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a b s t r a c t 
Hub location problems (HLPs) constitute an important class of problems in logistics with numerous appli- 
cations in passenger/cargo transportation, postal services, telecommunications, etc. This paper addresses 
the competitive single and multiple allocation HLPs where the market is assumed to be a duopoly. Two 
firms (decision makers) sequentially decide on the configuration of their hub networks trying to maxi- 
mize their own market shares. The customers choose one firm based on the cost of service provided by 
these firms. Mathematical formulations are presented for the problems of the first and second firms (the 
leader and the follower, respectively) and Simulated Annealing (SA) based solution algorithms are pro- 
posed for solving these problems both in single and multiple allocation settings. Extensive computational 
experiments show the capability of the proposed solution algorithms to obtain the optimal solutions in 
short computational times. Some managerial insights are also derived based on the obtained results. 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

Hubs are special facilities that serve as switching, transship- 
ment, and sorting points in many-to-many distribution systems. 
Instead of serving each origin-destination (O/D) pair directly, hub 
facilities concentrate flows in order to take advantage of economies 
of scale. Flows from the same origin with different destinations 
are consolidated on their route to the hub and are combined with 
flows that have different origins but the same destination. The con- 
solidation takes place on the route from the origin to the hub and 
from the hub to the destination as well as between hubs. The hub 
location problem (HLP) is concerned with locating the hub facili- 
ties and allocating the demand nodes to the hubs in order to route 
the traffic between O/D pairs ( Alumur and Kara, 2008 ). 

Regarding the way the non-hub nodes are allocated to the hubs, 
there are two basic types of hub networks: single allocation and 
multiple allocation. In single allocation networks, all the incom- 
ing and outgoing traffic to and from any non-hub node is routed 
through a single hub, whereas in multiple allocation networks, 
each non-hub node can receive and send flow through more than 
one hub. Fig. 1 illustrates examples of single and multiple alloca- 
tion hub networks. In both cases, four out of 14 nodes are selected 
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as hub facilities and act as consolidation and dissemination points 
for the traffic flows in the network. 

From an applicability point of view, both single and multiple 
allocation networks are used in practice. For example, passenger 
airline networks typically have multiple allocation because there 
are flights from some non-hub cities to several or all of an air- 
line’s hubs, whereas less-than-truckload (LTL) trucking networks 
may have each non-hub node (i.e., end-of-line terminal) assigned 
to a single break-bulk terminal (i.e., hub). Similarly, some telecom- 
munication networks employ the single allocation setting to re- 
duce the cost of constructing the network, and others allow or 
require multiple allocation, as for example to increase reliability 
and/or provide backups ( Campbell and O’Kelly, 2012 ). 

In most of the studies in the literature of the HLP, the mar- 
ket is assumed to be a monopoly, i.e., one firm (decision maker) 
decides on the configuration of its hub network in order to op- 
timize some objective of interest. However, in real world applica- 
tions, there may be competitors present in the market whose deci- 
sions would definitely affect the level of success of the other firms. 
In this study, we consider a duopoly market where there are two 
operating firms. The decision maker who makes the initial location 
decisions is called the leader and the other one is named as the 
follower. We first consider a simpler case where the leader has al- 
ready configured its network without being aware of the follower’s 
upcoming entrance to the market. In this case, the problem is for- 
mulated as a single level MIP model from the follower’s perspec- 
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Fig. 1. Examples of single and multiple allocation hub networks. 
tive. Then, we consider a Stackelberg game where competitors are 
aware of each other and the leader locates his/her hubs in antici- 
pation of the follower’s upcoming action which aims at optimally 
locating its hubs, based on the known decisions made by leader. 
Therefore, the leader seeks to locate its hubs so that its market 
share is maximized after the follower best locates its hubs. The 
problems for both single and multiple allocation networks are for- 
mulated as bilevel programming models where the upper (leader) 
and lower (follower) problems are MIPs. 

The underlying hub networks considered in our work are de- 
signed based on the assumption of a complete network between 
the installed hubs equipped with efficient means of transport that 
allow a flow-independent discount factor to be applied to the 
inter-hub transportation costs. It is also assumed that the network 
nodes and the connecting links are uncapacitated and direct ship- 
ments are not allowed between the non-hub nodes. We remark 
here that, especially for single allocation case with large number of 
installed hubs, some of the spoke links, which are not discounted, 
may also have high volume of flow ( Campbell, 2013 ). However, we 
do not address this issue in the current paper as our main mo- 
tivation is to develop efficient metaheuristic algorithms for solv- 
ing large scale instances of the competitive hub location problems 
under classical settings. Here we mainly focus the application to- 
wards intermodal transportation where discounts are applicable to 
the inter-hub links regardless of the flow volumes and due to the 
use of a cheaper mode of transportation (e.g., rail or maritime 
transportation). One sholud also note that, in case of passenger 
transportation, the issue of larger flows on the spoke links can 
partly be alleviated by separating the 0-stop and 1-stop flows from 
the 2-stop flows and scheduling them separately ( Campbell, 2013 ). 

HLPs constitute a difficult class of NP-hard combinatorial opti- 
mization problems ( Contreras et al., 2011 ). Moreover, in case of the 
single allocation HLP, given a fixed set of locations for the hubs, the 
allocation part of the problem is still NP-hard ( Kara, 1999 ). For this 
reason, developing efficient solution algorithms capable of solving 
the problem instances of large sizes is of utmost practical impor- 
tance. 

The main contribution of this paper can be stated as follows. 
We address the competitive hub location problem under both sin- 
gle and multiple allocation settings. As mentioned earlier, both 
the allocation schemes are frequently used in practice. Therefore, 
studying the problem under both allocation settings is of great 
importance. We propose single level and bilevel MIP formulations 
to model the problems from the follower’s and the leader’s per- 
spectives, respectively. In order to solve the proposed models, we 

develop four efficient solution algorithms based on Simulated An- 
nealing (SA) that are able to solve large scale instances of the prob- 
lem within short computational times. Extensive computational 
experiments are conducted to show the effectiveness of the pro- 
posed algorithms as well as to study the effect of different input 
parameters such as the number of installed hubs and the discount 
factor value. Furthermore, we extend the problems to accommo- 
date more general capture mechanisms that allow the compet- 
ing firms to partially capture the O/D demands in addition to the 
classical binary (all-or-nothing) capture mechanism. Finally, some 
managerial insights are derived based on the results obtained from 
the conducted experiments. 

The remainder of this paper is organized as follows. The next 
section discusses the relevant literature for the problem at hand. 
In Section 3 , we will present new bilevel MIP model formulations 
for the competitive hub location problem on behalf of the competi- 
tors for both single and multiple allocation networks. The proposed 
SA based solution algorithms are presented in Section 4 . Compu- 
tational experiments and corresponding results are presented in 
Section 5 . Finally, Section 6 provides conclusions and some out- 
looks for future research. 
2. Literature review 

Study of the HLP began with the pioneering work of 
O’Kelly (1986) . The first quadratic mathematical formulation 
of single allocation p -hub median problem is presented in 
O’Kelly (1987) . Linear integer programming formulations for 
different versions of the HLP such as the p -hub median 
problem, the uncapacitated hub location problem, the p -hub 
center problem, and the hub covering problem are pro- 
posed by Campbell (1994) . The interested readers may re- 
fer to Alumur and Kara (2008) , Campbell and O’Kelly (2012) , 
Farahani et al. (2013) and Contreras (2015) as recent surveys on 
the HLP. 

Although the competitive facility location problem has been 
widely studied in the literature (see Drezner et al., 2015; Eiselt 
et al., 2015; Fernández et al., 2017; Kress and Pesch, 2012; Ku- 
cukaydin et al., 2012 and references therein), there is a limited 
number of works published in the filed of competitive hub loca- 
tion problem. The first work on the competitive HLP is done by 
Marianov et al. (1999) where they formulate the follower’s prob- 
lem, trying to maximize its own market share, given a set of exist- 
ing hubs for the leader. Their model allows partial captures by the 
follower depending on the cost of services. Wagner (2008) tack- 
les the same problem with a different capture paradigm where 
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the follower gets nothing in case of equal cost. He also pro- 
poses a more efficient formulation for the problem. Sasaki and 
Fukushima (2001) study the competitive HLP on a plane where a 
large leader firm competes with several medium firms to maxi- 
mize its own profit. The problem is modeled as a bilevel program 
where each firm locates one hub and logit functions are used to 
model the customer preferences that affect the proportional cap- 
tures. Based on the same idea, Sasaki (2005) studies the compet- 
itive HLP in a discrete environment. The same capture rule as in 
Sasaki and Fukushima (2001) is used where the leader and fol- 
lower respectively locate p and r hubs on a network and each route 
contains only one hub. 

Adler and Smilowitz (2007) analyze the hub network alliances 
and mergers in the airline industry under competition. Their re- 
search combines profit-maximizing objectives to cost-based net- 
work design formulations within a game theoretic framework that 
enables merging airlines to choose appropriate international hubs 
for their integrated network. In another competitive HLP, Eiselt and 
Marianov (2009) address a conditional p -hub location problem 
with attraction functions where an entrant airline transportation 
firm is assumed to enter a competitive market and the customers 
are assumed to choose an airline depending on a combination of 
factors such as flying time and travel fare based on gravity-like 
utility functions. 

Gelareh et al. (2010) propose an MIP model for a competi- 
tive hub network design considering competition between a new- 
comer liner service provider and an existing dominating operator, 
both operating on hub networks. The authors only address the fol- 
lower’s problem and propose a Lagrangian decomposition method 
together with a primal bound generation procedure for solving it. 
Lin and Lee (2010) study a competition game on hub network de- 
sign and determine a hub network for each of all carriers in the 
oligopolistic market based on the long-term Cournot-Nash equi- 
librium steady state. Lüer-Villagra and Marianov (2013) address a 
competitive HLP in which location and pricing decisions are made 
by an entrant firm entering to a market where some other firm has 
already been operating. Customer preferences are modeled using 
logit function resulting in a nonlinear model maximizing the profit 
of the entrant firm. Sasaki et al. (2014) consider a competitive hub 
arc location problem under Stackelberg competition. Rather than 
locating hub facilities, they locate hub arcs in the network. They 
model the problem as a bilevel program in which the leader and 
the follower respectively locate p and r hub arcs to maximize their 
own revenues. 

Mahmutogullari and Kara (2016) consider a competitive HLP 
based on Stackelberg competition where the market is assumed 
to be a duopoly. Two firms decide on locations of their hubs and 
then customers choose one firm with respect to cost of provided 
service. They term the follower’s problem as ( r | X p ) hub-medianoid 
and the leader’s problem as ( r | p ) hub-centroid problem. They only 
consider the problems under the multiple allocation assumption 
and propose MIP models for them. Furthermore, they assume a 
binary capture mechanism where each O/D demand can be cap- 
tured by either the leader or the follower. In order to solve the 
bilevel ( r | p ) hub-centroid problem, they propose an exact solution 
algorithm based on enumeration and solve the problem for a net- 
work of 81 nodes with up to 5 installed hubs by the leader and the 
follower. 

Although integer programming optimization approaches are 
used to solve various types of HLP in small sizes, larger instances 
are usually solved by heuristic or metaheuristic procedures. In fact, 
development of metaheuristic algorithms has helped many real 
world applications, in which optimal or near-optimal solutions can 
be obtained in less computational time. Some authors have tack- 
led the multiple allocation HLPs using heuristic and metaheuris- 
tic algorithms (see Boland et al., 2004; Campbell, 1996; Chahar- 

sooghi et al., 2017; Ernst and Krishnamoorthy, 1998; Lüer-Villagra 
and Marianov, 2013; Marianov et al., 1999 as some examples). 

In case of the single allocation HLP, the number of proposed 
metaheuristic algorithms are much larger. O’Kelly (1987) pro- 
poses two heuristic allocation procedures for solving the unca- 
pacitated single allocation p -hub median problem (USA p HMP). A 
tabu search (TS) heuristic is proposed for the USA p HMP in Skorin- 
Kapov and Skorin-Kapov (1994) . Abdinnour-Helm and Venkatara- 
manan (1998) present a branch and bound procedure and a 
genetic algorithm (GA) to solve the uncapacitated single allo- 
cation hub location problem (USAHLP). Ernst and Krishnamoor- 
thy (1996) develop a simulated annealing (SA) heuristic for the 
same problem and show that it is comparable, in both solution 
quality and computational time, to the TS heuristic in Skorin- 
Kapov and Skorin-Kapov (1994) . In another work, Ernst and Kr- 
ishnamoorthy (1999) propose heuristic algorithms for solving the 
capacitated single allocation HLP based on SA and random de- 
scent heuristic. Abdinnour-Helm presents an SA heuristic for the 
USA p HMP ( Abdinnour-Helm, 2001 ). Topcuoglu et al. (2005) de- 
velop a GA for the USAHLP. Chen (2007) proposes another heuristic 
for this problem based on an SA embedded with a tabu list and 
some improvement procedures. Silva and Cunha (2009) present 
three variants of a simple and efficient multi-start TS heuris- 
tic as well as a two-stage integrated TS heuristic to solve US- 
AHLP. Calik et al. (2009) propose a TS heuristic for the single 
allocation hub covering problem over incomplete hub networks. 
Jabalameli et al. (2012) develop an SA heuristic for solving the 
uncapacitated single allocation p -hub maximal covering problem. 
Abyazi-Sani and Ghanbari (2016) present a TS based heuristic for 
the USAHLP. More recently, Silva and Cunha (2017) propose an ef- 
ficient TS algorithm for solving the uncapacitated single allocation 
p -hub maximal covering problem. 
3. Mathematical formulation 

Let G =  (N, E) be a network, where N is the set of nodes and E 
is the set of edges such that E ⊆ N × N . Assume H ⊆ N be a subset of 
nodes that is available for locating hubs. For all i, j ∈ N , let w ij and 
c ij denote respectively the amount of flow originated at node i and 
destined to node j , and the transportation cost of a unit flow from 
node i to node j . Transportation costs on the inter-hub connections 
are discounted by a constant factor α (0 ≤α ≤ 1) and the number 
of hubs to be located by the leader and follower are denoted by p 
and r , respectively. It is assumed that both the leader and follower 
have complete information about the game and will act rationally. 
Each O/D flow in the network is captured by either the leader or 
the follower based on the unit transportation cost from its origin 
to its destination. A customer prefers the follower if the cost of 
service provided by the follower is strictly better than that of the 
leader. Otherwise, the demand is captured by the leader. In case of 
equal costs, ties are broken in favor of the leader as the customer 
has no incentive to change the current position. 

In the remainder of this section, mathematical formulations for 
the leader’s and the follower’s problems are proposed under both 
the multiple and single allocation settings. The notations and def- 
initions for the multiple allocation case are mostly borrowed from 
Mahmutogullari and Kara (2016) as we address similar problems 
and we want the terminology to be consistent in the competitive 
HLP literature. 
3.1. Multiple allocation models 

Let us assume that the leader has already opened its hubs at 
a subset of nodes X p =  { x 1 , x 2 , . . . , x p } , X p ⊆ H , and is serving the 
market with these hubs. For every node pair i and j , the cost of 
service provided by the leader, denoted by β ij , can be calculated 
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as: 
βi j =  min 

k,m ∈ X p { c ik + αc km + c m j } ∀ i, j ∈ N. (1) 
Assume now that the follower enters the market and estab- 

lishes its own hubs on a subset of nodes Y r =  { y 1 , y 2 , . . . , y r } , Y r ⊆ H . 
In a similar manner, the follower’s cost, denoted by γ ij , for all node 
pairs i and j can be calculated as: 
γi j =  min 

k,m ∈ Y r { c ik + αc km + c m j } ∀ i, j ∈ N. (2) 
For all i, j ∈ N , the follower captures the flow w ij if γ ij <  β ij . 

Therefore, total flow captured by the follower can be expressed by 
a mapping f : P p (H) × P r (H) → [0 , W ] such that: 
f (X p , Y r ) =  ∑ 

i, j∈ N: γi j < βi j w i j (3) 
where P p (H) is the set of all subsets of cardinality p from H and 
W is the sum of flows over the network, i.e., W =  ∑ 

i, j∈ N w i j . 
Given the leader’s hubs located on X p , the multiple allocation 

( r | X p ) hub-medianoid problem aims at locating a set of r hubs 
that maximizes the captured demand by the follower. To model 
the ( r | X p ) hub-medianoid problem for the multiple allocation net- 
work, assume that a km 

i j is a binary covering parameter that takes 
the value of 1 if the flow between nodes i and j is captured by 
the follower and 0, otherwise. In other words, with β ij defined by 
(1) for a given X p , we have: 
a km 

i j =  {1 , if c ik + αc km + c m j <  βi j 
0 , otherwise ∀ i, j ∈ N, ∀ k, m ∈ H (4) 

Let the variable x ijkm denote the fraction of flow w ij that is sent 
from node i to node j using the link between the hubs k and m 
by the follower. Let also the binary variable y k ∈ {0, 1} be 1 if node 
k is selected by the follower as a hub and 0, otherwise. The prob- 
lem consists of selecting r nodes which will act as the follower’s 
hubs and determining how the non-hub nodes will be allocated to 
the hubs and the flows will be routed in the network so that to- 
tal captured flow by the follower is maximized. The MIP model for 
the multiple allocation ( r | X p ) hub-medianoid problem can be writ- 
ten as: 
F C ∗MA =  max ∑ 

i ∈ N 
∑ 
j∈ N 

∑ 
k ∈ H 

∑ 
m ∈ H w i j a km 

i j x i jkm (5) 
s.t.: ∑ 

k ∈ H y k =  r (6) 
∑ 
k ∈ H 

∑ 
m ∈ H x i jkm =  1 ∀ i, j ∈ N (7) 

∑ 
m ∈ H x i jkm + ∑ 

m ∈ H| m ̸ =  k x i jmk ≤ y k ∀ i, j ∈ N, k ∈ H (8) 
x i jkm ≥ 0 ∀ i, j ∈ N, k, m ∈ H (9) 
y k ∈ { 0 , 1 } ∀ k ∈ H (10) 
The objective function (5) maximizes the total flow captured by 
the follower. Constraint (6) determines the number of hubs to be 
located by the follower. Constraints (7) assure that the whole flow 
associated with each O/D pair is routed via some hub pair. Con- 
straints (8) state that the flows can only be routed via nodes that 
have been designated as hubs. (9) and (10) are positive and binary 
constraints, respectively. 

Looking at the problem from the leader’s perspective, one needs 
to minimize the flows captured by the follower (or equivalently 
maximize the flows captured by the leader) via selecting an appro- 
priate set of hubs. In other words, the multiple allocation ( r | p ) hub- 
centroid problem aims at selecting a set of r hubs for the leader 
so that in the remaining scenario the follower can capture the 
least possible flow. To formulate the multiple allocation ( r | p ) hub- 
centroid problem as a bilevel mathematical model, let the variables 
X ijkm and Y k respectively show the routing and location decisions 
made by the leader (corresponding to x ijkm and y k decision vari- 
ables for the follower). The bilevel model for the multiple alloca- 
tion ( r | p ) hub-centroid problem can be written as: 
min F C ∗MA (11) 
s.t.: ∑ 

k ∈ H Y k =  p (12) 
∑ 
k ∈ H 

∑ 
m ∈ H X i jkm =  1 ∀ i, j ∈ N (13) 

∑ 
m ∈ H X i jkm + ∑ 

m ∈ H| m ̸ =  k X i jmk ≤ Y k ∀ i, j ∈ N, k ∈ H (14) 
X i jkm ≥ 0 ∀ i, j ∈ N, k, m ∈ H (15) 
Y k ∈ { 0 , 1 } ∀ i, j ∈ N, k ∈ H (16) 
The objective function (11) minimizes the maximum total flow 
captured by the follower ( F C ∗MA ) which is obtained as the optimal 
objective function value of the lower level problem (5) –(10) . Con- 
straint (12) forces the number of hubs opened by the leader to be 
equal to p . Constraints (13) –(16) have the same meaning for the 
leader as do the constraints (7) –(10) for the follower. 
3.2. Single allocation models 

We now discuss the ( r | X p ) hub-medianoid and ( r | p ) hub- 
centroid problems for the single allocation case. With X p =  
{ x 1 , x 2 , . . . , x p } , X p ⊆ H , denoting the set of hubs opened by the 
leader, define the mapping A l X p : N → X p as the leader’s assignment 
function consisting of ordered pairs showing the way every node 
in N is assigned to a hub in X p . For each node pair i, j ∈ N , let o ( i ) 
and o ( j ) denote respectively the hubs to which i and j are assigned 
according to A l X p . In this case, the parameter β ij can be calculated 
as follows: 
βi j =  c io(i ) + αc o(i ) o( j) + c o( j) j ∀ i, j ∈ N (17) 
Now, suppose that the follower enters the market by opening its 
hubs on subset of nodes Y r =  { y 1 , y 2 , . . . , y r } , Y r ⊆ H . Also, define 
A f Y r : N → Y r as the follower’s assignment function showing the way 
every node in N is assigned to a hub in Y r . If the nodes i and j are 
respectively assigned to hubs o ′ ( i ) and o ′ ( j ) by the follower, the pa- 
rameter γ ij can be calculated as follows: 
γi j =  c io ′ (i ) + αc o ′ (i ) o ′ ( j) + c o ′ ( j) j ∀ i, j ∈ N (18) 
As noted before, w ij is captured by the follower if γ ij <  β ij for 
all i, j ∈ N . Given the leader’s and the follower’s assignment func- 
tions, A l X p and A f Y r , the total flow captured by the follower can be 
expressed by a mapping f : R p (N × H) × R r (N × H) → [0 , W ] such 
that 
f (A l X p , A f Y r ) =  ∑ 

i, j∈ N: γi j < βi j w i j (19) 
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where R p (N × H) is the collection of all assignment functions with 
hubs chosen from a subset of cardinality p from H . 

The objective of the single allocation ( r | X p ) hub-medianoid 
problem is to choose a set of r hubs for the follower and deter- 
mine the associated assignment function that maximizes captured 
demand given the assignment function of the leader ( A l X p ). We for- 
mulate this problem based on the model proposed by Peker and 
Kara (2015) for the single allocation p -hub maximal covering prob- 
lem. The p -hub maximal covering problem can be considered as a 
special case of ( r | X p ) hub-medianoid problem in which the cover- 
ing radius for every O/D pair is a given fixed value, whereas in the 
( r | X p ) hub-medianoid problem, the covering radius for each O/D 
pair is different from those of other pairs and is calculated based 
on the network configuration of the leader using Eq. (17) . To model 
the problem, let the binary variable y ik ∈ {0, 1} be 1 if node i is al- 
located by the follower to hub k and 0, otherwise. Moreover, de- 
fine the variable z ij as the fraction of flow originated from node i 
and destined to node j that is captured by the follower. Using these 
newly defined variables along with the a km 

i j as defined before (with 
β ij defined as (17) ), the MIP model for the single allocation ( r | X p ) 
hub-medianoid problem can be written as: 
F C ∗SA =  max ∑ 

i ∈ N 
∑ 
j∈ N w i j z i j (20) 

s.t.: ∑ 
k ∈ H y kk =  r (21) 

∑ 
k ∈ H y ik =  1 ∀ i ∈ N (22) 
y ik ≤ y kk ∀ i ∈ N, k ∈ H (23) 
z i j ≤ ∑ 

k ∈ H a km 
i j y ik + λi j (1 − y jm ) ∀ i, j ∈ N, m ∈ H (24) 

z i j ≥ 0 ∀ i, j ∈ N (25) 
y i,k ∈ { 0 , 1 } ∀ i ∈ N, k ∈ H (26) 
The objective function (20) maximizes the total captured flow by 
the follower. Constraint (21) determines the number of hubs to be 
located by the follower. Constraints (22) imply that each node i 
must be assigned to exactly one hub. Constraints (23) state that 
non-hub nodes can only be allocated to the nodes that have al- 
ready established as hub nodes. Constraints (24) calculate the frac- 
tion of flow between any O/D pair i − j that is captured by the fol- 
lower based on the way these nodes are assigned to the installed 
hubs. Peker and Kara (2015) suggest to set the value of parame- 
ter λij to max k,m ∈ H { a km 

i j } in order to tighten the formulation. Note 
that based on constraints (22) every node is assigned to exactly 
one hub. Assuming that o ′ ( i ) and o ′ ( j ) denote respectively the hubs 
to which nodes i and j are assigned by the follower, the constraint 
(24) reduces either to z i j ≤ a o ′ (i ) o ′ ( j) 

i j if m = o ′ ( j) or to the redun- 
dant constraint z i j ≤ a o ′ (i ) m 

i j + λi j if m ̸ =  o ′ ( j ). Constraints (25) and 
(26) are standard domain constraints for the variables. 

We now consider the leader’s problem where he/she wants to 
minimize the demand captured by the follower while deciding on 
their hub set as well as their assignment function. To formulate a 
bilevel model for the single allocation ( r | p ) hub-centroid problem, 
we define the variables Y ik as the assignment decisions made by 

the leader (corresponding to y ik variables for the follower). The sin- 
gle allocation ( r | p ) hub-centroid problem can now be formulated 
as: 
min F C ∗SA (27) 
s.t.: ∑ 

k ∈ H Y kk =  p (28) 
∑ 
k ∈ H Y ik =  1 ∀ i ∈ N (29) 

Y ik ≤ Y kk ∀ i ∈ N, k ∈ H (30) 
Y ik ∈ { 0 , 1 } ∀ i ∈ N, k ∈ H (31) 
The objective function (27) minimizes the maximum total amount 
of flow captured by the follower ( F C ∗SA ) calculated as the optimal 
objective function value of the lower level problem (20) –(26) . Con- 
straint (28) ensures that the number of hubs located by the leader 
is equal to p . Constraints (29) –(31) have the same meaning as 
(22),(23),(26) , respectively. 

The proposed bilevel models for the multiple and single alloca- 
tion ( r | p ) hub-centroid problems are linearized using a minimax 
approach and the resulting linear MIP models are presented in 
Appendix A . 

It is known that the bilevel models are very hard to solve 
even for a small number of decision variables ( Bard, 1998; Dempe, 
2002 ). Therefore, we use metaheuristic solution algorithms to solve 
the above stated problems in reasonable time. The proposed algo- 
rithms are described in detail in the next section. 
4. Metaheuristic solution algorithm 

In this section, we describe in detail the proposed simulated an- 
nealing (SA) based metaheuristic algorithms for solving the ( r | X p ) 
hub-medianoid and ( r | p ) hub-centroid problems for both the single 
and multiple allocation cases. SA is a metaheuristic optimization 
algorithm which is effective in solving combinational optimization 
problems. It was developed in 1953 by Metropolis et al. (1953) and 
was independently described by Kirkpatrick et al. (1983) and Čern ̀y 
(1985) . To solve an optimization problem, the SA algorithm starts 
from an initial solution and consecutively moves to the new neigh- 
boring solutions via algorithm loops. If the new solution is bet- 
ter than the current solution in terms of the value of objective 
function, the current solution is replaced by the new one. Other- 
wise, the algorithm accepts the new solution with a probability 
exp − %E/T if the problem has a minimization objective (or exp %E / T 
if the problem has a maximization objective), where %E is the dif- 
ference of objective function values between the current solution 
and the new solution and T is the current temperature. At each 
temperature, several replications run and then the temperature is 
reduced slowly. In the early stages where the temperature is too 
high, there is a high probability to accept poor solutions. In the fi- 
nal stages, with a gradual decrease in temperature, there will be 
less probability to accept a bad solution. At the end, the algorithm 
converges to a good solution. 
4.1. Solution representation 

We use a one-dimensional array to represent the solutions in 
multiple allocation problem. This array of size p includes the num- 
bers associated with the nodes that are selected as hubs. The 
sorting of numbers within the arrays is not important. Fig. 2 
demonstrates the representation array of the solution exhibited in 
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Fig. 2. Solution representation for multiple allocation problem. 

Fig. 3. Solution representation for single allocation problem. 
Fig. 1 (a) which is a generic hub network with 14 nodes where 
p =  4 . 

Note that having known the selected hubs, for each O/D pair 
i − j, one can easily determine the paths for routing the associated 
flow w ij by solving a shortest path problem. 

For the single allocation problem, we use two one-dimensional 
arrays of size | N | to represent each solution. The first array, which 
is a zero-one string, is called the hub location array in which the 
nodes corresponding to “one” elements are chosen as hubs and the 
nodes corresponding to “zero” elements indicate non-hub nodes. 
The second array is called the allocation array which shows the 
hub nodes to which every node is allocated. Fig. 3 shows the rep- 
resentation of the solution exhibited in Fig. 1 (b). As can be seen in 
this figure, four nodes (nodes 5, 9, 11, and 13) are established as 
hubs and corresponding elements in the first array in Fig. 3 take 
the value of 1. In the above hub network, the node 1 (as well as 
node 9) is allocated to hub 9. This is illustrated in the second array 
where the first and ninth elements of this array take the value of 
9. 
4.2. Initial solution generation 

The initial solutions are generated randomly in our algorithms. 
To this end, we randomly select p out of | N | nodes as hub nodes 
both in multiple and single allocation problems. Furthermore, in 
case of single allocation network, the remaining ( | N| − p) non- 
hub nodes are randomly allocated to the selected hub nodes. This 
procedure for generating initial solutions not only finds a solution 
quickly but it also produces diverse starting points which can help 
the algorithm produce high quality solutions in different runs by 
not getting trapped in local optima. 
4.3. Neighborhood structures 

We define and use two different operators for generating neigh- 
boring solutions for the multiple allocation SA algorithms. The first 
operator is called “Swap_One_Hub” and the second one is called 
“Swap_Two_Hubs”. Both of the operators use a current solution to 
generate a random neighboring solution as explained below: 
• Swap_One_Hub : This operator is used to alter one of the hubs 

in the solutions. First, we randomly select a hub node and a 
non-hub node. Then the selected hub node becomes non-hub 
and the selected non-hub node becomes hub. 

• Swap_Two_Hubs : This operator is quite similar to the former 
one except for that in this case two hub nodes and two non- 
hub nodes are selected randomly and the above procedure is 
repeated for each pair of hub and non-hub nodes. When ap- 
plied to a solution, this operator generates more diverse neigh- 
bors than the previous one. 
Having altered the set of open hubs using either of the two 
above mentioned operators, the allocations of flows are then 

determined based on the new set of hubs by solving a shortest 
path problem for each O/D pair i − j, as mentioned before. 
For single allocation SA algorithm, we use three other operators 
for generating neighboring solutions, namely the “Swap_Hub”, 
the “Nearest_Allocation”, and the “Reallocate_NonHub” opera- 
tors. “Swap_Hub” is used to generate random neighbors from 
the current solution. “Nearest_Allocation” is used to allocate 
the non-hub nodes to their nearest open hubs immediately 
after the “Swap_Hub” operator is applied, whereas “Reallo- 
cate_NonHub” is used to perform local search on the newly 
generated neighbors to improve their assignment parts. 

• Swap_Hub : In this move, a randomly selected hub node be- 
comes non-hub and a randomly selected non-hub node be- 
comes hub. The new non-hub node as well as the nodes pre- 
viously allocated to it are then allocated to other existing hubs 
based on nearest distance policy. 

• Nearest_Allocation : Based on this operator, which is originally 
proposed by O’Kelly (1987) , for a given set of hub nodes, each 
non-hub node is allocated to its nearest open hub. 

• Reallocate_NonHub : This operator changes the allocation of a 
randomly selected non-hub node to a hub node other than its 
current hub. 

4.4. Parameters used in the SA procedure 
The proposed SA algorithms use six input parameters, namely 

T 0 , T F , δ1 , δ2 , R , and N e . T 0 and T F represent the initial and fi- 
nal temperatures, respectively. δ1 is used in the ( r | p ) hub-centroid 
problems as cooling rate that controls the colling process in the al- 
gorithm, whereas δ2 is used as the cooling rate in the ( r | X p ) hub- 
medianoid problems. R (0 <  R <  1) denotes the probability with 
which the first operator is used at each temperature of the SA al- 
gorithm in multiple allocation problems (medianoid and centroid). 
The second operator is thus used with probability 1 − R . Finally, N e 
denotes the number of iterations the search proceeds at a partic- 
ular temperature which is used only in single allocation problems 
(medianoid and centroid). 
4.5. The overall SA algorithms 

To solve the multiple allocation ( r | X p ) hub-medianoid problem, 
we assume that the leader has already located its hubs based on 
the solution of the uncapacitated multiple allocation p -hub me- 
dian problem (UMA p HMP). We start our algorithm by generating 
an initial solution Y r for the follower and setting the initial tem- 
perature to T 0 . Y best denotes the best solution found so far and f best 
denotes the corresponding objective function value. At each tem- 
perature, we generate a new solution Y ′ r based on the current so- 
lution using either of the two operators presented in Section 4.3 . 
To generate a neighboring solution, a random number ρ is gen- 
erated from the interval [0,1] and if this number is larger than 
the threshold value of the R , we use the “Swap_One_Hub” op- 
erator and otherwise, we use “Swap_Two_Hubs” operator. Subse- 
quently, the objective value of the new solution f (X p , Y ′ r ) is calcu- 
lated. We define %E as the difference between the objective values 
of the new and current solutions, i.e., %E =  f (X p , Y ′ r ) − f (X p , Y r ) . If 
%E >  0, we update the current solution as Y r ← Y ′ r . If the objective 
f (X p , Y ′ r ) of the new solution Y ′ r is even larger than the best ob- 
jective f best , we set f best ← f (X p , Y ′ r ) and Y best ← Y ′ r . Otherwise, if 
%E ≤ 0, we generate another random number ρ from the interval 
[0,1]. If ρ is larger than exp ( %E / T ), we update the current solu- 
tion as Y r ← Y ′ r . In other words, we accept the solutions of worse 
quality with probability exp ( %E / T ) to help the algorithm not get 
trapped in local optima. Subsequently, we reduce the temperature 
at each iteration according to the formula T =  δ × T . The algorithm 
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is terminated when the current temperature T drops below the 
prespecified final temperature T F . 

The SA algorithm for the multiple allocation ( r | p ) hub-centroid 
problem is more complex than that of the ( r | X p ) hub-medianoid 
problem as we aim at optimizing the leader’s objective within a 
bilevel solution framework. In this case, we have a main SA for 
optimizing the leader’s decisions and a lower level SA for the fol- 
lower’s decisions. At each iteration of the main SA, where a new 
solution is generated for the leader, the lower level SA is run on 
behalf of the follower to solve the ( r | X p ) hub-medianoid problem. 
In this case, we define %E =  f (X ′ p , Y ∗r (X ′ p )) − f (X p , Y ∗r (X p )) in the 
main SA. Since the ( r | p ) hub-centroid problem has a minimization 
objective, we accept the new solutions if %E <  0. Furthermore, if 
the objective f (X ′ p , Y ∗r (X ′ p )) of the new solution X ′ p is smaller than 
best objective f best , we set f best ← f (X ′ p , Y ∗r (X ′ p )) and X best ← X ′ p . 
Otherwise, if %E ≥ 0, we accept this solution of inferior quality 
with probability exp (− %E/T ) . 

The pseudo-codes of the proposed SA algorithms for the mul- 
tiple allocation ( r | X p ) hub-medianoid and the multiple allocation 
( r | p ) hub-centroid problems are illustrated in Algorithms 1 and 2 , 
respectively. 
Algorithm 1 SA for multiple allocation ( r | X p ) hub-medianoid ( T 0 , 
T f , δ2 , R, α, X p , r ). 

1: Generate a random initial solution Y r ;
2: Calculate f (X p , Y r ) ;
3: T ← T 0 ; f best ← f (X p , Y r ) ;Y best ← Y r ;
4: while T >  T f do 
5: ρ ← rand(0 , 1) ;
6: if ρ >  R then 
7: Generate a new solution Y ′ r based on Y r using 

“Swap_One_Hub” operator; 
8: else 
9: Generate a new solution Y ′ r based on Y r using 

“Swap_Two_Hubs” operator; 
10: end if 
11: Calculate f (X p , Y ′ r ) ;
12: %E ← f (X p , Y ′ r ) − f (X p , Y r ) ;
13: if %E >  0 then 
14: Y r ← Y ′ r ; f (X p , Y r ) ← f (X p , Y ′ r ) ;
15: else 
16: ρ ← rand(0 , 1) ;
17: if ρ >  exp (%E/T ) then 
18: Y r ← Y ′ r ; f (X p , Y r ) ← f (X p , Y ′ r ) ;
19: end if 
20: end if 
21: if f (X p , Y r ) >  f best then 
22: Y best ← Y r ; f best ← f (X p , Y r ) ;
23: end if 
24: T ← δ2 × T ;
25: end while 
26: return Y best , f best 

The proposed SA algorithms for the single allocation ( r | X p ) hub- 
medianoid and ( r | p ) hub-centroid problems are in general very 
similar to their multiple allocation counterparts. However, the 
solution representation scheme and the employed neighborhood 
structures are different that those of the multiple allocation prob- 
lems, as discussed earlier. Furthermore, in case of the single al- 
location problems, number of neighboring solutions generated at 
each temperature is N e after which a local search is performed on 
the best found solution based on the “Reallocate_NonHub” opera- 
tor. The pseudo-codes of the proposed SA algorithms for the single 
allocation ( r | X p ) hub-medianoid and the single allocation ( r | p ) hub- 
centroid problems are shown in Algorithms 3 and 4 , respectively. 

Algorithm 2 SA for multiple allocation ( r | p ) hub-centroid ( T 0 , T f , 
δ1 , R, α, p, r ). 

1: Generate a random initial solution X p ;
2: Get Y ∗r and f (X p , Y ∗r ) by solving the ( r| X p ) hub-medianoid prob- 

lem using Algorithm 1; 
3: T ← T 0 ; f best ← f (X p , Y ∗r ) ; X best ← X p ;
4: while T >  T f do 
5: ρ ← rand(0 , 1) ;
6: if ρ >  R then 
7: Generate a new solution X ′ p based on X p using 

“Swap_One_Hub” operator; 
8: else 
9: Generate a new solution X ′ p based on X p using 

“Swap_Two_Hubs” operator; 
10: end if 
11: Get Y ∗r and f (X ′ p , Y ∗r ) by solving ( r| X p ) hub-medianoid prob- 

lem using Algorithm 1; 
12: %E ← f (X ′ p , Y ∗r ) − f (X p , Y ∗r ) ;
13: if %E <  0 then 
14: X p ← X ′ p ; f (X p , Y ∗r ) ← f (X ′ p , Y ∗r ) ;
15: else 
16: ρ ← rand(0 , 1) ;
17: if ρ <  exp (− %E/T ) then 
18: X p ← X ′ p ; f (X p , Y ∗r ) ← f (X ′ p , Y ∗r ) ;
19: end if 
20: end if 
21: if f (X p , Y ∗r ) <  f best then 
22: X best ← X p ; f best ← f (X p , Y ∗r ) ;
23: end if 
24: T ← δ1 × T ;
25: end while 
26: return X best , f best 

Table 1 
Test instances used for ( r | X p ) hub-medianoid problem. 

Data set CAB TR ( r, p ≤ 5) TR ( r, p ≥ 6) 
p 2,3,4, and 5 2,3,4, and 5 6,8,10,12, and 14 
r 2,3,4, and 5 2,3,4, and 5 6,8,10,12, and 14 
α 0.6 and 0.8 0.6,0.8, and 0.9 0.6,0.8, and 0.9 

5. Computational experiments 
In order to test the efficiency of the proposed SA algorithms, 

we use two data sets from the literature of the HLP: the CAB and 
the TR data sets. The CAB data set introduced by O’Kelly (1987) is 
based on the airline passenger interactions between 25 US cities 
in 1970 evaluated by the Civil Aeronautics Board (CAB). This data 
set has been used by most of the hub location researchers in the 
literature. To solve the problem on the CAB data set, the parame- 
ter α is considered at two levels as α ∈ {0.6, 0.8}. The second data 
set that is used in our computational experiments is the TR data 
set ( Tan and Kara, 2007 ) which is based on the cargo flows be- 
tween 81 cities of Turkey where only 22 of these cities are can- 
didate nodes for location of hubs ( | H| =  22 ). The parameter α is 
considered at three levels as α ∈ {0.6, 0.8, 0.9} for the TR data set. 
The proposed SA algorithms are implemented in Microsoft Visual 
C# 2013 (version 5.0). Also, the proposed mathematical models for 
the single and multiple allocation ( r | X p ) hub-medianoid problems 
are solved independently using CPLEX version 12.6. All the exper- 
iments have been run on a computer with Intel(R) Core(TM) i3- 
3220 CPU of 3.30 GHz and 16GB of RAM, using the Microsoft Win- 
dows 7 operating system. Table 1 summarizes all test instances 
used in the computational study of the ( r | X p ) hub-medianoid prob- 
lem for multiple and single allocation networks. 
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Algorithm 3 SA for single allocation ( r | X p ) hub-medianoid 
( T 0 , T f , δ2 , N e , α, A l X p , r). 

1: Generate a random initial solution A f Y r ;
2: Calculate f (A l X p , A f Y r ) ;
3: T ← T 0 ; I ← 0 ; f best ← f (A l X p , A f Y r ) ;Y best ← A f Y r ;
4: while T >  T f do 
5: I ← I + 1 ;
6: Generate a new solution A ′ f Y r based on A f Y r using “Swap_Hub”

operator; 
7: Perform local search using “Reallocate_NonHub” operator on 

A ′ f Y r ; 
8: Calculate f (A l X p , A ′ f Y r ) ;
9: %E ← f (A l X p , A ′ f Y r ) − f (A l X p , A f Y r ) ;

10: if %E >  0 then 
11: A f Y r ← A ′ f Y r ; f (A l X p , A f Y r ) ← f (A l X p , A ′ f Y r ) ;
12: else 
13: ρ ← rand(0 , 1) ;
14: if ρ >  exp (%E/T ) then 
15: A f Y r ← A ′ f Y r ; f (A l X p , A f Y r ) ← f (A l X p , A ′ f Y r ) ;
16: end if 
17: end if 
18: if f (A l X p , A f Y r ) >  f best then 
19: Y best ← A f Y r ; f best ← f (A l X p , A f Y r ) ;
20: end if 
21: if I =  N e then 
22: T ← δ2 × T ; I ← 0 ;
23: end if 
24: end while 
25: return Y best , f best 

Table 2 
Parameters of the SA algorithms. 

T 0 T f δ1 δ2 N e R 
Multiple allocation 100 1 0.98 0.99 – 0.67 
Single allocation 20,0 0 0 20 0 0 0.99 0.90 25 –

For the multiple allocation ( r | p ) hub-centroid problem, all the 
test instances shown in Table 1 are solved. However, for the sin- 
gle allocation case, only the instances with r, p ≤ 5 for the TR data 
set are solved. Furthermore, for the latter case, some small in- 
stances from the CAB data set with | N | ∈ {10, 15} and p, r ∈ {2, 3} 
are solved using the proposed SA algorithm to compare its per- 
formance with that of an enumeration algorithm adapted from 
Mahmutogullari and Kara (2016) . 

The parameters of the proposed SA algorithms are tuned by set- 
ting a good trade-off between time and quality of the solutions. In 
an initial set of experiments, different combinations of parameters 
were tested on a large number of test instances and the values re- 
ported in Table 2 have been selected as the best values which lead 
to high-quality solutions in short CPU times for multiple and single 
allocation versions of the problem. 

A comprehensive set of computational experiments are con- 
ducted using the above mentioned test problems to show the effi- 
ciency of the proposed SA algorithms and the results are reported 
in the following sub-sections. For each problem instance, we have 
run the SA algorithm for five times and the best solutions obtained 
are reported. 

Algorithm 4 SA for single allocation ( r | p ) hub-centroid ( T 0 , T f , δ1 , 
N e , α, p, r ). 

1: Generate a random initial solution A l X p ;
2: Get A ∗ f 

Y r and f (A l X p , A ∗ f 
Y r ) by solving the ( r| X p ) hub-medianoid 

problem using Algorithm 3; 
3: T ← T 0 ; I ← 0 ; f best ← f (A l X p , A ∗ f 

Y r ) ; X best ← A l X p ;
4: while T >  T f do 
5: I ← I + 1 ;
6: Generate a new solution A ′ l X p based on A l X p using 

“Swap_Hub” operator; 
7: Allocate non-hub nodes using “Nearest_Allocation” operator; 
8: Perform local search using “Reallocate_NonHub” operator on 

A ′ l X p ; 
9: Get A ∗ f 

Y r and f (A ′ l X p , A ∗ f 
Y r ) by solving ( r| X p ) hub-medianoid 

problem using Algorithm 3; 
10: %E ← f (A ′ l X p , A ∗ f 

Y r ) − f (A l X p , A ∗ f 
Y r ) ;

11: if %E <  0 then 
12: A l X p ← A ′ l X p ; f (A l X p , A ∗ f 

Y r ) ← f (A ′ l X p , A ∗ f 
Y r ) ;

13: else 
14: ρ ← rand(0 , 1) ;
15: if ρ <  exp (− %E/T ) then 
16: A l X p ← A ′ l X p ; f (A l X p , A ∗ f 

Y r ) ← f (A ′ l X p , A ∗ f 
Y r ) ;

17: end if 
18: end if 
19: if f (A l X p , A ∗ f 

Y r ) <  f best then 
20: X best ← A l X p ; f best ← f (A l X p , A ∗ f 

Y r ) ;
21: end if 
22: if I =  N e then 
23: T ← δ1 × T ; I ← 0 ;
24: end if 
25: end while 
26: return X best , f best 

5.1. Results for the multiple allocation case 
Table 3 shows the results obtained by solving the multiple allo- 

cation ( r | X p ) hub-medianoid problem using the proposed SA algo- 
rithm as well as CPLEX based on the proposed mathematical mod- 
els with the CAB data set. Since the distance matrix in the CAB 
data set (also in the TR data set) is symmetric, it is clear that if 
the flow w ij from node i ∈ N to node j ∈ N is captured by the fol- 
lower, the flow from node j to node i is also captured by the fol- 
lower. Therefore, to reduce the size of our model, the constraints 
(7) –(9) are imposed for only i <  j and the objective (5) is modified 
as ∑ 

i ∑ 
j | j > i ∑ 

k ∑ 
m (w i j + w ji ) a km 

i j x i jkm in our computational stud- 
ies. 

It is assumed that the leader has already located its hubs based 
on the uncapacitated multiple allocation p -hub median problem 
(UMA p HMP). Different discount factor ( α) values are shown in the 
first row of the table. The columns entitled p and r denote the 
number of hubs which are opened by the leader and the follower, 
respectively. The next two columns show the follower’s capture 
as the optimal objective function value that has been obtained by 
CPLEX and the CPU time, in seconds, needed to reach that solution. 
Finally, the columns under the label “SA” give the best objective 
function obtained through solving the instances with the SA algo- 
rithm and the average CPU time for the five runs of the algorithm. 

Observe that the proposed SA algorithm solves all instances to 
optimality within a fraction of a second which can be counted 
as an indication of the efficiency of the proposed SA algorithm. 
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Table 3 
Results for multiple allocation ( r | X p ) hub-medianoid problem with the CAB data set. 

α =  0 . 6 α =  0 . 8 
p r CPLEX SA p r CPLEX SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 
2 2 65.62% 14.74 65.62% 0.03 2 2 65.84% 8.82 65.84% 0.03 

3 78.25% 17.56 78.25% 0.10 3 74.19% 22.03 74.19% 0.11 
4 87.08% 17.83 87.08% 0.20 4 80.69% 25.10 80.69% 0.19 
5 92.38% 16.05 92.38% 0.22 5 87.14% 18.35 87.14% 0.21 

3 2 30.49% 26.60 30.49% 0.04 3 2 29.18% 24.99 29.18% 0.05 
3 45.13% 24.56 45.13% 0.14 3 42.92% 22.58 42.92% 0.13 
4 53.69% 22.13 53.69% 0.23 4 52.83% 20.57 52.83% 0.25 
5 62.02% 23.93 62.02% 0.27 5 60.14% 22.47 60.14% 0.27 

4 2 18.89% 27.72 18.89% 0.07 4 2 21.06% 24.48 21.06% 0.07 
3 28.39% 30.68 28.39% 0.17 3 32.69% 21.92 32.69% 0.18 
4 37.73% 33.16 37.73% 0.30 4 42.10% 23.47 42.10% 0.34 
5 46.18% 25.76 46.18% 0.30 5 48.60% 25.25 48.60% 0.39 

5 2 18.64% 27.97 18.64% 0.09 5 2 18.19% 23.49 18.19% 0.10 
3 28.14% 23.62 28.14% 0.23 3 29.12% 20.11 29.12% 0.22 
4 35.04% 19.22 35.04% 0.32 4 36.93% 24.00 36.93% 0.34 
5 42.32% 22.77 42.32% 0.36 5 44.32% 25.48 44.32% 0.43 

Average 48.12% 23.39 48.12% 0.19 Average 47.87% 22.07 47.87% 0.20 
Table 4 
Results for multiple allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≤ 5). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 
capture CPU (s) Follower’s 

capture CPU 
(s) Follower’s 

capture CPU (s) Follower’s 
capture CPU 

(s) Follower’s 
capture CPU (s) Follower’s 

capture CPU 
(s) 

2 2 50.60% 456.21 50.60% 0.32 2 2 49.95% 538.33 49.95% 0.30 2 2 50.66% 476.94 50.66% 0.41 
3 68.73% 673.52 68.73% 0.51 3 62.48% 878.01 62.48% 0.46 3 67.09% 558.60 67.09% 0.53 
4 80.13% 344.27 80.13% 0.70 4 72.47% 568.05 72.47% 0.71 4 77.52% 323.88 77.52% 0.86 
5 89.97% 115.03 89.97% 0.95 5 84.88% 132.67 84.88% 1.19 5 85.27% 191.20 85.27% 0.99 

3 2 30.49% 1873.32 30.49% 0.45 3 2 30.68% 1435.06 30.68% 0.45 3 2 40.58% 233.93 40.58% 0.50 
3 40.82% 1245.46 40.82% 0.66 3 40.80% 1667.72 40.80% 0.64 3 52.71% 494.27 52.71% 0.61 
4 56.40% 577.22 56.40% 0.80 4 51.43% 959.99 51.43% 0.91 4 63.24% 360.14 63.24% 0.95 
5 66.43% 487.51 66.43% 1.07 5 60.66% 560.07 60.66% 1.12 5 72.38% 130.33 72.38% 1.21 

4 2 22.14% 1389.16 22.14% 0.70 4 2 20.33% 2223.10 20.33% 0.73 4 2 20.38% 1465.93 20.38% 0.72 
3 33.69% 739.71 33.69% 0.93 3 30.18% 1897.41 30.18% 0.91 3 30.55% 1777.43 30.55% 0.88 
4 44.79% 949.52 44.79% 1.12 4 39.40% 1604.90 39.40% 1.17 4 38.46% 1316.08 38.46% 1.11 
5 55.69% 517.45 55.69% 1.49 5 48.57% 786.07 48.57% 1.41 5 47.40% 565.69 47.40% 1.41 

5 2 15.01% 2076.17 15.01% 0.89 5 2 15.72% 1638.12 15.72% 1.00 5 2 16.47% 1387.98 16.47% 1.06 
3 23.88% 1457.35 23.88% 1.09 3 24.24% 1618.06 24.24% 1.12 3 23.94% 1258.68 23.94% 1.13 
4 33.97% 528.04 33.97% 1.48 4 32.69% 665.54 32.69% 1.35 4 33.03% 670.19 33.03% 1.37 
5 42.20% 397.08 42.20% 1.69 5 40.21% 381.95 40.21% 1.59 5 41.01% 400.56 41.01% 1.55 

Average 47.18% 864.19 47.18% 0.89 Average 44.04% 1097.19 44.04% 0.94 Average 47.54% 725.74 47.54% 0.95 
Also, the solution times for CPLEX using the proposed mathemati- 
cal models are also acceptable for the CAB data set. 

Note that since the leader decides on the location of its hubs 
so that the total cost is minimized (based on UMA p HMP) and does 
not take into account the upcoming competition, the follower can 
capture a considerable share of market upon entrance to market. 
For instance, when the follower locates the same number of hubs 
as the leader’s, i.e., p =  r, its captured market share is larger than 
that of the leader. For the cases where p ≤ r , the lost market share 
by the leader gets even larger. However, as p increases ( p =  4 or 
5), the follower’s capture is not as much as that of the leader. 

Tables 4 and 5 show the results obtained by solving the multi- 
ple allocation ( r | X p ) hub-medianoid problem with the TR data set 
for r, p ≤ 5 and r, p ≥ 6, respectively. Here also it is assumed that 
the leader has already selected its p hubs based on UMA p HMP. To 
evaluate the performance of the proposed SA algorithm on the TR 
data set, we have solved the instances with r, p ≤ 5 using the pro- 
posed mathematical models using CPLEX and compared its results 
with those obtained by the SA algorithm. However, as the instances 
for r, p ≥ 6 have been solved to optimality by Mahmutogullari and 
Kara (2016) , for these instances the results obtained by the SA 

are compared to their corresponding optimal values which are re- 
ported under the column labeled as “M&K” in Table 5 . 

The results reported in Tables 4 and 5 reveal that the proposed 
SA algorithm is able to obtain the optimal solutions for all the in- 
stances of the TR data set. From a solution time perspective, it is 
shown that the SA solves the problem instances for the TR data set 
in quite short CPU times. Another important observation from the 
these tables is that as the number of hubs opened by the leader ( p ) 
increases, the follower fails to capture much of the market share 
even if r >  p . One possible reason for this observation can be the 
fact that as p increases, the leader selects more of the critical loca- 
tions for opening hubs and reduces its cost. In addition, since the 
customers choose the leader’s service for an equal cost offered by 
the leader and the follower, the leader’s market share stays higher 
than that of the follower. 

Table 6 shows the results for solving the multiple allocation 
( r | p ) hub-centroid problem for the CAB data set. To evaluate the 
performance of the proposed SA algorithm, the best solutions ob- 
tained by SA are compared to those of enumeration based algo- 
rithm presented in Mahmutogullari and Kara (2016) as it is not 
practical to solve the proposed bilevel model using CPLEX. 
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Table 5 
Results for multiple allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≥ 6). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r M&K SA p r M&K SA p r M&K SA 

Follower’s 
capture Follower’s 

capture CPU (s) Follower’s 
capture Follower’s 

capture CPU (s) Follower’s 
capture Follower’s 

capture CPU (s) 
6 6 39.31% 39.31% 2.25 6 6 37.97% 37.97% 2.88 6 6 40.86% 40.86% 4.83 

8 49.19% 49.19% 4.31 8 48.24% 48.24% 4.19 8 49.44% 49.44% 7.39 
10 56.94% 56.94% 5.55 10 55.70% 55.70% 5.47 10 56.06% 56.04% 9.80 
12 64.02% 64.02% 6.98 12 61.84% 61.84% 7.22 12 61.54% 61.54% 13.38 
14 68.91% 68.91% 8.27 14 66.97% 66.97% 9.18 14 66.45% 66.45% 16.92 

8 6 28.58% 28.58% 4.25 8 6 29.37% 29.37% 4.23 8 6 31.11% 31.10% 7.34 
8 37.09% 37.09% 5.30 8 37.08% 37.08% 5.27 8 38.69% 38.69% 9.17 
10 44.37% 44.37% 9.22 10 44.35% 44.35% 9.91 10 44.83% 44.83% 12.57 
12 51.77% 51.77% 12.29 12 50.71% 50.71% 12.15 12 50.49% 50.49% 15.69 
14 57.97% 57.97% 15.40 14 56.33% 56.33% 13.98 14 55.77% 55.77% 19.14 

10 6 19.91% 19.91% 8.53 10 6 20.12% 20.12% 8.25 10 6 20.74% 20.74% 10.01 
8 27.13% 27.13% 9.87 8 27.03% 27.03% 9.71 8 27.77% 27.77% 11.12 
10 34.10% 34.10% 12.20 10 33.84% 33.84% 12.80 10 33.86% 33.86% 14.82 
12 40.48% 40.48% 13.98 12 40.74% 40.74% 17.69 12 39.89% 39.89% 17.50 
14 45.73% 45.73% 19.92 14 46.84% 46.84% 21.19 14 44.90% 44.90% 21.35 

12 6 15.83% 15.83% 11.08 12 6 16.93% 16.93% 12.03 12 6 18.45% 18.45% 11.90 
8 21.79% 21.79% 13.15 8 23.41% 23.41% 13.54 8 24.59% 24.59% 13.58 
10 27.06% 27.06% 17.43 10 28.62% 28.62% 17.40 10 29.08% 29.08% 17.79 
12 31.37% 31.37% 20.77 12 32.81% 32.81% 20.56 12 32.98% 32.98% 20.74 
14 35.48% 35.48% 23.85 14 35.85% 35.93% 23.75 14 36.18% 36.18% 24.15 

14 6 13.04% 13.04% 14.70 14 6 13.02% 13.02% 14.68 14 6 13.66% 13.66% 15.01 
8 17.87% 17.87% 16.58 8 18.57% 18.57% 16.91 8 18.81% 18.81% 16.43 
10 22.25% 22.25% 20.95 10 22.52% 22.52% 23.02 10 22.50% 22.50% 21.59 
12 26.00% 26.00% 25.26 12 25.20% 25.20% 25.09 12 25.60% 25.60% 24.68 
14 28.42% 28.42% 27.31 14 27.40% 27.46% 27.60 14 28.18% 28.18% 27.24 

Average 36.18% 36.18% 13.17 Average 36.06% 36.06% 13.54 Average 36.50% 36.50% 15.36 
Table 6 
Results for multiple allocation ( r | p ) hub-centroid problem with the CAB data set. 

α =  0 . 6 α =  0 . 8 
p r M&K SA p r M&K SA 

Follower’s capture Follower’s capture CPU (s) Follower’s capture Follower’s capture CPU (s) 
2 2 46.14% 46.14% 9.50 2 2 43.68% 43.68% 10.06 

3 64.37% 64.37% 17.87 3 59.59% 59.59% 17.41 
4 74.75% 74.75% 38.37 4 70.75% 70.75% 38.61 
5 83.52% 83.52% 83.61 5 78.74% 78.74% 83.37 

3 2 30.39% 30.39% 14.40 3 2 29.18% 29.18% 14.35 
3 45.13% 45.13% 23.93 3 42.87% 42.87% 23.23 
4 53.69% 53.69% 48.84 4 52.83% 52.83% 47.18 
5 62.02% 62.02% 98.52 5 60.14% 60.14% 97.81 

4 2 17.91% 17.91% 22.62 4 2 21.06% 21.06% 26.71 
3 28.39% 28.39% 37.76 3 30.70% 30.70% 36.96 
4 37.73% 37.73% 59.73 4 38.39% 38.39% 56.94 
5 46.18% 46.18% 121.16 5 45.24% 45.24% 146.78 

5 2 14.30% 14.30% 53.77 5 2 15.30% 15.30% 58.7 
3 23.73% 23.73% 132.68 3 23.24% 23.24% 150.11 
4 31.91% 31.91% 177.56 4 31.78% 31.78% 180.95 
5 39.58% 39.58% 226.55 5 38.57% 38.57% 232.93 

Average 43.73% 43.73% 72.92 Average 42.63% 42.63% 76.38 
The results for solving the multiple allocation ( r | p ) hub-centroid 

problem for the TR data set with r, p ≤ 5 are presented in Table 7 . 
As can be seen from Tables 6 and 7 , the proposed SA algorithm 

for the multiple allocation ( r | p ) hub-centroid problem has found 
the optimal solution in all of the test instances. Note that the solu- 
tion times for the ( r | p ) hub-centroid problem are higher than the 
corresponding solution times for the ( r | X p ) hub-medianoid prob- 
lem. This is due to the bilevel nature of the former problem which 
requires our proposed SA to solve the follower’s problem from 
scratch whenever a new solution for the leader is found. However, 
the solution times for the bilevel problem are still quite short for a 
strategic planning problem such as locating facilities in a competi- 
tive environment. 

It should be mentioned that the leader’s market share has in- 
creased as he/she has decided based on ( r | p ) hub-centroid prob- 

lem. In other words, taking into account the competition, the 
leader locates its hubs in such a way that the follower can cap- 
ture as low flow as possible when he/she enters the market. For 
example, in the CAB data set with α =  0 . 8 , in case the leader and 
follower both open 2 hubs, i.e. p =  r =  2 , the value of captured 
market share by the follower when the leader ignores the com- 
petition and decides on the location of its hubs solely based on 
cost factors is around 66%, whereas the corresponding capture by 
the follower drops to 44% as the leader acts in anticipation of an 
upcoming competition. 

Table 8 shows the results obtained by solving the multiple 
allocation ( r | p ) hub-centroid problem with the TR data set for 
large values of r and p ( r, p ≥ 6). The problem for large values 
of r and p has not been solved by the enumeration algorithm in 
Mahmutogullari and Kara (2016) due to memory requirements and 
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Table 7  
Results for multiple allocation ( r | p ) hub-centroid problem with the TR data set ( r, p ≤ 5). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r M&K SA p r M&K SA p r M&K SA 

Follower’s 
capture Follower’s 

capture CPU (s) Follower’s 
capture Follower’s 

capture CPU (s) Follower’s 
capture Follower’s 

capture CPU (s) 
2 2 49.44% 49.44% 74.59 2 2 46.84% 46.84% 75.43 2 2 44.12% 44.12% 72.63 

3 64.65% 64.65% 112.09 3 60.05% 60.05% 108.23 3 58.74% 58.74% 108.91 
4 74.97% 74.97% 148.93 4 70.03% 70.03% 155.33 4 67.98% 67.98% 155.19 
5 84.72% 84.72% 210.54 5 77.97% 77.97% 218.44 5 75.45% 75.45% 210.10 

3 2 30.49% 30.49% 108.30 3 2 30.68% 30.68% 108.52 3 2 30.35% 30.35% 107.52 
3 40.82% 40.82% 145.17 3 40.81% 40.81% 146.58 3 39.90% 39.90% 140.42 
4 56.18% 56.18% 185.27 4 51.43% 51.43% 184.20 4 50.03% 50.03% 191.55 
5 65.58% 65.58% 251.48 5 60.66% 60.66% 250.41 5 58.18% 58.18% 250.18 

4 2 20.07% 20.07% 149.82 4 2 20.33% 20.33% 160.12 4 2 20.38% 20.38% 154.09 
3 30.57% 30.57% 194.42 3 30.19% 30.19% 198.59 3 29.55% 29.55% 198.44 
4 42.15% 42.15% 242.14 4 39.41% 39.41% 233.58 4 38.11% 38.11% 231.55 
5 51.89% 51.89% 322.75 5 48.57% 48.57% 302.39 5 46.83% 46.83% 300.12 

5 2 14.32% 14.32% 210.27 5 2 14.82% 14.82% 220.39 5 2 14.27% 14.27% 212.61 
3 23.61% 23.61% 275.00 3 22.12% 22.12% 294.22 3 22.87% 22.87% 317.82 
4 32.34% 32.34% 306.76 4 29.28% 29.28% 314.83 4 31.76% 31.76% 401.35 
5 40.05% 40.05% 358.91 5 37.44% 37.44% 471.31 5 38.91% 38.91% 485.00 

Average 45.11% 45.11% 206.02 Average 42.53% 42.53% 215.16 Average 41.71% 41.71% 221.09 
Table 8  
Results for multiple allocation ( r | p ) hub-centroid problem with the TR data set ( r, p ≥ 6). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r SA p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 
6 6 39.29% 2115.64 6 6 37.15% 2111.09 6 6 36.77% 2134.08 

8 49.12% 2359.87 8 47.70% 2287.74 8 47.27% 2490.12 
10 56.94% 2871.65 10 55.70% 2901.14 10 54.96% 2752.40 
12 64.02% 3094.27 12 61.84% 2931.95 12 60.96% 3093.01 
14 68.85% 3300.69 14 66.97% 2219.11 14 65.67% 3318.89 

8 6 28.45% 2495.08 8 6 27.65% 2339.75 8 6 27.62% 2499.02 
8 36.34% 2950.11 8 35.62% 3008.21 8 36.11% 2876.44 
10 43.44% 3221.27 10 42.72% 3225.41 10 42.52% 3339.01 
12 50.15% 3950.67 12 49.63% 3718.72 12 48.37% 3718.72 
14 54.98% 4391.55 14 53.74% 4182.51 14 53.91% 4391.65 

10 6 19.91% 2683.80 10 6 20.12% 2699.10 10 6 20.74% 2591.03 
8 27.13% 2974.01 8 27.03% 2940.69 8 27.77% 3004.10 
10 34.10% 3409.31 10 33.75% 3519.09 10 33.86% 3581.93 
12 39.14% 3954.94 12 40.58% 4021.39 12 39.80% 4056.88 
14 43.56% 4487.39 14 43.43% 4527.71 14 44.07% 4681.53 

12 6 14.83% 2720.55 12 6 15.75% 2751.48 12 6 16.18% 2719.97 
8 21.21% 3363.98 8 21.86% 3495.30 8 22.36% 3387.13 
10 27.00% 3890.27 10 28.10% 3786.59 10 27.68% 3810.60 
12 31.22% 4319.92 12 32.35% 4385.35 12 31.99% 4250.71 
14 35.16% 4974.31 14 35.28% 5009.50 14 35.05% 4 971.4 8 

14 6 12.34% 3511.90 14 6 11.95% 3419.82 14 6 12.31% 3445.77 
8 17.40% 3901.25 8 17.36% 3975.01 8 17.13% 3959.24 
10 21.79% 4458.14 10 22.28% 4590.25 10 21.57% 4611.38 
12 25.13% 4 975.6 8 12 25.15% 5001.81 12 24.47% 4988.17 
14 27.15% 5721.24 14 27.24% 5789.61 14 26.89% 5608.55 

Average 35.55% 3603.90 Average 35.24% 3553.53 Average 35.04% 3611.27 
long CPU times. For this reason, we present only the results ob- 
tained by the proposed SA algorithm in this table. 

Note from Table 8 that for larger values of the installed hubs 
( r, p ≥ 6), the follower’s capture is, in general, less than the corre- 
sponding value when the number of installed hubs are smaller ( r, 
p ≤ 5). It can also be seen that all the instances of the problem with 
large values of r, p are solved in less than an hour on average. Since 
these instances have not already been solved using exact solution 
algorithms or CPLEX, the obtained results can be considered as an 
indication of the usefulness and high efficiency of the proposed SA 
algorithm. 
5.2. Results for the single allocation case 

Results obtained by solving the single allocation ( r | X p ) hub- 
medianoid problem using the proposed SA algorithm as well as 

CPLEX based on the proposed mathematical models with the CAB 
data set are presented in Table 9 . It is assumed that the leader 
has already located its hubs based on the uncapacitated single al- 
location p -hub median problem (USA p HMP). Similar to the case of 
multiple allocation, to reduce the size of our model, the constraints 
(24) –(25) are imposed for only i <  j and the objective (20) is mod- 
ified as ∑ 

i ∑ 
j | j > i (w i j + w ji ) z i j in our computational studies. 

It can be seen from Table 9 that the proposed SA algo- 
rithm solves all the instances of the single allocation ( r | X p ) hub- 
medianoid problem to optimality in less than a second. It should 
also be noted that CPLEX solves the single allocation medianoid 
instances within shorter times than the corresponding multiple al- 
location instances. This shows the model proposed for the single 
allocation problem which is based on the efficient formulation pre- 
sented by Peker and Kara (2015) is more efficient than the multiple 
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Table 9  
Results for single allocation ( r | X p ) hub-medianoid problem with the CAB data set. 

α =  0 . 6 α =  0 . 8 
p r CPLEX SA p r CPLEX SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 
2 2 62.11% 6.33 62.11% 0.33 2 2 61.25% 2.10 61.25% 0.37 

3 78.46% 3.35 78.46% 0.44 3 70.41% 3.13 70.41% 0.48 
4 88.90% 1.63 88.90% 0.53 4 80.85% 2.59 80.85% 0.54 
5 93.49% 1.49 93.49% 0.61 5 89.24% 1.49 89.24% 0.62 

3 2 42.56% 3.27 42.56% 0.38 3 2 46.27% 2.65 46.27% 0.34 
3 59.00% 6.62 59.00% 0.45 3 60.86% 4.70 60.86% 0.43 
4 71.32% 2.46 71.32% 0.52 4 73.04% 1.15 73.04% 0.55 
5 83.41% 0.74 83.41% 0.61 5 82.99% 0.65 82.99% 0.62 

4 2 28.53% 3.84 28.53% 0.46 4 2 41.42% 1.51 41.42% 0.35 
3 36.98% 10.51 36.98% 0.47 3 49.04% 2.79 49.04% 0.40 
4 44.39% 9.20 44.39% 0.49 4 57.23% 2.52 57.23% 0.51 
5 51.73% 8.07 51.73% 0.63 5 64.70% 2.23 64.70% 0.62 

5 2 26.16% 3.82 26.16% 0.36 5 2 39.12% 1.17 39.12% 0.41 
3 33.62% 6.04 33.62% 0.47 3 46.92% 1.71 46.92% 0.42 
4 39.43% 6.08 39.43% 0.51 4 53.35% 2.15 53.35% 0.58 
5 45.01% 6.94 45.01% 0.65 5 59.52% 2.21 59.52% 0.67 

Average 55.32% 5.02 55.32% 0.49 Average 61.01% 2.17 61.01% 0.49 
Table 10  
Results for single allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≤ 5). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 
capture CPU (s) Follower’s 

capture CPU 
(s) Follower’s 

capture CPU (s) Follower’s 
capture CPU (s) Follower’s 

capture CPU (s) Follower’s 
capture CPU (s) 

2 2 51.07% 216.02 51.07% 7.15 2 2 50.52% 145.68 50.52% 8.45 2 2 49.27% 104.16 49.27% 8.66 
3 63.56% 647.37 63.56% 11.98 3 62.67% 228.64 62.67% 13.58 3 63.14% 135.11 63.14% 13.32 
4 73.89% 628.58 73.89% 14.34 4 75.74% 118.99 75.74% 15.44 4 73.41% 153.20 73.41% 16.01 
5 81.23% 683.59 81.23% 16.85 5 83.42% 35.17 83.42% 17.05 5 79.91% 49.15 79.91% 17.23 

3 2 39.37% 296.05 39.37% 8.47 3 2 54.38% 96.18 54.38% 9.00 3 2 59.09% 42.28 59.09% 8.54 
3 48.81% 568.05 48.81% 13.01 3 62.41% 186.37 62.41% 13.51 3 63.48% 62.51 63.48% 13.51 
4 58.63% 888.42 58.63% 14.64 4 68.43% 141.08 68.43% 15.90 4 68.88% 80.31 68.88% 15.09 
5 67.55% 757.60 67.55% 17.08 5 74.73% 129.01 74.73% 17.66 5 74.01% 73.23 74.01% 17.98 

4 2 31.57% 174.93 31.57% 9.00 4 2 34.20% 122.62 34.20% 8.49 4 2 35.33% 129.61 35.33% 8.94 
3 39.81% 530.30 39.81% 13.82 3 38.63% 385.19 38.63% 13.98 3 42.59% 147.03 42.59% 13.88 
4 46.78% 642.57 46.78% 15.02 4 46.61% 312.51 46.61% 16.15 4 49.21% 358.67 49.21% 15.67 
5 55.73% 374.78 55.73% 17.37 5 53.83% 197.53 53.83% 18.42 5 55.18% 298.61 55.18% 17.96 

5 2 25.03% 102.02 25.03% 7.18 5 2 29.90% 95.22 29.90% 8.07 5 2 32.15% 109.18 32.15% 8.00 
3 30.63% 319.49 30.63% 13.46 3 34.46% 24 8.4 9 34.46% 14.22 3 37.51% 128.94 37.51% 14.11 
4 37.91% 554.96 37.91% 15.39 4 38.87% 407.86 38.87% 15.94 4 41.95% 235.30 41.95% 15.91 
5 45.04% 357.46 45.04% 17.63 5 45.14% 416.34 45.14% 18.12 5 45.99% 381.36 45.99% 18.26 

Average 49.78% 483.89 49.78% 13.27 Average 53.37% 204.18 53.37% 13.99 Average 54.44% 155.54 54.44% 13.94 
allocation model although the single allocation problem is more 
difficult in nature. Furthermore, it is observed that when the leader 
locates its hubs based on the p -hub median problem, the captured 
flow by the follower is higher in case of the single allocation net- 
work than that of the corresponding multiple allocation network. 

Corresponding results for the TR data set with p, r ≤ 5 and p, 
r ≥ 6 are presented in Tables 10 and 11 , respectively. 

Observe from the Tables 10 and 11 that the proposed SA al- 
gorithm for the single allocation ( r | X p ) hub-medianoid problem is 
also able to obtain the optimal solutions for all the instances in 
the TR data set. Note that the proposed SA solves the problem in- 
stances for the TR data set in quite short CPU times. Furthermore, 
it can be seen that the CPU time taken by CPLEX to solve the in- 
stances with small values of p and r ( r, p ≤ 5) is, on average, longer 
that the solution times for instances with larger p and r values 
( r, p ≥ 6). Another interesting observation from these results is in 
connection to the ability of the follower in capturing the market 
share under the two allocation settings. Comparing the results for 
the single allocation medianoid problem with those of the mul- 
tiple allocation problem, one can observe that the follower’s cap- 
tured flows in single allocation networks are generally higher than 
the corresponding multiple allocation networks. In other words, for 

the same values of the parameters p, r , and α, the follower is able 
to gain a larger portion of the market in a single allocation net- 
work compared to a multiple allocation network when the leader 
locates its hubs based on the p -hub median problem for both the 
CAB and TR data sets. 

Before testing the proposed SA algorithm for solving the sin- 
gle allocation ( r | p ) hub-centroid problem on the main instances 
from the CAB and TR data sets, we evaluate its performance by 
comparing to an adapted version of the enumeration algorithm 
from Mahmutogullari and Kara (2016) . We coded the “smart- 
50%” version of the algorithm presented in Mahmutogullari and 
Kara (2016) and solved a number of small instances from the CAB 
data set. The experiments are conducted for first n nodes of the 
CAB data set with n ∈ {10, 15}, and p, r ∈ {2, 3}. Table 12 summa- 
rizes the results of the computational study for these instances 
within a time limit of 10,800 s (3 h). 

Note from Table 12 that the enumeration algorithm solves the 
instances with n =  10 to optimality in short computational times. 
However, the algorithm solves the instances with n =  15 for only 
p =  r =  2 . The solution times for these instances are substantially 
longer compared to the case of n =  10 . It can be seen that the 
enumeration algorithm cannot solve the problem for n =  15 with 
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Table 11 
Results for single allocation ( r | X p ) hub-medianoid problem with the TR data set ( r, p ≥ 6). 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r CPLEX SA p r CPLEX SA p r CPLEX SA 

Follower’s 
capture CPU (s) Follower’s 

capture CPU (s) Follower’s 
capture CPU (s) Follower’s 

capture CPU (s) Follower’s 
capture CPU (s) Follower’s 

capture CPU (s) 
6 6 45.41% 260.13 45.41% 20.15 6 6 46.13% 471.67 46.13% 24.29 6 6 47.30% 301.83 47.30% 23.29 

8 56.52% 134.02 56.52% 28.41 8 57.67% 91.55 57.67% 28.02 8 57.18% 88.56 57.18% 28.35 
10 65.70% 50.68 65.70% 35.00 10 64.64% 57.96 64.64% 36.59 10 64.49% 66.17 64.49% 35.08 
12 72.32% 10.21 72.32% 38.56 12 70.65% 9.02 70.65% 44.01 12 69.90% 14.02 69.90% 46.31 
14 76.10% 7.19 76.10% 44.89 14 74.08% 8.24 74.08% 46.25 14 74.37% 7.05 74.37% 47.18 

8 6 35.61% 162.22 35.61% 21.03 8 6 37.51% 237.56 37.51% 26.04 8 6 42.38% 196.42 42.38% 22.15 
8 43.86% 121.89 43.86% 28.82 8 45.32% 144.19 45.32% 37.75 8 48.93% 123.28 48.93% 34.53 
10 51.07% 84.03 51.07% 34.96 10 52.15% 79.13 52.15% 39.98 10 55.64% 94.55 55.64% 36.95 
12 57.28% 37.09 57.28% 40.03 12 57.94% 29.04 57.94% 45.33 12 61.40% 30.73 61.40% 46.17 
14 63.24% 7.81 63.24% 45.31 14 62.08% 12.87 62.08% 54.20 14 66.04% 7.95 66.04% 49.83 

10 6 27.57% 155.79 27.57% 21.26 10 6 32.85% 88.97 32.85% 20.09 10 6 37.74% 86.03 37.74% 26.05 
8 33.84% 158.76 33.84% 30.11 8 40.38% 98.69 40.38% 31.00 8 43.36% 111.82 43.36% 32.55 
10 39.64% 64.13 39.64% 39.53 10 46.82% 45.58 46.82% 32.49 10 48.41% 75.64 48.41% 40.13 
12 45.03% 39.82 45.03% 42.80 12 51.77% 11.52 51.77% 39.47 12 52.74% 30.73 52.74% 46.89 
14 49.37% 13.77 49.37% 47.00 14 54.87% 9.09 54.87% 44.93 14 56.41% 11.46 56.41% 49.16 

12 6 20.63% 112.27 20.63% 23.49 12 6 25.03% 177.42 25.03% 21.13 12 6 28.74% 231.91 28.74% 25.74 
8 26.75% 64.53 26.75% 31.98 8 30.67% 60.04 30.67% 31.47 8 33.24% 136.65 33.24% 30.12 
10 31.95% 33.96 31.95% 34.81 10 34.67% 43.86 34.67% 40.89 10 37.50% 74.81 37.50% 36.18 
12 36.59% 15.95 36.59% 40.02 12 37.70% 30.75 37.70% 50.16 12 40.92% 46.94 40.92% 42.56 
14 39.73% 8.06 39.73% 42.19 14 40.02% 22.60 40.02% 51.83 14 44.07% 16.86 44.07% 46.98 

14 6 18.16% 39.65 18.16% 24.61 14 6 22.32% 60.74 22.32% 27.02 14 6 24.71% 104.80 24.71% 22.98 
8 22.82% 28.22 22.82% 35.38 8 27.35% 46.29 27.35% 33.17 8 29.13% 53.78 29.13% 29.01 
10 27.07% 12.62 27.07% 34.09 10 30.50% 27.30 30.50% 40.21 10 32.48% 33.16 32.48% 33.29 
12 30.02% 15.14 30.02% 44.14 12 32.93% 24.36 32.93% 48.85 12 35.42% 17.62 35.42% 42.34 
14 31.93% 8.36 31.93% 48.90 14 34.94% 15.24 34.94% 61.97 14 37.19% 12.96 37.19% 46.39 

Average 41.92% 65.82 41.92% 35.09 Average 44.43% 76.14 44.43% 38.28 Average 46.78% 79.03 46.78% 36.80 
Table 12 
Computational analysis results for single allocation ( r | p ) hub-centroid problem with small instances. 

α =  0 . 6 α =  0 . 8 
n p r Enumeration SA n p r Enumeration SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 
10 2 2 42.18% 0.79 42.18% 6.99 10 2 2 42.19% 0.65 42.19% 7.87 

3 60.08% 24.47 60.08% 9.96 3 57.10% 36.32 57.10% 10.08 
3 2 30.59% 6.17 30.59% 6.87 3 2 31.52% 7.37 31.52% 7.18 

3 43.84% 90.65 43.84% 10.15 3 43.33% 94.37 43.33% 9.70 
15 2 2 45.27% 2382.07 45.27% 57.87 15 2 2 42.58% 2491.82 42.58% 55.80 

3 time – 63.25% 75.97 3 time – 60.64% 77.87 
3 2 memory – 35.02% 51.77 3 2 memory – 36.53% 54.43 

3 memory – 52.71% 74.50 3 memory – 51.12% 75.06 
Average – – 46.62% 36.76 Average – – 45.63% 37.25 

p or r larger than 2. In case p =  2 and r =  3 , the solution times ex- 
ceed the given time limit of 3 h. Moreover, for the instances with 
p =  3 , the problem cannot be solved because of excessive memory 
requirements. Therefore, even for very small instances, an optimal 
solution of single allocation ( r | p ) hub-centroid problem cannot be 
obtained by an enumeration algorithm. This is because of the fact 
that the single allocation HLP is a more difficult problem than the 
multiple allocation HLP. In fact, as stated in Section 1 , given a fixed 
set of locations for the hubs, the allocation part of the problem is 
still NP-hard for a single allocation HLP. However, as can be seen 
from Table 12 , the proposed SA algorithm is able to solve all the 
instances in very short computational times. 

Results for solving the single allocation ( r | p ) hub-centroid prob- 
lem for the CAB and TR data sets are presented in Tables 13 and 
14 , respectively. As it is only possible to solve this problem for very 
small instances using the enumeration algorithm, and also since 
the problem has not been studied in the literature prior to this 
work, the results obtained by the proposed SA algorithm are not 
compared to any other results. It should be mentioned that, after 
solving the bilevel problem using the proposed SA, the follower’s 
(single level) problem was solved by CPLEX based on the obtained 
solution for the leader and it was observed that the SA has solved 

the follower’s problem to optimality for all the instances. Never- 
theless, the optimality of the leader’s solution obtained by the SA 
is not proven. 

It can be seen from Tables 13 and 14 that, for the CAB data 
set, the leader’s market share has increased considerably as he/she 
decided based on ( r | p ) hub-centroid problem rather than deciding 
based on the USA p HMP. In case of the TR data set, the increase in 
the leader’s capture when he/she decides in anticipation of a com- 
petition is also higher than the corresponding capture when this 
competition is ignored by the leader. We should also note that, as 
mentioned above, the optimality of the leader’s solutions obtained 
by the SA is not proven. Therefore, if the optimal solutions for the 
leader are found, the corresponding capture values by the follower 
can even be smaller. In other words, the leader’s gain as a result of 
solving the bilevel model can even be larger. 

The results reported in Tables 13 and 14 indicate that solving 
the single allocation ( r | p ) hub-centroid problem using the proposed 
SA takes longer CPU times than the time needed to solve the cor- 
responding problem under the multiple allocation setting. This is 
mainly because of the fact that the single allocation HLPs are much 
harder to solve than their multiple allocation counterparts as in 
the former case the allocation of every node must be explicitly 
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Table 13 
Results for single allocation ( r | p ) hub-centroid problem with the CAB data set. 

α =  0 . 6 α =  0 . 8 
p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) 
2 2 52.52% 192.51 2 2 50.31% 172.30 

3 65.77% 272.08 3 63.55% 276.78 
4 74.29% 325.90 4 69.38% 311.99 
5 81.82% 395.31 5 76.13% 379.45 

3 2 38.57% 189.75 3 2 42.24% 180.09 
3 50.03% 281.45 3 50.86% 235.51 
4 57.88% 319.92 4 58.32% 321.49 
5 64.17% 388.84 5 63.84% 367.35 

4 2 28.31% 196.18 4 2 36.40% 193.75 
3 36.98% 280.63 3 43.53% 279.80 
4 44.39% 334.22 4 4 9.4 8% 321.61 
5 51.20% 395.40 5 54.88% 395.97 

5 2 20.74% 201.43 5 2 30.53% 190.41 
3 29.73% 296.55 3 37.82% 294.98 
4 37.32% 328.52 4 43.42% 336.34 
5 44.18% 349.38 5 48.30% 401.05 

Average 48.62% 296.75 Average 51.19% 291.17 
Table 14 
Results for single allocation ( r | p ) hub-centroid problem with the TR data set. 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r SA p r SA p r SA 

Follower’s capture CPU (s) Follower’s capture CPU (s) Follower’s capture CPU (s) 
2 2 50.44% 1653.94 2 2 49.95% 1738.26 2 2 49.14% 1729.31 

3 63.56% 2274.58 3 60.12% 2136.18 3 55.20% 2198.02 
4 72.80% 2810.82 4 72.37% 2503.93 4 67.40% 2725.88 
5 80.26% 3094.02 5 74.09% 2937.15 5 72.92% 3191.11 

3 2 39.37% 1631.07 3 2 44.51% 1623.12 3 2 45.26% 1759.19 
3 48.81% 2254.56 3 53.31% 2258.39 3 53.24% 2199.02 
4 58.63% 2815.18 4 58.14% 2789.45 4 57.05% 2784.51 
5 67.55% 3274.46 5 69.57% 3290.01 5 63.87% 3244.91 

4 2 31.57% 1793.85 4 2 34.20% 1793.85 4 2 35.05% 1805.63 
3 39.81% 2425.31 3 38.63% 2425.31 3 42.59% 2319.55 
4 46.78% 2988.74 4 46.61% 2988.74 4 49.21% 2875.13 
5 55.73% 3701.42 5 53.83% 3701.42 5 53.88% 3701.02 

5 2 25.03% 1783.08 5 2 29.90% 1697.22 5 2 32.15% 1732.10 
3 30.63% 2409.94 3 34.46% 2476.69 3 37.06% 2381.47 
4 37.91% 2941.65 4 38.87% 2852.15 4 41.95% 2910.18 
5 45.04% 3795.74 5 45.14% 3895.00 5 45.99% 4008.07 

Average 49.62% 2603.02 Average 50.23% 2569.17 Average 50.12% 2597.81 
determined by the SA algorithm while in the latter case the al- 
locations are determined by solving simple shortest path problems 
once the location of hubs are fixed by the algorithm. However, it 
is obvious that even for the single allocation network, the time it 
takes to obtain the final solution by the SA algorithm is not very 
much as spending an average of less than 2600 s of CPU for solv- 
ing a strategic planning problem such as the competitive HLP on a 
large sized data set of TR is quite reasonable. 
5.3. Optimal hub locations on map 

In this part of our computational studies we illustrate how the 
decisions regarding the location of hubs alter for the leader and 
follower as the leader makes his/her decisions with and without 
being aware of the follower’s upcoming entrance to the market. 
The analysis is conducted for both single and multiple allocation 
networks for the TR data set. Fig. 4 depicts the optimal locations 
of hubs opened by the leader and the follower in a multiple allo- 
cation network with p =  3, r =  3, and α=  0.9 on the map of Turkey. 
The 22 candidate cities for locating the hub facilities are shown as 
red circles in these maps. In part (a) it is assumed that the leader 
ignores the competition and locates its hubs based on UMA p HMP, 

whereas part (b) depicts the location of hubs in case the leader lo- 
cates its hubs based on the solution of ( r | p ) hub-centroid problem. 
Observe that the optimal set of hub locations when the competi- 
tion is ignored by the leader are different from the optimal set of 
hubs when the competition is incorporated into the location prob- 
lem by the leader. 

Fig. 5 depicts the corresponding optimal hub locations of the 
leader and the follower in a single allocation network. 

It can be seen from Fig. 5 that in case of the single allocation 
network (as in the multiple allocation network), the hubs opened 
by the leader and the follower are affected by either considering 
the competition in the decision making or not. Another interesting 
point is that, the two nodes 6 (Ankara) and 34 (Istanbul) are se- 
lected as hub facilities by both the leader and the follower in the 
solutions depicted in Fig. 5 (a) and (b), respectively. 

It is shown from the above maps that the optimal set of hubs 
opened by the leader and the follower are different for single and 
multiple allocation networks. This can be regarded as a reason why 
both the allocation protocols need to be considered in studying the 
competitive hub networks. Moreover, it can be seen that the hubs 
are generally located in the western part of the country as the can- 
didate cities in the western part have larger volumes of incom- 
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Fig. 4. Optimal hub locations for leader and follower with p =  r =  3 and α =  0 . 9 on multiple allocation network. 
ing/outgoing traffic compared to the eastern cities. Note that the 
node 6 (Ankara) is selected as hub in all of the four maps illus- 
trated in Figs. 4 and 5 . This can be explained by central geographic 
location of this city within the country and also by high volume 
of incoming and outgoing flows to and from Ankara as the capital 
and the second largest city in the country. Furthermore, it can be 
seen that the two nodes 34 (Istanbul) and 38 (Kayseri) are selected 
as hubs in three of the four depicted solutions. This is mainly be- 
cause Istanbul (as the largest city in the country) is the highest 
contributor to the total traffic volume and Kayseri has an attrac- 
tive geographic location at the center of the country acting as a 
connector between the western and the eastern cities. 
5.4. Value of competitive solution 

Results presented in previous sub-sections reveal that when 
the leader acts in anticipation of follower’s entrance and config- 
ures its networks based on the solution of the ( r | p ) hub-centroid 
problem, the value of follower’s capture is lower than that of the 
case where the leader ignores the competition and acts based 

on UMA p HMP/USA p HMP. In other words, the leader increases its 
market share by locating its hubs based on the solution of the 
bilevel (centroid) models. Increased market share creates value for 
the leader and we call this value as the value of competitive solu- 
tion (VCS). We formally define the VCS as the extra percent mar- 
ket share gained by the leader when the competition is taken 
into account in his/her decisions compared to the case in which 
the leader ignores the competition and makes its decisions solely 
based on the cost criterion. The VCS values for different instances 
of the CAB data set with multiple and single allocation networks 
are presented in Table 15 . 

Observe from the Table 15 that for the CAB data set, the VCS 
values are positive for most of the instances. It means that for most 
of the cases, acting based on the solution of the centroid prob- 
lem creates strictly positive value for the leader. Note also that the 
average VCS values are significantly larger for single allocation net- 
work compared to the multiple allocation network. In other words, 
for the CAB data set, the benefit of using the competitive model 
for the leader is higher when the underlying network is a single 
allocation network. However, even for multiple allocation case, the 
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Fig. 5. Optimal hub locations for leader and follower with p =  r =  3 and α =  0 . 9 on single allocation network. 
VCS is a significant value around 5% as preventing an extra 5% of 
market share to be captured by the follower is definitely of great 
importance for the leader. The VCS values for different instances of 
the TR data set with multiple and single allocation networks are 
reported in Table 16 . 

It can be seen that the VCS for the TR data set is in gen- 
eral less than that of the CAB data set. One reason for this ob- 
servation might be the fact that in the TR data set, the number 
of candidate nodes for locating hub facilities is limited (| H | =  22). 
This limited set of candidate hub nodes make the action space 
of the decision makers limited, which in turn results in less 
difference between the set of leader’s hubs when he/she de- 
cides based on either of p -hub median problem or ( r | p ) hub- 
centroid problem. As a result, the VCS values are rather small 
in case of the TR data set as compared to the case of the CAB 
data set. However, in both the data sets, it can be seen that 
the VCS generally gets larger as the value of the discount factor 
increases. 

5.5. Considering more general capture mechanisms 
So far, in this paper, we have assumed that the customers be- 

have based on a all-or-nothing (or binary) mechanism towards se- 
lecting from among competing firms in the market. In other words, 
if a firm (e.g., the follower) offers a service with a slightly lower 
cost than that of the other firm (i.e., the leader) for a specific 
O/D pair, then all the demand for that O/D pair is assumed to 
fully patronize the former. This assumption may seem unrealistic 
to some extent as deciding on the service providers is normally 
based on other factors such as brand loyalty, reputation, etc. There- 
fore, a more realistic assumption is that the follower can capture 
only a percentage of the traffic volume if it’s cost is not signifi- 
cantly less than that of the leader. This assumption has been used 
in some competitive HLP works (see Marianov et al., 1999; Sasaki 
et al., 2014; Wagner, 2008 , among others). To this end, we need 
to slightly change the definition of the covering parameter, a km 

i j , 
which previously was a binary parameter as defined in (4) . Instead 
of this binary parameter, we use a five-level covering parameter 
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Table 15 
Value of competitive solution with the CAB data set. 

α =  0 . 6 α =  0 . 8 
p r VCS p r VCS 

Mult. Alloc. Sing. Alloc. Mult. Alloc. Sing. Alloc. 
2 2 19.48% 9.59% 2 2 22.16% 10.94% 

3 13.89% 12.69% 3 14.60% 6.86% 
4 12.33% 14.61% 4 9.95% 11.47% 
5 8.86% 11.67% 5 8.41% 13.11% 

3 2 0.10% 3.99% 3 2 0.00% 4.03% 
3 0.00% 8.97% 3 0.05% 10.00% 
4 0.00% 13.44% 4 0.00% 14.72% 
5 0.00% 19.24% 5 0.00% 19.15% 

4 2 0.98% 0.22% 4 2 0.00% 5.02% 
3 0.00% 0.00% 3 1.99% 5.51% 
4 0.00% 0.00% 4 3.71% 7.75% 
5 0.00% 0.53% 5 3.36% 9.82% 

5 2 4.35% 5.42% 5 2 2.90% 8.59% 
3 4.41% 3.89% 3 5.89% 9.10% 
4 3.14% 2.11% 4 5.15% 9.93% 
5 2.75% 0.83% 5 5.77% 11.22% 

Average 4.39% 6.70% Average 5.25% 9.82% 
that allows each firm to capture 0%, 25%, 50%, 75% or 100% of the 
demand volume on each O/D route based on the cost of the pro- 
vided service. Hence, for all i, j ∈ N and k, m ∈ H , we define the five- 
level covering parameter as: 

a km 
i j =  

⎧  
⎪  ⎪  ⎪  ⎪  ⎪  ⎨  
⎪  ⎪  ⎪  ⎪  ⎪  ⎩  

1 , if c ik + αc km + c m j ≤ 7 
10 βi j or (c ik + αc km + c m j =  0 and βi j >  0) 

0 . 75 , if 7 
10 βi j <  c ik + αc km + c m j ≤ 9 

10 βi j 
0 . 5 , if 9 

10 βi j <  c ik + αc km + c m j <  10 
9 βi j or (c ik + αc km + c m j =  βi j =  0) 

0 . 25 , if 10 
9 βi j ≤ c ik + αc km + c m j <  10 

7 βi j 
0 , if 10 

7 βi j ≤ c ik + αc km + c m j or (c ik + αc km + c m j >  0 and βi j =  0) 
(32) 

The above parameter is defined similar to the definition used 
in Marianov et al. (1999) and Wagner (2008) . To show the effect 
of using the more general five-level capture mechanism on the so- 
lutions, we replaced the covering parameter previously defined as 
(4) by the parameter defined as (32) in our proposed mathematical 
formulations and solution algorithms. Table 17 shows the results 
obtained by solving the multiple allocation problem under the gen- 
eral capture mechanism with the CAB data set. 

Note from Table 17 that the proposed SA algorithm is able to 
solve the medianoid problem to optimality in all the instances. Fur- 
thermore, the results presented in this table indicate that using the 

general capture mechanism produces solutions for which the mar- 
ket shares for the leader and the follower are more balanced com- 
pared to the case of binary capture mechanism. For example, the 
follower’s capture for the medianoid problem with α =  0.6 has in- 
creased by 4.74% after using the general capture mechanism. The 
corresponding increase for α =  0.8 is 4.87%. In case of the centroid 
problem, the corresponding increases in the follower’s capture are 
6.26% and 7.37% for α =  0.6 and 0.8, respectively. Another point 
of interest is that when the number of hubs to be located by the 
follower is the same as the number of leader’s hubs ( r =  p), the 
follower can capture at least 50% of the market as it can locate its 
hubs exactly on the same cities of the leader’s hubs. Based on the 
above discussion, it is expected that in case of the five-level cap- 
ture mechanism, the value of competitive solution (VCS) be rela- 
tively small compared to the case of the binary capture mechanism 
which can be seen in Table 17 . 

The results for the single allocation problem under the general 
capture mechanism with the CAB data set are given in Table 18 . 

It can be seen from Table 18 that the results obtained for the 
single allocation problem are more or less similar to those of the 
multiple allocation problem in that the market is divided in a more 
balanced fashion between the two firms compared to the case of 
the binary capture mechanism and the VCS values are smaller than 
their counterparts for the all-or-nothing mechanism. For instance, 
the follower’s capture for the medianoid problem with α =  0.6 and 

0.8 has decreased respectively by 2.13% and 7.55% after using the 
general capture mechanism. In case of the centroid problem, the 
follower’s capture has increased by 1.82% for α =  0.6, whereas it 
has decreased by 0.46% for α =  0.8. 

As the optimality of the leader’s solutions obtained by the SA 
is not proven in the results reported in Tables 17 and 18 , the real 
values of the VCS can be larger than the reported values for the 
optimal leader’s solutions. In other words, the leader’s gain as a 

Table 16 
Value of competitive solution with the TR data set. 

α =  0 . 6 α =  0 . 8 α =  0 . 9 
p r VCS p r VCS p r VCS 

Mult. Alloc. Sing. Alloc. Mult. Alloc. Sing. Alloc. Mult. Alloc. Sing. Alloc. 
2 2 1.16% 0.63% 2 2 3.11% 0.57% 2 2 6.54% 0.13% 

3 4.08% 0.00% 3 2.43% 2.55% 3 8.35% 7.94% 
4 5.16% 1.09% 4 2.44% 3.37% 4 9.54% 6.01% 
5 5.52% 0.97% 5 6.91% 9.33% 5 9.82% 6.99% 

3 2 0.00% 0.00% 3 2 0.00% 9.87% 3 2 10.53% 13.83% 
3 0.00% 0.00% 3 0.00% 9.10% 3 12.81% 10.24% 
4 0.22% 0.00% 4 0.00% 10.29% 4 13.21% 11.83% 
5 0.83% 0.00% 5 0.00% 5.16% 5 14.20% 10.14% 

4 2 2.07% 0.00% 4 2 0.00% 0.00% 4 2 0.00% 0.28% 
3 3.12% 0.00% 3 0.00% 0.00% 3 1.00% 0.00% 
4 2.64% 0.00% 4 0.00% 0.00% 4 0.35% 0.00% 
5 3.80% 0.00% 5 0.00% 0.00% 5 0.57% 1.30% 

5 2 0.72% 0.00% 5 2 0.90% 0.00% 5 2 2.20% 0.00% 
3 0.27% 0.00% 3 2.12% 0.00% 3 1.07% 0.45% 
4 1.63% 0.00% 4 3.41% 0.00% 4 1.27% 0.00% 
5 2.15% 0.00% 5 2.77% 0.00% 5 2.13% 0.00% 

Average 2.08% 0.17% Average 1.50% 3.14% Average 5.84% 4.32% 
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Table 17  
Results for the general capture mechanism with the CAB data set (multiple allocation). 
α =  0 . 6 α =  0 . 8 
p r Medianoid Centroid VCS p r Medianoid Centroid VCS 

CPLEX SA SA CPLEX SA SA 
Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture 

2 2 59.48% 59.48% 50.00% 9.48% 2 2 58.54% 58.54% 50.00% 8.54% 
3 68.82% 68.82% 60.04% 8.78% 3 65.38% 65.38% 57.16% 8.22% 
4 74.65% 74.65% 67.10% 7.55% 4 69.87% 69.87% 62.74% 7.13% 
5 79.36% 79.36% 72.25% 7.11% 5 73.32% 73.32% 66.43% 6.89% 

3 2 40.34% 40.34% 39.95% 0.39% 3 2 43.31% 43.31% 42.94% 0.37% 
3 50.00% 50.00% 50.00% 0.00% 3 50.06% 50.06% 50.00% 0.06% 
4 57.37% 57.37% 57.37% 0.00% 4 55.11% 55.11% 55.11% 0.00% 
5 62.78% 62.78% 62.78% 0.00% 5 59.33% 59.33% 59.33% 0.00% 

4 2 33.84% 33.84% 32.89% 0.95% 4 2 38.31% 38.31% 37.23% 1.08% 
3 43.50% 43.50% 42.62% 0.88% 3 45.06% 45.06% 44.88% 0.18% 
4 50.59% 50.59% 50.00% 0.59% 4 50.12% 50.12% 50.00% 0.12% 
5 56.50% 56.50% 55.82% 0.68% 5 54.41% 54.41% 54.34% 0.07% 

5 2 30.54% 30.54% 27.76% 2.78% 5 2 37.28% 37.28% 33.55% 3.73% 
3 39.23% 39.23% 37.21% 2.02% 3 43.53% 43.53% 40.66% 2.87% 
4 46.52% 46.52% 44.17% 2.35% 4 48.25% 48.25% 45.65% 2.60% 
5 52.33% 52.33% 50.00% 2.33% 5 51.96% 51.96% 50.00% 1.96% 

Average 52.86% 52.86% 49.99% 2.87% Average 52.74% 52.74% 50.00% 2.74% 
Table 18  
Results for the general capture mechanism with the CAB data set (single allocation). 
α =  0 . 6 α =  0 . 8 
p r Medianoid Centroid VCS p r Medianoid Centroid VCS 

CPLEX SA SA CPLEX SA SA 
Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture Follower’s capture 

2 2 57.70% 57.70% 50.00% 7.70% 2 2 57.05% 57.05% 50.00% 7.05% 
3 65.76% 65.76% 58.85% 6.91% 3 61.74% 61.74% 56.26% 5.48% 
4 72.44% 72.44% 66.26% 6.18% 4 65.64% 65.64% 61.03% 4.61% 
5 77.91% 77.91% 71.10% 6.81% 5 69.87% 69.87% 64.86% 5.01% 

3 2 44.10% 44.10% 41.14% 2.96% 3 2 46.89% 46.89% 45.18% 1.71% 
3 51.75% 51.75% 50.66% 1.09% 3 52.08% 52.08% 51.12% 0.96% 
4 58.77% 58.77% 57.99% 0.78% 4 56.97% 56.97% 56.49% 0.48% 
5 64.96% 64.96% 63.33% 1.63% 5 61.18% 61.18% 59.53% 1.65% 

4 2 35.80% 35.80% 34.88% 0.92% 4 2 41.64% 41.64% 39.35% 2.29% 
3 43.72% 43.72% 43.48% 0.24% 3 47.95% 47.95% 46.48% 1.47% 
4 50.76% 50.76% 50.75% 0.01% 4 51.92% 51.92% 51.05% 0.87% 
5 56.28% 56.28% 56.28% 0.00% 5 55.88% 55.88% 54.98% 0.90% 

5 2 32.52% 32.52% 29.95% 2.57% 5 2 39.18% 39.18% 36.11% 3.07% 
3 39.89% 39.89% 37.05% 2.84% 3 45.45% 45.45% 41.72% 3.73% 
4 46.43% 46.43% 44.97% 1.46% 4 49.22% 49.22% 46.78% 2.44% 
5 52.26% 52.26% 50.39% 1.87% 5 52.67% 52.67% 50.67% 2.00% 

Average 53.19% 53.19% 50.44% 2.75% Average 53.46% 53.46% 50.73% 2.73% 
result of solving the bilevel model to optimality can be larger than 
the reported values. 
6. Conclusions 

In this research the competitive single and multiple allocation 
HLPs in a duopoly market are considered. Two firms sequentially 
decide on the location of their hubs aiming at maximizing their 
own market shares. It is assumed that the customers choose one 
firm which offers a service with lower cost. The follower’s prob- 
lem can be viewed as a maximal covering problem after the leader 
makes his/her decision. In this case, the follower aims at locating 
its hubs in such a way that the total captured flow (market share) 
is maximized. Therefore, from the leader’s point of view it is im- 
portant to anticipate the follower’s subsequent action and incorpo- 
rate it into his/her problem as a bilevel optimization program. To 
this end, we considered two problems for the leader and the fol- 
lower: ( r | X p ) hub-medianoid and ( r | p ) hub-centroid problems, re- 
spectively, both in single and multiple allocation networks. New 
bilevel MIP formulations are presented for these problems and ef- 

ficient simulated annealing (SA) based heuristics are proposed for 
solving them. 

Extensive computational experiments based on two data sets 
of the CAB and TR are conducted to analyze different properties 
of these problems and to evaluate the performance of the pro- 
posed SA algorithms as well as the MIP models. For all the in- 
stances with known optimal solutions from the two data sets, the 
proposed SA algorithms obtained the optimal solutions. However, 
for the bilevel single allocation problem and larger instances of 
the bilevel multiple allocation problem (where the optimal solu- 
tions are not known), the optimality of the solutions obtained by 
the SA is not proven. Furthermore, the computational results show 
the efficiency of the proposed algorithms in terms of CPU times. 
Computational experiments reveal that acting in anticipation of a 
possible competition creates value for the leader which we call it 
the value of competitive solution (VCS). Hence, solving ( r | p ) hub- 
centroid problem is of great importance for the leader even if it 
requires higher amount of CPU times. We also extended the prob- 
lem to accommodate a more general five-level capture mechanism 
in addition to the all-or-nothing (binary) mechanism. 



N. Ghaffarinasab et al. / Computers and Operations Research 90 (2018) 173–192 191 
Further research may focus on developing exact methods such 

as branch-and-price or decomposition algorithms as well as dif- 
ferent heuristics that can solve larger instances of the problems 
to optimality even faster. Moreover, instead of using classical 
HLP assumptions such as complete hub-level network or flow- 
independent economies of scale on only inter-hub links, more 
realistic assumptions like incomplete hub-level network or flow- 
dependent scale economies on all links can be used to better re- 
flect the real world situations. 
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Appendix A 

This appendix provides linear MIP formulations for the bilevel 
programming problems studied in this paper. The proposed bilevel 
models in Section 3 are linearized using a minimax approach. To 
this end, we use the notations introduced in Section 3 , as well as 
some new notations which are introduced here. We first consider 
the case of multiple allocation network and denote the cost of ser- 
vice provided by the leader for pair i, j ∈ N by β ij as a non-negative 
decision variable. Moreover, let the parameter γ S 

i j denote the cost 
of service provided by the follower for pair i, j ∈ N if he/she chooses 
S ⊆ H as the hub set. Furthermore, we define the binary decision 
variable Z S 

i j ∈ { 0 , 1 } to indicate whether the flow from node i ∈ N to 
node j ∈ N is captured by the follower when he/she chooses S ⊆ H as 
its hub set (by taking value of 1), or not (by taking value of 0). 

The following linear MIP model solves the multiple allocation 
( r | p ) hub-centroid problem with an exponential number of deci- 
sion variables and constraints: 
min θ (A.1) 
s.t.: θ ≥

∑ 
i ∈ N 

∑ 
j∈ N w i j Z S i j ∀ S ⊆ H, | S| =  r (A.2) 

(12) − (14) (A.3) 
βi j ≥ ∑ 

k ∈ H 
∑ 
m ∈ H (c ik + αc km + c m j ) X i jkm ∀ i, j ∈ N (A.4) 

βi j − γ S 
i j ≤ MZ S i j ∀ i, j ∈ N, S ⊆ H, | S| =  r (A.5) 

θ , X i jkm , βi j ≥ 0 ∀ i, j ∈ N, k, m ∈ H (A.6) 
Z S i j , Y k ∈ { 0 , 1 } ∀ i, j ∈ N, k ∈ H, S ⊆ H, | S| =  r (A.7) 
The objective function (A.1) together with constraints (A.2) min- 
imize the highest possible captured flow value by the follower in 
the remaining scenario. Constraints (A.4) calculate the service costs 
of the leader. Constraints (A.5) , in which M is a sufficiently large 
number, determine whether a flow is captured by the follower us- 
ing a hub set S ⊆ H of cardinality r or not. More specifically, if the 
service cost of the follower for the flow w ij is smaller than the cor- 
responding cost of the leader, Z S 

i j has to take value of 1. Otherwise, 
the constraint becomes redundant. 

As in the case of multiple allocation models, we can convert 
the bilevel model for the single allocation problem to a linear MIP 

model using the minimax approach. To this end, let the param- 
eter γ A f 

S 
i j denote the cost of the service provided by the follower 

for pair i, j ∈ N if he/she chooses S ⊆ H, | S| =  r as the hub set and 
A f S ∈ R r (N × H) as the corresponding assignment function. Also, let 
the binary variable Z A f S 

i j ∈ { 0 , 1 } indicate whether the flow from 
node i ∈ N to node j ∈ N is captured by the follower for the hub set 
S ⊆ H and the assignment function A f S . Furthermore, we define the 
auxiliary binary variable V ijkm ∈ {0, 1} to take value of 1 if the nodes 
i and j are respectively assigned to the hubs k and m and taking 0, 
otherwise. The single allocation ( r | p ) hub-centroid problem can be 
formulated as a single level linear MIP model with an exponential 
number of decision variables and constraints as follows: 
min θ (A.8) 
s.t.: θ ≥

∑ 
i ∈ N 

∑ 
j∈ N w i j Z A f S i j ∀ A f S ∈ R r (N × H) , S ⊆ H, | S| =  r (A.9) 

(28) − (30) (A.10) 
βi j ≥ ∑ 

k ∈ H 
∑ 
m ∈ H (c ik + αc km + c m j ) V i jkm ∀ i, j ∈ N (A.11) 

βi j − γ
A f S 

i j ≤ MZ A f S 
i j ∀ i, j ∈ N, A f S ∈ R r (N × H) , S ⊆ H, | S| =  r 

(A.12) 
V i jkm ≥ Y ik + Y jm − 1 ∀ i, j ∈ N, k, m ∈ H (A.13) 
θ , βi j ≥ 0 ∀ i, j ∈ N, k, m ∈ H (A.14) 
Z A f S 

i j , Y ik , V i jkm ∈ { 0 , 1 } 
∀ i, j ∈ N, k, m ∈ H, A f S ∈ R r (N × H) , S ⊆ H, | S| =  r (A.15) 
Constraints (A.11) calculate the service costs of the leader. Con- 
straints (A.12) determine whether a flow is captured by the fol- 
lower (when he/she uses the hub set S ⊆ H and the assignment 
function A f S ), or not. Constraints (A.13) enforce the variable V ijkm 
to be 1, if both the variables Y ik and Y jm take value of 1. 
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