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We study monomial curves, toric ideals and monomial algebras associated to 4-generated pseudo

symmetric numerical semigroups. Namely, we determine indispensable binomials of these toric

ideals, give a characterization for these monomial algebras to have strongly indispensable minimal

graded free resolutions. We also characterize when the tangent cones of these monomial curves at
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1. INTRODUCTION

Characterising numerical functions that may be Hilbert functions of one dimensional Cohen-

Macaulay local rings is a hard and still open question of local algebra, see [32]. A necesseary

condition for the characterization is provided by Sally’s conjecture that the Hilbert function

of a one dimensional Cohen-Macaulay local ring with small enough embeddding dimension is

non-decreasing. This conjecture is obvious in embedding dimension one, proved in embedding

dimensions two by Matlis [26] and three by Elias [14]. For embedding dimension 4, Gupta and

Roberts gave counterexamples in [17], and for each embedding dimension greater than 4, Orecchia

gave counterexamples in [29]. Local rings of monomial curves provided many affirmative answers,

see e.g. [11, 12, 18, 30] and references therein. On the other hand, counterexamples were given

only in affine 10-space by Herzog and Waldi in [22] and in affine 12-space by Eakin and Sathaye

in [13], and most recently, Oneto et al. [27, 28] announced some methods for producing Gorenstein

monomial curves whose tangent cones have decreasing Hilbert functions. However, the problem is

still open for monomial curves in n-space, where 3 < n < 10. As the original conjecture predicts

that the embedding dimension n should be small and 4 is the first case, it is natural to focus on

monomial curves in 4-space. Arslan and Mete gave an affirmative answer to the conjecture for

local rings corresponding to 4-generated symmetric semigroups in [3] under a numerical condition

by proving that the tangent cone is Cohen-Macaulay. Taking the novel aproach to use indispensable

binomials in the toric ideal, Arslan et al. refined in [2] this by characterising Cohen-Macaulayness

of the tangent cone completely. As symmetric and pseudo symmetric semigroups are maximal with

respect to inclusion with fixed genus, see [5], the second interesting case is the class of 4-generated

pseudo symmetric semigroups which is the content of the present paper. We give characterizations
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under which the tangent cone is Cohen-Macaulay. This reveals how nice the singularity at the

origin is and verifies Sally’s conjecture by [15]. It also reduces the computation of the Hilbert

function to that of its Artinian reduction which have only a finite number of nonzero values, see [33].

Our criteria for the Cohen-Macaulayness is in terms of the 5 integers determining the semigroup,

so they can be used in principal to construct counterexamples if there are any. In order to get

these conditions we use indispensable binomials in the toric ideal. Motivated originally from its

applications in Algebraic Statistics many authors have studied the concept of indispensability, see

e.g. [36] and [7, 16, 24] and later strong indispensability, see [6, 8, 9]. In order to state our results

more precisely we introduce some notations.

Let n1, . . . , n4 be positive integers with gcd(n1, . . . , n4) = 1. Then the numerical semigroup S =

〈n1, . . . , n4〉 is defined to be the set {u1n1 + · · · + u4n4 | ui ∈ N}. Let K be a field and K[S] =

K[tn1 , . . . , tn4] be the semigroup ring of S, then K[S] ≃ A/IS where, A = K[X1, . . . , X4] and IS is

the kernel of the surjection A
φ0

−→ K[S], where Xi 7→ tni .

Pseudo Frobenious numbers of S are defined to be the elements of the set PF(S) = {n ∈ Z −

S | n + s ∈ S for all s ∈ S − {0}}. The largest pseudo Frobenious number not belonging to S is

called the Frobenious number and is denoted by g(S). S is called pseudo symmetric if PF(S) =

{g(S)/2, g(S)}, see [31, Chapter 3] or [5]. By [25, Theorem 6.5, Theorem 6.4], the semigroup S

is pseudo symmetric if and only if there are integers αi > 1, 1 ≤ i ≤ 4, and α21 > 0, with

α21 < α1, such that n1 = α2α3(α4 − 1) + 1, n2 = α21α3α4 + (α1 − α21 − 1)(α3 − 1) + α3,

n3 = α1α4 + (α1 − α21 − 1)(α2 − 1)(α4 − 1) − α4 + 1, n4 = α1α2(α3 − 1) + α21(α2 − 1) + α2.
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From now on, S is assumed to be a pseudo symmetric numerical semigroup. Then, by [25], K[S] =

A/(f1, f2, f3, f4, f5), where

f1 = X
α1

1 − X3X
α4−1
4 , f2 = X

α2

2 − X
α21

1 X4, f3 = X
α3

3 − X
α1−α21−1
1 X2,

f4 = X
α4

4 − X1X
α2−1
2 X

α3−1
3 , f5 = X

α3−1
3 X

α21+1
1 − X2X

α4−1
4 .

In section two, we determine indispensable binomials of IS and prove that K[S] has a strongly

indispensable minimal S-graded free resolution if and only if α4 > 2 and α1 − α21 > 2, see

Theorem 2.6, filling a missing case in [6].

In section three, we consider the affine curve CS with parametrization

X1 = tn1 , X2 = tn2 , X3 = tn3 , X4 = tn4

corresponding to S. Recall that the local ring corresponding to the monomial curve CS is RS =

K[[tn1 , . . . , tn4]] and its Hilbert function is defined as the Hilbert function of its associated graded

ring, grm(K[[tn1 , . . . , tn4]]), which is isomorphic to the ring K[S]/IS∗. Here, IS∗ is the defining ideal

of the tangent cone of CS at the origin and is generated by the homogeneous summands f∗ of the

elements f ∈ IS. We characterize when the tangent cone of CS is Cohen-Macaulay in terms of the

defining integers αi and α21. As a byproduct of our proofs, we provide explicit generating sets for

Cohen-Macaulay tangent cones.

4

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
3:

32
 2

7 
N

ov
em

be
r 

20
17

 



A
cc
ep
te
d
M
an
us
cr
ip
t

2. INDISPENSABILITY

In this section, we determine the indispensable binomials in IS and characterize the conditions

under which K[S] has a strongly indispensable minimal S-graded free resolution. First, recall some

notions from [7]. The S-degree of a monomial is defined to be degS(X
u1

1 X
u2

2 X
u3

3 X
u4

4 ) =
∑4

i=1 uini ∈

S. Let V(d) be the set of monomials of S-degree d. Denote by G(d) the graph with vertices the

elements of V(d) and edges {m, n} ⊂ V(d) such that the binomial m − n is generated by binomials

in IS of S-degree strictly smaller than d. In particular, when gcd(m, n) 6= 1, {m, n} is an edge of

G(d). d ∈ S is called a Betti S-degree if there is a minimal generator of IS of S-degree d and βd

is the number of times d occurs as a Betti S-degree. Both the set BS of Betti S-degrees and βd are

invariants of IS. S-degrees of binomials in IS which are not comparable with respect to <S constitute

a subset denoted by MS whose elements are called minimal binomial S-degrees, where s1 <S s2 if

s2−s1 ∈ S. In general, MS ⊆ BS. By Komeda’s result, BS = {d1, d2, d3, d4, d5} if di’s are all distinct,

where di is the S-degree of fi, for i = 1, . . . , 5. A binomial is called indispensable if it appears

in every minimal generating set of IS. The following useful observation to detect indispensable

binomials is not explicitly stated in [7].

Lemma 2.1. A binomial of S-degree d is indispensable if and only if βd = 1 and d ∈ MS.

Proof. A binomial of S-degree d is indispensable if and only if G(d) has two connected components

which are singletons, by [7, Corollary 2.10]. From the paragraph just after [7, Corollary 2.8], the

condition that G(d) has two connected components is equivalent to βd = 1. Finally, [7, Proposition

5
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2.4] completes the proof, since the connected components of G(d) are singletons if and only if

d ∈ MS.

We use the following many times in the sequel.

Lemma 2.2. If 0 < vk < αk and 0 < vl < αl, for k 6= l ∈ {1, 2, 3, 4}, then vknk − vlnl /∈ S.

Proof. Assume to the contrary that vknk − vlnl ∈ S. Then

vknk − vlnl =

4
∑

i=1

uini = u1n1 + u2n2 + u3n3 + u4n4

for some non-negative uk’s.

Hence, (vk−uk)nk = (vl+ul)nl+usns+urnr ∈ 〈nl, ns, nr〉. If vk−uk < 0 then (vk−uk)nk ∈ S∩(−S)

but this is a contradiction as S ∩ (−S) = {0}. If vk − uk = 0, then (vl + ul)nl + usns + urnr = 0

and this is impossible as vl is positive. That is, vk − uk > 0. This contradicts with the fact that αi is

the smallest positive number with this property as 0 < vi − ui ≤ vi < αi.

Now, we determine the minimal binomial S-degrees.

Proposition 2.3. MS = {d1, d2, d3, d4, d5} if α1−α21 > 2 and MS = {d1, d2, d3, d5} if α1−α21 = 2.

6
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Proof. Notice first that

d1 = α1n1 = n3 + (α4 − 1)n4,

d2 = α2n2 = α21n1 + n4,

d3 = α3n3 = (α1 − α21 − 1)n1 + n2,

d4 = α4n4 = n1 + (α2 − 1)n2 + (α3 − 1)n3,

d5 = (α21 + 1)n1 + (α3 − 1)n3 = n2 + (α4 − 1)n4.

Thus, we observe that

d1 − d2 = (α1 − α21)n1 − n4

d1 − d3 = (α21 + 1)n1 − n2

d1 − d4 = n3 − n4

d1 − d5 = (α1 − α21 − 1)n1 − (α3 − 1)n3

d2 − d3 = (α2 − 1)n2 − (α1 − α21 − 1)n1

d2 − d4 = n3 − (α1 − α21)n1

d2 − d5 = (α2 − 1)n2 − (α4 − 1)n4

d3 − d4 = n3 − n1 − (α2 − 1)n2

d3 − d5 = n3 − (α21 + 1)n1

d4 − d5 = (α2 − 1)n2 − α21n1.

Then, di − dj = vknk − ulnl for some k 6= l ∈ {1, 2, 3, 4} with 0 < vk < αk and 0 < vl < αl except

for d3 − d4 and d4 − d3. Hence, we can say di − dj /∈ S from Lemma 2.2 for all i, j except 3 and 4.

7
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Assume d3−d4 ∈ S. Then n3−n1−(α2−1)n2 = u1n1+u2n2+u3n3+u4n4 for some non-negative

ui’s. So, (1 − u3)n3 = (1 + u1)n1 + (α2 − 1 + u2)n2 + u4n4 > 0. This contradicts to α3 being the

minimal number with the property α3n3 ∈ 〈n1, n2, n4〉, as 0 < 1 − u3 < α3. Hence d3 − d4 can not

be in S.

There are two possibilities for d4 − d3. If α1 − α21 = 2, then we have d4 − d3 = (α2 − 2)n2 +

(α3 − 1)n3 − (α1 − α21 − 2)n1 = (α2 − 2)n2 + (α3 − 1)n3 ∈ S.

If α1 −α21 > 2, we show that d4 −d3 /∈ S. Assume contrary that d4 −d3 = n1 + (α2 −1)n2 −n3 =

u1n1 +u2n2 +u3n3 +u4n4. Then, (α2 −1−u2)n2 = (u1 −1)n1 + (u3 +1)n3 +u4n4. If u1 > 0, then

0 < α2 −1−u2 < α2, since u3 +1 > 0. But this contradicts to the minimality of α2. Hence u1 = 0

and n1 + (α2 − 1 − u2)n2 = (u3 + 1)n3 + u4n4 with α2 − 1 − u2 > 0. ( If α2 − 1 − u2 ≤ 0, then

n1 = (u2 +1−α2)n2 + (u3 +1)n3 +u4n4 and this implies n1 ∈ 〈n2, n3, n4〉 which can not happen).

Then if u4 = 0, we have (u3+1)n3 = n1+(α2−1−u2)n2. As u3+1 < α3 gives a contradiction with

the minimality of α3, we assume u3 +1 = α ≥ α3. Then α3n3 + (α−α3)n3 = n1 + (α2 −1−u2)n2

⇒ (α1 −α21 −1)n1 +n2 + (α−α3)n3 = n1 + (α2 −1−u2)n2 ⇒ (α1 −α21 −2)n1 + (α−α3)n3 =

(α2 − 2 − u2)n2 ⇒ 0 < α2 − 2 − u2 < α2 and this gives a contradiction with the minimality

of α2. On the other hand, if u4 > 0, then n1 + α2n2 = (1 + u2)n2 + (u3 + 1)n3 + u4n4, and

as α2n2 = 1 + α21n1 + n4, we have (1 + α21)n1 = (1 + u2)n2 + (u3 + 1)n3 + (u4 − 1)n4. As

0 < 1+α21 < α1, this contradicts with the minimality of α1. Hence, d4 −d3 can not be an element

of S.

8
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As a consequence, we determine the indispensable binomials in IS. Part of this result is remarked

at the end of [24].

Corollary 2.4. Indispensable binomials of IS are {f1, f2, f3, f4, f5} if α1 − α21 > 2 and are

{f1, f2, f3, f5} if α1 − α21 = 2.

Proof. This follows from Lemma 2.1 and Proposition 2.3, since βdi
= 1, for all i = 1, . . . , 5.

A minimal graded free resolution of K[S] is given in [6, Theorem 6] as follows:

Theorem 2.5. If S is a 4-generated pseudosymmetric semigroup, then the following is a minimal

graded free A-resolution of K[S]:

(F, φ) : 0 −→

2
⊕

j=1

A[−cj]
φ3

−→

6
⊕

j=1

A[−bj]
φ2

−→

5
⊕

j=1

A[−dj]
φ1

−→ A −→ 0

where φ1 = (f1, f2, f3, f4, f5),

φ2 =















X2 0 X
α3−1
3 0 X4 0

0 f3 0 X1X
α3−1
3 X

α1−α21

1 X
α4−1
4

X
α21+1
1 −f2 X

α4−1
4 0 X1X

α2−1
2 0

0 0 0 X2 X3 X
α21

1

−X3 0 −X
α1−α21−1
1 X4 0 X

α2−1
2















,

and φ3 =

(

X4 −X1 0 X3 −X2 0

−X
α2−1
2 X

α3−1
3 X

α4−1
4 f2 −X

α1−1
1 X

α21

1 X
α3−1
3 −f3

)T

.
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The numbers bj and cj above can be obtained from the maps φ2 and φ3 as in [6, Corollary 16]. For

instance, the S-degrees of the non-zero entries in the first column of φ2 gives us b1 = d1 + n2 =

d3 + (α21 + 1)n1 = d5 + n3. Similarly we get:

b2 = d2 + d3

b3 = d1 + (α3 − 1)n3 = d3 + (α4 − 1)n4 = d5 + (α1 − α21 − 1)n1

b4 = d4 + n2 = d2 + n1 + (α3 − 1)n3 = d5 + n4

b5 = d1 + n4 = d2 + (α1 − α21)n1 = d3 + n1 + (α2 − 1)n2 = d4 + n3

b6 = d2 + (α4 − 1)n4 = d4 + α21n1 = d5 + (α2 − 1)n2

and

c1 = b1 + n4 = b2 + n1 = b4 + n3 = b5 + n2

c2 = b1 + (α2 − 1)n2 + (α3 − 1)n3

= b2 + (α4 − 1)n4

= b3 + d2 = b3 + α2n2 = b3 + α21n1 + n4

= b4 + (α1 − 1)n1

= b5 + α21n1 + (α3 − 1)n3

= b6 + d3 = b6 + α3n3 = b6 + (α1 − α21 − 1)n1 + n2.

Note that the resolution (F, φ) is called strongly indispensable if for any graded minimal resolution

(G, θ), we have an injective complex map i : (F, φ) −→ (G, θ). We finish this section with its main

result to characterize when K[S] has a strongly indispensable minimal graded free resolution.

10

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
3:

32
 2

7 
N

ov
em

be
r 

20
17

 



A
cc
ep
te
d
M
an
us
cr
ip
t

Theorem 2.6. Let S be a 4-generated pseudo-symmetric semigroup. Then K[S] has a strongly

indispensable minimal graded free resolution if and only if α4 > 2 and α1 − α21 > 2.

Proof. According to [6, Proposion 29], K[S] has a strongly indispensable minimal graded free

resolution if and only if the differences di − dj and bi − bj do not belong to S, for any i and j.

Indeed, di − dj /∈ S if and only if α1 − α21 > 2 from the proof of Proposition 2.3. For the other

differences, we use the identities in c1 and c2. As a result, from c1, we get the differences

b1 − b2 = n1 − n4,

b1 − b4 = n3 − n4,

b1 − b5 = n2 − n4,

b2 − b4 = n3 − n1,

b2 − b5 = n2 − n1,

b4 − b5 = n2 − n3.

11
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Similarly, from c2, we get the differences

b1 − b3 = n2 − (α3 − 1)n3,

b1 − b6 = n3 − (α2 − 1)n2,

b3 − b4 = (α1 − α21 − 1)n1 − n4,

b3 − b5 = (α3 − 1)n3 − n4,

b3 − b6 = (α1 − α21 − 1)n1 − (α2 − 1)n2

b4 − b6 = n2 − α21n1,

b5 − b6 = n3 − α21n1.

Observe that bi − bj = vknk − vlnl for any i < j and for some k 6= l ∈ {1, 2, 3, 4} with 0 < vk < αk

and 0 < vl < αl. By Lemma 2.2, we have ∓(bi − bj) /∈ S, for any i < j, except for i = 2 and

j = 3, 6.

Furthermore, b2 − b3 = α2n2 − (α4 − 1)n4 = α21n1 − (α4 − 2)n4. Again by Lemma 2.2, we have

∓(b2 − b3) /∈ S when α4 > 2. On the other hand, if α4 = 2, then b2 − b3 = α21n1 ∈ S.

Finally, b2 − b6 = α3n3 − (α4 − 1)n4. Using the identity

d5 = (α21 + 1)n1 + (α3 − 1)n3 = n2 + (α4 − 1)n4,

12
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we obtain b2 − b6 = n2 + n3 − (α21 + 1)n1. If b2 − b6 ∈ S, then there are non-negative ui such that

n2 + n3 − (α21 + 1)n1 = b2 − b6 = u1n1 + u2n2 + u3n3 + u4n4.

Then (1 − u2)n2 + (1 − u3)n3 = (α21 + 1 + u1)n1 + u4n4 > 0. It follows that u2 = u3 = 0. Thus,

n2 + n3 = (α21 + 1 + u1)n1 + u4n4.

If u4 = 0 then αn1 ∈ 〈n2, n3〉 with α < α1 because if α ≥ α1, then n2 +n3 = (α −α1)n1 +α1n1 =

(α−α1)n1+n3+(α4−1)n4. This leads to a contradiction as n2 = (α−α1)n1+n4(α4−1) ∈ 〈n1, n4〉.

So u4 > 0 in which case, n2 + n3 = α21n1 + (1 + u1)n1 + n4 + (u4 − 1)n4 = (1 + u1)n1 + α2n2 +

(u4 − 1)n4 ⇒ n3 = (u1 + 1)n1 + (α2 − 1)n2 + (u4 − 1)n4 ∈ 〈n1, n2, n4〉, another contradiction.

Hence, b2 − b6 /∈ S.

If b6 − b2 = (α21 + 1)n1 − n2 − n3 = u1n1 + u2n2 + u3n3 + u4n4, for some non-negative ui,

then (α21 + 1 − u1)n1 = (u2 + 1)n2 + (u3 + 1)n3 + u4n4 > 0. Then 0 < α21 + 1 − u1 < α1, a

contradiction with the minimality of α1. Hence, b6−b2 can not be an element of S either, completing

the proof.

3. COHEN-MACAULAYNESS OF THE TANGENT CONE

In this section, we give conditions for the Cohen-Macaulayness of the tangent cone. For some

recent and past activity about the tangent cone of CS, see [1, 2, 10, 23, 34, 35].
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Recall that for an ideal I with a fixed monomial ordering ‘<’, a finite set G ⊂ I is called a standard

basis of I if the leading monomials of the elements of G generate the leading ideal of I that is, if

for any f ∈ I − {0}, there exits g ∈ G such that LM(g) divides LM(f ). Note that a standard basis is

also a basis for the ideal and when the ordering ‘<’ is global, standard basis is actually a Gröbner

basis, [20].

Remark 3.1. Depending on the ordering among n1, n2, n3 and n4 there are 24 possible cases.

We illustrate in Table 1 that there are pseudo symmetric monomial curves with Cohen-Macaulay

tangent cones in all of these cases. We will determine standard bases and characterize Cohen-

Macaulayness completely in the first 12 cases in terms of the defining integers. For the remaining

12 cases, finding a general form for the standard basis is not possible, and instead of giving a

characterization as in [2], we give some partial results involving the defining integers αi and α21.

3.1. Cohen-Macaulayness of the tangent cone when n1 is smallest

In this section, we assume that n1 is the smallest number in {n1, n2, n3, n4}. Using the indispensable

binomials of IS, we characterize the Cohen-Macaulayness of the tangent cone of CS. First, we get

the necessary conditions.

Lemma 3.2. If the tangent cone of the monomial curve CS is Cohen-Macaulay, then the following

must hold

14
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(C1.1) α2 ≤ α21 + 1,

(C1.2) α21 + α3 ≤ α1,

(C1.3) α4 ≤ α2 + α3 − 1.

Proof. Corollary 2.4 implies that f2 and f3 are indispensable binomials of IS, which means that

they appear in every standard basis. To prove C(1.1), assume contrary that α2 > α21 + 1. Then,

LM(f2) = X
α21

1 X4 is divisible by X1. This leads to a contradiction as [4, Lemma 2.7] implies that

the tangent cone is not Cohen-Macaulay. Similarly, when α21 + α3 > α1, LM(f3) = X
α1−α21−1
1 X2

is divisible by X1. So, if the tangent cone is Cohen-Macaulay, then C(1.1) and C(1.2) must hold.

To show the last inequality holds, assume not: α4 > α2 + α3 − 1. Then LM(f4) = X1X
α2−1
2 X

α3−1
3

is divisible by X1. If α1 > α21 + 2, f4 is indispensable by Corollary 2.4 again. As before, the

tangent cone is not Cohen Macaulay, a contradiction. So, we must have α1 = α21 + 2. In this

case, there exists a binomial g in a minimal standard basis of IS such that LM(g) | LM(f4) and

X1 ∤ LM(g). Hence LM(g) = Xa
2Xb

3 with 0 < a ≤ α2 − 1 and 0 < b ≤ α3 − 1 since the case

a = 0 contradicts with the minimality of d2 and the case b = 0 contradicts with the minimality

of d3. By Proposition 2.3 and its proof, MS = {d1, d2, d3, d5} are the minimal degrees and the only

degree that is smaller than d4 is d3. Since deg(g) < d4, we must have d3 < deg(g) < d4. Hence,

deg(g) − d3 = an2 − (α3 − b)n3 ∈ S with 0 < a < α2 and 0 < α3 − b < α3 but this contradicts

to Lemma 2.2. So, C(1.3) must hold as well.

Before we check if the conditions C(1.1), C(1.2) and C(1.3) are sufficient, we note the following.
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Remark 3.3. α1 ≥ α4 holds. Indeed, as f1 is S-homogeneous and n1 < n4, we have (α4 − 1)n4 <

n3 + (α4 − 1)n4 = α1n1 < α1n4 implying α1 > α4 − 1.

Next, we compute a standard basis for IS, when C(1.1), C(1.2) and C(1.3) hold.

Lemma 3.4. If C(1.1), C(1.2) and C(1.3) hold, the set G = {f1, f2, f3, f4, f5} is a minimal standard

basis for IS with respect to a negative degree reverse lexicographical ordering making X1 the

smallest variable.

Proof. We will apply standard basis algorithm to the set G = {f1, f2, f3, f4, f5} with the normal form

algorithm NFMORA, see [20] for details. We need to show NF(spoly(fi, fj)|G) = 0 for any i 6= j

with 1 ≤ i, j ≤ 5. Observe that the conditions (C1.1) and (C1.3) imply that α4 ≤ α21 + α3(*) and

hence,

• LM(f1) = LM(X
α1

1 − X3X
α4−1
4 ) = X3X

α4−1
4 , by Remark 3.3

• LM(f2) = LM(X
α2

2 − X
α21

1 X4) = X
α2

2 , by (C1.1).

• LM(f3) = LM(X
α3

3 − X
α1−α21−1
1 X2) = X

α3

3 , by (C1.2)

• LM(f4) = LM(X
α4

4 − X1X
α2−1
2 X

α3−1
3 ) = X

α4

4 , by (C1.3)

• LM(f5) = LM(X
α21+1
1 X

α3−1
3 − X2X

α4−1
4 ) = X2X

α4−1
4 , by (*).

Then we conclude the following:
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• NF(spoly(fi, fj)|G) = 0 as LM(fi) and LM(fj) are relatively prime, for (i, j) ∈ {(1, 2), (2, 3), (2, 4),

(3, 4), (3, 5)}.

• spoly(f1, f3) = X
α1

1 X
α3−1
3 −X

α1−α21−1
1 X2X

α4−1
4 and by (*) its leading monomial is X

α1−α21−1
1 X2X

α4−1
4 ,

which is divisible only by LM(f5). As ecart(f5) = ecart(spoly(f1, f3)) and spoly(f5, spoly(f1, f3)) =

0, we have

NF(spoly(f1, f3)|G) = 0.

• spoly(f1, f4) = X
α1

1 X4 − X1X
α2−1
2 X

α3

3 .

α2 ≤ α21 + 1 from (C1.1). Then,

α2 + α3 ≤ α3 + α21 + 1 then as α3 ≤ α1 − α21 from (C1.2)

α2 + α3 ≤ α1 + 1.

As a result, LM(spoly(f1, f4)) = X1X
α2−1
2 X

α3

3 . Only LM(f3) divides LM(spoly(f1, f4)) and

ecart(spoly(f1, f4)) ≥ ecart(f3). Then, spoly(f3, spoly(f1, f4)) = X
α1

1 X4 − X
α1−α21

1 X
α2

2 . As α2 ≤

α21+1 from (C1.1), α1−α21+α2 ≤ α1+1 and hence LM(spoly(f3, spoly(f1, f4))) = X
α1−α21

1 X
α2

2 .

Among the leading monomials of elements of G, only LM(f2) divides this with ecart(f2) =

α21+1−α2 = ecart(spoly(f3, spoly(f1, f4)). Then spoly(f2, spoly(f3, spoly(f1, f4))) = 0 implying

NF(spoly(f1, f4)|G) = 0.
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• spoly(f1, f5) = X
α21+1
1 X

α3

3 − X
α1

1 X2 with LM(spoly(f1, f5)) = X
α21+1
1 X

α3

3 by (C1.2). Only LM(f3)

divides this. As ecart(spoly(f1, f5)) = α1 − α21 + α3 = ecart(f3) and spoly(f3, spoly(f1, f5)) = 0,

NF(spoly(f1, f5)|G) = 0.

• spoly(f2, f5) = X
α21+1
1 X

α2−1
2 X

α3−1
3 − X

α21

1 X
α4

4 . As (C1.3) implies α21 + α4 ≤ α21 + α2 + α3 − 1,

LM(spoly(f2, f5)) = X
α21

1 X
α4

4 . Only LM(f4) divides this. As ecart(spoly(f2, f5)) = α2 + α3 − 1 −

α4 = ecart(f4) and spoly(f4, spoly(f2, f5)) = 0, NF(spoly(f2, f5)|G) = 0. Finally,

• spoly(f4, f5) = X
α21+1
1 X

α3−1
3 X4 − X1X

α2

2 X
α3−1
3 . Then α2 ≤ α21 + 1 implies α2 + α3 ≤

α21 + 1 + α3 and hence LM(spoly(f4, f5)) = X1X
α2

2 X
α3−1
3 . Only LM(f2) divides this.

Since ecart(spoly(f4, f5)) = α21 + 1 − α2 = ecart(f2) and spoly(f2, spoly(f4, f5)) = 0,

NF(spoly(f4, f5)|G) = 0.

It is not hard to see that this standard basis is minimal, so we are done.

We are now ready to give the complete characterization of the Cohen-Macaulayness of the tangent

cone.

Theorem 3.5. Suppose n1 is the smallest number in {n1, n2, n3, n4}. The tangent cone of CS is

Cohen-Macaulay if and only if

(C1.1) α2 ≤ α21 + 1,

(C1.2) α21 + α3 ≤ α1,
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(C1.3) α4 ≤ α2 + α3 − 1.

Proof. If the tangent cone of CS is Cohen-Macaulay, then C(1.1), C(1.2) and C(1.3) hold, by

Lemma 3.2. If C(1.1), C(1.2) and C(1.3) hold, then from Lemma 3.4, a minimal standard basis for

IS is G = {f1, f2, f3, f4, f5} and X1 ∤ LM(fi) for i = 1, 2, 3, 4, 5. Thus, it follows from [4, Lemma 2.7]

that the tangent cone is Cohen-Macaulay.

3.2. Cohen Macaulayness of the tangent cone when n2 is smallest

In this section, we deal with the Cohen Macaulayness of the tangent cone when n2 is the smallest

number in {n1, n2, n3, n4}. As before, we get the necessary conditions first.

Lemma 3.6. Suppose n2 is the smallest number in {n1, n2, n3, n4}. If the tangent cone of the

monomial curve CS is Cohen-Macaulay, then the following must hold

(C2.1) α21 + α3 ≤ α1,

(C2.2) α21 + α3 ≤ α4,

(C2.3) α4 ≤ α2 + α3 − 1,

(C2.4) α21 + α1 ≤ α4 + α2 − 1.

Proof. If tangent cone is Cohen-Macaulay then C(2.1) and C(2.2) comes from the indispensability

of f3 and f5. If α1 > α21 + 2, f4 is indispensable, in which case C(2.3) follows. If α1 = α21 + 2, f4
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is not indispensable. To prove C(2.3) in this case, assume contrary that α4 > α2 + α3 − 1. Then

LM(f4) = X1X
α2−1
2 X

α3−1
3 . As f4 ∈ IS, there exists a binomial g in a minimal standard basis of IS

such that LM(g) | LM(f4) and as the tangent cone is Cohen-Macaulay X2 ∤ LM(g). Hence LM(g) =

Xa
1Xb

3 with a ≤ 1 and b ≤ α3 − 1. Then deg(f5) − deg(g) = (α21 + 1 − a)n1 + (α3 − 1 − b)n3 ∈ S

but this contradicts with the minimality of deg(f5). Hence, C(2.3) must hold.

For the last condition, the result follows immediately if α4 ≥ α1, as in this case, α21 + α1 ≤

α4 + α21 ≤ α4 + α2 − 1. When α4 < α1, assume contrary that α21 + α1 > α4 + α2 − 1. Then,

as (α1 + α21)n1 = α2n2 + n3 + (α4 − 2)n4, the binomial f6 = X
α1+α21

1 − X
α2

2 X3X
α4−2
4 ∈ IS and

LM(f6) = X
α2

2 X3X
α4−2
4 is divisible by X2. As the tangent cone is Cohen-Macaulay there exists a

nonzero polynomial f in a minimal standard basis of IS such that LM(f ) | LM(f6) and X2 ∤ LM(f ).

This implies that LM(f ) = Xa
3Xb

4 , where a ≤ 1 and b ≤ α4 − 2, and that deg(f1) − deg(f ) =

(1 − a)n3 + (α4 − 1 − b)n4 is also in S which contradicts with the minimality of deg(f1). Hence,

C(2.4) must hold.

Before computing a standard basis, we observe the following.

Remark 3.7. When n2 is the smallest number in {n1, n2, n3, n4}, α21 +1 ≤ α2 holds automatically.

Indeed, as f2 is S-homogeneous, α21n1 < α21n1 + n4 = α2n2 < α2n1 implying α21 < α2.

Now, we compute a standard basis under the conditions C(2.1), C(2.2), C(2.3), and C(2.4).
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Lemma 3.8. Let n2 be the smallest number in {n1, n2, n3, n4} and

(C2.1) α21 + α3 ≤ α1,

(C2.2) α21 + α3 ≤ α4,

(C2.3) α4 ≤ α2 + α3 − 1,

(C2.4) α21 + α1 ≤ α4 + α2 − 1.

then a minimal standard basis for IS is

(i) {f1, f2, f3, f4, f5} if α1 ≤ α4,

(ii) {f1, f2, f3, f4, f5, f6 = X
α1+α21

1 − X
α2

2 X3X
α4−2
4 } if α1 > α4, with respect

to negative degree reverse lexicographical ordering with X3, X4 > X1 > X2.

Proof. Omitted as it can be done similarly.

We are now ready to give the full characterization.

Theorem 3.9. Suppose n2 is the smallest number in {n1, n2, n3, n4}. Tangent cone of the monomial

curve CS is Cohen-Macaulay if and only if
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(C2.1) α21 + α3 ≤ α1,

(C2.2) α21 + α3 ≤ α4,

(C2.3) α4 ≤ α2 + α3 − 1,

(C2.4) α21 + α1 ≤ α4 + α2 − 1.

Proof. If tangent cone is Cohen-Macaulay then C(2.1), C(2.2), C(2.3) and C(2.4) must hold

by Lemma 3.6. If C(2.1), C(2.2), C(2.3) and C(2.4) hold, then a minimal standard basis with

respect to the negative degree reverse lexicographic ordering making X2 the smallest variable is

G = {f1, f2, f3, f4, f5} in the case α4 ≥ α1 and G = {f1, f2, f3, f4, f5, f6} in the case α4 < α1 from

Lemma 3.8. X2 does not divide LM(fi) in both cases, so the tangent cone is Cohen-Macaulay by

[4, Lemma 2.7].

3.3. Cohen Macaulayness of the tangent cone when n3 is smallest

In this section, we deal with the Cohen Macaulayness of the tangent cone when n3 is the smallest

number in {n1, n2, n3, n4}. As before, we get the necessary conditions first.

Lemma 3.10. Suppose n3 is the smallest number in {n1, n2, n3, n4}. If the tangent cone of the

monomial curve CS is Cohen-Macaulay, then the following must hold

(C3.1) α1 ≤ α4,

(C3.2) α4 ≤ α21 + α3,
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(C3.3i) α4 ≤ α2 + α3 − 1 if α1 − α21 > 2,

(C3.3ii) α4 ≤ α2 + 2α3 − 3 if α1 − α21 = 2,

Proof. If tangent cone is Cohen-Macaulay then C(3.1) and C(3.2) comes from the indispensability

of f1 and f5. If α1 > α21 + 2, f4 is indispensable, in which case C(3.3i) follows. If α1 = α21 + 2,

f4 is not indispensable. To prove C(3.3ii) in this case, assume contrary that α4 > α2 + 2α3 − 3.

Then α4 > α2 + α3 − 1 and LM(f4) = X1X
α2−1
2 X

α3−1
3 . As LM(f3) = X1X2 | LM(f4), f4 can

not be in a minimal standard basis of IS. It can not be in a minimal generating set since a minimal

generating set would lie in a minimal standard basis. Since Betti S-degrees are invariant, there must

be a binomial of degree d4 in a minimal generating set. We prove that f ′
4 = X

α4

4 − X
α2−2
2 X

2α3−1
3

must belong to a minimal generating set and so to a minimal standard basis. This will follow from

[7] and the claim that

deg−1
S (d4) = {X

α4

4 } ∪ {X1X
α2−1
2 X

α3−1
3 , X

α2−2
2 X

2α3−1
3 }.

In order to prove the claim above, take m ∈ deg−1
S (d4). Since d3 is the only S-degree smaller than d4

and deg−1
S (d3) = {X

α3

3 , X1X2}, it follows that X
α3

3 | m or X1X2 | m if degS(m) = d4. If X
α3

3 | m, then

m = X
α3

3 m′. If m′ 6= X
α2−2
2 X

α3−1
3 , then m′ − X

α2−2
2 X

α3−1
3 ∈ IS, as this binomial is S-homogeneous

of S-degree d = d4 − d3. As d3 is the only S-degree smaller than d4, it follows that d3 <S d <S d4.

So, 2d3 <S d4. On the other hand, by Lemma 2.2, we have

d4 − 2d3 = n1 + (α2 − 1)n2 + (α3 − 1)n3 − n1 − n2 − α3n3 = (α2 − 2)n2 − n3 /∈ S.
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Thus, m′ = X
α2−2
2 X

α3−1
3 and so m = X

α2−2
2 X

2α3−1
3 . By the same argument, if X1X2 | m then

m = X1X
α2−1
2 X

α3−1
3 , hence the claim follows.

If α4 > α2 + 2α3 − 3, LM(f ′
4) = X

α2−2
2 X

2α3−1
3 is divisible by X3, contradicting to the Cohen-

Macaulayness of the tangent cone. So, C(3.3ii) follows.

Before computing a standard basis, we observe the following.

Remark 3.11. When n3 is the smallest number, α1 − α21 < α3 holds automatically. Indeed, as f3

is S-homogeneous, (α1 − α21)n3 < (α1 − α21 − 1)n1 + n2 = α3n3.

Now, we compute a standard basis.

Lemma 3.12. Let n3 be the smallest number in {n1, n2, n3, n4} and α2 ≤ α21 + 1, then a minimal

standard basis for IS is

(i) {f1, f2, f3, f4, f5, f6} if C(3.1), C(3.2) and C(3.3i) hold

(ii) {f1, f2, f3, f ′
4, f5, f6} when C(3.1), C(3.2) and C(3.3ii) hold, with respect
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to negative degree reverse lexicographical ordering with X2 > X1, X4 > X3, where f6 = X
α1−1
1 X4−

X
α2−1
2 X

α3

3 .

Proof. Omitted as it can be done similarly.

We are now ready to give a list of sufficient conditions.

Corollary 3.13. Let n3 is the smallest number and and α2 ≤ α21 + 1.

(i) If C(3.1), C(3.2) and C(3.3i) hold, then the tangent cone of the monomial curve CS is Cohen-

Macaulay.

(ii) When C(3.1), C(3.2) and C(3.3ii) hold, the tangent cone of the monomial curve CS is Cohen-

Macaulay if and only if α1 ≤ α2 + α3 − 1.

Proof.

(i) If C(3.1), C(3.2) and C(3.3i) hold, then a minimal standard basis with respect to the negative

degree reverse lexicographic ordering making X3 the smallest variable is G = {f1, f2, f3, f4, f5, f6}

from Lemma 3.12. X3 does not divide LM(fi), so the tangent cone is Cohen-Macaulay by [4, Lemma

2.7].
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(ii) When C(3.1), C(3.2) and C(3.3ii) hold, then a minimal standard basis with respect to

the negative degree reverse lexicographic ordering making X3 the smallest variable is G =

{f1, f2, f3, f ′
4, f5, f6} from Lemma 3.12. X3 does not divide LM(fi), for i = 1, . . . , 5, so the tangent

cone is Cohen-Macaulay by [4, Lemma 2.7] if and only if X3 does not divide LM(f6) if and only if

α1 ≤ α2 + α3 − 1.

We finish the section by illustrating that α2 ≤ α21 + 1 is not a necessary condition.

Example 3.14. Let (α21, α1, α2, α3, α4) = (2, 4, 5, 4, 5). Then (n1, n2, n3, n4) = (81, 59, 28, 74).

SINGULAR computes a minimal standard basis for IS as {X1X2 − X5
3 , X2

1X4 − X4
2 , X4

1 −

X3X4
4 , X5

2 − X1X5
3X4, X2X4

4 − X3
1X4

3 , X5
4 − X1X3

2X4
3} and thus IS∗ is generated by G∗ =

{X1X2, X2
1X4, X4

1 , X5
2 , X2X4

4 , X5
4}. As X3 does not divide these elements, the tangent cone is Cohen-

Macaulay from [4, Lemma 2.7].

3.4. Cohen-Macaulayness of the tangent cone when n4 is smallest

We get some necessary conditions first as before.

Lemma 3.15. Suppose n4 is the smallest number in {n1, n2, n3, n4}. If the tangent cone of the

monomial curve CS is Cohen-Macaulay then

(C4.1) α1 ≤ α4,
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(C4.2) α2 ≤ α21 + 1,

(C4.3) α3 + α21 ≤ α4.

Proof. The results follow immediately from the indispensabilities of f1, f2 and f5 respectively.

Remark 3.16. If n4 is the smallest number in {n1, n2, n3, n4} then α4 > α2+α3−1. Indeed, as f4 is S-

homogeneous and n4 is the smallest number in {n1, n2, n3, n4} α4n4 = n1+(α2−1)n2+(α3−1)n3 >

(α2 + α3 − 1)n4 implying α4 > α2 + α3 − 1.

Lemma 3.17. Let n4 be the smallest number in {n1, n2, n3, n4} and α3 ≤ α1 −α21. If the conditions

C(4.1), C(4.2) and C(4.3) hold, then {f1, f2, f3, f4, f5} is a minimal standard basis for IS with respect

to negative degree reverse lexiographical ordering with X3 > X1, X2 > X4.

Proof. Omitted as it can be done similarly.

Corollary 3.18. Let n4 be the smallest number in {n1, n2, n3, n4} and α3 ≤ α1−α21. If the conditions

C(4.1), C(4.2) and C(4.3) hold, then the tangent cone of CS is Cohen-Macaulay.

Proof. By hypothesis {f1, f2, f3, f4, f5} is a minimal standard basis for IS with respect to negative

degree reverse lexiographical ordering with X4 the smallest variable from Lemma 3.17 and X4 ∤

LM(fi) for i = 1, 2, 3, 4, 5. Thus, it follows from [4, Lemma 2.7] that the tangent cone is Cohen-

Macaulay.
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However, the tangent cone may be Cohen-Macaulay even if α3 > α1 − α21.

Example 3.19. Let (α21, α1, α2, α3, α4) = (4, 7, 3, 4, 9). Then (n1, n2, n3, n4) = (97, 154, 87, 74).

SINGULAR computes a minimal standard basis for IS as {X2
1X2 − X4

3 , X3
2 − X4

1X4, X1X2
2X3

3 −

X9
4 , X2

2X4
3−X6

1X4, X7
1−X3X8

4 , X5
1X3

3−X2X8
4 , X2X7

3−X1X9
4 , X3

1X7
3−X2

2X8
4 , X11

3 −X3
1X9

4} and so the ideal

IS∗ is generated by the set G∗ = {X2
1X2, X3

2 , X1X2
2X3

3 , X2
2X4

3 , X7
1 , X5

1X3
3 , X2X7

3 , X3
1X7

3 −X2
2X8

4 , X11
3 }. As

X4 does not divide elements, the tangent cone is Cohen-Macaulay from [4, Lemma 2.7].
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4. Arslan, F., Mete, P., Şahin, M. (2009). Gluing and Hilbert functions of monomial curves. Proc.

Amer. Math. Soc. 137:2225–2232.

5. Barucci, V., Dobbs, D. E., Fontana, M. (1997). Maximality properties in numerical semigroups

and applications to one-dimensional analytically irreducible local domains. Mem. Amer. Math.

Soc. 125(598):x+78.
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α21 α1 α2 α3 α4 n1 n2 n3 n4

n1 < n2 < n3 < n4 2 5 3 2 2 7 12 13 22

n1 < n2 < n4 < n3 2 5 3 2 4 19 20 29 22

n1 < n3 < n2 < n4 3 5 4 2 3 17 21 19 33

n1 < n3 < n4 < n2 3 6 3 3 5 37 52 42 45

n1 < n4 < n2 < n3 3 6 3 2 4 19 28 33 27

n1 < n4 < n3 < n2 3 8 3 4 6 61 88 83 81

n2 < n1 < n3 < n4 2 6 6 3 5 73 39 86 88

n2 < n1 < n4 < n3 2 5 4 2 4 25 20 35 30

n2 < n3 < n1 < n4 2 4 4 2 4 25 19 22 26

n2 < n3 < n4 < n1 3 5 6 2 6 61 39 50 51

n2 < n4 < n1 < n3 2 5 4 2 5 33 24 45 30

n2 < n4 < n3 < n1 2 4 4 2 5 33 23 28 26

n3 < n1 < n2 < n4 1 3 2 3 3 13 14 9 15

n3 < n1 < n4 < n2 3 6 3 4 6 61 82 51 63

n3 < n2 < n1 < n4 2 4 4 5 4 61 49 22 74

n3 < n2 < n4 < n1 2 4 5 4 5 81 59 28 74

n3 < n4 < n1 < n2 2 4 2 4 6 41 55 24 28

n3 < n4 < n2 < n1 2 4 3 4 5 49 47 24 43

n4 < n1 < n2 < n3 2 5 2 2 5 17 24 29 14

n4 < n1 < n3 < n2 2 4 2 2 4 13 19 16 12

n4 < n2 < n1 < n3 1 4 2 2 4 13 12 19 11

n4 < n2 < n3 < n1 1 3 2 2 4 13 11 12 9

n4 < n3 < n1 < n2 2 5 2 4 6 41 58 35 34

n4 < n3 < n2 < n1 1 4 2 4 6 41 34 29 27
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