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Abstract. Shelters are safe facilities that protect a population from possible damaging
effects of a disaster. For that reason, shelter location and traffic assignment decisions
should be considered simultaneously for an efficient evacuation plan. In addition, as it is
very difficult to anticipate the exact place, time, and scale of a disaster, one needs to take
into account the uncertainty in evacuation demand, the disruption/degradation of evac-
uation road network structure, and the disruption in shelters. In this study, we propose
an exact algorithm based on Benders decomposition to solve a scenario-based two-stage
stochastic evacuation planningmodel that optimally locates shelters and that assigns evac-
uees to shelters and routes in an efficient and fair way to minimize the expected total
evacuation time. The second stage of the model is a second-order cone programming
problem, and we use duality results for second-order cone programming in a Benders
decomposition setting. We solve practical-size problems with up to 1,000 scenarios in
moderate CPU times. We investigate methods such as employing a multicut strategy,
deriving Pareto-optimal cuts, and using a preemptive priority multiobjective program to
enhance the proposed algorithm. We also use a cutting plane algorithm to solve the dual
subproblem since it contains a constraint for each possible path. Computational results
confirm the efficiency of our algorithms.

Funding: This research was supported by the Scientific and Technological Research Council of Turkey
[Grant 213M434].

Keywords: disaster management • evacuation traffic management • shelter location • constrained system optimal • two-stage stochastic
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1. Introduction
Whether it is natural or man-made, disasters such
as hurricanes, earthquakes, terrorist attacks, floods,
tsunamis, and nuclear accidents continue to have dev-
astating socioeconomic impacts and affect millions of
people, claiming the lives of thousands and causing
massive damage in infrastructure. Various traffic man-
agement problems arise during disasters; evacuation
of the disaster region being one of the most impor-
tant. In a report by the U.S. Federal Emergency Man-
agement Agency (FEMA), it is stated that 45–75 dis-
asters require an evacuation annually (Transportation
Research Board 2008). Hurricane Floyd in 1999 (CNN
2001) and Hurricanes Katrina and Rita in 2005 (Trans-
portation Research Board 2008) required millions of
people to evacuate, creating the largest traffic jams
in U.S. history. If the evacuation is not planned and
managed effectively, the surge in evacuation traffic
demand can cause congestion and may leave the evac-
uees in harm’s way, possibly resulting in further losses.
Successful evacuation management does not just save
lives, it contributes to the community’s regaining func-
tionality in a fast and smooth way (Perry 1979).

To protect an endangered population from the harm-
ing impact of a disaster, and to provide the evacuees
with food, medical care, and accommodation, shelters
are generally chosen among the existing facilities with
possible modifications to meet safety standards. The
evacuation planning needs to decide whether to con-
struct additional permanent shelters that meet FEMA
standards, and the locations of those shelters (Li, Jin,
and Zhang 2011). The Federal Emergency Manage-
ment Agency (1988, 2006, 2008) and the American Red
Cross (2002) provide the basis for the selection, design,
and construction of shelters against different types of
disasters. In the report by the American Red Cross
(2002), it is stated that existing unacceptable facilities
can be enhanced to be used as hurricane evacuation
shelters and minor modifications of municipal, com-
munity, or school buildings are suggested, such as
the addition of hurricane shutters, while buildings are
being planned. The Federal Emergency Management
Agency (2006) classifies shelters as standalone shelters
and internal shelters, and defines a standalone shelter
as a separate building that is designed and constructed
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to withstand the range of natural and man-made haz-
ards, in neighborhoods where existing homes lack
shelters.
The preparations to construct a new shelter or to

retrofit an existing facility for that purpose require time
and needs to be done before the disaster takes place.
For that reason, the decision of where to locate the
shelters is often made before a disaster occurs. Further-
more, the uncertainty about demand and the infras-
tructure is not resolved even after the disaster hits.
Hence, one has to decide on which locations to use as
shelters, thinking of different scenarios for the problem
parameters. Owing to the fact that in an evacuation,
the population at risk will try to reach one of those safe
shelters as quickly as possible, the decision of where
to locate the shelters should be considered simultane-
ously with evacuation trafficmanagement decisions, as
it affects the time to evacuate a disaster region dras-
tically (Bayram, Tansel, and Yaman 2015). Addressing
these two problems separately may lead to suboptimal
results.

Generally, evacuation planning is done with inex-
act or incomplete information, as it is not easy to pre-
dict when and where disasters will occur and with
how much impact. Because of the unpredictability of
human behavior during disasters, specifically whether
they will obey the evacuation order or not, it is not easy
to estimate the evacuation demand. In 2005, the evacu-
ation of the endangered population during Hurricane
Rita caused 100-mile-long congestion on the highway,
with further fatalities not caused by the hurricane itself
(O’Driscoll, Wolf, and Hampson 2005). The impact
of the disaster may cause road segments to be inun-
dated in a flood or blocked by debris in a hurricane
or after an earthquake, resulting in the loss of capac-
ity or total disruption in some parts of the evacuation
roadway infrastructure. Likewise, the predetermined
shelter sites can be affected.

Bayram and Yaman (2015) proposed a scenario-
based two-stage stochastic evacuation planning model
that optimally locates shelters and assigns evacuees to
the nearest shelters and the shortest paths to those shel-
ters within a given degree of tolerance to minimize the
expected total evacuation time. The nonlinear mixed-
integer programming model they propose considers
the uncertainty about future realizations of the evac-
uation demand, disruption in the road network and
degraded road capacities, and disruption of the shel-
ters. They show the significance of including uncer-
tainty in planning for evacuations.

Our aim is to propose an exact algorithm based
on Benders decomposition (BD) (Benders 1962) to
solve the formulation proposed by Bayram and Yaman
(2015) with a large number of scenarios. The second
stage of the model is a second-order cone program-
ming (SOCP) problem since the nonlinear objective

function is represented with SOCP. We propose an
algorithm that uses duality results for SOCP to derive
optimality cuts in a BD setting. We solve practical-
size problems with up to 1,000 scenarios in moderate
CPU times. We investigate methods such as adopting a
multicut strategy, deriving Pareto-optimal cuts, using
a reduced primal subproblem and preemptive priority
multiobjective program to enhance the proposed algo-
rithm. The dual subproblem contains a constraint for
each path, and hence its size gets larger as the toler-
ance level increases. To deal with this issue, we pro-
pose a cutting plane framework to solve the dual sub-
problem. Computational results confirm the efficiency
of our algorithm as it is considerably faster and can
solve instances with a larger number of scenarios com-
pared to solving the extended formulation (EF) with an
off-the-shelf solver. Furthermore, employing a cutting
plane framework enables us to solve instances with
larger networks and higher tolerance levels.

The rest of the paper is organized as follows. In
Section 2, we present a literature review on evacua-
tion planning focusing on stochastic location-allocation
problems and their solution methodologies. In Sec-
tion 3, we describe the problem and present a two-
stage stochastic mixed-integer nonlinear programming
formulation (MINLP). We propose a BD approach in
Section 4 and explore ways to improve it in Section 5.
In Section 6, we introduce a cutting plane framework
for solving the subproblem. We present the computa-
tional results of our study in Section 7 and conclude in
Section 8.

2. Literature Review
2.1. Traffic Assignment Models
Evacuation planning/management models are mostly
based on existing traffic assignment models. The com-
mon models are the stochastic user equilibrium (SUE),
user equilibrium (UE), system optimal (SO), and near-
est allocation (NA)models. The SUE approach assumes
that the evacuees choose the shortest travel time path
depending on their perception of the travel time. The
UEapproach is a special caseof the SUEapproachwhen
the variance of travel time perception by the evacuees is
zero. In the UE approach, it is assumed that the evac-
uees have perfect information about the travel times on
every possible route and that they can find the opti-
mal routes (Sheffi 1985). For both SUE and UE, the goal
of the evacuees is to minimize their individual travel
times, and for that reason, SUE andUEdo not necessar-
ilyminimize the total evacuation time in the evacuation
network. Furthermore, theperfect informationassump-
tion may not be valid in case of a disaster (Galindo and
Batta 2013), since the surge in traffic demand is unusual
and it is difficult for evacuees to guess the traffic conges-
tion on a route, let alone choose the minimum-latency



Bayram and Yaman: Shelter Location and Evacuation Route Assignment Under Uncertainty
418 Transportation Science, 2018, vol. 52, no. 2, pp. 416–436, ©2017 INFORMS

routes using their past experiences (Pel, Bliemer, and
Hoogendoorn 2012).
The main goal of the evacuation management au-

thority, on the other hand, is to evacuate everyone to
safety as soon as possible by minimizing the total evac-
uation time. This traffic assignment plan is called SO.
The SO solutionmay allocate some evacuees to shelters
much further away than they would normally choose
to go, and to routes much longer than they would
normally take, for the benefit of the other evacuees.
Bayram, Tansel, and Yaman (2015) show in their study
that such a traffic assignment may assign some evac-
uees to routes/shelters tens of times longer and farther
away than the shortest/nearest one theywould take. In
a disaster, it may not be reasonable to ask evacuees to
accept such distant shelters and such long routes, since
they will be trying to flee from the danger zone and
reach safety at a shelter as quickly as possible.

In a disaster, the information on path lengths or free-
flow travel times is more accessible to evacuees com-
pared to actual travel times. This idea is the motivation
for the NA model—i.e., in the NA model, each evac-
uee uses a shortest path based on length (geographical
distance) or free-flow travel time to reach the nearest
shelter. Although this approach may be a reasonable
one during an evacuation, such a traffic assignment
may lead to poor system performance.

The notion of constrained system optimal (CSO) traf-
fic assignment is first defined by Jahn et al. (2005)
for a route guidance system. This model takes into
consideration the individual needs through additional
constraints to make sure that drivers are assigned to
“acceptable” paths only. Bayram, Tansel, and Yaman
(2015) propose a CSO model that considers the shel-
ter location decisions simultaneously with efficient but
fair evacuation traffic assignment decisions by assign-
ing evacuees to the nearest shelters and to the shortest
paths to those shelters—shortest and nearest within a
given degree of tolerance—tominimize the total evacu-
ation time. They show that the location and the number
of shelters opened drastically affect the evacuation plan
and that the SO solution may be unacceptably unfair
to evacuees, whereas the NA solution may result in
substantial deterioration in system performance. Their
results show that the CSOmodel is a good compromise
between efficiency and fairness for a suitable tolerance
factor.

2.2. Evacuation Planning Models
There is a vast amount of literature that proposes new
ideas, models, or solution methodologies to support
evacuation planning/management decisions. How-
ever, despite the fact that evacuation planning is typ-
ically characterized by great uncertainties, the studies
in the literature mostly rely on deterministic models
that adopt a single hazard scenario such as worst

case or most probable scenario. Some of these models
do not consider the optimal selection of shelter sites
(Yamada 1996; Cova and Johnson 2003; Kalafatas and
Peeta 2009; Xie, Lin, and Waller 2010; Tüydeş 2005;
Chiu et al. 2007; Stepanov and Smith 2009; Ng, Park,
and Waller 2010; So and Daganzo 2010; Hamacher and
Tjandra 2002; Bretschneider 2013; Bish, Sherali, and
Hobeika 2013). The deterministic evacuation studies
that consider the optimal selection of shelter sites and
that also take into account the congestion effect are
either single level or bilevel models. Single-level mod-
els (Sherali, Carter, and Hobeika 1991) decide on the
shelter locations and the shelter/traffic assignments in
a SO manner. The bilevel models (Kongsomsaksakul,
Yang, and Chen 2005) bring together the two conflict-
ing SO andUE ideas. They specify the locations of shel-
ter sites in a SO manner at the upper level and assign
evacuees to shelters and routes in a UE manner at the
lower level.

The evacuation studies in the literature that take
into consideration uncertainty mostly focus on de-
mand uncertainty (Yao, Mandala, and Chung 2009;
Huibregtse, Hoogendoorn, and Bliemer 2010; Ng and
Waller 2010; Yazıcı and Özbay 2010; Kulshrestha et al.
2011) and/or capacity uncertainty (Shen et al. 2008; Ng
andWaller 2010; Yazıcı andÖzbay 2010).

Shen et al. (2008) develop two different scenario-
based, stochastic, bilevel models that minimize the
maximum UE travel time among all node shelter pairs
by locating shelters at the upper level and assigning
evacuees to shelters and routes in a UE manner at
the lower level. The first model they propose decides
on the locations of shelters and considers the dis-
tance between the demand nodes and the shelter sites
as well as the demand as uncertain parameters. To
solve this first model, they present a genetic algorithm–
based approach. The second model is proposed to
model real-time decision making during evacuations,
and a simulation-based approach that uses a succes-
sive shortest path algorithm is developed to solve it.
Yao, Mandala, and Chung (2009) consider the demand
uncertainty in their study. They propose a cell trans-
mission model (CTM)–based, robust linear program-
ming (LP) model that considers the susceptibility of
an area to a disaster at a particular time, minimiz-
ing the evacuees’ threat exposure during evacuation.
They solve their model using an off-the-shelf solver.
Huibregtse, Hoogendoorn, and Bliemer (2010) propose
a model that considers uncertainty in demand, the
behavior of people, and the hazard in a scenario-based
setting. They use an off-the-shelf solver to solve their
problem. Ng and Waller (2010) consider demand and
capacity uncertainty together in a scenario-based evac-
uation planningmodel. They provide a framework that
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determines the amount of demand inflation and sup-
ply deflation necessary to ensure a user-specified reli-
ability level. They solve their problem using an off-the-
shelf solver for a range of nine scenarios. Yazıcı and
Özbay (2010) take into consideration the uncertainty
in demand and capacity simultaneously. They propose
a CTM-based SO dynamic traffic assignment formula-
tion with probabilistic constraints. They use a P-level
efficient points method by Prékopa (1995) to write the
deterministic equivalent formulation of the problem
and solve it with an off-the-shelf solver for three scenar-
ios. Kulshrestha et al. (2011) develop a bilevel model
that minimizes the total cost to establish and oper-
ate shelters and evacuates everyone to safety in a UE
manner. They focus on demand uncertainty and con-
fine the uncertain demand to an uncertainty set. Their
model is formulated as a mathematical program with
complementarity constraints and is solved by a cut-
ting plane algorithm, for a total of three (nominal, low,
and high) demand scenarios. Li et al. (2012) propose
a scenario-based model that chooses optimal locations
of shelters, which are robust for a range of hurricane
events, by considering disruption in shelter sites. At
the upper level of their model, the central authority
selects the shelter sites for a particular scenario. The
objective of the upper-level problem is to minimize the
weighted sum of the expected unmet shelter demand
and the expected total network travel time. In the lower
level, evacuees choose their routes in a dynamic UE
manner. They develop heuristic algorithms based on
Lagrangian relaxation and present a case study for the
state of North Carolina for 33 hurricane scenarios.
To our knowledge, there is one study that simul-

taneously considers the uncertainty in disruption/de-
gradation in road network structure, evacuation de-
mand, and disruption in shelters. Bayram and Yaman
(2015) introduce a novel scenario-based model that
decides simultaneously on the locations of shelters and
the allocations of evacuees to shelters and routes under
uncertainty. Theirmodel incorporates evacuees’ prefer-
ences and fairness considerations by routing the evac-
uees onpaths that are notmuch longer than the shortest
paths to the nearest shelters. They solve practical-size
problems exactly by using a SOCP approach for a range
of up to 50 scenarios by using an off-the-shelf solver.

2.3. Our Contribution
We base our work on the stochastic CSO (SCSO) prob-
lem by Bayram and Yaman (2015). To be able to model
a stochastic evacuation planning problem more realis-
tically, one needs to consider a large number of scenar-
ios. As the number of scenarios grows, the EF devel-
oped by Bayram and Yaman (2015) may not be solved
within reasonable CPU times or may not be solved
at all. The evacuation models in the literature that

take into account congestion by employing a nonlin-
ear objective function are generally solved by heuris-
tic methodologies, especially for large evacuation road
networks. Against this backdrop, we propose an exact
algorithm based on Benders decomposition. We test
various ways of enhancing the algorithm and report
the results of our computational experiments. Further-
more, we propose a cutting plane algorithm to solve
the dual subproblem for instances with larger net-
works and tolerance levels. The results show that the
algorithm can solve real problems with up to 1,000 sce-
narios and is faster compared to solving the EF with an
off-the-shelf solver.

3. Problem Description and
Model Formulation

The SCSO problem proposed by Bayram and Yaman
(2015) decides on where to locate p shelters and how
to assign evacuees at origins in risk zones to their des-
tinations (shelters), including the decision of how to
assign evacuees to routes so as to minimize total evac-
uation time. The problem is defined on a directed road
network G � (N,A), where N is the set of nodes and A
is the set of arcs (road segments) in the network. We
define O ⊂ N as the set of origin (demand) nodes from
where the population at risk are to be evacuated and
F ⊂ N as the set of destination nodes (potential shelter
sites) where evacuees reach to safety, O and F being
disjoint.

Since we are proposing a strategic evacuation plan-
ning model, and since no-notice evacuations are ade-
quately represented by static models as evacuees are
loaded into an evacuation network at once (Özbay
et al. 2012), we use a static modeling approach. The
travel time spent on a given road segment is a func-
tion of traffic flow and increases monotonically, since
an increase in traffic volume decreases the travel speed
because of congestion and hence increases the travel
time along the road segment. To express the relation-
ship between travel time and the volume of traffic
on a road segment, we employ the Bureau of Public
Roads (BPR) function, which is convex, nondecreasing,
and differentiable, as in Sherali, Carter, and Hobeika
(1991); Kongsomsaksakul, Yang, and Chen (2005); Ng
andWaller (2010); and Li et al. (2012). The BPR function
is formulated as

t(x)� t0
(
1+ α

(
x
c

) β)
,

where t(x) is the travel time at which assigned vol-
ume x can travel on the road segment, c is the practical
capacity (maximum flow rate), and t0 is the free-flow
travel time at zero volume. The parameters α ≥ 0 and
β ≥ 0 are the parameters that reflect the road charac-
teristics and they are taken as 0.15 and 4, respectively,
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by the U.S. Department of Commerce BPR (Bureau of
Public Roads 1964).
In a two-stage stochastic setting, the first stage of

our evacuation problem is about where to locate the
shelters, before a disaster takes place. The binary vari-
able ys is 1 if a shelter is located/opened at node s ∈ F,
and 0 otherwise. Given the shelter location decisions
from the first stage and the realization of the evacu-
ation demand and the impact of the disaster on the
road network and the shelters, the second stage assigns
evacuees to shelters and to routes. We define Ω as the
set of scenarios in a disaster and associate a probability
p(ω) to each scenario ω ∈Ω. We define F(ω) ⊆ F as the
set of potential shelters that are usable (not disrupted)
in scenario ω ∈ Ω, ca(ω) as the (possibly degraded)
capacity of road segment a in scenario ω ∈ Ω with
0 ≤ ca(ω) ≤ ca , for all a ∈ A, and A(ω) ∈ A as the set
of usable arcs—i.e., ca(ω) > 0, a ∈ A(ω). A shelter s is
reachable from demand point r in scenario ω if this
shelter is usable and if there exists a route with usable
arcs from r to s in this scenario. We define F̄r(ω) as the
set of reachable shelters for demand point r ∈O in sce-
nario ω ∈Ω. For feasibility, we assume that there exists
at least one reachable shelter for every origin r ∈ O
in every scenario ω. The amount of demand at origin
r ∈ O, wr(ω), is the number of passenger vehicles that
will be evacuated in scenario ω ∈Ω.
Let Prs(ω) be the set of alternative paths from

demand point r to shelter s in scenario ω ∈Ω. The tol-
erance of an evacuee to the length of a path he or she
is offered to take is denoted by λ. Based on this tol-
erance level, the evacuation planning authority does
not assign an evacuee to a path whose length is more
than (1 + λ) times the length of a shortest path to the
closest open and usable shelter in a given scenario.
This implies that some evacuees may be assigned to an
open shelter within this degree of tolerance, although
it might not be the nearest one. We define Pλ

rs(ω)� {π ∈
Prs(ω): dπ ≤ (1+ λ) d∗rs(ω)} as the set of acceptable and
usable paths from origin r to destination s of tolerance
level λ in a given scenario ω ∈Ω. In this definition, dπ

is the length of path π, and d∗rs(ω) is the length of a
shortest path from r to s in scenario ω ∈ Ω. This set
is computed using an algorithm developed by Byers
and Waterman (1984). We use geographical distances
to compute the set Pλ

rs(ω). Free-flow travel times t0
a (ω)

could also be used.
For a given origin r and a scenario ω ∈ Ω, the set

of acceptable paths is defined based on the length of
a shortest path from node r to the closest open and
usable shelter. As we do not know a priori which shel-
ters will be opened, we do not know the actual set of
acceptable paths; yet we know that this set is a subset
of the union of Pλ

rs(ω) over all potential shelters s.
In our model, we also use the following decision

variables: vπ(ω) is the fraction of origin r’s demand

that uses path π ∈ Pλ
rs(ω) from origin r ∈ O to shelter

s ∈ F(ω) in scenario ω ∈Ω and xa(ω) is the amount of
traffic on arc a ∈ A(ω) in scenario ω ∈Ω.

The EF developed by Bayram and Yaman (2015) for
the SCSO problem is as follows:

min
∑
ω∈Ω

p(ω)
∑

a∈A(ω)
t0

a

(
1+α

(
xa(ω)
ca(ω)

) β)
xa(ω) (1)

s.t.
∑
s∈F

ys � p , (2)∑
s∈F(ω)

∑
π∈Pλrs (ω)

vπ(ω)�1, ∀ r ∈O , ω ∈Ω, (3)∑
s∈F̄r (ω)

ys ≥ 1, ∀ r ∈O , ω ∈Ω, (4)∑
π∈Pλrs (ω)

vπ(ω) ≤ ys , ∀ r ∈O , ω ∈Ω, s ∈ F(ω), (5)∑
s∈F(ω)

∑
π∈Pλrs (ω): dπ>(1+λ)d∗ri (ω)

vπ(ω)+ yi ≤ 1,

∀ r ∈O , ω ∈Ω, i ∈ F(ω), (6)

xa(ω)�
∑
r∈O

∑
s∈F(ω)

∑
π∈Pλrs (ω): a∈π

wr(ω)vπ(ω),

∀ω ∈Ω, a ∈A(ω), (7)

vπ(ω) ≥ 0, ∀ω ∈Ω, π ∈ ⋃
r∈O , s∈F(ω)

Pλ
rs(ω), (8)

ys ∈ {0,1} ∀ s ∈ F. (9)

Objective function (1) minimizes the expected total
evacuation time spent by the evacuees in the network.
There may be reasons such as the available budget and
personnel that restrict the number of shelters that can
be opened. Constraint (2) limits the number of shelters
open to this prespecified number p. This constraint can
be replaced with a budget constraint if the data on the
associated costs are available. Constraints (3) ensure
that evacuation demand from every origin r is assigned
to a shelter and a route that leads to that shelter, for
every scenario. We added constraints (4) to ensure that
there is at least one open and reachable shelter for
each demand point and each scenario. Constraints (5)
prevent assigning demand to a non-open shelter. Con-
straints (6) ensure that if the shelter at site i is open and
usable in scenario ω, then the demand at origin node r
cannot be routed on any path whose length is longer
than (1 + λ) d∗ri(ω). Finally, the set of constraints (7)
computes the traffic on every arc in each scenario, and
constraints (8) and (9) are variable restrictions.

Bayram and Yaman (2015) point out that the SCSO
problem is NP-hard even when α � 0 and G is bipar-
tite. They also note that SCSO generalizes the classical
p-median facility location problem. SCSO also gener-
alizes the SO and NA traffic assignment approaches.
When λ � 0, we have the NA model, and when λ �∞,
we obtain a model for the SO traffic assignment.
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Finally, SCSO generalizes the congested facility loca-
tion (Desrochers, Marcotte, and Stan 1995; Fischetti,
Ljubić, and Sinnl 2016) where the congestion costs at
facilities can be modeled by splitting facility nodes into
arcs with convex congestion costs.

4. Benders Decomposition Approach
To be able to model a stochastic evacuation problem
more realistically, one needs to consider a large num-
ber of scenarios. As the number of scenarios increases,
the EF developed by Bayram and Yaman (2015) may
not be solved within reasonable CPU times or may
not be solved at all. For that reason, we develop BD
(Benders 1962) and generalized BD (Geoffrion 1972)
based approaches to solve our problem considering
a large number of scenarios and explore methodolo-
gies to accelerate our BD algorithm. This algorithm
can also be considered as an “L”-shaped algorithm
(LSA) developed by Van Slyke and Wets (1969) to
solve stochastic programs with recourse. Our prob-
lem is well fit for the BD approach and LSA as
these algorithms have been successfully implemented
for location (Laporte, Louveaux, and van Hamme
1994; Contreras, Cordeau, and Laporte 2011; Noyan,
Balcik, and Atakan 2016; Martins de Sá et al. 2015;
Álvarez-Miranda, Fernández, and Ljubić 2015), rout-
ing (Cordeau, Soumis, and Desrosiers 2000; Cordeau
et al. 2001; Laporte, Louveaux, and van Hamme 2002;
Sherali and Zhu 2008; Üster and Kewcharoenwong
2011; Sherali, Bae, and Haouari 2013), location-routing
(Franca and Luna 1982), large-scale (Noonan and
Giglio 1977; Cordeau et al. 2001; Sherali and Zhu 2008;
Contreras, Cordeau, and Laporte 2011; Sherali, Bae,
and Haouari 2013; Martins de Sá et al. 2015), nonlin-
ear (Noonan and Giglio 1977), and stochastic optimiza-
tion (Franca and Luna 1982; Laporte, Louveaux, and
van Hamme 1994; 2002; Sherali and Zhu 2008; Noyan,
Balcik, and Atakan 2016) problems.
In the BD approach, the main idea is to project out

the second-stage variables. The resulting problem is
called the master problem (MP), and it contains fewer
variables but a large number of constraints. These con-
straints are known as Benders cuts (BC), and most of
them are not active at an optimal solution. Because of
this fact, the most natural strategy to solve the MP is
through relaxation (Geoffrion 1972). An iterative solu-
tion methodology is pursued, by solving the relaxed
MP at every iteration and passing the optimal solution
to subproblems that are basically duals of the original
problem with shelter location decisions temporarily
fixed to the values obtained from the MP and adding
the violated BCs to MP until all of them are satisfied at
a relaxed MP solution. Since the MP is a relaxation, its
optimal value provides a lower bound on the optimal
value, and an upper bound is given by the expectation
of the optimal values of the subproblems.

In our model, the shelter location decisions y are
taken in the presence of uncertainty. For that reason,
they are called first-stage (design) variables. In the sec-
ond stage, the uncertainty is revealed and recourse
decisions—i.e., shelter and route assignment deci-
sions v—are taken. However, while making decisions
aboutwhere to locate the shelters in the first stage, their
effect on the second-stage assignment decisions and
total evacuation time is taken into account. The future
effects of shelter location decisions are measured by
taking the expectation of the recourse function on pos-
sible scenarios. Ourmodel has a 0–1 first-stage problem
and a nonlinear second-stage problem.

The first-stage variables in our problem—i.e., shel-
ter location decisions—are the complicating variables,
and their number is less than that of the second-stage
variables. We project out the second-stage variables v
and x by fixing the first-stage variables y to a value
given by the MP. This results in the following primal
subproblems, one for each scenario ω ∈Ω.
Primal Subproblem (PSP( ȳ , ω))

min
∑

a∈A(ω)
t0

a

(
1+ α

(
xa(ω)
ca(ω)

) β)
xa(ω) (10)

s.t.
∑

s∈F(ω)

∑
π∈Pλrs (ω)

vπ(ω)� 1, ∀ r ∈ O , (11)∑
π∈Pλrs (ω)

vπ(ω) ≤ ȳs , ∀ r ∈ O , s ∈ F(ω), (12)∑
s∈F(ω)

∑
π∈Pλrs (ω): dπ>(1+λ) d∗ri (ω)

vπ(ω) ≤ 1− ȳi ,

∀ r ∈ O , i ∈ F(ω), (13)

xa(ω)�
∑
r∈O

∑
s∈F(ω)

∑
π∈Pλrs (ω): a∈π

wr(ω)vπ(ω),

∀ a ∈ A(ω), (14)

vπ(ω) ≥ 0, ∀π ∈ ⋃
r∈O , s∈F(ω)

Pλ
rs(ω), (15)

where ȳ ∈ V ⊆ Y is a fixed vector for the complicat-
ing variables, V ⊆ Y is the set of vectors y that renders
PSP( ȳ , ω) feasible, and Y is the set of all possible shel-
ter location decisions y. Given the locations of the shel-
ters, each subproblem is a nonlinear CSO shelter and
traffic assignment problem.

With the theoretical findings in the last two decades
and the applicability of efficient interior point algo-
rithms (Nesterov, Nemirovskii, and Ye 1994), SOCP
has become a state-of-the-art technique in mathemat-
ical programming. We refer the reader to Ben-Tal and
Nemirovski (2001) and Alizadeh and Goldfarb (2003)
for an introduction to SOCP. Ben-Tal and Nemirovski
(2001) state that as a well-structured convex optimiza-
tion problem, solving an SOCP is no more difficult
than solving an LP of a similar size. Many convex
optimization problems can be modeled as SOCPs (see,
e.g., Lobo et al. 1998; Ben-Tal and Nemirovski 2001).
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For successful results on solving second-order mixed-
integer models, see, e.g., Bonami and Lejeune (2009) on
the portfolio optimization problem; Aktürk, Atamtürk,
and Gürel (2009) on the machine-job assignment prob-
lem; Taylor andHover (2012) on the power distribution
system reconfiguration problem; Atamtürk, Berenguer,
and Shen (2012) on the stochastic joint location inven-
toryproblem;Hĳazi, Bonami, andOuorou (2013) on the
routing problem in telecommunication networks; See
and Sim (2010), Natarajan, Sim, and Uichanco (2010),
Ang, Lim, and Sim (2012), and Mak, Rong, and Shen
(2013) on robust optimization problems; and Pınar
(2013) on hedging of American contingent claims. Saito
and Murota (2007) consider MIP problems with ellip-
soidal uncertainty in problem data. They formulate the
robust counterpart as a SOCP problem with integer
constraints and propose an adaptation of the BD tech-
nique using the duality of linear programming over
symmetric cones to generate feasibility cuts.
Motivated by these studies, we reformulate the

PSP( ȳ , ω) as a SOCP model as in Bayram and Yaman
(2015). By employing SOCP, the nonlinearity is trans-
ferred to the constraint set in the form of second-
order quadratic constraints. This is done as follows. We
first define auxiliary variables µa(ω) for each a ∈ A(ω),
ω ∈Ω and move the nonlinearity from the objective
function to the constraints—i.e., the objective function
of the PSP( ȳ , ω) becomes∑

a∈A(ω)

(
t0

a xa(ω)+
t0

aα

ca(ω)β
µa(ω)

)
,

andwe add the constraints xa(ω)β+1≤µa(ω) for all a∈A,
ω∈Ω.
Consider an inequality of the form

r2 l ≤ s1s2 , . . . , s2l for r, s1 , s2 , . . . , s2l ≥ 0. (16)

An equivalent representation of the inequality (16) can
be achieved by using O(2l) variables and O(2l) inequal-
ities of the form

u2 ≤ v1v2 , u , v1 , v2 ≥ 0, (17)

which are referred to as hyperbolic inequalities since
they describe half a hyperboloid (Lobo et al. 1998;
Ben-Tal and Nemirovski 2001; Alizadeh and Goldfarb
2003; Günlük and Linderoth 2008). Then, each hyper-
bolic inequality can easily be transformed into a second-
order cone inequality

‖2u , v1 − v2‖ ≤ v1 + v2. (18)

We take β� 4 and represent xa(ω)5 ≤ µa(ω)with hyper-
bolic inequalities of the form

xa(ω)2 ≤ θa(ω)ha(ω),
θa(ω)2 ≤ ua(ω)xa(ω),
ua(ω)2 ≤ µa(ω)xa(ω),
ha(ω)� 1, θa(ω), ua(ω), xa(ω), µa(ω) ≥ 0,

where ha(ω), θa(ω), and ua(ω) are auxiliary variables
that are used to define hyperbolic inequalities.
These hyperbolic inequalities are represented by

their respective quadratic cone constraints

‖2xa(ω), θa(ω) − ha(ω)‖ ≤ θa(ω)+ ha(ω), (19)
‖2θa(ω), ua(ω) − xa(ω)‖ ≤ ua(ω)+ xa(ω), (20)
‖2ua(ω), µa(ω) − xa(ω)‖ ≤ µa(ω) + xa(ω), (21)
ha(ω)� 1, θa(ω), ua(ω), xa(ω), µa(ω) ≥ 0. (22)

Hence, the subproblem is still a nonlinear program-
ming problem, but it can be solved efficiently once
represented as SOCP. Note that SOCP problems are
solvedwith the barrier algorithm in CPLEX (IBM ILOG
CPLEX 2011).

The resulting conic primal subproblem with SOCP
constraints (CPSP) is given below.
Conic Primal Subproblem (CPSP( ȳ , ω))

min
∑

a∈A(ω)

(
t0

a xa(ω)+
t0

aα

ca(ω)β
µa(ω)

)
(23)

s.t. (11)–(14),
x
′
a(ω)2 + ρa(ω)2 ≤ δa(ω)2 , ∀ a ∈ A(ω), (24)
θ
′
a(ω)2 + σa(ω)2 ≤ φa(ω)2 , ∀ a ∈ A(ω), (25)

u
′
a(ω)2 + γa(ω)2 ≤ ηa(ω)2 , ∀ a ∈ A(ω), (26)
− x

′
a(ω)+ 2xa(ω)� 0, ∀ a ∈ A(ω), (27)

− ρa(ω)+ θa(ω)� 1, ∀ a ∈ A(ω), (28)
− δa(ω)+ θa(ω)�−1, ∀ a ∈ A(ω), (29)
− θ′a(ω)+ 2θa(ω)� 0, ∀ a ∈ A(ω), (30)
− σa(ω)+ ua(ω) − xa(ω)� 0, ∀ a ∈ A(ω), (31)
−φa(ω)+ ua(ω)+ xa(ω)� 0, ∀ a ∈ A(ω), (32)
− u

′
a(ω)+ 2ua(ω)� 0, ∀ a ∈ A(ω), (33)

− γa(ω) − xa(ω)+ µa(ω)� 0, ∀ a ∈ A(ω), (34)
− ηa(ω)+ µa(ω)+ xa(ω)� 0, ∀ a ∈ A(ω), (35)
vπ(ω) ≥ 0, ∀π ∈ ⋃

r∈O , s∈F(ω)
Pλ

rs(ω), (36)

xa(ω), x
′
a(ω), θa(ω), θ

′
a(ω), ua(ω), u

′
a(ω), δa(ω),

ηa(ω), φa(ω), µa(ω) ≥ 0, ∀ a ∈ A(ω). (37)

Objective function (23) is modified from the origi-
nal objective function as defined above, and constraints
(11)–(14) are the original constraints from PSP( ȳ , ω).
Constraints (24)–(26) define the three second-order
quadratic cones, and constraints (27)–(35) are gener-
ated by replacing each term (the two terms on the
left-hand side inside the norms and the term on the
right-hand side) of SOCP constraints (19)–(21) by a
single auxiliary variable to help derive the dual of
the CPSP( ȳ , ω). Constraints (36) and (37) are variable
restrictions.

We associate the dual variables zr(ω), Γrs(ω), Λri(ω),
ψa(ω), c1a(ω), c2a(ω), c3a(ω), c4a(ω), c5a(ω), c6a(ω),
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c7a(ω), c8a(ω), and c9a(ω) for constraints (11)–(14) and
(27)–(35), respectively, and the resulting dual subprob-
lem (DSP) is formulated as follows:
Dual Subproblem (DSP( ȳ , ω))

max
{∑

r∈O
zr(ω)+

∑
r∈O

∑
s∈F(ω)

Γrs(ω) ȳs

+
∑
r∈O

∑
i∈F(ω)

Λri(ω)(1− ȳi)+
∑

a∈A(ω)
c2a(ω)

−
∑

a∈A(ω)
c3a(ω)

}
(38)

s.t. zr(ω)+ Γrs(ω)+
∑

i∈F(ω): dπ(ω)>(1+λ) d∗ri (ω)
Λri(ω)

−
∑

a∈A(ω): a∈π
wr(ω)ψa(ω) ≤ 0,

∀ r ∈ O , s ∈ F(ω), π ∈ Pλ
rs(ω), (39)

ψa(ω)+ 2c1a(ω) − c5a(ω)+ c6a(ω) − c8a(ω)
+ c9a(ω) ≤ t0

a , ∀ a ∈ A(ω), (40)

c8a(ω)+ c9a(ω) ≤
t0

aα

ca(ω)β
, ∀ a ∈ A(ω), (41)

c2a(ω)+ c3a(ω)+ 2c4a(ω) ≤ 0, ∀ a ∈ A(ω), (42)
c5a(ω)+ c6a(ω)+ 2c7a(ω) ≤ 0, ∀ a ∈ A(ω), (43)
c1a(ω)2 + c2a(ω)2 ≤ c3a(ω)2 , ∀ a ∈ A(ω), (44)
c4a(ω)2 + c5a(ω)2 ≤ c6a(ω)2 , ∀ a ∈ A(ω), (45)
c7a(ω)2 + c8a(ω)2 ≤ c9a(ω)2 , ∀ a ∈ A(ω), (46)
Γrs(ω) ≤ 0, ∀ r ∈ O , s ∈ F(ω), (47)
Λri(ω) ≤ 0, ∀ r ∈ O , i ∈ F(ω), (48)
c3a(ω), c6a(ω), c9a(ω) ≥ 0, ∀ a ∈ A(ω). (49)

The dual subproblem is also a SOCP problem. Note
that when the CPSP( ȳ , ω) is feasible, we can also
find a point for which it is strictly feasible. Since it
is also bounded, by the strong duality theorem for
SOCP problems (Ben-Tal and Nemirovski 2001), the
DSP( ȳ , ω) is feasible and bounded, and strong duality
holds—i.e., CPSP( ȳ , ω) and DSP( ȳ , ω) attain the same
optimal values. Since Y is a finite discrete set and we
need one cut for each element of y, the generalized BD
procedure generates finitely many cuts and terminates
in a finite number of steps (Geoffrion 1972).
We ensure that the MP generates shelter loca-

tion decisions that render every subproblem feasible.
Hence, we only add optimality cuts as deemed neces-
sary. The MP is as follows:
Master Problem (MP)

min θ (50)
s.t.

∑
s∈F

ys � p , (51)∑
s∈F̄r (ω)

ys ≥ 1, ∀ r ∈ O , ω ∈Ω, (52)

θ ≥
∑
ω∈Ω

p(ω)
(∑

r∈O
z g

r (ω)+
∑
r∈O

∑
s∈F(ω)

Γ
g
rs(ω)ys

+
∑
r∈O

∑
i∈F(ω)

Λ
g
ri(ω)(1− yi)

+
∑

a∈A(ω)
c g

2a(ω) −
∑

a∈A(ω)
c g

3a(ω)
)
,

∀ g ∈ G, (53)
θ ≥ l , (54)
ys ∈ {0, 1}, ∀ s ∈ F, (55)

where G �
⋃

ȳ∈V G( ȳ) is the set of optimal multiplier
vectors and θ is the surrogate variable that represents
the subproblems in the MP objective function and is
a lower bound on the expected total evacuation time
(Van Slyke and Wets 1969; Birge and Louveaux 1997).

The objective function (50) of MP minimizes the
value of the surrogate variable. Constraint (51) limits
the number of shelter sites open to a prespecified num-
ber p. By adding induced constraints (52) in theMP, we
ensure that SPs are always feasible—i.e., there exists at
least an open and reachable shelter for each r ∈ O, in
every scenario ω ∈Ω. Constraint set (53) is the optimal-
ity cuts. Constraints (54) set a lower bound l on the aux-
iliary variable θ. We compute such a lower bound with
a very simple heuristic method. In a given scenario, we
find the shortest path to the closest shelter for each ori-
gin r and compute the total travel time of the vehicles
on this path using the free-flow travel time. The sum
of the total travel times on these paths gives us a lower
bound for that specific scenario.We take their expected
value to compute the lower bound l. Imposing such
a lower bound on θ in the formulation improves the
lower bound during initial iterations and the overall
solution time to some extent. Constraints (55) define
the types of variables.

5. Improving the Performance of the
BD Algorithm

Since the BDhas been introduced (Benders 1962),many
researchers have investigated methods to improve its
performance. Geoffrion and Graves (1974) propose a
branch-and-bound framework in which they solve the
MP in an ε-optimal fashion instead of solving it to opti-
mality at every iteration. McDaniel and Devine (1977)
present a methodology that solves the LP relaxation of
the integer subproblem for some initial number of iter-
ations to generate Benders cuts to reduce the compu-
tational burden. Magnanti and Wong (1981) propose
to accelerate the BD algorithm by generating strong
(Pareto-optimal) optimality cuts from the alternate
optima of the Benders subproblem. Papadakos (2008),
Fischetti, Salvagnin, and Zanette (2010), Saharidis and
Ierapetritou (2010), and Sherali and Lunday (2013)
propose alternative methodologies on deriving strong
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nondominated Benders cuts. Van Roy (1986) proposes
a cross-decomposition method that unifies Benders
decomposition and Lagrangian relaxation into a sin-
gle framework. Saharidis, Minoux, and Ierapetritou
(2010) demonstrate the effectiveness of a new strat-
egy, which they refer to as covering cut bundle gener-
ation. The method they propose is based on the idea
of generating multiple cuts that involve as many com-
plicating variables as possible or directly generating a
high-density Pareto cut by lifting the Pareto-optimal
cuts (Tang, Jiang, and Saharidis 2013). Saharidis, Boile,
and Theofanis (2011) and Tang, Jiang, and Saharidis
(2013) work on deriving valid inequalities to improve
the lower bounds obtained by the MP. Naoum-Sawaya
and Elhedhli (2013) present an interior-point branch-
and-cut algorithm based on BD and the analytic cen-
ter cutting plane method (ACCPM), and show that the
ACCPM-based Benders cuts are both Pareto-optimal
and valid for any node of the branch-and-bound tree.
Fischetti and Lodi (2003) and Rei et al. (2009) show how
local branching can be used to accelerate the classical
BD algorithm.

5.1. Multicut Strategy
In our initial experiments, we observed that generat-
ing a single cut aggregated from the optimal multi-
plier vectors of each subproblem results in slow con-
vergence of the BD algorithm. By adding disaggregate
cuts, more detailed information is given to the first
stage, which often results in fewer iterations compared
to the single-cut method (Birge and Louveaux 1997).
Hence, we employ a multicut strategy—i.e., we add an
optimality cut for every subproblem related to a sce-
nario in case a violation is identified. Therefore, for any
optimal solution of DSP( ȳ , ω), the Benders optimality
cuts are redefined as follows:

θ(ω) ≥ p(ω)
(∑

r∈O
z g

r (ω)+
∑
r∈O

∑
s∈F(ω)

Γ
g
rs(ω)ys

+
∑
r∈O

∑
i∈F(ω)

Λ
g
ri(ω)(1− yi)

+
∑

a∈A(ω)
c g

2a(ω) −
∑

a∈A(ω)
c g

3a(ω)
)
,

∀ω ∈Ω, g ∈ G.

The objective function of the MP is modified as∑
ω∈Ω θ(ω), where θ(ω) is a surrogate variable that re-

presents a subproblem related to a specific scenario
ω ∈Ω, andwe set a lower bound for each subproblem—
i.e., we modify constraint (54) as θ(ω) ≥ l(ω) for all
ω ∈Ω.

5.2. Implementing a Callback Routine
In the classical implementation of BD, the current re-
laxed MP is solved to optimality at every iteration of
the algorithm, and for that reason a search tree is gener-
ated from scratch every time the relaxed MP is solved.

Alternatively, the reformulation can be solved with a
branch-and-cut algorithm where the Benders cuts are
generated as cutting planes. In this approach, a single
integer problem is solved using a single search tree.
Each time an integer solution is found, it is either certi-
fied as feasible or a Benders cut violated by this candi-
date solution is added. This can be done using the lazy
constraint callback routines available in the commercial
solvers.

We refer to the version of the BD algorithm in which
we employ the multicut strategy and the callback rou-
tine as BD.

5.3. Defining Strong (Pareto-Optimal) Cuts
When the primal subproblem is a network optimiza-
tion problem such as the facility location on networks,
shortest route, and transhipment, it is common to get
degenerate solutions, which leads to multiple optimal
solutions for thedual subproblem (Magnanti andWong
1981). Because of this fact, cuts of different strength can
be generated. Although any of these are valid optimal-
ity cuts, defining strong (Pareto-optimal) ones at every
iteration of the algorithm may significantly decrease
the number of iterations and hence improve the over-
all solution time. A cut is said to be Pareto-optimal if it
is not dominated by any other cut. Let y0 be a point in
the relative interior of the convex hull of feasible loca-
tion vectors, i.e., y0 ∈ ri(CH(V)) and v(DSP( ȳ , ω)) be
the optimal value of DSP( ȳ , ω). To generate a Pareto-
optimal cut, we solve the following auxiliary problem:
Magnanti–Wong (MW) Problem

max
{∑

r∈O
zr(ω)+

∑
r∈O

∑
s∈F(ω)

Γrs(ω)y0
s

+
∑
r∈O

∑
i∈F(ω)

Λri(ω)(1− y0
i )

+
∑

a∈A(ω)
c2a(ω)−

∑
a∈A(ω)

c3a(ω)
}

(56)

s.t. (39)–(49),∑
r∈O

zr(ω)+
∑
r∈O

∑
s∈F(ω)

Γrs(ω) ȳs

+
∑
r∈O

∑
i∈F(ω)

Λri(ω)(1− ȳi)+
∑

a∈A(ω)
c2a(ω)

−
∑

a∈A(ω)
c3a(ω)� v(DSP( ȳ , ω)). (57)

Constraint (57) in the dual auxiliary problem MW
ensures that one chooses an optimal multiplier vector
fromamongalternative ones; and the objective function
of the MW problem chooses from among these multi-
plier vectors the one that generates the strongest cut to
be added to theMP.

Papadakos (2008) points out that the dependency of
the MW method on the Benders subproblem and on
an MP core point may sometimes decrease the perfor-
mance of the algorithm, and that it may not always be
easy to find a readily available core point. Another issue
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with the MW problem they discuss is the numerical
unboundedness caused by constraint (57), which they
show can be eliminated from the MW problem to gen-
erate a Pareto-optimal cut. That way, an enhanced MW
(EMW)method independent of the subproblem,which
enables adding a useful cut before solving the MP, is
proposed.
Papadakos (2008) prove that y0 does not have to be a

core point or even a point of V . Furthermore, since y0

only modifies the objective function and does not alter
the feasible region of the MW problem, choosing a y0

which is not in ri(CH(V)) still generates a valid optimal-
ity cut, although it may not be Pareto-optimal. In our
implementation, we start this algorithmwith y0 �1 and
update this point at every iteration k using the equation
y0, k

i �
1
2 y0, k−1

i +
1
2 ȳk

i .
Both algorithms with MW and EMW methodolo-

gies solve an auxiliary dual subproblem to generate
the Pareto-optimal cuts. The main drawback of these
two algorithms is that one has to solve the dual sub-
problem and the MW auxiliary problem at every itera-
tion for every scenario, which may result in long CPU
times. Our preliminary experiments show that for both
of these algorithms, the number of iterations and the
total number of optimality cuts generated generally
decrease compared to the BD. However, the CPU times
worsen as a result of solving the dual subproblem and
the MW auxiliary problem, at every iteration and for
every subproblem when there is a violation. We also
experimented on using a reduced primal subproblem
(RPSP) in combination with the MW or EMW proce-
dure that resulted in long CPU times as well. However,
since the EMWproblem is independent of the subprob-
lem, we can take advantage of adding initial cuts to the
MP before we begin solving it, and continue as in BD.
We denote this algorithm as BD_IC.
Sherali and Lunday (2013) propose a procedure

that generates maximal nondominated Benders cuts.
Instead of solving an auxiliary MW problem at each
iteration, which brings a computational burden and
increases theCPU times, the authors solve apreemptive
priority multiple objective program. The aim is to solve
the original dual subproblem optimally with the first
priority, andamongalternativeoptimal solutions to this
problem,maximize (56). Theypoint out that there exists
a ζ > 0 small enough such that this preemptive priority
multiple objective program can be equivalently repre-
sented as the followingweighted-sum problem:
Modified Sherali and Lunday Dual Subproblem

max (38)+ ζ
(∑

r∈O
zr(ω)+

∑
r∈O

∑
s∈F(ω)

Γrs(ω)y0
s

+
∑
r∈O

∑
i∈F(ω)

Λri(ω)(1− y0
i )

+
∑

a∈A(ω)
c2a(ω)−

∑
a∈A(ω)

c3a(ω)
)

(58)

s.t. (39)–(49),

where y0
s is apositive-weightvector—i.e., apositive core

point solution as we defined previously. We begin with
a core point and update it as we described in the EMW
method. We take ζ � 10−11. We denote this algorithm
as BD_SL.

Fischetti, Salvagnin, and Zanette (2010) propose a
new selection criterion for Benders cuts—in particular,
when both violations of feasibility and optimality cuts
exist. They represent the primal subproblem as a pure
feasibility problem. Preliminary computational studies
showed that thismethodology could not find a solution
in good CPU times for our problem.

We also investigated two alternative algorithms
based on the generalized BD (GBD)method introduced
by Geoffrion (1972) to solve the MINLP. While the
first one is the original GBD algorithm proposed by
Geoffrion (1972), the second algorithm uses an acceler-
ation strategy called “variable fixing” proposed by Fis-
chetti, Ljubić, and Sinnl (2016). We observed that BD
algorithms that employ SOCP duality perform much
better compared to the algorithms that use Lagrangian
duality in the GBD setting. We believe that this is
partly because solving the dual subproblem is faster
than solving the primal subproblem. The GBD algo-
rithms perform better than EF only in a small number
of instances. Their advantage over the EF is that they do
not encounter memory problems for the instances with
a large number of scenarios.

6. Solving theSubproblemswith a
CuttingPlaneApproach

To solve the DSP, we pregenerate all possible feasi-
ble paths using an algorithm by Byers and Waterman
(1984). As the network size and the tolerance level get
larger, we may encounter memory problems. Incorpo-
rating uncertaintywith a large number of scenarios cer-
tainly makes the problem more difficult. In this case,
it may be advantageous not to work with large models
that involve variables for all possible paths and to gen-
erate these variables when required within a column-
generation framework to solve the subproblem. As we
solve the dual of the subproblem, we employ a cutting
plane approach to generate the constraints related to
these paths when needed.

For a given scenario ω ∈Ω, we begin solving the DSP
with a subset of constraints (39). We use the constraints
associated with the set of shortest paths between every
demand node and functioning shelters in the scenario
ω. At every iteration,wedeterminewhether there exists
a path for which the respective constraint in the DSP is
violated. If such paths are detected, we add the respec-
tive constraints to the DSP and repeat the procedure
until there is no violated constraint.

For any given scenario ω ∈ Ω and demand point-
shelter pairs r ∈O , s ∈ F(ω), finding a path that violates
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constraint (39) requires solving the following separa-
tion problem:
Separation Problem

Φrs(ω) � max
{

zr(ω)+ Γrs(ω)+
∑

i∈F(ω)
Λri(ω) fi

−
∑

a∈A(ω)
wr(ω)ψa(ω)χa

}
(59)

s.t.
∑

a∈δ+(i)
χa −

∑
a∈δ−(i)

χa

�


1 i � r,
0 ∀ i ∈N\(r, s),
−1 i � s ,

(60)∑
a∈A(ω)

laχa ≤ (1+λ)d∗ri(ω)+M fi ,

∀ i ∈ F(ω), (61)∑
a∈A(ω)

laχa ≤ (1+λ)d∗r(ω), (62)

χa ∈ {0,1}, ∀ a ∈A(ω), (63)
fi ∈ {0,1}, ∀ i ∈ F(ω), (64)

where δ−(i) and δ+(i) denote the sets of incoming and
outgoing arcs of node i ∈ N , χa is 1 if arc a is used in
an optimal solution and 0 otherwise, M is a very big
number, fi is 1 if ∑a∈A(ω) laχa > (1+ λ)d∗ri(ω) and 0 oth-
erwise, and d∗r(ω) is the shortest path distance to the
closest open shelter from origin r in scenario ω ∈Ω.
If Φrs(ω)> 0, then the constraint related to the path
defined by an optimal vector χ is added to the DSP,
and if Φrs(ω) ≤ 0 for all r ∈O , s ∈ F(ω), then there is no
violated constraint to be added to the DSP in scenario
ω ∈Ω—i.e., theDSP( ȳ , ω) is solved to optimality.
Considering that the separation problem is solved

in every iteration and for every subproblem of the BD
algorithm, our early experiments showed that solving
the separation problemas it is is not effective in terms of
the CPU times. For that reason, we propose the follow-
ingmethodology to solve the separation problem.

For a given r ∈O, we compute d∗ri(ω) for all i ∈ F(ω) in
scenario ω ∈Ω and sort them in ascending order. Then,
for a given scenario ω ∈ Ω and demand point-shelter
pair r ∈ O , s ∈ F(ω), we create the scalar vectors f �

{0,0,0,0,0, . . . ,0}, f � {1,0,0,0,0, . . . ,0}, . . . , f � {1,1,
1,1,0, . . . ,0}, where the final 1 in the sequence is deter-
mined by the index of maxi{d∗ri(ω)} < d∗r(ω). The scalar
vector f replaces the binary variable f in the separation
problem. We modify constraint (61) as ∑

a∈A(ω) laχa ≤
(1 + λ)d∗

ri′
(ω), where i′ � argmin{d∗ri : fi �0}. Then, the

separation problem requires solving a number of sin-
gle resource-constrained shortest path problems (CSP)
over a graph with arc costs equal to wr(ω)ψa(ω) and
arc resources as the geographical distances. The CSP is
either solved for every vector f in sequence as defined

above or it terminates as soon as a path with the asso-
ciated constraint is detected.We employ the algorithms
bySantos,Coutinho-Rodrigues, andCurrent (2007) and
Yen (1971) to solve the CSP.

Before we start the BD algorithm, we find five short-
est paths for every scenario ω ∈Ω, r ∈O , s ∈ F(ω) using
the approach proposed by Yen (1971). In the separation
procedure, we first check if there exists a violated con-
straint for any of these paths. If such a path is detected,
then the corresponding constraint is added to the DSP.
If no such path is detected, then the separation problem
is solved exactly.

7. Computational Study
In our early experiments, we observed that the solu-
tion times of the classical BD algorithmwhere theMP is
solved to optimality as an integer problem at each iter-
ation is much worse than our implementation in which
we employ a lazy constraint callback. Likewise, the ver-
sions of our BD algorithm that employ the aggregate
cut rather than a multicut strategy and/or solving the
primal subproblem instead of the dual subproblem to
generate the optimality cuts are not promising in terms
of CPU times either. Hence, we do not report our com-
putational studies for these algorithms.

Among all of the versions on which we experi-
mented, there are four algorithms that solve our prob-
lem quickly. In all versions of our BD algorithm, we
solve the dual subproblem to generate the optimality
cuts implementing the lazy constraint callback feature
of ILOG CPLEX, and we adopt a multicut strategy. In
the first three algorithms, the subproblem is solved by
pregenerating all possible paths, and the last algorithm
uses the cutting plane framework to solve the dual sub-
problem. Below, we summarize these algorithms.

Algorithm BD. This is the basic version of our BD algo-
rithm, in which we employ the dual subproblem, lazy
constraint callback, and amulticut strategy.

Algorithm BD_IC. In this algorithm, we take the ad-
vantage of the EMW problem that can be solved inde-
pendently from the dual subproblem and solve the
EMW problem only once before we begin solving the
MP togenerate an initial set of valid cuts.We set the core
point y0 �1 to generate the initial set of cuts.

Algorithm BD_SL. In this version, the idea is to solve
the original dual subproblem optimally with the first
priority and, among alternative optimal solutions to
this problem, to maximize (56). To achieve this, we use
a weighted sum of (38) and (56) with a weight vector of
(1, ζ) as ourmodified objective function of the dual sub-
problem. We begin with a core point y0 � 1 and update
it at every iteration k using the equation, y0, k

i �
1
2 y0, k−1

i +
1
2 ȳk

i . We take ζ�10−11.
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Algorithm BD_CP. This is the basic version of our BD
algorithm, in which we employ the dual subproblem,
lazy constraint callback, and a multicut strategy, but
where we solve the dual subproblem by implementing
a cutting plane approach instead of pregenerating all
constraints for all possible paths.

7.1. Scenario Generation
We generated two of our instances—i.e., Istanbul Ana-
tolian and Istanbul European—using real data from a
disaster prevention andmitigation study conducted by
the Istanbul Metropolitan Municipality (IMM) and the
Japan International Cooperation Agency (JICA) (IMM-
JICA 2002) for earthquake preparedness and response
planning for an impending major earthquake in Istan-
bul, Turkey, as in Bayram and Yaman (2015). Turkey is
among the countries where tsunamis, landslides, and
fires have been observed as secondary disasters follow-
ing amajor earthquake (Marano,Wald, andAllen 2010).
One of the findings in that report is that there does not
exist an emergency evacuation system in Istanbul and
that it is imperative that an evacuation system be estab-
lished to mitigate human casualties due to second or
third aftershocks and secondary disasters following the
earthquake. For that reason, we assume an emergency
evacuation in the sense that we are evacuating people
to protect them from the impact of aftershocks and the
secondary disasters.
The IMM–JICA report gives details of four scenarios

for the earthquake, scenarios A–D, where scenario A is
referred to as themost probable scenario and scenarioC
is theworst case scenario.We take scenarioAas thebase
(nominal) scenario since the evacuation demand spe-
cific to each origin node is only given for that scenario in
the report. The demand for other scenarios is generated
by comparing the length of the fault lines expected to be
broken and the expected magnitude of the earthquake
in these scenarios to those of the base scenario A.

In the report, Istanbul City is divided into smaller
disaster regions using a spatial risk analysis. For each
scenario, five different risk zones are determined. We
assign disruption/degradation probabilities for each
zone in thebase scenario andfind theseprobabilities for
risk zones of the other scenarios by a similar compari-
son stated above. The highest probability of disruption
is assigned to risk zone 1, as it is closest to the fault line,
and the lowest one to risk zone 5. The road segments
and shelters in the network are classified into different
sets based on the risk zone in which they are located.
Given a particular scenario, we randomly determine
whether an arc (road segment) is damaged by consid-
ering the risk zone in which it is located and the proba-
bility of disruption/degradation assigned to this zone.
If the arc is damaged, we again randomly specify the
amount of capacity it lost by the number of lanes. If
there is partial damage, then this arc is degraded; and if

Table 1. Specifics of the Instances Used in the
Computational Study

Instance |N | |A| |O | |F | Total demand |O−F |

Istanbul Anatolian 50 146 13 17 83,133 221
Istanbul European 80 238 25 32 272,900 800
P-median1 100 396 85 15 123,388 1,275

it has lost all of its lanes, then this road segment is dis-
rupted and unpassable. We follow a similar approach
for the disruption of the shelters. We generate the sce-
narios in a random fashion using the characteristics of
the four main scenarios. Please see Bayram and Yaman
(2015) formoredetail onhowwegenerate the scenarios.

We downloaded the P-median1 instance from
Beasley (1990). We created the demand for each origin
node randomly between 1,000 and 2,000 (vehicles). We
also generated potential shelter sites randomly on the
network for that instance. We assign the arcs and shel-
ters into risk zones assuming there are four basic sce-
narios as in the Istanbul instances.

We generate instances in such a way that for every
origin, there exists at least one reachable shelter—i.e.,
everyone can be evacuated.

7.2. Computational Testing
The specifics of the instances used in the computational
study are shown in Table 1. Here, |O − F | is the num-
ber of origin–destination pairs that are connected with
a directed path in the original undisrupted graph. We
perform our computational tests on a workstation with
2 Xeon E5-2609 4C 2.4 GHz CPUs and 96 GB RAM by
using Java ILOGCPLEX version 12.5.1.

In Tables 2–6,we compare the computational efficien-
cies of the three BD algorithms and the EF for differ-
ent values of p, λ, and |Ω| (number of scenarios). For
each instance, we report the number of iterations the
BDalgorithmperformed, thenumber of optimality cuts
added, and the solution times. Here, the number of
iterations refers to the number of times an incumbent
solution is passed to subproblems—i.e., the number of
times subproblems are solved.We set a time limit of five
hours for our experiments. If the problem is not solved
to optimality within the time limit, then we report the
remaining gap in parentheses in the column of solution
times. If a solution cannot be obtained within the time
limit, we report such a situation as “No Solution (NS).”
We are able to solve the Istanbul Anatolian instances
with up to 1,000 scenarios without any memory prob-
lemsusinganyof theBDalgorithms.On theotherhand,
using the EF with CPLEX does not generate a solution
within five hours for the instances with 1,000 scenar-
ios. All of the BD algorithms performmuch better com-
pared to the EF in terms of the CPU times. The BD
algorithm performs at least 1.85 times better than the
EF; this rate increases up to 19.16 and marks 5.53 on
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Table 2. Comparison of Different AlgorithmsWith Respect to Computational Effectiveness (Istanbul Anatolian Instances)

BD BD_SL BD_IC EF(SCSO)

|Ω| p λ No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time Sol. time

50 5 0 94 4,012 242 93 3,964 224 88 3,851 226 984
50 8 0 86 3,634 182 87 3,680 183 76 3,277 162 493
50 10 0 92 3,844 229 91 3,840 214 96 3,674 236 527
50 12 0 53 2,150 111 53 2,150 106 50 2,118 106 476
50 15 0 21 745 54 21 745 49 20 703 47 170
50 5 0.05 79 3,282 214 86 3,289 232 91 4,025 255 1,415
50 8 0.05 110 4,661 238 110 4,661 239 96 4,261 220 789
50 10 0.05 116 4,457 302 116 4,457 290 94 3,799 247 616
50 12 0.05 79 2,950 160 79 2,950 172 65 2,586 136 527
50 15 0.05 20 693 55 20 693 48 15 565 38 129
50 5 0.1 92 4,171 271 92 4,171 269 94 4,321 270 1,367
50 8 0.1 151 6,381 339 180 7,517 414 149 6,463 348 972
50 10 0.1 97 4,190 261 97 4,193 256 86 3,890 245 856
50 12 0.1 72 2,845 158 72 2,845 166 61 2,593 137 468
50 15 0.1 21 713 58 21 713 53 15 559 41 108
50 5 0.15 93 4,030 309 64 2,795 206 71 3,144 220 1,277
50 8 0.15 90 3,645 209 90 3,645 209 94 3,969 230 674
50 10 0.15 99 3,824 264 99 3,824 259 93 3,663 255 1,019
50 12 0.15 54 1,776 120 54 1,776 119 38 1,418 91 714
50 15 0.15 24 777 67 24 777 61 14 533 40 144
50 5 0.2 104 4,514 368 104 4,514 364 97 4,481 356 1,862
50 8 0.2 143 6,210 374 146 6,299 377 122 5,542 323 1,034
50 10 0.2 95 4,075 270 96 4,125 266 90 3,891 258 1,027
50 12 0.2 57 2,329 137 57 2,329 138 58 2,371 140 777
50 15 0.2 16 642 50 16 642 43 16 636 45 150

Average 78 3,222 202 79 3,224 198 72 3,053 187 743

100 5 0 62 4,985 325 62 4,985 307 66 5,172 335 3,409
100 8 0 74 5,904 323 72 5,926 302 65 5,114 280 1,838
100 10 0 87 6,095 413 87 6,095 398 91 6,864 459 1,881
100 12 0 69 5,678 285 69 5,678 278 82 5,753 344 1,635
100 15 0 24 1,775 124 24 1,775 111 22 1,757 105 603
100 5 0.05 79 6,575 421 79 6,575 414 66 5,383 370 4,114
100 8 0.05 50 4,174 222 50 4,174 218 70 5,658 324 2,657
100 10 0.05 87 7,112 466 87 7,112 434 87 6,864 465 1,786
100 12 0.05 65 4,926 272 65 4,924 269 77 5,454 343 2,455
100 15 0.05 30 2,269 159 30 2,269 147 31 2,275 169 687
100 5 0.1 98 8,258 575 98 8,258 565 69 6,476 427 11,015
100 8 0.1 119 10,065 568 119 10,065 580 108 9,254 528 3,631
100 10 0.1 131 10,589 688 130 10,484 664 120 9,371 662 2,023
100 12 0.1 73 6,021 341 73 6,021 325 96 7,579 445 2,075
100 15 0.1 23 1,856 128 23 1,856 116 22 1,908 125 657
100 5 0.15 81 7,585 521 80 7,381 501 96 8,473 607 7,469
100 8 0.15 120 10,034 595 122 10,234 603 118 10,702 600 3,624
100 10 0.15 93 7,660 518 95 7,496 534 124 9,895 688 2,995
100 12 0.15 73 5,910 346 73 5,910 341 77 5,985 366 2,474
100 15 0.15 25 1,730 147 25 1,730 130 19 1,533 105 698
100 5 0.2 66 5,883 487 66 5,883 472 68 5,685 519 5,354
100 8 0.2 91 7,938 494 91 7,938 491 112 9,477 615 3,269
100 10 0.2 90 7,994 545 90 7,994 503 96 8,001 603 2,891
100 12 0.2 71 5,802 350 69 5,904 348 75 5,910 383 2,273
100 15 0.2 9 799 62 9 799 50 11 791 63 585

Average 71 5,905 375 72 5,899 364 75 6,053 397 2,884

average, not including the actual solution times of the
EF for the instances with 1,000 scenarios since these
instances hit the time limit. The BD_SL algorithm per-
formsevenbetter,with 2.03, 19.49, and5.77values as the
minimum, maximum, and average rates, respectively.

These numbers for the BD_IC algorithm are 2.23, 25.80,
and 5.66, respectively. The BD_SL algorithm generally
performs better than the BD algorithm for the Istanbul
Anatolian case. In 53 of the 75 total instances for the
Istanbul Anatolian network, BD_SL has smaller CPU



Bayram and Yaman: Shelter Location and Evacuation Route Assignment Under Uncertainty
Transportation Science, 2018, vol. 52, no. 2, pp. 416–436, ©2017 INFORMS 429

Table 3. Comparison of Different AlgorithmsWith Respect to Computational Effectiveness (Istanbul Anatolian Instances)

BD BD_SL BD_IC EF(SCSO)

|Ω| p λ No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time Sol. time

1,000 5 0 69 58,667 3,719 57 48,741 2,919 54 45,825 3,026 (NS)
1,000 8 0 43 35,799 1,823 43 35,799 1,890 56 43,696 2,618 (NS)
1,000 10 0 96 71,622 4,944 96 71,693 4,801 89 65,506 4,909 (NS)
1,000 12 0 62 46,228 2,565 60 45,949 2,555 98 68,007 4,323 (NS)
1,000 15 0 36 20,521 1,864 36 20,521 1,750 36 21,752 1,889 (NS)
1,000 5 0.05 67 54,698 4,045 61 51,723 3,438 78 63,416 4,886 (NS)
1,000 8 0.05 98 76,155 4,708 87 72,632 4,137 87 73,616 4,306 (NS)
1,000 10 0.05 80 66,505 4,542 105 77,038 5,876 74 58,588 4,244 (NS)
1,000 12 0.05 57 40,046 2,629 57 40,047 2,629 71 54,449 3,363 (NS)
1,000 15 0.05 25 19,557 1,394 25 19,557 1,355 18 13,498 986 (NS)
1,000 5 0.1 66 57,680 4,358 72 62,446 4,594 56 47,557 3,630 (NS)
1,000 8 0.1 106 84,512 5,514 93 74,668 4,914 83 68,413 4,503 (NS)
1,000 10 0.1 74 66,560 4,457 82 71,534 4,894 132 106,110 8,413 (NS)
1,000 12 0.1 92 67,120 4,469 73 53,905 3,513 74 53,754 3,898 (NS)
1,000 15 0.1 32 23,556 1,849 48 23,573 2,625 45 30,612 2,685 (NS)
1,000 5 0.15 75 64,640 5,224 71 61,675 4,936 71 59,705 5,196 (NS)
1,000 8 0.15 95 82,014 5,253 113 73,448 5,976 82 70,475 4,710 (NS)
1,000 10 0.15 102 83,721 6,602 135 85,520 8,129 119 95,995 7,745 (NS)
1,000 12 0.15 53 43,363 2,708 84 43,422 4,208 55 42,220 2,895 (NS)
1,000 15 0.15 30 19,234 1,819 30 19,235 1,772 31 19,860 1,928 (NS)
1,000 5 0.2 76 62,679 5,986 75 61,703 5,620 67 55,737 5,313 (NS)
1,000 8 0.2 82 73,335 4,805 74 66,407 4,303 99 74,126 5,932 (NS)
1,000 10 0.2 101 91,607 6,726 84 74,192 5,504 117 94,250 7,583 (NS)
1,000 12 0.2 66 54,250 3,406 71 55,335 3,664 73 60,058 3,997 (NS)
1,000 15 0.2 18 13,669 1,148 18 13,669 1,014 16 13,628 974 (NS)

Average 68 55,110 3,862 70 52,977 3,881 71 56,034 4,158 18,000∗

∗The average solution time is 18,000 or more.

times and generally ends in a smaller number of itera-
tions adding a smaller number of optimality cuts. This
rate is 41 of 75 total instances for the BD_IC algorithm.
The BD_IC algorithm performs better than the BD_SL
algorithm in 34 of 75 instances in terms of CPU times.
For the Istanbul European network, EF runs into

memory problems for the instances with |Ω| � 50,
λ�0.2, |Ω| � 100, λ≥ 0.15, and |Ω| � 1,000, λ≥ 0.1.
When the number of scenarios is 100, for λ � 0.05 and
p � 10, the EF can obtain a solution with a gap of 99.5%
within the five-hour time limit, and seven out of 25 in-
stances with |Ω| � 100 are of this sort. When λ � 0.1
and p � 10, EF cannot obtain a solution at the root node
within the time limit, and three out of 25 instances
with |Ω| � 100 encounter this problem. For all of the
instances that the EF does not encounter the memory
issue when the number of scenarios is 1,000, there is
no solution obtained at the root node within the time
limit. BD algorithms run into memory problems for
the instances with |Ω| � 100, λ � 0.2 and |Ω| � 1,000,
λ ≥ 0.15. Excluding the instances with memory prob-
lems, the BD, BD_SL, and BD_IC algorithms solve all
of the instances to optimality except for six, five, and
six instances, respectively, with |Ω| � 1,000 where they
run into the time limit, the majority of the gaps being
small. Each of the BD algorithms outperforms the EF
in terms of the memory problems and the CPU times.

Except for the three instances with |Ω| � 50 where EF
performs better when p is relatively large and exclud-
ing the instances with memory problems and the ones
that hit the time limit, the BD algorithm performs at
least 1.09 times better than the EF, this rate increases
up to 9.22 and marks 3.97 on average. For the BD_SL
algorithm, these numbers are 1.14, 8.61, and 3.99 as the
minimum, maximum, and average rates, respectively,
and this algorithmoutperforms EF in 57 of 60 instances.
These numbers are 1.07, 8.07, and 3.54, respectively, for
BD_IC, taking into account 58 of 60 instances where
BD_IC has better CPU times. In 27 of the 60 instances,
the BD_SL algorithm performs relatively better com-
pared to BD in terms of CPU times. This rate is 21–60
for the BD_IC algorithm; and BD_IC performs better
than BD_SL in 21 of 60 instances in terms of CPU
times. The algorithms outperform each other for differ-
ent instances in terms of the number of iterations. The
BD algorithm adds generally a smaller number of opti-
mality cuts with a small number of scenarios, but start-
ing with larger λ values when the number of scenarios
is 100, and for a larger number of scenarios,BD_SL adds
generally a lower number of optimality cuts.

We observe similar results for the P-median1 net-
work instances and report them in Tables 5 and 6.
In more than two-thirds of the instances with 50 sce-
narios, EF hits the time limit with no solution at the
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Table 4. Comparison of Different AlgorithmsWith Respect to Computational Effectiveness (Istanbul European Instances)

BD BD_SL BD_IC EF(SCSO)

|Ω| p λ No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time Sol. time

50 10 0 114 4,930 603 114 4,930 601 136 5,584 743 2,997
50 15 0 131 5,553 559 133 5,646 583 211 8,942 918 1,273
50 20 0 184 7,630 789 174 7,279 748 207 8,041 906 5,796
50 25 0 210 8,823 1,076 224 9,006 1,119 189 7,478 954 1,464
50 30 0 50 1,843 249 50 1,843 241 46 1,793 226 208
50 10 0.05 108 4,916 612 119 5,324 655 121 5,297 700 5,643
50 15 0.05 119 5,084 539 127 5,237 570 136 5,614 630 1,502
50 20 0.05 167 6,692 747 164 6,451 734 189 7,285 858 2,445
50 25 0.05 158 5,895 808 153 5,874 784 158 6,447 834 1,248
50 30 0.05 20 716 106 20 716 99 21 668 106 157
50 10 0.1 145 6,661 1,107 151 6,904 1,168 156 7,052 1,233 5,927
50 15 0.1 92 4,140 586 94 4,233 586 158 6,221 1,032 1,189
50 20 0.1 168 6,782 1,071 148 6,228 904 133 5,262 823 6,268
50 25 0.1 144 6,064 1,039 144 6,064 1,025 126 5,639 931 1,988
50 30 0.1 24 781 179 24 781 171 16 648 117 195
50 10 0.15 139 6,367 2,569 141 6,406 2,625 129 5,926 2,447 9,220
50 15 0.15 100 4,433 1,439 102 4,531 1,472 164 6,660 2,414 2,571
50 20 0.15 153 6,208 2,206 135 5,567 1,926 186 7,406 2,683 6,832
50 25 0.15 131 4,921 2,337 111 3,628 1,955 120 4,353 2,172 1,623
50 30 0.15 14 546 279 14 546 252 9 342 160 220
50 10 0.2 144 6,781 10,906 157 7,464 12,025 193 9,002 14,719
50 15 0.2 99 4,380 6,439 102 4,534 6,626 179 8,073 11,659
50 20 0.2 156 6,464 10,433 152 6,659 9,834 183 7,675 11,684 Out of memory
50 25 0.2 87 3,520 6,375 106 4,074 7,782 134 5,126 10,676
50 30 0.2 6 199 443 6 199 451 7 195 506

Average 115 4,813 2,140 115 4,805 2,197 132 5,469 2,805

100 10 0 91 7,805 1,006 111 9,412 1,175 160 13,607 1,841 (NS)
100 15 0 191 16,170 2,108 193 16,273 2,246 221 19,102 2,294 12,816
100 20 0 158 12,832 1,418 135 11,646 1,212 191 15,857 1,743 (0.57)
100 25 0 134 10,893 1,379 135 10,999 1,359 160 11,789 1,650 (0.003)
100 30 0 20 1,578 218 20 1,578 200 41 2,538 419 1,409
100 10 0.05 136 12,387 1,655 143 12,705 1,703 152 13,750 1,870 (0.995)
100 15 0.05 152 14,269 1,488 234 17,653 2,295 216 18,579 2,210 (0.964)
100 20 0.05 203 17,413 1,950 265 19,587 2,481 188 15,304 1,769 (NS)
100 25 0.05 263 19,549 2,843 262 19,346 2,759 181 13,368 1,976 (0.004)
100 30 0.05 32 2,569 343 36 2,679 365 24 1,958 262 1,499
100 10 0.1 167 15,733 2,684 173 14,097 2,782 214 18,999 3,480 (NS)
100 15 0.1 165 14,447 2,138 188 14,749 2,452 257 21,988 3,466 (0.967)
100 20 0.1 231 19,758 2,945 260 18,690 3,315 213 17,332 2,724 (0.996)
100 25 0.1 159 13,144 2,299 173 13,167 2,480 176 14,332 2,551 18,048
100 30 0.1 27 2,117 402 27 2,117 391 25 1,912 358 1,433
100 10 0.15 235 21,003 8,586 211 19,249 7,802 229 21,258 8,666
100 15 0.15 241 21,431 6,993 242 21,292 7,216 322 29,351 11,165
100 20 0.15 279 24,841 7,719 291 25,919 8,752 296 26,291 8,604 Out of memory
100 25 0.15 200 16,515 6,804 204 16,444 6,873 233 18,121 8,263
100 30 0.15 29 2,211 1,028 29 2,211 980 30 2,422 1,063

Average 156 13,333 2,800 167 13,491 2,942 176 14,893 3,319

1,000 10 0 80 67,617 9,614 80 68,714 9,434 68 54,556 8,040 (NS)
1,000 15 0 94 79,366 9,051 101 85,869 9,910 107 91,222 10,324 (NS)
1,000 20 0 151 115,105 14,930 127 104,369 12,887 106 87,794 10,213 (NS)
1,000 25 0 163 115,143 (0.0001) 148 117,292 16,594 124 87,597 13,565 (NS)
1,000 30 0 26 19,508 2,931 26 19,508 2,755 49 30,516 5,268 (NS)
1,000 10 0.05 88 74,661 11,590 75 62,676 9,624 139 109,263 17,982 (NS)
1,000 15 0.05 85 74,357 8,718 86 75,401 8,644 175 138,924 (0.092) (NS)
1,000 20 0.05 155 126,851 15,679 179 111,376 (0.001) 178 152,052 (0.015) (NS)
1,000 25 0.05 159 125,186 (0.0025) 161 89,657 (0.04) 150 112,432 17,624 (NS)
1,000 30 0.05 40 27,770 4,472 72 27,818 7,777 39 26,908 4,370 (NS)
1,000 10 0.1 81 70,752 (0.54) 67 60,844 15,151 90 71,645 (0.45)
1,000 15 0.1 87 74,448 (0.077) 84 74,524 (0.081) 86 71,963 (0.496)
1,000 20 0.1 90 70,089 (0.146) 105 46,305 (0.891) 90 76,162 (0.123) Out of memory
1,000 25 0.1 85 74,706 (0.03) 89 69,677 (0.05) 86 72,163 (0.04)
1,000 30 0.1 42 27,961 8,287 59 27,978 10,752 69 38,991 13,465

Average 95 76,235 9,475 97 69,467 10,353 104 81,479 11,206
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Table 5. Comparison of Different AlgorithmsWith Respect to Computational Effectiveness (P-median1 Instances)

BD BD_SL BD_IC EF(SCSO)

|Ω| p λ No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time Sol. time

50 5 0 187 8,841 1,468 187 8,841 1,462 208 9,736 1,694 (NS)
50 7 0 152 7,244 982 152 7,244 985 177 8,261 1,170 (0.902)
50 8 0 126 5,960 937 127 6,010 929 152 7,086 1,138 (0.892)
50 11 0 68 2,691 403 68 2,691 398 68 2,729 419 (0.205)
50 12 0 59 2,180 408 59 2,180 400 44 1,745 310 8,510
50 5 0.05 238 11,320 1,988 236 11,224 1,930 191 8,891 1,615 (NS)
50 7 0.05 260 12,339 1,790 250 11,676 1,710 247 11,656 1,730 (0.706)
50 8 0.05 181 8,823 1,437 180 8,772 1,444 171 8,259 1,390 (0.774)
50 11 0.05 63 2,636 430 63 2,636 420 54 2,309 379 14,163
50 12 0.05 38 1,557 308 38 1,557 299 41 1,595 332 9,897
50 5 0.1 283 13,477 2,518 282 13,426 2,488 289 13,775 2,586 (NS)
50 7 0.1 300 14,284 2,202 316 15,021 2,345 327 15,425 2,444 (NS)
50 8 0.1 227 10,966 1,950 231 11,173 1,956 228 10,920 1,978 (0.565)
50 11 0.1 94 4,060 690 92 3,967 677 96 4,123 720 (0.071)
50 12 0.1 43 1,912 371 43 1,912 363 47 2,044 415 13,587
50 5 0.15 449 21,889 4,208 448 21,819 4,187 470 22,641 4,484 (NS)
50 7 0.15 531 25,493 4,175 494 23,786 3,834 506 24,419 3,910 (0.569)
50 8 0.15 385 18,855 3,424 329 16,176 2,881 339 16,243 3,056 (0.394)
50 11 0.15 121 5,497 897 120 5,458 888 102 4,650 762 16,416
50 12 0.15 57 2,593 493 57 2,593 490 56 2,580 500 9,729
50 5 0.2 546 26,286 5,431 555 26,716 5,515 531 25,462 5,365 (NS)
50 7 0.2 621 29,989 5,036 647 31,234 5,234 628 30,194 5,091 (NS)
50 8 0.2 480 23,369 4,523 476 23,199 4,472 470 22,716 4,455 (0.272)
50 11 0.2 191 8,740 1,454 183 8,395 1,393 194 8,887 1,505 13,172
50 12 0.2 106 4,825 938 119 5,386 1,055 132 5,869 1,198 11,512

Average 232 11,033 1,938 230 10,924 1,910 231 10,889 1,946

100 5 0 171 16,333 2,762 171 16,333 2,695 173 15,933 2,872 (NS)
100 7 0 221 20,507 2,923 210 19,821 2,771 216 20,309 2,915 (NS)
100 8 0 117 11,539 1,781 119 11,747 1,784 168 15,184 2,622 (NS)
100 11 0 73 6,537 885 73 6,537 893 79 6,361 978 (NS)
100 12 0 47 3,655 689 47 3,655 645 41 3,058 591 (NS)
100 5 0.05 181 16,765 3,131 185 16,949 3,174 197 18,223 3,443 (NS)
100 7 0.05 240 23,025 3,397 256 24,385 3,634 214 20,162 3,115 (NS)
100 8 0.05 191 18,546 3,176 195 18,933 3,215 209 19,387 3,550 (NS)
100 11 0.05 90 7,558 1,250 84 7,261 1,156 74 6,127 1,049 (NS)
100 12 0.05 33 2,577 562 33 2,577 531 31 2,577 529 (NS)
100 5 0.1 249 23,705 4,541 253 24,111 4,592 283 26,579 5,248 (NS)
100 7 0.1 339 32,583 5,149 335 31,878 5,028 379 36,040 5,806 (NS)
100 8 0.1 354 33,936 6,204 333 32,511 5,868 333 31,604 6,034 (NS)
100 11 0.1 111 9,961 1,646 106 9,552 1,562 90 8,090 1,370 (NS)
100 12 0.1 49 3,953 854 49 3,953 848 52 4,204 934 (NS)
100 5 0.15 409 38,968 7,844 383 36,644 7,259 364 34,893 7,030 (NS)
100 7 0.15 512 49,409 8,210 470 45,482 7,486 502 48,281 7,990 (NS)
100 8 0.15 385 36,880 7,076 391 37,847 7,085 428 40,821 7,914 (NS)
100 11 0.15 116 10,760 1,735 119 10,984 1,765 117 10,771 1,787 (NS)
100 12 0.15 56 5,036 990 56 5,036 991 56 5,125 1,030 (NS)
100 5 0.2 413 39,601 8,359 420 40,291 8,485 465 44,233 9,581 (NS)
100 7 0.2 512 49,513 8,405 544 52,455 8,900 512 49,429 8,531 (NS)
100 8 0.2 514 49,155 9,869 509 48,812 9,860 521 50,433 10,308 (NS)
100 11 0.2 192 17,730 2,959 193 17,839 2,974 209 19,082 3,306 (NS)
100 12 0.2 102 9,435 1,881 98 9,057 1,816 122 10,626 2,272 (NS)

Average 197 18,612 3,240 193 18,310 3,149 200 18,686 3,340 (NS)

root node or with a big gap. When the number of sce-
narios is 100 and 1,000, EF hits the time limit of five
hours for every instance with no solution at the root
node. For the instances that EF does not hit the time
limit, BD algorithms perform around nine (minimum),

37 (maximum), and 23 (average) times better than EF
with respect to CPU times. BD algorithms outperform
each other at different instances and hit the time limit
for some of the instances when the number of scenarios
is 1,000.
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Table 6. Comparison of Different AlgorithmsWith Respect to Computational Effectiveness (P-median1 Instances)

BD BD_SL BD_IC EF(SCSO)

|Ω| p λ No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time No. of iter. No. of cuts Sol. time Sol. time

1,000 5 0 106 95,538 (0.94) 107 99,711 (0.93) 102 97,485 (0.93) (NS)
1,000 7 0 131 126,418 (0.844) 131 126,438 (0.842) 126 115,339 (0.833) (NS)
1,000 8 0 114 105,536 (0.74) 114 106,677 (0.76) 110 95,456 (0.76) (NS)
1,000 11 0 69 57,008 8,977 85 56,050 11,030 63 54,130 8,354 (NS)
1,000 12 0 43 35,423 6,748 43 35,423 6,422 51 38,104 7,877 (NS)
1,000 5 0.05 103 94,581 (0.90) 102 91,572 (0.85) 98 90,580 (0.86) (NS)
1,000 7 0.05 125 115,522 (0.725) 123 114,530 (0.728) 118 110,492 (0.696) (NS)
1,000 8 0.05 105 101,459 (0.63) 105 100,524 (0.65) 101 89,618 (0.64) (NS)
1,000 11 0.05 88 70,131 12,912 91 73,820 13,169 53 48,062 7,909 (NS)
1,000 12 0.05 29 25,558 5,254 29 25,500 4,941 33 25,845 5,794 (NS)
1,000 5 0.1 96 82,540 (0.90) 96 59,999 (0.88) 93 84,506 (0.88) (NS)
1,000 7 0.1 115 105,405 (0.721) 114 104,415 (0.721) 113 103,449 (0.647) (NS)
1,000 8 0.1 98 94,691 (0.58) 100 96,658 (0.58) 95 88,532 (0.63) (NS)
1,000 11 0.1 108 91,185 16,644 107 91,667 16,739 93 83,599 14,777 (NS)
1,000 12 0.1 45 37,479 8,432 45 37,479 8,132 46 38,462 8,631 (NS)
1,000 5 0.15 88 76,436 (0.76) 89 80,668 (0.84) 88 85,528 (0.84) (NS)
1,000 7 0.15 112 106,416 (0.619) 111 105,363 (0.619) 108 102,596 (0.604) (NS)
1,000 8 0.15 94 86,544 (0.46) 95 85,581 (0.46) 93 87,536 (0.64) (NS)
1,000 11 0.15 116 106,023 (0.308) 116 104,133 (0.279) 114 104,296 (0.241) (NS)
1,000 12 0.15 61 51,500 11,345 62 52,465 11,125 55 45,690 10,282 (NS)
1,000 5 0.2 80 68,481 (0.76) 86 72,391 (0.72) 81 78,411 (0.82) (NS)
1,000 7 0.2 106 100,540 (0.519) 105 100,463 (0.52) 101 94,492 (0.613) (NS)
1,000 8 0.2 82 79,596 (0.45) 89 86,679 (0.45) 87 81,536 (0.54) (NS)
1,000 11 0.2 111 104,501 (0.285) 112 103,804 (0.291) 107 98,237 (0.319) (NS)
1,000 12 0.2 87 79,860 (0.21) 95 87,321 (0.21) 91 78,484 (0.21) (NS)

Average 92 82,565 15,762 93 81,364 14,544 86 77,577 14,571 (NS)

In Figure 1, we illustrate how the upper (UB) and
lower (LB) bounds are updated across iterations for the
BD, BD_SL, and BD_IC algorithms when the number
of scenarios is 1,000, λ � 0.2, p � 10 and λ � 0.05, p �30
for the Istanbul Anatolian and Istanbul European net-
works, respectively.
By solving the dual subproblemwith a cutting plane

approach, we aim to overcome the memory problems

Figure 1. (Color online) Iteration vs. UB and LB for Istanbul Anatolian and European Networks
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we encounter when the size of the network or the tol-
erance level gets larger. For small tolerance levels—
i.e., when the number of feasible paths is small—
pregenerating the feasible paths and constructing the
constraints related to them generally brings an advan-
tage in terms of the CPU times. As the tolerance level
increases, the CPU times worsen and, at some point,
memory issues are encountered. For that reason, in
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Table 7. The Results for the BD_CPAlgorithm (Istanbul
European)

|Ω| p λ No. of iter. No. of cuts Sol. time

100 20 0.2 144 13,156 15,362
100 25 0.2 164 12,475 5,361
100 30 0.2 56 3,503 1,265
1,000 20 0.15 151 110,795 (0.25)
1,000 25 0.15 92 73,843 36,011
1,000 30 0.15 47 29,501 15,254
1,000 20 0.2 69 55,536 (0.86)
1,000 25 0.2 170 118,537 71,511
1,000 30 0.2 38 27,395 12,969

Table 7, we report the results for the algorithm BD_CP
for the instances that any one of the previously reported
algorithms cannot solve because of memory issues. We
report the results for λ � 0.2, p � 20, p � 25, p �30 with
|Ω| � 100 and for λ � 0.15, λ � 0.2, p � 20, p � 25, p �30
with |Ω| � 1,000. All of these instances are solved to
optimality within a 24-hour time limit, except for the
instances with λ� 0.15, λ� 0.2, p � 20 with |Ω| � 1,000.
The gap that remains when the 24-hour time limit is
reached is reported for these instances.
In summary, the BD algorithms perform better than

each other on different instances; yet on average, the
BD_SL algorithm performs better, especially for in-
stances with a large number of scenarios, for the Istan-
bul Anatolian and P-median1 cases. On the other hand,
BD performs better for the Istanbul European instances
on average.

7.3. Capacitated Shelters
Since the nodes representing potential shelter sites in
our network are not particular buildings but areas,
capacities are not well defined in general. If the shel-
ters have fixed capacities, then our model and solution
approaches can be modified to handle capacity con-
straints. We add the capacity constraints∑

r∈O

∑
π∈Pλrs (ω)

wr(ω)vπ(ω) ≤Ks ys , ∀ω ∈Ω, s ∈ F(ω)

to our formulation, where Ks is the capacity of shelter s.
Constraints (52) are not sufficient to guarantee feasibil-
ity. We change them to ∑

s∈F̄r (ω)Ks ys ≥ wr(ω), ∀ r ∈O,
ω ∈Ω and add constraints ∑

s∈F̄(ω)Ks ys ≥
∑

r∈O wr(ω),∀ω ∈Ω in the MP to decrease the number of infeasi-
bilities, where F̄(ω)�⋃

r∈O F̄r(ω). We also need to add
feasibility cuts in our decomposition algorithm.
In Table 8, we present the results for the Istanbul

Anatolian instances when shelters are capacitated. We
only report the instances for which we obtain a feasi-
ble solution. For each instance, we report the number
of iterations of the BD algorithm performed, the num-
ber of optimality and feasibility cuts added, and the
solution times. Clearly, the instances with small p and

Table 8. Results for the BD AlgorithmWhen Shelters Are
Capacitated (Istanbul Anatolian)

Ω p λ No. of iter. Opt. cuts Feas. cuts Sol. time

50 15 0 18 649 0 36.85
50 15 0.05 21 643 0 42.78
50 15 0.1 18 663 0 40.36
50 10 0.15 73 2,699 9 165.53
50 12 0.15 60 2,100 1 132.94
50 15 0.15 21 618 0 48.54
50 10 0.2 89 4,111 5 224.26
50 12 0.2 49 2,034 0 124.88
50 15 0.2 11 431 0 24.58
100 15 0.05 39 2,494 0 167.83
100 15 0.1 38 2,502 0 164.16
100 15 0.15 25 1,780 0 117.65
100 10 0.2 91 7,407 17 472.71
100 12 0.2 67 5,547 1 334.77
100 15 0.2 10 900 0 48.63
1,000 15 0.2 15 9,859 0 752.25

small tolerance levels turn out to be infeasible. As the
number of scenarios increases, the number of feasible
instances decreases. In 13 of the 16 instances that are
feasible, the number of iterations, the number of opti-
mality cuts added, and the solution time are smaller in
the BD algorithm with capacitated shelters compared
to the uncapacitated case.

8. Conclusion
For more realistic evacuation planning, one has to take
into account the uncertainties regarding the evacuation
demand, road network structure, and the possible dis-
ruption in shelters, and consider as many scenarios as
needed.

In this study, we proposed an exact algorithm based
on a BD of a formulation that aims to generate a fair
and efficient evacuation plan. We employed duality
results for SOCP in aBDsetting.Wedevelopeddifferent
BD algorithms that can solve practical-size problems
with up to 1,000 scenarios in moderate CPU times. We
investigatedmethods such as adopting amulticut strat-
egy, using a lazy constraint callback feature, deriving
Pareto-optimal cuts, and using a preemptive priority
multiobjective program to enhance the proposed algo-
rithm. To avoid memory problems for large evacuation
networks and larger tolerance levels, we also proposed
an alternative algorithm in which we solve the dual
subproblem in a cutting plane framework rather than
generating all possible feasible paths. Computational
results confirm the efficiency of our algorithm as it is
considerably faster and can solve instanceswith a larger
number of scenarios compared to solving the extended
formulationwith an off-the-shelf solver.

We proposed a strategic planning methodology that
locates shelters to evacuate the population in danger as
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quickly as possible. Our method also determines the
assignment of evacuees to shelters and routes. Clearly,
once the disaster hits, these assignments can be modi-
fied by the evacuation management authority by using
real-time information and dynamic evacuation man-
agement models.
In our work, we assume that all of the evacuees com-

ply with the guidance the central authority gives; yet
this may not always be the case, and there may not
be full compliance. The evacuees that do not comply
with the evacuation orders may try to minimize their
individual travel time while the evacuation authority
aims to minimize the total evacuation time. An inter-
esting extension would be a game-theoretic approach
where some percentage of the evacuees in the network
do not comply with the evacuation orders, and the cen-
tral manager tries to find the best strategy to evacuate
the disaster region as soon as possible.
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