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Abstract. We consider the constrained assortment optimization problem under the mixed
multinomial logit model. Even moderately sized instances of this problem are challeng-
ing to solve directly using standard mixed-integer linear optimization formulations. This
has motivated recent research exploring customized optimization strategies and approx-
imation techniques. In contrast, we develop a novel conic quadratic mixed-integer for-
mulation. This new formulation, together with McCormick inequalities exploiting the
capacity constraints, enables the solution of large instances using commercial optimization
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1. Introduction

Assortment planning, the selection of products that a
firm offers to its customers, is a key problem faced
by retailers, with direct impact on profitability, mar-
ket share, and customer satisfaction. A growing stream
of operations research literature focuses on assortment
optimization problems, where the assortment is opti-
mized to maximize revenue (see Kok et al. 2009, for a
review). To solve this category of problems, customers’
purchase behavior must be modeled in a way that cap-
tures the impact on the overall demand of product char-
acteristics and customers’ substitution between prod-
ucts. The most commonly used model for customer
behavior in this setting is the multinomial logit (MNL)
model, which is based on a probabilistic model of
individual customer utilities (see the pioneering work
of van Ryzin and Mahajan 1999 and follow-up work
by Cachon et al. 2005, Mahajan and van Ryzin 2001,
Chongetal. 2001, Li 2007, Rusmevichientong et al. 2010,
Rusmevichientong and Topaloglu 2012, and Topaloglu
2013). Despite its popularity, the MNL model has two
key shortcomings: (1) it relies on the so-called inde-
pendence of irrelevant alternatives (IIA) assumption, so
that a product’s market share relative to another prod-
uct is constant regardless of the other products in the
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assortment, and (2) the total market share of an assort-
ment and the substitution rates within that assortment
cannotbe independently defined (Kok and Fisher 2007).
A partial remedy for these problems is possible under
an extension of the MNL model, called the nested logit
model. Recent work that studies assortment optimiza-
tion under variants of the nested logit model includes
Davis et al. (2014), Gallego and Topaloglu (2014), and Li
etal. (2015).

In this paper, we consider assortment optimiza-
tion under a generalization of the MNL model that
does not have either of these limitations, the mixed
MNL model (MMNL). The MMNL model, intro-
duced by Boyd and Mellman (1980) and Cardell and
Dunbar (1980), has another important characteristic,
as observed by McFadden and Train (2000, p. 448):
“Any discrete choice model derived from random util-
ity maximization ... can be approximated as closely as
one pleases by a MMNL model.” Assortment planning
under the MMNL model, also known as the mixtures
of MNL model (Feldman and Topaloglu 2015), MNL
with random choice parameters (Rusmevichientong
et al. 2014), and latent-class MNL (Méndez-Diaz et al.
2014), has received considerable interest in the oper-
ations research/management science (OR/MS) com-
munity. The problem also arises as a subproblem in a
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new approach in revenue management called choice-
based deterministic linear optimization that attempts
to model customer choice behavior more realistically
(Liu and van Ryzin 2008).

We are particularly interested in assortment opti-
mization under MMNL with constraints on the num-
ber of products in the assortment (so-called capacity
constraints). While optimal assortments under MNL
can be efficiently found (Rusmevichientong et al. 2010),
this does not hold true for assortment optimization
under MMNIL, in either the capacitated or uncapac-
itated settings. Indeed, Bront et al. (2009) and Rus-
mevichientong et al. (2014) show that the assortment
optimization problem under the mixed MNL model is
NP-hard. Motivated by the computational complexity
and the ineffectiveness of standard mixed-integer lin-
ear programming (MILP) formulations of the problem,
Bront et al. (2009) propose a greedy heuristic. Méndez-
Diaz et al. (2014) design and test a branch-and-cut algo-
rithm that generates good but often not provably opti-
mal solutions for both capacitated and uncapacitated
versions. Rusmevichientong et al. (2014) identify spe-
cial cases of the (uncapacitated) problem that are poly-
nomially solvable and characterize the performance
of heuristics for other cases. Feldman and Topaloglu
(2015) develop strong upper bounds on the optimal
objective value.

By contrast, we show that by formulating this prob-
lem in a nontraditional manner, as a conic quadratic
mixed-integer program, large instances of the capac-
itated version of the problem can be solved directly
using commercial mathematical optimization soft-
ware, thus reducing the need for customized heuris-
tics or optimization software to solve the problem.
The advantages of this approach are clear: commer-
cial software is continually developed to take advan-
tage of advances in optimization methods and hard-
ware, it is supported by large software firms, and it
allows the inclusion of new constraints without the
need for reprogramming. We also show how to further
strengthen the formulation with McCormick estima-
tors derived through conditional bounds exploiting the
capacity constraints.

2. Background

In this section we present a short overview of the
mixed multinomial logic model and conic integer
optimization.

2.1. The Consumer Choice Model

First, recall the traditional MNL model. Let N be the
set of products in the category indexed by j. Let S be
the assortment—the subset of products offered by the
retailer. Let p; be the unit price for product j. The MNL
model is based on the utility that a customer gets from
consuming a product. For any product, this utility has

two components U]- =uj+e, where u jisa determin-
istic component and €; is a random component that is
assumed to be a Gumbel random variable with mean
zero and variance u?n?/6. Given these, the probabil-
ity that a customer purchases product j from a given
assortment S is p;(S) = v;/(vy + Zyes Vi), where v, =
el =P/t and v, corresponds to the no-purchase option.

As discussed above, we utilize the MMNL model.
This model extends the MNL model by introducing
a set M of customer classes. Let y; be the probability
that the demand originates from customer class i. The
demand in each customer class is governed by a sepa-
rate MNL model. Let v;; be the customer preference for
product j in class 7, and let v;, be the no-purchase pref-
erence in class i. Let the unit revenue from product j in
class i be p;;. We can then write the expected revenue

for a given assortment S as

Z ’, 2jes PijVij ]

o Vot Zjesvij

)

Because of space or administrative restrictions, there
can be various constraints on the depth of the assort-
ment that can be carried. Let K be the set of resources
that may constrain the assortment. Let f;; denote the
amount of resource k used by product j, and let x;
denote the amount of resource k available. The capac-
itated assortment optimization problem is therefore to
select the assortment S in this setting.

2.2. Conic Integer Optimization

Conic optimization refers to optimization of a lin-
ear function over conic inequalities (Ben-Tal and
Nemirovski 2001). A conic quadratic constraint on
x € R" is a constraint of the form

[[Ax —b|| < c’x —d.

Here, ||-|| is the L, norm, A is an m X n-matrix, b is
an m-column vector, ¢ is an n-column vector, and d
is a scalar. We refer the reader to Lobo et al. (1998)
and Alizadeh and Goldfarb (2003) for reviews of conic
quadratic optimization and its applications.

Although there is an extensive body of litera-
ture on convex conic quadratic optimization, develop-
ment of conic optimization with integer variables is
quite recent (Cezik and Iyengar 2005; Atamtiirk and
Narayanan 2007, 2011; Atamtiirk et al. 2013). With the
growing availability of commercial solvers for these
problems (e.g., both CPLEX and Gurobi now include
solvers for these models), conic quadratic integer mod-
els have recently been employed to address problems
in portfolio optimization (Vielma et al. 2008), value-
at-risk minimization (Atamtiirk and Narayanan 2008),
machine scheduling (Aktiirk et al. 2010), supply chain
network design (Atamtiirk et al. 2012), and airline
rescheduling with speed control(Aktiirk et al. 2014).
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However, to the best of our knowledge, this approach
has not been previously used to solve assortment opti-
mization problems.

Conic quadratic inequalities are often used to repre-
sent a rotated cone/hyperbolic inequality,

x% < XpX3, (2)

on x,,x,,x3 > 0. It is easily verified that hyperbolic in-
equality (2) can then be equivalently written as a conic
quadratic inequality:

1221, x5, = x3) || < x5 + x5 3)

In our conic reformulation of the assortment optimiza-
tion problem, we make use of the rotated cone inequal-
ities (2) in our models.

3. The Capacitated Assortment

Optimization Problem
In this section, we first recall the traditional MILP
formulation of the capacitated assortment optimiza-
tion problem, and then we present an alternative conic
quadratic mixed 0-1 formulation of the problem and
strengthen the formulation using McCormick estima-
tors based on conditional bounds.

3.1. The Traditional MILP Formulation

Given the MMNL demand model, define x; to be 1
if product j is offered in the assortment and define it
to be 0 otherwise. We can then state the capacitated
assortment optimization problem (CAOP) as a nonlin-
ear binary optimization:

2jeN PijVijX;
(CAOP) max ; — 17 4)
% v Vio + 2jen VijX;
st D Pux; <y, VkeK, 5)
jEN
x;€{0,1}, VjeN. (6)

Traditionally, (CAOP) is formulated as a mixed-
integer linear program (see, e.g., Bront et al. 2009,
Méndez-Diaz et al. 2014). First, letting vy, = 1/(v;, +
2jen VijX;), the problem can be posed as a bilinear
mixed 0-1 optimization problem:

(CAOP’) max Z Z%sz‘/z‘j%x,‘ ?)
ieM jeN
st. D Pix;<x, VkeK, (8)
jEN
vy + D viyix;=1, YieM, (9)
jeN
y; 20, VieM, (10)
x;€{0,1}, VjeN. (11)

The bilinear terms y;x; in the formulation can be lin-
earized using the standard “big-M” approach: for any

bilinear term yx, where y is continuous and nonnega-
tive and x is binary, define a new continuous variable
z = yx and add the following inequalities to the formu-
lation: y —z < U(1-x),0<z <y and z < Ux, where U
is a sufficiently large upper bound on y. Employing this
technique, and selecting 1/v;, for U, leads to the fol-
lowing mixed-integer linear formulation:

(MILP) - max >} > yipiViZi (12
ieM jeN
s.t. Zﬁijj <Ky, VkeKk, (13)
jeN
voli+ D2 vz =1, VieM, (14)
jeEN

violy; —zij) <1-x;,
VieM,VjeN, (15)

0<zij<y,-, VieMVjeN, (16)
Vizij<x;, VYi€EM,VjeEN, 17)
x;€{0,1}, VjeN, (18)
z;;20, ieMjeN, (19)
y; 20, i€M. (20)

As shown in Bront et al. (2009), Méndez-Diaz et al.
(2014), and Feldman and Topaloglu (2015), formula-
tion (MILP) does not scale well. In particular, when the
capacity constraints (13) are tight, solution times are
prohibitive even for moderately sized instances.

3.2. The Conic Formulation

To give a conic reformulation, we first restate the objec-
tive as minimization. Letting p; = max;y p;;, the objec-
tive (4) of (CAOP) can be written as

maXZ%‘P_i_Z%‘

ieM ieM

VioPit ZjenVij(Pi— Pij)X;
Viot Zjen VijX;

2D

As the first component in (21) is constant, we can
pose the problem as minimizing the second compo-
nent in (21). Also, since the objective coefficients are
nonnegative, it suffices to use only lower bounds on y
and z variables, leading to

(CAOP”) min >\ ¥:Vip,¥:
ieM
+ 2 2Pz (22)

ieM jeN
s.t. Z Bixj <y keK, (23)
JEN
Zij 2 YiX;, ieM,jeN, (24)
1
22—, 1€EM, (25)
Y Vio + 2jen VijX;
x;€{0,1}, jeN (26)
Zjj >0, ieM,jeN, (27)
y; =20, ieM. (28)
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Observe that constraints (24) and (25) are satisfied at
equality at an optimal solution. Now, defining

w; =V +Zvi]-xj (29)
jeEN

and observing that w > 0, one can state constraints (25)
in rotated cone form:

yw; = 1. (30)

As constraint (30) is satisfied at equality at an optimal
solution, w > 0, and x;= x? for a binary vector x, con-
straint (24) can also be stated in rotated cone form:

20, % (31

ij
Although redundant for the mixed-integer formula-
tion, we also use the constraints

Voyi+ D vz 21, VieM (32)

jeN

to strengthen the continuous relaxation of the formu-
lation.

The final conic quadratic mixed 0-1 program is,
therefore,

(CONIC) min Z YiVioPiVi
ieM
+ > > yvipi—pizy (33)

ieM jeN
st. > Pixj <k, keK (34)
jEN
w; =V, + Z viiXx;, 1€M, (35)
jEN
zjw;>x;, i€MjeN, (36)
yw; =21, ieM, (37)
Voyi+ D vz 21, VieM, (38)
jeN
x;€{0,1}, jE€N, (39)
z; 20, i€M,jEN, (40)
y; =20, ieM. (41)

In contrast to the traditional formulation (MILP), the
conic formulation does not require big-M constants
for linearization, which lead to weak linear program-
ming relaxations especially for the tightly capacitated
cases. On the other hand, for the conic formulation
when capacity is low, small values of w; tighten the
constraints z;;w; > sz,, leading to stronger bounds. The
next proposition provides a theoretical justification for
adding inequalities (32) to the formulation. Prelimi-
nary computations also showed a significant strength-
ening of the conic formulation with the addition of
inequalities (32).

Proposition 1. Inequality (32) is facet-defining for the set
cl(conv{(x,y,z) € {0, 1}V x RM x RM*N: (24)-(28)}).

Proof. Let S={(x,y,z)€{0,1}N xRMxRM*N: (24)—(28)}.
First, observe that even though constraints (25) are
nonlinear, S is a union of polyhedra (one polyhedron
for each assignment of the binary variables); hence,
clconv(S) is a polyhedron. Let ¢, be the kth unit vector,
J=emer/ Vo, and J =X (i) €/ Vio- Consider the fol-
lowing |N|+|M|+|M]||N| points in S satisfying v;y, +
ZjenVijzij=1: 0,7,0); (0,7+€e,,0), kelM\{i}, €>0;
(0,7,€ei;), ke M\{i}, jEN, O<e<l; (e;, 7' +e;/(vig+vy)),
ei/(vip+v;;)), JEN; and (e;, 5"+ (1—-€)e;/(vip+v;;), (1+
(vioe/vip)ei;/(vip+vy;)), JEN, 0<e<1, where ¢; is the
ijth unit vector. It is easily checked that these points are
affinely independent.

3.3. McCormick Estimators
The capacitated assortment formulations can be fur-
ther strengthened using McCormick estimators for the
bilinear terms. To that end, we give simple upper and
lower bounds on

yi= ! ieM (42)

b Vit Zjen Vijxj, .

The lower bounds make use of the capacity con-
straints (13). For i € M, define the auxiliary problem

(BND) f; =max Z ViiX; (43)
jEN

st. > Pixj <y, keK, (44)
jeEN

xje{O,l}, jEN. (45)

Proposition 2. The following bounds on wvariables y;,
i €M, are valid:

1
yz N ViO +fi yll (46)
1
yi=—2y (47)

Proposition 2 provides global bounds on variables y.
Next, we give conditional bounds. Let fi‘x]: ¢ be the
objective function value of (BND) when an additional
constraint x; = &, j € N is imposed.

Proposition 3. For j € N, the following conditional bounds
on variables y;, i € M, are valid:

1

=0 = v =—F <V, 48
XJ ylle:O Vi0+fi|x]-:0 Yi ( )
y%\ =1 = L < Yis

HE= Vi0+fi|x/:1
x=1= 1 (49)
" = > ;.
]/,\x/.:1 Vi + 3 Yi

Because (BND) is a binary multiple constraint knap-
sack problem, it may be prohibitive to find the opti-
mal f; and f, ¢ except in special cases. However, note
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that to get a lower bound on y;, an upper bound on
the optimal value of (BND) is sufficient, and this can
be found by solving an easier relaxation of the problem
(e.g., the linear optimization relaxation).

For the special case of a single cardinality constraint,
one can obtain exact closed form lower bounds on y.

Proposition 4. For a single cardinality constraint of the
form 3y x; < K, the following global and conditional lower
bounds on y;,1 € M, are valid:

! 1

P —, (50)
4 Vio + 2ko1 Vilk
1
I
N S— 51
Jilx;=0 Vio + 21 Vigg 1)
1

y5|Xj:1 = ’ (52)

Vig+ vy + i Vi
where vy, is defined as the kth largest of preferences v,
m €N, and vy is defined as the kth largest of prefer-
ences v, m € N\{j}.

Similar exact closed-form bounds can be developed
when there are multiple nonoverlapping cardinality
constraints (i.e., the assortment can contain at most
a fixed number of products from each product sub-
group).

Using the global and conditional bounds on y;, i € M
above, one can write the following valid McCormick
inequalities (McCormick 1976) for each bilinear term

Zij = yix]':

MC)  z; < yflu,-:lxjr ieM,jeN, (53)
Zj 2 Yj %), (€M, JEN, (54)
Zij S Yi —yf‘szo(l—x/-), ieM,jeN, (55)
zij2y;—y/(1-x;), i€M,jeN. (56)

Note that the inequality (53) is also used in Méndez-
Diaz et al. (2014) and that (56) is the same as (15) in
model (MILP).

On the basis of the discussion thus far, four differ-
ent formulations can be used to solve the capacitated
assortment optimization problem under MMNL. The
first one is (MILP), which can be strengthened by replac-
ing constraints (15)—(17) with the stronger McCormick
estimators (MC). We denote this second, strengthened
formulation as (MILP + MC). The third formulation is
(CONIC), which can also be strengthened by adding
McCormick inequalities (MC). This fourth formulation
is denoted as (CONIC + MC). Note that one can con-
vert (MILP) and (MILP+MC) to minimization problems
by using the equivalent objective (33). This leads to
the observation that (CONIC + MC) is a strengthening
of (MILP + MC) with constraints (35)—(37). Therefore,
(CONIC + MC) is stronger than (MILP + MC), which

is itself stronger than (MILP). The numerical experi-
ments reported in the next section show the significance
and the effect of differences in the strength of these
formulations.

4. Numerical Study

To test the effectiveness of the conic optimization ap-
proach and the McCormick inequalities, we perform
a numerical study on four sets of problems. The opti-
mization problems are solved with Gurobi 6.5.1 solver
on a computer with an Intel Core i7-4510U 2.00 GHz
(2.60 GHz Turbo) processor and 8 GB RAM operat-
ing on 64-bit Windows 10. We use the default set-
tings of Gurobi except that we force the solver to use
the linear outer-approximation approach when solving
continuous relaxations of conic programs. The outer
approximation allows warm starts with the dual sim-
plex method and speeds up solving node relaxations.
The time limit is set to 600 seconds.

The first set of problems is created by randomly gen-
erating instances with |N| =200 products and |M| =
20 customer classes. The product prices are the same
across the customer classes (p; = p;;) and are drawn
from a uniform U[1,3] distribution. The preferences
v;; are drawn from a U[0, 1] distribution. The parame-
ter ; =1/20 for all i € M. The no-purchase parameter
Vi =V, is either 5 or 10. The capacity constraint is in the
form of a cardinality constraint. The maximum cardi-
nality x of the assortment is one of five possible values:
{10,20,50,100,200}. For each of these 5x2 =10 capac-
ity and no-purchase probability combinations, we gen-
erate five instances, resulting in a total of 50 instances.
All data files are available at http://ieor.berkeley.edu/
~atamturk/data/assortment.optimization.

We test the effectiveness of four formulations: (MILP),
(MILP +MC), (CONIC), and (CONIC +MC). In addi-
tion, we compare these with the formulation of
Méndez-Diaz et al. (2014), which strengthen (MILP) by
replacing (17) with (53) and by introducing five classes
of valid inequalities. Three of these are polynomial in
the size of the model, while the rest are exponential.
We run their formulation using the three classes of
polynomial valid inequalities.

Table 1 presents averages of root gap, end gap, solu-
tion time, and the number of search nodes over five
instances for each no-purchase preference v,, capacity
level x, and formulation. The number of products in
the assortment (X ey X, averaged over five instances)
and the number of instances where the capacity is
binding in the optimal solution are given by “assort”
and “bind,” respectively. The root gap is computed
as rgap = 100 X (zopt — zroot)|/|zopt|, where zroot is
the objective value of the continuous relaxation (before
presolve and root cuts) and zopt is the value of the
optimal integer solution. The end gap is computed as
egap = 100 X (zopt — zbb)|/|zopt|, where zbb is the best
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Table 1. Results for Problems with 200 Products and 20 Classes
(MILP) MILP + MC Méndez-Diaz et al. (2014) CONIC CONIC +MC
Assort  rgap time/# rgap time/# rgap time/# rgap time/# rgap time/#
Vo S bind egap nodes egap nodes egap nodes egap nodes egap nodes
10 10.0 52.56 — 12.33 — 51.46 — 3.20 32.82/5 0.27 8.72/5
5 45.10 3,076 9.85 6,374 50.16 0 0.00 1,449 0.00 14
20 20.0 33.38 — 10.25 — 33.37 — 5.88 122.74/4 0.36 9.58/5
5 32.07 11,626 8.34 13,819 33.36 44.8 0.10 2,851 0.00 23
5 50 50.0 2.81  481.16/2 094 27.73/3 2.79 — 17.14 — 0.02 2.38/5
5 1.72 87,695 0.09 27,779 2.78 102.6 2.94 1,566 0.00 0
100 65.4 0.08 4.26/5 0.03 1.22/5 0.07 366.16/5 23.66 — 0.01 1.82/5
0 0.00 790 0.00 0 0.00 124 7.23 768 0.00 0
200 65.4 0.08 2.29/5 0.04 1.06/5 0.07 366.57/5 23.66 — 0.01 1.92/5
0 0.00 343 0.00 0 0.00 117.6 13.12 747 0.00 0
10 10.0 24.74 — 7.20 — 20.69 — 193 2250/5 0.10 6.47/5
5 10.26 47,690 5.44 6,555 19.70 0.2 0.00 1,054 0.00 4
20 20.0 38.66 — 8.47 — 38.65 — 3.61 86.77/5 0.16 8.62/5
5 31.57 1,613 7.20 9,498 38.61 42 0.00 1,374 0.00 7
10 50 50.0 10.50 — 2.92 — 10.50 — 10.31 — 0.08 7.37/5
5 9.89 25,276 2.02 31,281 10.49 48.6 1.30 1,454 0.00 72
100 91.8 0.04 3.46/5 0.01 1.20/5 0.03 306.05/5 18.40 — 0.00 1.77/5
1 0.00 406 0.00 0 0.00 255.8 4.62 766 0.00 0
200 92.0 0.04 2.89/5 0.01 0.93/5 0.03 282.31/5 18.41 — 0.00 1.67/5
0 0.00 462 0.00 0 0.00 824 5.86 768 0.00 0
Average 16.29  46.67/22 422  458/23  15.76 330.27/20 12.62  63.23/19 0.10 5.03/50
13.06 17,898 3.30 9,531 15.51 78.02 3.52 1,280 0.00 12

lower bound at termination. If an instance is solved to
optimality, zbb equals zopt (within the default optimal-
ity gap 0.01). In the tables, “time” refers to the average
solution time (in seconds) for the instances that are
solved within the time limit, “#” refers to the number
of instances solved within the time limit, and “nodes”
refers to the number of nodes explored. The last row
reports the averages for rgap, egap, time, and nodes
and the total number of instances solved.

As observed in previous studies, the traditional
(MILP) formulation performs poorly, except when the
capacity constraint is loose. The time limit is reached
for 28 instances with tight capacity constraints. The
poor performance appears to be due to the weak relax-
ation, leading to excessive branching. The remaining
gaps at termination are quite large for the unsolved
instances. With the addition of McCormick inequal-
ities (MC), root and end gaps improve substantially
in all cases. The average root gap drops from 16.29%
to 4.22%. However, this is still not enough to solve
the capacitated cases. McCormick inequalities help to
solve only one additional instance within the time
limit.

For our data set, the polynomial inequalities of
Méndez-Diaz et al. (2014) lead to a small reduction in
root gaps compared with (MILP). Cutting plane algo-
rithms implementing separation for the exponential
classes of inequalities of Méndez-Diaz et al. (2014) may

lead to a further reduction. Although we use a differ-
ent data set, consistent with their numerical study, the
Méndez-Diaz formulation is more effective for high-
capacity instances. Model (MILP + MC) is considerably
stronger. The strength of (MILP + MC) over Méndez-
Diaz is due to conditional McCormick inequalities (54)
and (55) based on strong lower bounds on y.

In contrast to the linear formulations, most of the
capacitated instances are solved easily with the conic
formulation. This is due to small root gaps, leading to
only limited enumeration. However, the performance
of the conic formulation degrades for high-capacity
instances. Observe that MILP and CONIC formula-
tions are not directly comparable. The CONIC formu-
lation may be weaker than the MILP formulation for
high-capacity instances, whereas the MILP formula-
tion tends to be weaker than the CONIC formulation
for low-capacity instances.

The results are dramatically better when the
McCormick inequalities are added to the conic formu-
lation. The average root gap drops to a mere 0.10% and
all instances are solved to optimality, on average, in five
seconds. On average, only 12 nodes are needed in the
search tree. For some instances, the CONIC + MC is
more than 100 times faster than the other approaches.
This is due to the joint effect of the tightening of the
formulation using conic constraints and McCormick
inequalities as observed with very small root gaps for
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Table 2. Results for Problems with 500 Products and 50 Classes

MILP MILP + MC CONIC CONIC +MC
assort rgap time/# rgap time/# rgap time/# rgap time/#
Vo K bind egap nodes egap nodes egap nodes egap nodes
20 20.0 58.05 — 15.32 — 2.28 — 0.18 282.58/4
5 57.54 188 14.73 114 0.37 1,239 0.02 260
50 50.0 32.14 — 11.14 — 5.56 — 0.11 188.05/5
5 32.07 1,235 11.05 546 2.61 1,261 0.00 115
10 100 100.0 6.47 — 2.37 — 14.47 — 0.03 44.06/5
5 6.43 2,022 2.18 3,120 29.46 1,371 0.00 6
200 149.4 0.03 30.49/5 0.01 8.41/5 24.11 — 0.00 16.60/5
5 0.00 650 0.00 0 57.84 417 0.00 0
500 149.4 0.03 38.30/5 0.02 13.04/5 24.11 — 0.00 18.30/5
5 0.00 756 0.00 10 55.57 64 0.00 0
20 20.0 24.48 — 9.57 — 1.35 — 0.04 165.95/5
5 20.95 1,109 9.41 127 0.10 1,539 0.00 1
50 50.0 38.44 — 10.42 — 3.39 — 0.14 487.23/2
5 38.44 840 10.37 322 0.75 1,330 0.03 421
20 100 100.0 15.32 — 4.78 — 8.54 — 0.06 232.29/4
5 15.30 1,557 4.72 923 18.29 1,430 0.01 276
200 197.8 0.07 62.71/3 0.02 40.56/5 18.90 — 0.00 16.77/5
3 0.06 7,039 0.00 377 41.58 173 0.00 0
500 203.4 0.02 15.84/5 0.01 9.31/5 19.90 — 0.00 18.37/5
0 0.00 423 0.00 6 40.43 47 0.00 0
Average 17.51 33.96/18 5.36 17.83/20 12.26 — 0.06 119.43/45
17.08 1,582 5.25 555 24.70 887 0.01 108

all instances. As noted in Section 3.3, CONIC + MC
dominates MILP+MC.

In Table 2, we report the results of experiments for
instances with 500 products and 50 classes. The pref-
erence values and prices are generated as before. Each
class again has equal weight (y; = 1/50). The capacity
x is one of {20,50,100,200,500}, and the no-purchase
parameter v, is either 10 or 20. Since our experi-
ments do not indicate a significant improvement from
employing the approach in Méndez-Diaz et al. (2014)
over (MILP), we do not include it for the remaining
experiments. We also note that five instances cannot be
solved using any of the formulations within the time
limit. For those instances, the optimal integer solutions
are obtained separately using CONIC + MC formula-
tion by extending the time limit. Therefore, root gap
and end gap are still calculated with respect to the opti-
mal integer solutions.

For the large instances, with the traditional (MILP)
formulation the time limit is reached for 32 prob-
lem instances with tight capacity constraints. Although
the addition of McCormick inequalities substantially
reduces the integrality gaps , only two more instances
can be solved within the time limit. The root gaps
for the conic formulation are much smaller for the
capacitated cases; nevertheless, problems cannot be
solved to optimality within the time limit for these
large instances. Adding the McCormick inequalities to
the conic formulation reduces the average root gap to

0.06% and allows the problems to be solved quickly.
Many instances do not even require any branching, and
45 out of 50 instances are solved within the time limit.
For the three instances that cannot be solved within the
time limit, the end gap is only 0.04% on average.

A third set of problems is inspired by the work of
Désir and Goyal (2014), who suggest a procedure to
construct a family of hard benchmark instances to for-
mally show that the MMNL assortment optimization
problem is hard to approximate within any reason-
able factor. Each MMNL instance is generated based
on an undirected graph G = (V,E). Each vertex in V
corresponds to a product as well as a customer class
(V=M = N). We denote by C; ={j | (i,j) € E} the
set of products that the customers in class i consider
buying (this always includes product i and can be
thought of as class i’s “consideration set”). Given this
structure, we create a problem set with 100 products
(and 100 classes). Each product has 10 neighbors in G,
so |C;| =11. These neighbors are selected at random.
However, this procedure may lead to unrealistic pref-
erence and price parameters; therefore, we use the fol-
lowing modification. We denote product i as class i’s
favorite product and set v;; =1. Fori # j, (i, j) € E, v;; is
drawn from a U[0, 1] distribution. For (i, j) ¢ E, v;; =0.
The prices are randomly generated from a U[1, 3] dis-
tribution. The probability y;,i € M is drawn from a
U[0, 1] distribution. The capacity x is one of {10,20,
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Table 3. Results for Hard Problems

MILP MILP+MC CONIC CONIC+MC
assort rgap time/# rgap time/# rgap time/# rgap time/#
Vo K bind egap nodes egap nodes egap nodes egap nodes
10 10.0 32.60 17.29/5 6.50 9.30/5 8.28 209.88/1 1.75 4.22/5
5 0.00 2,662 0.00 1,154 1.04 15,614 0.00 84
20 20.0 27.93 — 10.99 — 8.19 349.10/2 1.71 14.20/5
1 5 4.07 20,345 2.04 28,002 0.98 8,680 0.00 370
50 50.0 3.15 89.21/5 0.80 3.47/5 12.96 — 0.12 1.22/5
5 0.00 14,380 0.00 1,032 2.02 9,343 0.00 0
100 64.2 1.25 3.94/5 0.21 0.49/5 13.57 — 0.06 0.50/5
0 0.00 6,099 0.00 23 1.20 10,950 0.00 0
10 10.0 12.90 7.93/5 2.92 4.24/5 3.79 124.74/5 0.61 2.61/5
5 0.00 1,565 0.00 484 0.00 7,514 0.00 38
20 20.0 21.82 298.66/1 6.26 267.82/2 4.55 129.21/4 0.69 8.62/5
2 5 0.75 42,703 0.65 32,411 0.04 6,233 0.00 188
50 50.0 6.24 482.84/3 1.30 47.18/4 8.06 — 0.20 6.64/5
5 0.26 23,303 0.08 20,401 0.81 10,649 0.00 251
100 79.8 0.39 1.01/5 0.01 0.18/5 8.01 183.98/4 0.00 0.39/5
0 0.00 445 0.00 0 0.07 6,950 0.00 0
Average 13.29 80.83/29 3.63 26.22/31 8.43 174.03/16 0.64 4.8/40
0.64 13,938 0.35 10,438 0.77 9,492 0.00 116

50,100}, the no-purchase parameter v;, is either 1 or 2,
and we again generate five instances for each param-
eter setting, leading to 40 instances. The results are
reported in Table 3.

These instances are indeed harder than the previous
sets. The root gaps for the (CONIC +MC) formulation

are higher than those of the previous sets. Never-
theless, the relative effectiveness of the formulations
is consistent with the earlier experiments. With the
(CONIC +MC) formulation, all instances are solved
within the time limit with an average run time under
five seconds.

Table 4. Results for Problems with Generalized Capacity Constraints

MILP MILP+MC CONIC CONIC+MC
space/assort  rgap time/# rgap time/# rgap time/# rgap time/#
Vo Ko, K bind egap nodes egap nodes egap nodes egap nodes
5,2 4.48/10.0 24.80 — 7.65 — 195 19498/4  0.10 5.97/5
5 10.07 53,576 551 6,836 0.11 9,351 0.00 4
104 9.42/20.0 40.82 — 9.32 — 3.78 — 0.25 12.12/5
5 38.73 3414 7.99 10,972 1.48 7,870 0.00 97
10 25,10 24.11/50.0 13.16 — 3.84 — 10.02 — 0.44 114.38/5
5 11.89 49,065 2.68 36,783 4.22 3,008 0.00 1,971
50, 20 45.19/87.6 0.12 4.81/5 0.04 1.47/5 17.00 — 0.01 2.56/5
0 0.00 1,291 0.00 27 5.50 767 0.00 26
100, 40 45.66/88.6 0.04 1.17/5 0.02 0.9/5 17.19 — 0.00 1.81/5
0 0.00 95 0.00 0 4.47 1,406 0.00 0
5,2 4.50/10.0 6.94 — 2.61 479.15/1 1.03 48.86/5 0.02 4.72/5
5 1.01 13,6,413 0.63 32,437 0.00 3,120 0.00 0
10,4 9.36/20.0 21.43 — 525 — 2.15 — 0.10 10.75/5
5 14.77 21,448 4.35 9,093 0.63 15,089 0.00 55
20 25,10 24.28/50.0 18.45 — 3.87 — 5.73 — 0.24 97.01/5
5 17.73 12,587 3.10 21,435 2.07 4,784 0.00 1,559
50, 20 49.20/98.6 1.54 206.11/2 0.32 21.57/4 11.66 — 0.06 10.58/5
2 0.79 13,5,867 0.04 9,802 3.37 868 0.00 122
100, 40 60.81/120.2 0.03 0.99/5 0.01 0.75/5 12.82 — 0.00 1.41/5
0 0.00 99 0.00 0 5.20 1,321 0.00 0
Average 12.73  26.30/17 329  29.05/20 833  113.80/9 012  26.13/50
9.50 41,385 243 12,738 2.71 4,758 0.00 383
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In the final set of experiments, we compare the for-
mulations on instances with generalized capacity con-
straints. The general capacity data set has 200 prod-
ucts and 20 classes. The preference values and prices
are generated as in Table 1. The model has six capac-
ity constraints. The first constraint is a general capac-
ity constraint X} ;s f; < ko, where f; is generated uni-
formly between 0 and 1. The other five constraints are
subset cardinality constraints [SNN,| < x, k=1,...,5
where N,, k=1,...,5 are disjoint sets with |N,| =40. To
obtain the lower bounds for the conditional McCormick
inequalities, we use the following approach: For both
conditions (x; =1 and x; =0), we first solve the linear
relaxation of (BND) with only the capacity constraint
using the greedy algorithm. We then solve the same
problem with only the nonoverlapping subset cardinal-
ity constraints also using the greedy algorithm. We use
the minimum of the two relaxation values to obtain the
lower bounds. Separately considering the constraints
allows us to utilize fast greedy algorithms instead of
using the simplex or an interior point algorithm for each
variable—value combination. The results are shown in
Table 4, where “space” reports the amount of capac-
ity used (X ey Po;x;, averaged over five instances) and
“bind” now reports the number of instances where all
subset cardinality constraints are tight in the optimal
solution.

The results in Table 4 are consistent with ear-
lier experiments. The CONIC+MC formulation leads
to tight relaxations under generalized capacity con-
straints as well. All 50 instances are solved in under 30
seconds on average, whereas with the second-best for-
mulation (MILP+MC), only 20 instances are solved. We
note that the time to compute the conditional bounds
is negligible as we utilize a greedy approach to solve
the relaxations.

5. Concluding Remarks

In this paper, we present a conic quadratic mixed-
integer formulation of the capacitated assortment
optimization problem under the mixed multinomial
logit model that is far more effective than traditional
MILP formulations of this problem with tight capac-
ity constraints. Additional performance improvements
are gained by using McCormick estimators derived
through conditional bounds exploiting the capacity
constraints. The numerical results suggest that with
the new formulations, commercially available software
may be practically used to solve even relatively large
assortment optimization problems to optimality. Given
the promise of conic mixed-integer formulations for
the MMNL problem, it is worthwhile to explore conic
optimization formulations of assortment optimization
problems based on other consumer choice models.
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