = x4. By measure subadditivity, π̂

(
S̄
) = 0, i.e., S̄ is a π̂-negligible set, leading to

following computations:

dR
N+L

p (P, Q) =
(∫

RN+L×RN+L

N+L∑
i=1

|xi − yi |p dπ (x, y)

) 1
p

≤
(∫

RN+L×RN+L

N+L∑
i=1

|xi − yi |p dπ̂ (x, y)

) 1
p

(28)

=
(∫

S

N+L∑
i=1

|xi − yi |p dπ̂ (x, y) +
∫
S̄

N+L∑
i=1

|xi − yi |p dπ̂ (x, y)

) 1
p

=
(∫

S

N+L∑
i=1

|xi − yi |p dπ̂ (x, y)

) 1
p

(29)

=
(∫

RN+L×RN+L

N∑
i=1

|xi − yi |p dπ̂ (x, y)

) 1
p

=
(∫

RN×RN

N∑
i=1

|xi − yi |p dπ̂1 (x, y)

) 1
p

(30)

= dR
N

p (P1, Q1) . (31)

Here, (28) follows since π is the optimal transportation plan for P and Q, (29) fol-
lows from the π̂-neglibility of S̄ and equality of (x, y) �→ ∑N

i=1 |xi − yi | p and (x, y) �→∑N+L
i=1 |xi − yi | p on S, (30) follows since

∑N
i=1 |xi − yi | p1S = ∑N

i=1 |xi − yi |p almost
everywhere. (31) holds since the integrand is constant with respect to xN+1, . . . , xN+L ,
yN+1, . . . , yN+L . We have that dR

N

p (P1, Q1) = dR
N+L

p (P, Q).
Corresponding to the transportation plan π̂ , there exists a random variable Y :

(Ω, σ, μ) → R
N+L × R

N+L with image measure μ ◦ Y−1 = π̂ . We denote the first
N + L components of Y by X P , and the latter part by XQ . It can be checked, as above,
that the image measure of X P and XQ coincide with marginals P and Q, respectively.
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Note that μ
({

ω ∈ Ω : XQ2 (ω) �= X P2 (ω)
}}) = π̂

(
S̄
) = 0, thus XQ2 = X P2 almost

everywhere, and we take XQ =
[
XQ1

X P2

]
in our calculations. When Z is chosen from

∂R (〈
X P1 , w

〉 + 〈
X P2 , v

〉)
, we have:

R
(〈
X P1 , w

〉
+
〈
X P2 , v

〉)
− R

(〈
XQ1 , w

〉
+
〈
X P2 , v

〉)
≤ E

[(〈
X P1 , w

〉
+
〈
X P2 , v

〉)
Z
]

− R (Z) − E

[(〈
XQ1 , w

〉
+
〈
X P2 , v

〉)
Z
]

+ R (Z)

= E

[〈
X P1 − XQ1 , w

〉
Z
]

= E

[〈
X P1 − XQ1 , w

〉
E

[
Z |F⊥]] (32)

≤
∥∥∥〈X P1 − XQ1 , w

〉∥∥∥
L p

∥∥∥E [
Z |F⊥]∥∥∥

Lq
(33)

≤
∥∥∥∥∥∥∥X P1 − XQ1

∥∥∥
p
‖w‖q

∥∥∥∥
L p

∥∥∥E [
Z |F⊥]∥∥∥

Lq
(34)

= ‖E
[
Z |F⊥] ‖Lq ‖w‖q

(∫
RN+L×RN+L

N∑
n=1

|xn − yn |p dπ̂ (x, y)

)1/p

(35)

= ‖E
[
Z |F⊥] ‖Lq ‖w‖q

(∫
RN×RN

N∑
n=1

|xn − yn |p dπ̂1 (x, y)

)1/p

= ‖E
[
Z |F⊥] ‖Lq ‖w‖qdRN

p (P1, Q1)

≤ sup
Z :R(Z)<∞

‖E
[
Z |F⊥] ‖Lq ‖w‖qdRN+L

p (P, Q) .

Equality in (32) follows since
〈
X P1 − XQ1 , w

〉
is measurable with respect toF⊥, as X P1 and

XQ1 are both independent from X P2 , i.e., σ(X P1) ⊥ σ(X P2) and σ(XQ1) ⊥ σ(X P2), and
σ(X P1) ∨ σ(XQ1) ⊂ F⊥, where σ

(
X P1

) ∨ σ
(
XQ1

)
is the smallest σ -algebra containing

σ
(
X P1

) ∪ σ
(
XQ1

)
. Inequality (33) follows from the application of Hölder’s Inequality on

the functions
〈
X P1 − XQ1 , w

〉
and E

[
Z |F⊥], and (34) follows from Hölder’s Inequality on

vectors X P1 −XQ1 andw inRN . The arguments are based on a random variable Z specific to
maximizingE

[(〈
X P1 , w

〉 + 〈
X P2 , v

〉)
Z
]−R (Z), but in the final step, by using the supremum

over all Z ∈ ∂R (X) for X in the problem domain, this dependence is alleviated. Repeating
the arguments for R (〈

XQ1 , w
〉 + 〈

X P2 , v
〉) − R (〈

X P1 , w
〉 + 〈

X P2 , v
〉)
, we reach the result.

��
It is now proven that the absolute difference in risk measures due to different return

distributions is bounded from above, by the product of a constant intrinsic to the risk measure
R, ‖w‖q , and the distance between the distributions. We will prove now that this bound is
tight and attained, that is, given κ > 0, for every distribution P , there is a distribution
Q at distance κ such that the difference in risk is equal to the bound in Lemma 3. In the
two lemmas that follow, by restrictions on possibly R, P1 and P2, it is possible to assume
supZ :R(Z)<∞ ‖E [

Z |F⊥] ‖Lq is a constant C , and for two separate cases (the domain L p of
R being defined for p ∈ (1,∞) or p = 1) it is proven that the bound stated in the previous
lemma (that can now be pronounced as Cκ‖w‖q ) is tight and attainable. Namely, for every
distribution P = P1×P2 and randomvariable X P with imagemeasure P , there exists another
random variable XQ whose image measure Q = Q1 × P2 is at a distance dp (P, Q) = κ to
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P , such that the difference in risk when investing (w, v) is exactly Cκ‖w‖q for P and Q.
We begin with the case p ∈ (1,∞).

Lemma 4 Let the risk functionalR be as defined above. Let 1 < p < ∞ and q be such that
1
p + 1

q = 1. Let P = P1 × P2 be a probability measure on R
N+L with P1, P2 probability

measures on R
N , RL , respectively. Let X P =

[
X P1

X P2

]
be a random variable with image

measure P, and F⊥ ⊂ Σ be the largest σ -algebra independent from σ
(
X P2

)
. Assume that:

‖E
[
Z |F⊥] ‖Lq = C for all Z ∈

⋃
X∈L p

∂R (X)with R (Z) < ∞.

Then it holds that for every κ > 0 and every (w, v) ∈ R
N × R

L , there are measures Q1 on
R

N and Q = Q1 × Q2 = Q1 × P2 on R
N+L such that dp (P, Q) = κ and∣∣∣R (〈

XQ1 , w
〉
+
〈
XQ2 , v

〉)
− R

(〈
X P1 , w

〉
+
〈
X P2 , v

〉)∣∣∣ = Cκ‖w‖q ,

i.e., the bound of Lemma 3 holds with equality.

Proof Fix a Z ∈ ∂R (〈
X P1 , w

〉 + 〈
X P2 , v

〉)
with R (Z) < ∞. We set Z̄ = E

[
Z |F⊥] and

define a random variable XQ as follows:

XQ
n = X P

n + c1 (n) |wn |
q
p with

c1 (n) = sign (wn) sign(Z̄)c2
‖w‖qq

∣∣Z̄ ∣∣ qp
for n ∈ {1, . . . , N } and a constant c2 > 0. For n ∈ {N + 1, . . . , N + L}, we let XQ

n = X P
n .

Setting c1 = |c1 (n)|, it follows that:

cp1 |wn |q =
∣∣∣XQ

n − X P
n

∣∣∣p , ∀n : 1 ≤ n ≤ N . (36)

Also, ∣∣∣∣∣
N∑

n=1

wn

(
XQ
n − X P

n

)∣∣∣∣∣
p

=
∣∣∣∣∣

N∑
n=1

wnc1 (n) |wn |
q
p

∣∣∣∣∣
p

=
∣∣∣∣∣

N∑
n=1

sign(Z̄)c2
‖w‖qq

∣∣Z̄ ∣∣ qp |wn |q
∣∣∣∣∣
p

= cp2
‖w‖pq

q

∣∣Z̄ ∣∣q ‖w‖pq
q = cp2

∣∣Z̄ ∣∣q . (37)

c2 is a parameter for adjusting the distance between the distributions so that dp (P, Q) =
κ , which is achieved unless Z = 0 (which would require C = 0, leading to a triviality
where R is constant). Note that XQ1 is F⊥-measurable since X P1 is σ

(
X P1

)
-measurable

(σ
(
X P1

) ⊂ F⊥) and sign(Z̄)
∣∣Z̄ ∣∣ qp isF⊥-measurable. The independence ofF⊥ and σ(X P2)

implies the product form of Q = μ ◦ (XQ
)−1 = μ ◦ (XQ1

)−1 × μ ◦ (X P2
)−1 = Q1 × P2.

The result is obtained as follows:
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∣∣∣R (〈
XQ1 , w

〉
+
〈
XQ2 , v

〉)
− R

(〈
X P1 , w

〉
+
〈
X P2 , v

〉)∣∣∣
≥ E

(〈
XQ1 , w

〉
+
〈
XQ2 , v

〉)
− E

(〈
X P1 , w

〉
+
〈
X P2 , v

〉)
= E

(〈
XQ1 − X P1 , w

〉
Z
)

= E

((
N∑

n=1

(
XQ
n − X P

n

)
wn

)
Z̄

)

= E

(∣∣∣∣∣
N∑

n=1

(
XQ
n − X P

n

)
wn

∣∣∣∣∣
∣∣Z̄ ∣∣

)
(38)

=
⎛
⎝E

⎛
⎝
∣∣∣∣∣

N∑
n=1

(
XQ
n − X P

n

)
wn

∣∣∣∣∣
p⎞⎠

⎞
⎠

1/p

‖Z̄‖Lq (39)

=
⎛
⎝E

(
N∑

n=1

∣∣∣XQ
n − X P

n

∣∣∣ |wn |
)p⎞⎠

1/p

‖Z̄‖Lq (40)

=
(
E

(
‖XQ1 − X P1‖p‖w‖q

)p)1/p ‖Z̄‖Lq (41)

= ‖Z̄‖Lq ‖w‖q
(∫

Ω

N∑
n=1

∣∣∣XQ
n − X P

n

∣∣∣p dμ

)1/p

(42)

≥ ‖Z̄‖Lq ‖w‖qdRN

p (P1, Q1) (43)

= ‖Z̄‖Lq ‖w‖qκ.

Transitions to (38) and (40) are possible due to the incorporation of sign(wn) and sign(Z) in
XQ1 − X P1 , which makes all terms in the sum non-negative. (39) and (41) are applications of
Hölder’s Inequality, where conditions for equality in Hölder’s are assured by (37) and (36),

respectively. Equation (39) is possible since
∣∣∣∑N

n=1

(
XQ
n − X P

n

)
wn

∣∣∣p is equal to |Z̄ |q , when
constantmultipliers set aside. Similarly, (36) implies the condition for equality on transition to

(41). Inequality in (43) follows since π̃ = μ◦
([

X P1

XQ1

])−1

is a transportation plan between

P1 and Q1, and the integral in (42) is equivalent to
∫
RN×RN

∑N
n=1 |xn − yn |p dπ̃ (x, y),

while dp(P1, Q1) = κ is given by the optimal transportation plan between P1 and Q1. ��
A similar result on the tightness of the bound given in Lemma 3 follows for the case

p = 1.

Lemma 5 Let R be a risk measure as defined above. Let P = P1 × P2 be a probability
measure on R

N+L where P1, P2 are probability measures on R
N , RL , respectively, and

X P ∈ L1 (Ω,Σ,μ) a random variable with image measure P. Let F⊥ ⊂ Σ be the largest
σ -algebra independent from σ

(
X P2

)
. Assume:

‖Z‖L∞ = C, μ ({ω ∈ Ω : |Z | (ω) /∈ {0,C}}) = 0 (44)

for all Z ∈ ∂R (X), X ∈ L1 (Ω,Σ,μ). In addition, assume for all ε ∈ (
0, 1

2

)
that there

exists B ∈ F⊥ such that μ(B) > 0, and either
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μ (B ∩ {ω ∈ Ω : Z (ω) = C}) > (1 − ε) μ (B)

or

μ (B ∩ {ω ∈ Ω : Z (ω) = −C}) > (1 − ε) μ(B)

holds. Then for every κ > 0, there is a probability measure Q = Q1 × P2 on R
N+L with

Q1 a probability measure on RN such that dR
N+L

1 (P, Q) = κ and∣∣∣R (〈
XQ1 , w

〉
+
〈
XQ2 , v

〉)
− R

(〈
X P1 , w

〉
+
〈
X P2 , v

〉)∣∣∣ = Cκ‖w‖∞.

Proof Take Z ∈ ∂R (〈
X P1 , w

〉 + 〈
X P2 , v

〉)
. For ε ∈ (

0, 1
2

)
, we consider the case where there

exists B ∈ F⊥ with μ (B ∩ {ω ∈ Ω : Z (ω) = C}) > (1 − ε) μ (B). For the alternative
case, the result follows in a similar manner with a change of sign in c1 (n) defined below.
Let

XQ
n = X P

n + c1 (n) (45)

c1 (n) =
{
c2sign (wn)1B , if |wn | = ‖w‖∞
0, otherwise

(46)

for n ∈ {1, . . . , N } and a constant c2 > 0. Again, c2 is a constant for adjusting the distance
between P and Q to κ . Let XQ

n = X P
n for n ∈ {N + 1, . . . , N + L}. Let us label the number

of entries in w that set its norm, i.e., |{n : |wn | = ‖w‖∞}| by χ .
Via the inverse image of XQ , we obtain a distribution Q = μ◦ (XQ)−1 onRN+L . Again,

since B ∈ F⊥ and F⊥ and σ(X P2) are independent, the product form of Q = Q1 × Q2

follows. We have:

R
(〈
XQ1 , w

〉
+
〈
XQ2 , v

〉)
− R

(〈
X P1 , w

〉
+
〈
X P2 , v

〉)
≥ E

(〈
XQ1 − X P1 , w

〉
Z
)

(47)

= E

(〈
XQ1 − X P1 , w

〉
Z1B

)
= E

(〈
XQ1 − X P1 , w

〉
Z1{Z>0}∩B

)
+ E

(〈
XQ1 − X P1 , w

〉
Z1{Z≤0}∩B

)
≥ E

(〈
XQ1 − X P1 , w

〉
Z1{Z>0}∩B

)
− c2Cχ ‖w‖∞ μ ({Z ≤ 0} ∩ B)

≥ E

(〈
XQ1 − X P1 , w

〉
Z1{Z>0}∩B

)
− εc2Cχ ‖w‖∞ μ (B)

= E

(∣∣∣〈XQ1 − X P1 , w
〉
1{Z>0}∩B

∣∣∣ |Z |
)

− εc2Cχ ‖w‖∞ μ (B)

= E

(∣∣∣〈XQ1 − X P1 , w
〉
1{Z>0}∩B

∣∣∣) ‖Z‖L∞ − εc2Cχ ‖w‖∞ μ (B) (48)

= c2χ ‖w‖∞ μ ({Z > 0} ∩ B) ‖Z‖L∞ − εc2Cχ ‖w‖∞ μ (B)

> (1 − ε) c2χ ‖w‖∞ μ (B)C − εc2Cχ ‖w‖∞ μ (B)

= (1 − 2ε) c2χ ‖w‖∞ μ (B)C

= (1 − 2ε)E

(∫
Ω

N∑
n=1

|c1(n)| dμ

)
‖w‖∞ C

= (1 − 2ε)E
(
‖XQ1 − X P1‖1

)
‖w‖∞ C

≥ (1 − 2ε) dR
N

1 (P1, Q1) ‖w‖∞ C (49)
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= (1 − 2ε) κ ‖w‖∞ C (50)

= (1 − 2ε) κ ‖w‖∞ C.

As XQ2 = X P2 , and Z is possibly not in ∂R (〈
XQ1 , w

〉 + 〈
XQ2 , v

〉)
, (47) follows. Equality

(48) is assured since the L1 function has value 0 on {Z �= ‖Z‖L∞}. Equation (49) follows
since XQ1 and X P1 jointly have an image measure which is a transportation between Q1 and
P1 (which is not necessarily optimal), and (50) since dR

N

1 (P1, Q1) = dR
N+L

1 (P, Q) = κ .
With the above holding for all ε ∈ (

0, 1
2

)
, the result is established. ��

The perturbation used in Lemma 4 to obtain XQ from X P was based on the conditional
expectation E

[
Z |F⊥] of the random variable Z ∈ ∂R (〈

X P1 , w
〉 + 〈

X P2 , v
〉)
, whereas in

Lemma5weused the characteristic function of the set B defined in the assumptions.However,
the two results are analogous, and agree the figure in Lemma 3, since the assumptions in
Lemma 5 imply that ‖Z‖∞ = ∥∥E [

Z |F⊥]∥∥∞ for all Z ∈ ∂R (X), X ∈ L1 (Ω,Σ,μ). To
observe this, one can check that the value of E

[
Z |F⊥] on the set B, as referred to in Lemma

5, is either inside ((1 − 2ε)C,C] or [−C,− (1 − 2ε)C).
With the proofs of Lemmas 4 and 5, we show that the bound in Lemma 3 is tight and

attained, and also we are ready to prove Proposition 1.

Proof of Proposition 1 With fixed portfolio selection (w, v), the maximum (absolute) dif-
ference in the risk measure due to distributions P and Q (dp (P, Q) ≤ κ) is Cκ‖w‖q , by
Lemma 3. By assumption,R and P satisfy the assumptions in Lemma 4 or 5, as necessitated
by the domain of the risk measure, i.e., the value of p. Moreover, the deviation in the risk
measure due to the perturbed measure Q = Q1 × P2 in the proofs of Lemmas 4 and 5 is in
the positive direction, therefore we can write:

sup
P̄∈B̃κ (P)

R(〈X P̄1 , w〉 + 〈X P̄2 , v〉)

= R(〈XQ1 , w〉 + 〈XQ2 , v〉) (51)

= R(〈X P1 , w〉 + 〈X P2 , v〉) + Cκ‖w‖q . (52)

��
Proof of Lemma 1 Taking arbitrary Z ∈ ∂R (〈

X P1 , w1
〉 + 〈

X P2 , v
〉)
,

R
(〈
X P1 , w1

〉
+
〈
X P2 , v

〉)
− R

(〈
X P1 , w2

〉
+
〈
X P2 , v

〉)
≤ E

[(〈
X P1 , w1

〉
+
〈
X P2 , v

〉)
Z
]

− E

[(〈
X P1 , w2

〉
+
〈
X P2 , v

〉)
Z
]

= E

[〈
X P1 , w1 − w2

〉
Z
]

= E

[〈
X P1 , w1 − w2

〉
Z̄
]

= E

[〈
X P1 , w1 − w2

〉
1{Z̄ �=0} Z̄

]
(53)

≤ E

[∣∣∣〈X P1 , w1 − w2
〉
1{Z̄ �=0}

∣∣∣p] 1
p ‖Z̄‖Lq (54)

≤ E

[(
‖X P1‖p‖w1 − w2‖q

)p
1{Z̄ �=0}

] 1
p ‖Z̄‖Lq (55)

= E

[
‖X P1‖p

p1{Z̄ �=0}
] 1

p ‖w1 − w2‖qC. (56)
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Inequalities (54) and (55) follow due to Hölder’s Inequality applied on functions
〈
X P1 ,

w1 − w2
〉
1{Z̄ �=0} ∈ L p and Z̄ ∈ Lq , and vectors in R

N , respectively. The result,

(56), follows due to the assumptions in Lemmas 4 and 5 that imply ‖Z̄‖Lq = C for
Z ∈ ∂R (〈

X P1 , w1
〉 + 〈

X P2 , v
〉)
. ��

Proof of Lemma 2 κ ≥ ‖w−wu,v‖q
‖w‖q−‖wu,v‖q E

[
‖X P1‖p

p1{Z̄ �=0}
] 1

p
implies, by multiplying both

sides by C(‖w‖q − ‖wu,v‖q):

Cκ
(‖w‖q − ‖wu,v‖q

) ≥ C
(‖w‖q − ‖wu,v‖q

) ‖w − wu,v‖q
‖w‖q − ‖wu,v‖q E

[
‖X P1‖p

p1{Z̄ �=0}
] 1

p

= C‖w − wu,v‖qE
[
‖X P1‖p

p1{Z̄ �=0}
] 1

p

≥ R
(
〈X P1 , wu,v〉 + 〈X P2 , v〉

)
− R

(
〈X P1 , w〉 + 〈X P2 , v〉

)
,

where the last inequality follows by Lemma 1. Regrouping terms above, we have:

R
(
〈X P1 , w〉 + 〈X P2 , v〉

)
+ Cκ‖w‖q ≥ R

(
〈X P1 , wu,v〉 + 〈X P2 , v〉

)
+ Cκ‖wu,v‖q ,

for all w ∈ B (‖w‖q �= ‖wu,v‖q is assumed, which holds true for w �= wu,v on a hyperplane
of fixed 〈1, w〉 = 〈1, wu,v〉, since wu,v uniquely minimizes ‖ · ‖q on that hyperplane). ��
Proof of Proposition 2 Case 〈1, v〉 = 1, 1 ≤ p < ∞

In this casewu,v = 0, hence ‖w−wu,v‖q = ‖w‖q−‖wu,v‖q = ‖w‖q . Thus the condition
in Lemma 2 is satisfied by all w �= 0 if

κ ≥ E

[
‖X P1‖p

p1{Z̄ �=0}
] 1

p
,

and the optimality of wu,v = 0 follows.
Case 〈1, v〉 > 1, p = 1

In this case, 1 − 〈1, v〉 < 0, and wu,v = 1−〈1,v〉
N 1 is composed of negative entries. For

any w such that 〈1, w〉 = 1−〈1, v〉, w �= wu,v , we let n∗ = argmax1≤n≤N

∣∣∣wn − 1−〈1,v〉
N

∣∣∣.
If wn∗ <

1−〈1,v〉
N , ‖w − wu,v‖∞ =

∣∣∣wn∗ − 1−〈1,v〉
N

∣∣∣ = ‖w‖∞ − ‖wu,v‖∞. Otherwise,

wn∗ >
1−〈1,v〉

N , wn∗ = max1≤n≤N wn , and

min
1≤n≤N

wn ≤ 1 − 〈1, v〉
N

− wn∗ − 1−〈1,v〉
N

N − 1

= 1 − 〈1, v〉
N

− ‖w − wu,v‖∞
N − 1

.

Since min1≤n≤N wn ≥ −‖w‖∞, 1−〈1,v〉
N − ‖w−wu,v‖∞

N−1 ≥ −‖w‖∞, and noting that 1−〈1,v〉
N =

−‖wu,v‖∞, we have:

‖w‖∞ − ‖wu,v‖∞ ≥ ‖w − wu,v‖∞
N − 1

,

equivalently:

‖w − wu,v‖∞
‖w‖∞ − ‖wu,v‖∞

≤ N − 1.
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If κ ≥ (N − 1)E
[
‖X P1‖11{Z̄ �=0}

]
, then κ ≥ ‖w−wu,v‖∞

‖w‖∞−‖wu,v‖∞ E

[
‖X P1‖11{Z̄ �=0}

]
holds for

all w �= wu,v such that 〈1, w〉 = 1 − 〈1, v〉, and wu,v is optimal to (10)–(11).
Case 〈1, v〉 < 1, p = 1

In this case, wu,v = 1−〈1,v〉
N 1 is composed of positive entries. Similar to the case where

〈1, v〉 > 1, we set n∗ = argmax1≤n≤N

∣∣∣wn − 1−〈1,v〉
N

∣∣∣. If wn∗ >
1−〈1,v〉

N , ‖w − wu,v‖∞ =(
wn∗ − 1−〈1,v〉

N

)
= ‖w‖∞ − ‖wu,v‖∞. Otherwise, wn∗ <

1−〈1,v〉
N , wn∗ = min1≤n≤N wn ,

and

max
1≤n≤N

wn ≥ 1 − 〈1, v〉
N

+ wn∗ − 1−〈1,v〉
N

N − 1

= 1 − 〈1, v〉
N

+ ‖w‖∞ − ‖wu,v‖∞
N − 1

.

Since ‖w‖∞ ≥ max1≤n≤N wn , and ‖wu,v‖∞ = 1−〈1,v〉
N , we can write:

‖w‖∞ − ‖wu,v‖∞ ≥ ‖w − wu,v‖∞
N − 1

N − 1 ≥ ‖w − wu,v‖∞
‖w‖∞ − ‖wu,v‖∞

.

Again, if κ ≥ (N − 1)E
[
‖X P1‖11{Z̄ �=0}

]
, the condition for Lemma 2 is satisfied in the

feasible region and wu,v is optimal to (10)–(11).
Case 〈1, v〉 �= 1, p = 2

Let f2, . . . , fN be unit vectors orthogonal to each other andwu,v . Then a unique selection
of c2, . . . , cN ∈ R gives w = wu,v + ∑N

i=2 ci fi (since wu,v = 1−〈1,v〉
N 1, f2, . . . , fN are

orthogonal to wu,v , and 〈1, w〉 = 1−〈1, v〉, 〈1, wu,v〉 = 〈1, w〉 implies that the coefficient
of wu,v in w is equal to 1). Then:

‖w − wu,v‖2
‖w‖2 − ‖wu,v‖2 = ‖w − wu,v‖2(

(1−〈1,v〉)2
N + ∑N

i=2 c
2
i

) 1
2 − |1−〈1,v〉|√

N

=
‖w − wu,v‖2

[(
(1−〈1,v〉)2

N + ∑N
i=2 c

2
i

) 1
2 + |1−〈1,v〉|√

N

]
(1−〈1,v〉)2

N + ∑N
i=2 c

2
i − (1−〈1,v〉)2

N

=
‖w − wu,v‖2

[(
(1−〈1,v〉)2

N + ∑N
i=2 c

2
i

) 1
2 + |1−〈1,v〉|√

N

]
‖w − wu,v‖22

=
(

(1−〈1,v〉)2
N + ∑N

i=2 c
2
i

) 1
2 + |1−〈1,v〉|√

N

‖w − wu,v‖2

=
(

(1 − 〈1, v〉)2
N‖w − wu,v‖22

+ 1

) 1
2

+ |1 − 〈1, v〉|√
N‖w − wu,v‖2

.
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Defining the set B as B : {w ∈ R
N : ‖w − wu,v‖2 ≥ D

}
, the above equality implies that

inside the set B,

‖w − wu,v‖2
‖w‖2 − ‖wu,v‖2 ≤

(
(1 − 〈1, v〉)2

ND2 + 1

) 1
2

+ |1 − 〈1, v〉|√
ND

.

If the value of κ satisfies

κ ≥
⎡
⎣
(

(1 − 〈1, v〉)2
ND2 + 1

) 1
2

+ |1 − 〈1, v〉|√
ND

⎤
⎦E

[
‖X P1‖221{Z̄ �=0}

] 1
2

then

κ ≥ ‖w − wu,v‖2
‖w‖2 − ‖wu,v‖2E

[
‖X P1‖221{Z̄ �=0}

] 1
2

for w ∈ B, and by Lemma 2, a solution with better objective value than wu,v can only be
inside

{
w ∈ R

N : ‖w − wu,v‖2 < D
}
.

Case p /∈ {1, 2}, 〈1, v〉 �= 1
In this case, we show that for an increasing sequence κn , the optimal solution gets to fall

inside a smaller neighborhood surrounding wu,v as κn −→ ∞. We define the set

An ={w ∈ R
N : 〈1, w〉 = 1 − 〈1, v〉 ,

R(〈X P1 , wu,v〉 +
〈
X P2 , v

〉
) + C‖wu,v‖qκn ≥ R(〈X P1 , w〉 +

〈
X P2 , v

〉
) + C‖w‖qκn}.

Since C and κn are positive, R (〈X P1 , ·〉 + 〈
X P2 , v

〉)
and ‖ · ‖q are convex functions of

w, An is a closed and convex set; and since ‖w‖q − ‖wu,v‖q > 0 for w �= wu,v with
〈1, w〉 = 1 − 〈1, v〉, An is monotone decreasing and ∩∞

n=1An = {wu,v}. An is bounded,
since,R(

〈
X P1 , w

〉+ 〈
X P2 , v

〉
) is bounded from below (the nominal problem (5)–(6) is well-

posed), and thus ‖w‖q is bounded from above. Being closed and bounded, compactness of
An follows.

Let Bε
n = An ∩ {

w ∈ R
N : ‖w − wu,v‖q ≥ ε

}
. ∩∞

n=1B
ε
n = ∅, since ∩∞

n=1An = {wu,v}
and wu,v /∈ Bε

n , ∀n ∈ N. Compactness of Bε
n , n ∈ N, implies that there is N ε ∈ N such that

Bε
N ε = ∅, that is, the optimal solution is inside

{
w ∈ R

N : ‖w − wu,v‖q < ε
}
for κ ≥ κN ε .

��

Proof of Proposition 3 Case p = 1
When κ exceeds (14), wu,v is the optimal solution for the inner problem for all v ∈ R

L ,
and we are seeking the solution of the problem (17). For some s �= 0, let us fix the total
allocation to ambiguous assets as s, i.e., 〈1, wu,v〉 = s. The objective value for a solution
v ∈ R

L with 〈1, v〉 = 1 − s is R( s
N

〈
X P1 ,1

〉 + 〈
X P2 , v

〉
) + Cκ

|s|
N . Here, the term on the

left remains constant as κ → ∞, and the term on the right tends to infinity. Let ṽ ∈ R
L ,

〈1, ṽ〉 = 1. The objective value of ṽ in (17) isR (〈
X P2 , ṽ

〉)
. ṽ has the same objective value in

(17) for all κ , and when κ exceeds N
C |s|

[R(〈X P2 , ṽ〉) − R( s
N

〈
X P1 ,1

〉 + 〈
X P2 , v

〉
)
]
, v ∈ R

L

with 〈1, v〉 = 1 − s is suboptimal.
Case p = 2
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Again, for ṽ ∈ R
L with 〈1, ṽ〉 = 1, the objective value in (16) isR(〈X P2 , ṽ〉). For v ∈ R

L

with 〈1, v〉 = 1 − s, s �= 0, the objective value is greater than

g (v) = R
( s

N

〈
X P1 ,1

〉
+
〈
X P2 , v

〉)

+ Cκ |s|
(

1√
N

− D

(
1

κ
sup
v∈RL

E

(
‖X P1‖221{Zv �=0}

)
1
2 + 1

))
.

There exists k ∈ N such that for all κ > k, D can be picked small enough to assure
1√
N

− D
(
1
κ
supv∈RL E

(‖X P1‖221{Zv �=0}
) 1

2 + 1
)

> δ for some δ > 0. Then, as in the

previous case, g (v) and hence the objective value of v tends to infinity as κ → ∞ while that
of ṽ stays constant.

Case p /∈ {1, 2}
When p /∈ {1, 2}, the threshold of uncertainty κε for w∗,v to be inside

{
w ∈ R

N :
‖w − wu,v‖q < ε

}
is not determined by a function of v ∈ R

L or ε, therefore, it is not
possible to define a lower bound function such as g (v) for f ∗ (v), the objective value of
v ∈ R

L (paired with w∗,v) in the outer problem (16). The situation is otherwise similar to
the case p = 2. Let us take arbitrary v ∈ R

L such that 〈1, v〉 = 1 − s, s �= 0, and again,
note that for ṽ ∈ R

L with 〈1, ṽ〉 = 1, the objective value is constant as the parameter κ

increases. With similar calculations to the case p = 2, one can show that the objective value
R (〈

X P1 , w∗,v
〉 + 〈

X P2 , v
〉) + Cκ‖w∗,v‖q for v is larger than

f (v) − εC

(
sup
v∈RL

E

[
‖X P1‖p

p1{Zv �=0}
] 1

p + κ

)

= R
( s

N

〈
X P1 ,1

〉
+
〈
X P2 , v

〉)
+ Cκ

|s|
N 1− 1

q

− εC

(
sup
v∈RL

E

[
‖X P1‖p

p1{Zv �=0}
] 1

p + κ

)
,

given κ ≥ κε . Picking ε <
|s|

N
1− 1

q
, the value of the above term increases once κ exceeds κε

and tends to infinity with κ → ∞. Thus, the arbitrary solution with total allocation s �= 0
turns suboptimal as κ → ∞. ��
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