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W e consider a firm that procures an input commodity to produce an output commodity to sell to the end retailer.
The retailer’s demand for the output commodity is negatively correlated with the price of the output commodity.

The firm can sell the output commodity to the retailer through a spot, forward or an index-based contract. Input and out-
put commodity prices are also correlated and follow a joint stochastic price process. The firm maximizes shareholder
value by jointly determining optimal procurement and hedging policies. We show that partial hedging dominates both
perfect hedging and no-hedging when input price, output price, and demand are correlated. We characterize the optimal
financial hedging and procurement policies as a function of the term structure of the commodity prices, the correlation
between the input and output prices, and the firm’s operating characteristics. In addition, our analysis illustrates that
hedging is most beneficial when output price volatility is high and input price volatility is low. Our model is tested on
futures price data for corn and ethanol from the Chicago Mercantile Exchange.
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1. Introduction

Commodity price fluctuations create challenges for
commodity processors in determining production,
procurement, and risk-mitigation strategies. The
impact of price risk is more profound on processors
that have limited market power to pass a price
increase in raw material to end customers. Many
firms, including agricultural processors, steel manu-
facturers, and energy producers, are susceptible to
the commodity price risk because both their input
and output prices are market determined. The effect
of commodity price fluctuations is twofold; it creates
uncertainty in the margins, and affects demand if
price and demand of the output product are corre-
lated. In this regard, financial hedging1 can play a piv-
otal role in mitigating price risk and maximizing firm
value. In addition to price risk, commodity processors
also face demand risk, and optimize their operating
policies to manage this risk. Since price and demand
for various commodities are correlated, this results in
an interaction between hedging and operating poli-
cies. In this study, we jointly optimize the financial
hedging and operating decisions of a commodity

processor in a multi-period model when commodity
demand and price are correlated. We characterize the
optimal financial hedging and inventory policies as a
function of the term structure of the commodity
prices, the correlation between the input and output
prices, and the firm’s operating characteristics. We
show that partial hedging dominates perfect hedging2

for a firm when input and output commodity prices
are positively correlated.
It is well established that in the absence of market

frictions, corporate-level risk management is a value-
neutral proposition, and operating and financial
hedging decisions are separable (Modigliani and
Miller 1958). Financial theory explains the use of
financial derivatives through capital market imperfec-
tions (e.g., transaction costs, information asymme-
tries, and taxes) and agency problems (Froot et al.
1993, Jin and Jorion 2006, Smith and Stulz 1985). In
this study, we consider a publicly traded commodity
processor that operates to maximize shareholder
value, and experiences a correlated demand with the
price of its output commodity due to logistical fric-
tions. These frictions result in the breakdown of the
Modigliani and Miller (1958) framework and requires
the joint optimization of hedging and operating poli-
cies. A negative correlation between demand and
price results in the concavity of the objective function,

*This research was conducted when the author was a
faculty at the Case Western Reserve University.
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which creates an incentive to reduce price volatility,
and hence, a need to develop and integrate an optimal
hedging policy with inventory decisions.
This research is motivated by the operations of an

ethanol producer that procures corn in the spot mar-
ket to produce ethanol to sell to the local retailer. The
retailer’s demand for ethanol is negatively correlated
with the price of ethanol. Our firm, the ethanol pro-
ducer, contracts with the retailer to sell ethanol using
spot, forward or index-based contracts. The firm is a
price taker, where corn and ethanol prices are corre-
lated and follow a joint stochastic process. In each
period, the firm determines the procurement and pro-
cessing policies for corn and the hedging policy for
ethanol sales. Excess inventory is carried over into the
next period, and excess demand is backlogged. We
show that the expected base stock policy is optimal
under yield uncertainty, and it is characterized as a
function of the term structure of the futures prices.
When there is no yield uncertainty, we establish the
conditions for the optimality of the myopic policy.
Renewable energy is a strategic issue in the United

States (US) and in many other countries around the
globe. In this regard, ethanol is considered a partial
substitute for gasoline, reducing reliance on fossil
fuels. In 2016, according to the US Department of
Energy, the US is expected to process 5.28 billion
bushels of corn, generating a record 14.54 billion gal-
lons of ethanol. Ethanol producers buy and process
corn to produce and sell ethanol to downstream
retailers (jobbers).3 Ethanol is mixed with gasoline by
the jobber in accordance with environmental regula-
tions and the economics of the process. The retailer
(the ethanol user) optimizes its gasoline blend based
on ethanol prices and the chemical properties of the
gasoline when it is mixed with ethanol. Maintaining
state regulations, the retailer blends more ethanol as
ethanol prices decrease and reduces the ethanol con-
tent of its product as prices increase. This situation
leads to a negative correlation between the retailer’s
demand and the commodity price.4 Due to the corre-
lation of demand and price, under high price realiza-
tion, the ethanol producer observes a low demand for
its output commodity and may not be able to sell all
of its inventory to local retailers, and also may not
clear the remaining inventory in the exchange market
due to logistical frictions. This mismatch in produc-
tion and demand of ethanol results in firms carrying
excess inventory into subsequent periods. According
to the US Energy Information Administration, there
were about 20.9 million barrels of ethanol inventory
on 8/26/2016. This situation is consistent with a clas-
sic paper on the behavior of commodity prices by
Deaton and Laroque (1992), according to which, in a
multi-period setting, the optimal price does not neces-
sarily clear the market and a firm carries positive

inventory into the subsequent period. In this study,
we model the negative correlation between ethanol
price and demand, as well as the inventory dynamics
in a multi-period framework.
Over the past few years, the effect of fossil-fuel sup-

ply chains on the environment has become a central
issue in determining environmental policy across
many countries. Environmental concerns over methyl
tertiary butyl ether (MTBE), a substance blended with
gasoline to raise the octane number, resulted in the
US Environmental Protection Agency banning the
substance in 2006. Ethanol now replaces MTBE as a
means to improve the octane performance of gasoline.
This change had a substantial impact on the eco-
nomics of growing corn: ethanol production now
represents the highest use of corn in the US, followed
by its use for feed. As ethanol production consumes
the largest portion of the corn supply, the prices of
ethanol and corn have begun to affect each other. As a
result, we model corn and ethanol prices with a
mean-reverting correlated stochastic process. Further-
more, the conversion process of corn into ethanol is
subject to yield uncertainty, and therefore, we also
incorporate yield uncertainty when determining opti-
mal procurement and hedging policies.
Another important issue in the supply chain of

ethanol is its distribution cost. Ethanol has an affinity
for water, rendering it unsuitable for transporting
through pipelines. At present, the only possible
modes of transportation for ethanol are trucks and
trains, which result in transportation costs almost 10
times higher for ethanol compared to gasoline (Wake-
ley et al. 2009). This cost factor limits the economic
feasibility of transporting ethanol over long distances.
According to Wakeley et al. (2009), “Long-distance
transport of ethanol to the end user can negate ethanol’s
potential economic and environmental benefits relative to
gasoline.” Therefore, the ethanol producer in our
model prefers to carry excess inventory into subse-
quent periods rather than shipping this inventory to
an end user outside the local market. These circum-
stances entail that the price elasticity of ethanol at the
retailer’s end is transferred to the ethanol producer
due to the inability to sell excess inventory outside
the local market because of high transportation costs.
The ethanol processor procures corn in the spot

market and produces ethanol to sell in the local mar-
ket. The price of ethanol in the local market is
perfectly correlated with the price of ethanol on the
Chicago Mercantile Exchange (CME). Ethanol pro-
ducers sell ethanol to jobbers through a variety of con-
tracts, including spot, forward, and index-based
agreements (Dahlgran 2010, Franken and Parcell
2003). In our model, we propose an index-based con-
tingent contract whose price and volume are deter-
mined as a function of spot and futures prices. The
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sales price of the contract is a weighted function of
the futures price observed today for the contract that
matures in the next period, and of the spot price to be
observed in the next period. The expected price of this
contract is always equal to the futures price; however,
the weight on the futures contract vs. the spot contract
can change the price volatility. Since this index con-
tract reduces price volatility compared to the pure
spot contract, we refer to this case as financial hedging.
In particular, we show that for an ethanol producer,
an index-based contract performs better than either
spot or forward contracts, and we dynamically opti-
mize the contract in each period.
Our contributions to the literature are as follows:

(1) We show that partial hedging dominates perfect
hedging and no-hedging for a publicly traded firm
when input and output prices are positively corre-
lated, and demand is negatively correlated with out-
put price. (2) We identify three sufficient conditions
under which a myopic policy is optimal for a price-
taker firm when output price and demand are nega-
tively correlated. (3) We characterize the optimal
policy for inventory procurement and the policy for
hedging the sales of the output commodity as a func-
tion of the term structure of the futures prices, and
show that the expected base stock policy is optimal
under yield uncertainty. (4) Our numerical analysis
shows that the value of hedging increases with output
price volatility, but decreases with input price volatil-
ity. We also observe that yield uncertainty has a non-
monotone effect on the value of hedging. Our model
is motivated by ethanol processing but it can be
applied to many other commodity-processing scenar-
ios, such as steel, wheat, and chemicals. We test our
model on the futures price data obtained from the
CME for corn and ethanol contracts traded from 4/1/
2005 to 12/31/2011.

2. Literature Review

Our study is related to the literature on commodity
processing, as discussed in section 2.1. In our study,
we bridge the gap between commodity processing
and financial hedging in a multi-period framework.
We discuss in detail the literature on financial hedg-
ing in operations and finance in sections 2.2 and 2.3,
respectively. Agricultural commodity processors are
constantly confronted with yield uncertainty in the
challenge of matching supply and demand. In this
context, in section 2.4, we discuss how our research
relates to the literature on managing yield uncertainty
by commodity processors.

2.1. Commodity Processing
There is a growing body of research on commodity
processing and trading in the operations literature.

For example, Secomandi (2010) evaluates the value of
storage for natural gas in the presence of operational
constraints. Berling and Martinez-de Albeniz (2011)
develop operating policies for commodity processors
under stochastic price and demand. Goel and Gutier-
rez (2009, 2011) postulate the significance of dynami-
cally updating operating policies in the presence of
stochastically evolving convenience yield. Devalkar
et al. (2011) obtain optimal commodity processing
and storage decisions under capacity constraints. Sim-
ilar capacity and risk management problems for agri-
cultural commodities are addressed by Boyabatli
et al. (2016) and Noparumpa et al. (2015). More
recently, Devalkar et al. (2016) consider commodity
processing and risk management in partially com-
plete markets in the presence of financial distress
costs.
Our study is also closely related to Plambeck and

Taylor (2011, 2013), who consider the dynamics
between input and output prices for a commodity
processor in the absence of financial hedging. Plam-
beck and Taylor (2011) explore the value of opera-
tional flexibility, and show that the value of
feedstock-intensity flexibility decreases with variabil-
ity in feedstock cost or output price. Plambeck and
Taylor (2013) study the trade-off between input effi-
ciency and capacity efficiency, and conclude that the
flexibility to adjust between these two types of effi-
ciencies decreases with variability in input and output
prices if the expected margin is thin. Our study con-
tributes to the literature by (1) dynamically integrat-
ing financial hedging with operating decisions in a
multi-period model, (2) considering the stochastic
dynamics of both input and output prices, as well as
the associated effect of correlation on hedging deci-
sions, and (3) exploring the effect of yield uncertainty
on hedging and operating decisions.

2.2. Hedging Under Utility/Profit Maximization
In the economics literature, Rolfo (1980) derives an
optimal futures hedging strategy under both price
and production uncertainties in a mean-variance
framework. He shows that the optimal hedge ratio is
equal to one in the absence of production risk, and is
less than one in the presence of production risk. A
similar result is later provided under a continuous-
time model by Ho (1984), under a constant absolute
risk-aversion (CARA) utility function of consumption.
In contrast to Rolfo (1980) and Ho (1984), we show
that even if there is no production risk, the optimal
hedge ratio is less than one for a value-maximizing
firm when input and output prices are positively cor-
related, and demand is negatively correlated with the
output price.
Recently, financial hedging has received growing

attention in the operations management literature.

Goel and Tanrisever: Financial Hedging and Procurement
1926 Production and Operations Management 26(10), pp. 1924–1945, © 2017 Production and Operations Management Society



In the context of risk-averse decision makers, Gaur
and Seshadri (2005) address the problem of hedg-
ing inventory risk when demand is correlated with
the price of a financial asset. Similarly, Chen et al.
(2007) show how to hedge operational risk through
financial instruments in a partially complete mar-
ket in a multi-period model. Dong and Liu (2007)
derive a bilateral forward contract in a Nash bar-
gaining framework, and justify its prevalence due
to the hedging benefits in spite of the presence of a
liquid spot market under a utility-maximization
framework. Again in a risk-averse setting, Ding
et al. (2007) show how a multi-national firm can
use a real option to partially hedge against demand
uncertainty, and use financial options on the cur-
rency exchange rate to hedge against currency risk.
There is also a stream of research showing the rele-
vance of risk management for risk-neutral decision
makers. For example, Caldentey and Haugh (2009)
explore the value of flexible supply contracts in
conjunction with financial hedging, and Turcic
et al. (2015) examine the value of hedging input
costs in a decentralized supply chain with risk-neu-
tral agents. Our study differs from the above
papers in the following respects: (1) Our model is
cast in a value-maximization framework, which is
appropriate for well-diversified, publicly traded
firms. (2) We integrate the dynamics of both input
and output commodity prices into the firm’s oper-
ating and hedging decisions. (3) We examine hedg-
ing in a multi-period model in conjunction with
inventory dynamics. Next, we briefly discuss the
finance literature on value maximization and finan-
cial hedging.

2.3. Hedging Under Value Maximization
Since the seminal paper of Modigliani and Miller
(1958), it is now well known that trading financial
derivatives is a value-neutral proposition for a firm
under perfect capital markets. Financial theory
explains the use of financial derivatives, in practice,
through capital market imperfections (e.g., transac-
tion costs, information asymmetries, and taxes) and
agency problems (Froot et al. 1993, Jin and Jorion
2006, Smith and Stulz 1985). Financial hedging may
also create value when risk-averse agents that con-
tract with the firm cannot fully diversify their claims
(Bessembinder 1991). In a stylized single-period set-
ting, Froot et al. (1993) investigate an investment and
hedging problem in the presence of costly external
funds. They show that positive correlation between
the availability of investment opportunities and the
supply of internal cash flows creates a natural hedge;
and hence, the firm underhedges in the financial
market. Although this finding is similar to our under-
hedging result, our analysis and findings are different

in the following respects: (1) We establish our results
in the presence of logistical frictions, and they are
driven by the correlation between the input and
output prices and the output price and demand. (2)
Our model incorporates inventory and price dynam-
ics into the firm’s hedging plan, and clearly delin-
eates the role of demand, and holding and shortage
costs. In addition, input and output prices as well as
convenience yield are essential ingredients of the
optimal policy. (3) Our hedge ratio is nonlinear in
the correlation term due to the inventory and price
dynamics in our model. Overall, we provide a
dynamic hedging policy that can be easily imple-
mented. Similar to the finance literature, in this study,
we explore the value of hedging under a value-maxi-
mization framework.

2.4. Yield Uncertainty
The economics literature has typically considered the
impact of yield uncertainty in a single-period setup
cast in a utility-maximization framework. Rolfo
(1980) shows that the optimal hedge ratio is not equal
to one in the presence of yield uncertainty when indi-
vidual preferences are represented either by logarith-
mic or quadratic utility functions. Losq (1982)
extends the results of Rolfo (1980) to a general utility-
maximization framework and shows that when yield
and price are independent, the firm should hedge
less than the expected output, provided that the util-
ity function shows decreasing absolute risk aversion.
Moschini and Lapan (1992, 1995) explore the effect of
correlation among yield, price, and basis risks on the
optimal hedge ratio when agents’ preferences are of
a CARA type and in a mean-variance framework.
Our paper focuses on the effect of yield uncertainty
on hedging, and is cast in the value framework
of finance. We also consider a multi-period model
that closely captures the inventory dynamics of the
problem.
In the operations literature, the structure of opti-

mal operating policies has been well studied under
yield uncertainty. Henig and Gerchak (1990) show
that under yield uncertainty, order-up-to policies are
not optimal in a periodic-review inventory model.
More recently, Sobel and Babich (2012) prove the
optimality of myopic policies with an order-up-to
structure in a multi-echelon model with an auto-
regressive demand, under the assumption that yield
uncertainty is independent of the lot size. In our
model, we show that under the stochastically pro-
portional yield model an expected base-stock policy
is optimal. We also contribute to the literature on
yield uncertainty in operations management by
introducing financial hedging. To the best of our
knowledge, this aspect has never been explored in
this literature.
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3. Commodity Processing with
Hedging

In this section, we present the mathematical model in
section 3.1, then we characterize the optimal policy
and determine the value of hedging in section 3.2. We
first assume deterministic yield to understand the
dynamics between commodity processing and finan-
cial hedging, and in section 4 we discuss the effect of
yield uncertainty.

3.1. Mathematical Model
We consider a commodity processor that procures an
input commodity to process and sell it to a retailer
whose demand is negatively correlated with the price
of the processed output commodity. We assume that

ASSUMPTION 1. The firm is a price taker for both input
and output commodities.

ASSUMPTION 2. Both input and output commodities are
traded on an organized exchange that offers no arbitrage
opportunities.

ASSUMPTION 3. Without loss of generality, the proces-
sing of the output commodity has a lead time of one
period.

ASSUMPTION 4. Excess demand is backlogged.

ASSUMPTION 5. The contract design between the firms is
credible (see, e.g., Boyabatli et al. 2011, Kouvelis et al.
2013). Credibility of the contracts are ensured through
collateral mechanisms similar to forward contracts.

ASSUMPTION 6. It is cheaper to hold inventory in the
upper echelon.

In each period, the commodity processor (1)
observes the spot prices of the input and output com-
modities and the inventory of the output commodity,
and (2) determines how much input commodity to
procure and process, as well as determining the hed-
ging policy for the sales of the output commodity.
We respectively denote the spot prices of input and

output commodities as st and pt, where ðst; ptÞ�Pt, and
Pt contains all the information related to the state of
the economy, demand and supply dynamics, and
developing new technologies. The evolution of com-
modity prices follows a mean reverting process of the
Ornstein–Uhlenbeck type, as outlined in the finance
literature (see, e.g., Schwartz 1997, Schwartz and
Smith 2000). This stochastic price process offers no
risk-free arbitrage opportunities, such that Pt evolves
under a risk-neutral measure where the futures price
of the input commodity i at time t, for delivery at time

t + 1, is given by f it;tþ1 ¼ EQ
PjPt

½stþ1�. Similarly, the

futures price of the output commodity o at time t, for

delivery at time t + 1, is given by fot;tþ1 ¼ EQ
PjPt

½ptþ1�.
The superscript Q denotes that the expectation is
taken under the risk-neutral measure. Future cash
flows evaluated under a risk-neutral measure are dis-
counted at a risk-free rate rf, such that the discount

rate b ¼ e�rfDt, where Dt = 1. For notational brevity
we denote the one-period-ahead futures prices simply

by fot and f it for the output and input commodities,
respectively.
Assumption 1 holds when the monopoly price in

the local market, sm, is larger than the spot price plus
the logistical costs, kt, to access the exchange market.
This is a reasonable condition, since it is well estab-
lished in the economics literature that monopoly
prices are higher than competitive market prices
(Bresnahan 1982). The firm of our interest, the ethanol
producer, is geographically located at a distance, such
that it costs kt to transport the output commodity to
the exchange, where it is traded at price pt. Our firm’s
customer is located locally, such that transportation
costs between the two are negligible. If our firm opti-
mizes the price in the local market then it can charge
the monopoly price sm to its customers. However,
since sm ≥ pt + kt, it is profitable for the customer to
procure the commodity from the exchange if the pro-
ducer offers the monopoly price. Therefore, the maxi-
mum price our firm can charge is determined by the
cost of the customer’s outside option, pt + kt. On the
other hand, since the revenues are concave, there is
no economic reason for charging a price below pt + kt.
As a result, the equilibrium spot price in the local
market is pt + kt.
It is common for commodity processors to sell an

output commodity through spot and forward agree-
ments. Also, in practice, there are index-based price
contracts that are a combination of spot and futures
prices. We define Wtðbt; ptþ1Þ ¼ btfot þ ð1 � btÞ
ptþ1 þ �tþ1 as the index price that the customer agrees
at time t to pay at time t + 1, where bt � [0, 1] is the
hedging decision and pt+1 is the realized price of the
output commodity at time t + 1. Simultaneously, at
time t, the buyer commits to the quantity,
dt+1 = At+1 � cWt(bt, pt+1), as a function of the index
price Wt(bt, pt+1), where At+1 is the maximum possible
demand of the retailer (also called the market size)
and c is the retailer’s demand elasticity with respect
to price (see, e.g., Inderfurth et al. 2014, Kazaz 2004).
This contract is agreed upon at time t, but its value is
realized at time t + 1, after the realization of the spot
price of the output commodity. That is, the contract
between the processor and the retailer specifies the
price and quantity (Wt(bt, pt+1), dt+1) in a contingent
manner (see, e.g., Samuelson 1986, Bazerman and Gille-
spie 1998, and Biyalogorsky and Gerstner 2004 on con-
tingent contracts). In summary, the processor and the
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retailer commit to a menu of price and quantity con-
tracts at time t to be delivered/realized at time t + 1.
Hence, there is a one-to-one mapping between the price
and the quantity through the menu of contracts. The
retailer is in a binding contract to get the quantity as
agreed upon through the menu of contracts at time t,
and does not have the leeway to adjust the quantity
after the realization of the price at time t + 1.
If the firm decides to completely hedge the price

risk, then it chooses bt = 1, such that
Wtðbt; ptþ1Þ ¼ fot þ �tþ1. On the other hand, if the
firm decides not to hedge, then bt = 0, such that
Wt(bt, pt+1) = pt+1 + kt+1. As a result, the expected
price is always fot þ �tþ1, irrespective of the hedging
policy. The hedging decision does not influence the
expected price of the contract, but controls the vari-
ance of the price. Constraint 0 ≤ bt ≤ 1 ensures that
the price of the index contract is always positive. We
define the revenue function as a function of the index
price, such that ~Rtðbt; ptþ1Þ ¼ ½Atþ1 � cWtðbt; ptþ1Þ�
Wtðbt; ptþ1Þ for the realized spot price, pt+1, and the
hedging policy bt.
In our model, the retailer, unlike the commodity

processor, is a relatively small company that wants to
avoid risk because of capital market frictions. We do
not explicitly model these frictions, but costs such as
bankruptcy or financial distress motivate the firm to
avoid risk in the market (cf. Chod et al. 2010). We
assume that these costs are high enough to compen-
sate the retailer for the reduction in profits resulting
from hedging the risk. Therefore, the retailer prefers
to hedge the price risk through an index-based con-
tract with the processing firm. The retailer also has
access to the exchange market. However, procure-
ment from the exchange is subject to a number of dis-
advantages, including basis risk. First of all, there is
an inherent variability associated with the quality of
the commodity supplied from the exchange. Resolv-
ing quality- and delivery-related issues is also harder
when procuring from a distant exchange compared to
a local firm. In addition, exchanges trade contracts
with standard delivery dates; for example, the CME
delivers wheat in March, May, July, September, and
December only. If the procurement cycle of the retai-
ler does not match the delivery cycle of the exchange,
this results in basis risk which creates motivation to
procure from the local producer. Due to the above
disadvantages of buying from the exchange, the retai-
ler prefers buying from a local processor. Neverthe-
less, anticipating these benefits, the processor may
charge its customer a premium over the exchange
market price. Indeed, this premium is a part of the
transaction cost kt in our model.
For expositional purposes, we consider that the

input commodity is procured from the spot market.
It is also possible for the firm to procure input

commodity through forward contracts, but since
procurement costs are linear in price and there are
no financial or logistical frictions at the procurement
end, forward procurement of input commodity is
value-neutral. See Appendix B for a detailed proof
of this result.
We denote xt as the current inventory of the output

commodity, which can be used to satisfy customer
demand. If the current inventory of the output com-
modity is insufficient to satisfy demand, then the
firm incurs a backlog cost of r per unit per period; on
the other hand, if the demand is less than the current
inventory, then the firm incurs a holding cost of h
per unit per period. We assume that excess demand
is backlogged, and the holding cost is small relative
to the sales price, such that it is economical for the
firm to carry inventory rather than to reduce the
price. One unit of input converts to a units of output.
We define h0 as the holding cost per unit of input
commodity, and from Assumption 6 we have h > h0/a,
which is in accordance with the multi-echelon
inventory literature. In each period, the commodity
processor observes the inventory of the output pro-
duct xt, the spot price for the input commodity st,
and the spot price for the output commodity pt, and
then jointly determines the echelon stock zt and the
hedging amount bt of the output commodity. Given
the echelon stock zt, the actual input commodity
bought in the spot market to be processed is deter-
mined by (zt � xt)/a. The unit processing cost is
denoted by ct.
The objective of the firm is to maximize shareholder

value in the presence of input and output commodity
price risks. As suggested by Seppi (2002), we use the
risk-neutral measure Q—originating from arbitrage
pricing theory—to discount for the systematic risk in
the cash flows. In section 5, we estimate the parame-
ters of the risk-neutral price process using a Kalman
filter. In our model, the value of the firm is repre-
sented by Vtðxt; PtÞ, which is defined by the following
stochastic dynamic program:

Vtðxt;PtÞ ¼ max
zt;bt�AtðxtÞ

Jtðxt; zt; bt;PtÞ ð1Þ

Jtðxt; zt; bt;PtÞ ¼ bEQ
PjPt

~Rtðbt; ptþ1Þ
n
�ðst þ ctÞ

a
ðzt � xtÞ � rð�xtÞþ � hðxtÞþ

þ bEQ
PjPt

Vtþ1ðzt � dtþ1;PÞ
o

where, AtðxtÞ ¼ fzt � xt; 0 � bt � 1g, and VTðxT;PTÞ
¼ ðpT � �TÞxþT � ðpT þ �TÞx�T .
The first term in the objective function repre-

sents the expected revenue from commodity sales.
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The second term includes the cost of procurement
and processing. The third and fourth terms are
penalty and holding costs, respectively. These
costs are incurred at the end of the period, and
are counted at the beginning of the subsequent
period. The last term is the cost-to-go function
under the risk-neutral measurement. According to
the terminal condition, any inventory left over is
sold at a discount, pT � kT, and any shortages are
bought at a premium, pT + kT. Notice that, in the
above model, all the input commodity purchased
is processed and none is stored as inventory for
the purpose of consumption in future periods.
This is indeed an optimal processing policy
because due to Assumption 2, marginal conve-
nience yield5 is positive, and, as a result, com-
modity storage with no economic use is
imprudent (see, e.g., Goel and Gutierrez 2011,
Williams and Wright 1991). We now characterize
the optimal policies.

3.2. Characterization of Optimal Policies
The lemmas below first establish the concavity of the
value function in the inventory level, and the joint
concavity of the objective function in the decision
variables.

LEMMA 1. (CONCAVITY OF VT). Vtðxt; PtÞ is concave in
xt for every realization of Pt.

PROOF. It can be easily shown that VTðxT; PTÞ is
concave in xT. Then, using concavity preservation
under maximization, we establish that VT�1(xT�1,
PT�1) is concave in xT�1. The final step of the proof
involves an induction argument to show that
Vt(xt, Pt) is concave. h

LEMMA 2. (JOINT CONCAVITY OF JT). Jtðxt; zt; bt; PtÞ is
strictly jointly concave in zt and bt.

These results are critical in solving the dynamic
program because the simultaneous solution of
first-order conditions with respect to bt and zt will
ensure a global maximum. We respectively define
wt(p) and Ψt(p) as the probability and cumulative
density functions of the output commodity price
at time t. The following theorem characterizes the
optimal policy and shows that the myopic policy
is optimal. All proofs appear in Appendix A,
unless otherwise indicated.

THEOREM 1. The myopic policy is optimal, such that
optimal b�t and z�t are obtained by solving the following
equations:

(a) if Cov(st+1, pt+1) > 0

WtðMtÞ ¼
stþbha�bf itþct�bctþ1

bðrþhÞa for t ¼ 1; 2; . . .;T � 2;
st�bafot þctþba�T

2ba�T
for t ¼ T � 1;

8<
:

ð2Þ

b�t ¼
1�Covðptþ1;stþ1Þ=aþutðz�t ;b�t Þ

2r2o
for t¼1;2;...;T�2;

1
2þ�T

r2
0

RMt

0 ðfot �ptþ1Þwtþ1ðpÞdp for t¼T�1;

8<
:

ð3Þ
if b�t \ 0 then set b�t ¼ 0 and if b�t [ 1 then set
b�t ¼ 1, and compute (2) to obtain z�t .
(b) if Cov(st+1, pt+1) ≤ 0, then b�t ¼ 1
(i) if st � bf it � bra then z�t ¼ Atþ1 � cfot � c�tþ1

and,

(ii) if st � bf it [ q bra then z�t ¼ xt.

The above theorem outlines the algorithm to com-
pute the procurement and hedging policies. The
strict joint concavity result from Lemma 2 ensures
that Equations (2) and (3) describe a unique solution:
z�t and b�t . The procurement policy z�t described by
Equation (2) has a newsvendor-like structure. The
right-hand side of Equation (2) describes a critical
ratio and the left-hand side is the probability that the
output price is less than the threshold Mt, which is a
function of the procurement policy z�t . The firm
incurs a backlogging cost if ptþ1 \Mt and a holding
cost if ptþ1 [ Mt. A key observation from Theorem 1
is that for b�t ¼ 1, there are no penalty and backlog-
ging costs since perfect hedging eliminates demand
uncertainty. As a result, no safety stock is required,
but this policy is not necessarily optimal. Neverthe-
less, when the firm decides to partially hedge,
b�t \ 1, it has to then estimate the expected backlog-
ging and holding costs, which are a function of both
the hedging policy b�t , and the procurement policy
z�t . Function utðz�t ; b�t Þ calculates the expected value
of the backlog plus holding costs, and it is instru-
mental in determining the hedging policy, as
described in Equation (3). Therefore, hedging and
procurement decisions are jointly determined as a
function of market information on prices and firm-
specific parameters. Moreover, these decisions are
dynamically updated in response to changing input
and output prices, as observed on the organized
commodity exchanges. There are three main drivers
in determining the optimal hedging policy. First, cor-
relation between the input and output prices pro-
vides a natural hedge, reducing reliance on the
financial hedge. Second, expected overstocking and
understocking costs due to demand uncertainty dri-
ven by stochastic prices provide an impetus for
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hedging. Finally, the concavity of revenues in the
output price is a motivation for financial hedging, as
outlined in the following lemma.

LEMMA 3. (JENSEN’S INEQUALITY). Rtðfot Þ�EQ
PjPt

½Rtðptþ1Þ�.

According to Lemma 3, the firm’s revenue function
decreases in the presence of price volatility. If the firm
decides to sell to the end retailer through a forward
contract then it eliminates the variance in the revenue
function, enhancing the expected revenue from for-
ward sales. In other words, since the revenue function
is concave in the realized price of the output com-
modity, the revenue decreases nonlinearly for high-
and low-price scenarios. Selling a forward contract to
the retailer eliminates the risk of low and high price
realizations, enhancing revenue. The optimal hedging
strategy is a perfect hedge, b�t ¼ 1, when the correla-
tion between the input and output price is zero,
because in the absence of such correlation there is no
benefit of underhedging. On the other hand, when
input and output prices are correlated, the optimal
hedging policy balances the expected cost of backlog-
ging and holding with the expected benefits of the
correlation between the input and output prices as
well as with the benefits of hedging due to the concav-
ity of the revenue function in the output price. The
effect of the correlation between the input and output
prices is summarized in the following corollary.

COROLLARY 1. Effect of correlation in input and output
prices:

(a) If Cov(pt+1, st+1) > 0 then b�t \ 1.
(b) If Cov(pt+1, st+1) = 0 then b�t ¼ 1.

When input and output prices are positively corre-
lated, selling in the spot market provides a natural
hedge, resulting in higher profits by reducing the
expected procurement cost. In our model, if the real-
ized output price is high, this results in low demand
and high inventory of ethanol (after meeting the
demand). Due to a positive correlation between input
and output prices, it is likely that the realization of the
input price is also high. This case implies that when
the price of the input is high, the firm needs to pro-
cure less since it has a high inventory of ethanol. Simi-
larly, if the realized price of the output commodity is
low, then it leads to high demand and low ethanol
inventory (after meeting the demand). In this case, the
firm needs to procure more (due to low inventory),
but also faces a low input price. To summarize, the
positive correlation between input and output prices
controls the procurement cost, either through a lower
input price or a lower procurement quantity. There-
fore, a positive correlation between input and output

prices, along with the presence of inventory across
time periods, motivates the firm to underhedge and
results in hedging having less value. Buying and sell-
ing forward contracts for the input commodity do not
affect this result as these transactions do not affect the
inherent correlation between the prices in the market.
In the finance literature, Froot et al. (1993), in a styl-

ized single-period setting, argue that correlation
between investment opportunities and cash flows of a
firm results in underhedging. In a different context,
our analysis yields a similar result for underhedging.
Our results are established in the presence of logisti-
cal frictions, and they are driven by the correlation
between the input price, output price, and demand.
In addition, our model incorporates inventory and
price dynamics into the firm’s hedging plan, and
clearly delineates the role of demand, as well as the
roles of holding and shortage costs. Our findings are
also related to Ho (1984) and Rolfo (1980), who show
that a firm will underhedge only if there is output
uncertainty in addition to price uncertainty. In con-
trast, our model shows that a firm will underhedge
when the input and output commodity prices are pos-
itively correlated, even when there is no production
uncertainty. Our results differ from Ho (1984) and
Rolfo (1980) because we have an integrated view of
the firm, which includes the dynamics of both input
and output commodity prices in determining the opti-
mal hedge for the output commodity. Ho (1984) and
Rolfo (1980) consider only the output commodity to
obtain the optimal hedge ratio. In our model, a posi-
tive correlation between input and output commodity
prices provides an operational hedge that motivates
the firm to underhedge the output price risk.

THEOREM 2. (VALUE OF HEDGING). Suppose Cov(pt+1,
st+1) > 0, and let Vtðxt;PtÞ and �Vtðxt;PtÞ denote the
optimal value functions under no-hedging and perfect
hedging, respectively. Then, Vtðxt;PtÞ � �Vtðxt;PtÞ
\Vtðxt;PtÞ for every realization of Pt.

The above theorem elucidates the value of hedging
for a value-maximizing firm when selling to a retailer
that faces demand that is negatively correlated with
price. The value of hedging comes from two sources:
(1) increased expected revenue from the sales of an
index-based contract to the retailer by reducing price
risk, and (2) better operational planning by obtaining
advanced demand information through the forward
sale and reducing holding and backlog costs. Notice
that partial hedging dominates perfect hedging when
the input and output prices are positively correlated.
The covariance between the prices provides a natural
hedge that renders the strategy of perfect hedging
sub-optimal. In addition, hedging elicits future
demand information from the downstream retailer.
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Using this information, the commodity processor
makes a processing decision to reduce operational
costs related to penalty and holding costs, thus creat-
ing value through advanced demand information. We
also would like to note that without frictions, corpo-
rate-level risk management is irrelevant (see, e.g.,
Froot et al. 1993, Jin and Jorion 2006, Smith and Stulz
1985). In our case, this friction is a form of transaction
cost, i.e., the logistical costs, kt, to access the exchange
market (similar transaction costs have also been used
in Goel and Gutierrez (2011) when justifying the use
of forward contracts in commodity procurement).
These logistical costs are also the driver of downward
sloping demand in this study, which makes hedging
relevant. Note that downward sloping demand in
itself is not a market friction; it is a consequence of the
logistical costs, kt. More specifically, if kt = 0, then the
processor can economically clear all the inventory in
the exchange market and does not face a downward
sloping demand. Hence, when kt = 0, hedging the
output price would be value-neutral since there are
no other frictions in our model.
Theorem 1 also establishes the optimality of the

myopic policy under three conditions: (1) absence of
yield uncertainty, (2) linearly decreasing demand in
the price of the output commodity, and (3) h > h0/a.
The absence of yield uncertainty is by construction,
and once this assumption is later relaxed, we show
that a myopic policy is not optimal. Considering a
general demand function that decreases in price is not
sufficient to show the optimality of the myopic policy.
Furthermore, the condition h > h0/a ensures that it is
not economical to convert input into output for stor-
age purposes. Notice that the positive marginal con-
venience yield, st þ h0 � bf it � 0, ensures that it is
never optimal to store input without an economic use
in the current period. However, when h < h0/a, it
could be optimal to benefit from a negative spot-for-
ward spread, st � bf it \ 0, and convert input into out-
put for storage purposes. This scenario does not lead
to arbitrage, as explained in the discussion following
Theorem 3, but results in the sub-optimality of the
myopic policy due to a higher stocking level of out-
put. The optimality of the myopic policy for a price
taker when demand is dependent on price is a unique
and significant result, particularly since it is in con-
trast to the results for the price setter in the literature
(Federgruen and Heching 1999). The following theo-
rem characterizes the optimal policy when h < h0/a.

THEOREM 3. (STORAGE COST DIFFERENTIAL). If h < h0/a
then the optimal processing policy is given by a base-
stock level zbt for a given bt and Pt.

The condition h < h0/a implies that the firm has the
ability to store output more efficiently than it can

store input. When input prices are in contango, i.e.,
st � bf it \ 0, this situation may create an opportunity
for the firm to process input into output for storage
purposes. In particular, this storage cost efficiency can
allow the firm to trade the benefits of the contango of
the input prices, st � bf it \ 0, with the holding cost of
the output to determine the optimal stocking quan-
tity. It is important to notice that zbt will be finite
because it trades the contango of the input commod-
ity price curve with the holding cost of the output in
subsequent periods. Carrying inventory for storage
purposes can result in violating the constraint zt ≥ xt,
rendering myopic policies sub-optimal. Following,
we discuss some properties of the myopic policy
described in Theorem 1.

PROPOSITION 1. (PROPERTIES OF THE MYOPIC POLICY).

(a) If Cov(pt+1, st+1) > 0 then z�t is decreasing in c,
and it is non-increasing otherwise.

(b) If Cov(pt+1, st+1) > 0 then b�t is increasing
(decreasing) in c when zt \ zGt ðzt [ zGt Þ, and it is
constant otherwise, where zGt ¼ Atþ1 � cfot �
c�tþ1.

(c) If Cov(pt+1, st+1) > 0 then b�t is increasing in r
and h, and it is constant otherwise.

(d) If Cov(pt+1, st+1) > 0 then z�t is increasing in r
and decreasing in h, and it is constant otherwise.

As the price elasticity of demand c increases, the
expected demand will decrease, resulting in lower
amounts of the commodity being processed. If the
processing quantity is below the mean demand, zGt ,
then as c increases, mean demand decreases, hence,
the overage risk of the firm increases. In this case, if
the covariance is positive, then b�t \ 1, and it is judi-
cious for the firm to increase b�t and reduce the vari-
ability in demand to mitigate the overage risk. On the
other hand, if the processing quantity is higher than
the mean demand, zGt , then as c increases, mean
demand decreases and the risk of overage increases.
To reduce the overage risk, the firm increases the vari-
ance of demand by decreasing b�t . As holding and
penalty costs increase, it is optimal to hedge more to
reduce the expected underage and overage costs. On
the other hand, lower holding and higher penalty
costs lead the firm to process more and vice versa. If
the covariance is non-positive, then it is optimal to
completely hedge the price risk, and the optimal solu-
tion is insensitive to changes in r and h.
In summary, the integrated approach to commodity

risk management proposed in this study has signifi-
cant managerial implications. Hedging policies based
only on the output commodity price risk can lead to
sub-optimal results. This scenario occurs because such
sub-optimal policies can disentangle the natural hedge
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provided by a positive correlation between the output
and input commodity prices, resulting in lower profits.
Our analysis illustrates that firms need to understand
the dynamics between input and output prices across
the supply chain when developing hedging policies.
So far, we have assumed that there is no yield

uncertainty during the conversion process of the
input commodity to the output commodity. In the fol-
lowing section, we incorporate yield uncertainty into
commodity processing decisions to ascertain its
impact on optimal processing and hedging policies.

4. Yield Uncertainty

In many agricultural processing environments, yield
uncertainty is a challenge that production managers
must deal with to ensure a regular flow of output
products. The yield from processing agricultural raw
materials such as corn and wheat depends upon
grain quality, storage and handling, and processing
parameters. We now extend our model by incorpo-
rating yield uncertainty to understand the value of
financial hedging with respect to yield risk. In our
model, yield uncertainty is exogenous in nature, but
depends on the quantity processed. The purpose of
this section is to: (1) characterize the optimal pro-
curement policy, and (2) explore the impact of yield
uncertainty on the optimal hedging policy.
According to Sobel and Babich (2012), yield uncer-

tainty is primarily modeled in three ways: via con-
stant variance, stochastically proportional, and
binomially distributed yield. In the constant variance
model, the randomness in yield is independent of the
processing quantity. In the binomial model, the out-
come of yield uncertainty is revealed as a sequence of
binary outcomes. In our research, we follow the
stochastically proportional yield model, which closely
reflects the operational dynamics of ethanol proces-
sors. We define the yield of the output commodity,
a(yt), as a function of the quantity of the input com-
modity processed, yt, such that a(yt) � (a + e)yt,
where e � N(0, r). We denote the probability distri-
bution function of e by /(e). If there is no variability in
the yield, then our model reduces to the model in sec-
tion 3, where one bushel of corn exactly converts to a
gallons of ethanol. Furthermore, we assume that the
risk of yield uncertainty is completely idiosyncratic
and diversifiable, and it is not correlated with the

market prices, such that E�E
Q
PjPt

½�P� ¼ E�½��EQ
PjPt

½P�.
We model commodity processing under yield uncer-
tainty as an echelon model. We define the expected
inventory position of ethanol as ẑt, such that
ẑt ¼ ayt þ xt, and xt+1 = (a + e)yt + xt � dt+1. The
stochastic dynamic program in Equation (1) is modi-
fied to incorporate yield uncertainty as follows:

V̂tðxt;PtÞ ¼ max
ẑt;bt�BtðxtÞ

Ĵtðẑt; bt; xt;PtÞ ð4Þ

Ĵtðẑt; bt; xt;PtÞ ¼ bEQ
PjPt

~Rtðbt; ptþ1Þ � ðst þ ctÞ ðẑt � xtÞ
a

�
�rð�xtÞþ � hðxtÞþ þ bE�E

Q
PjPt

V̂tþ1ðxtþ1;PÞ
o

where, xtþ1 ¼ ẑt þ � ðẑt � xtÞ
a � dtþ1, BtðxtÞ ¼ fẑt �

xt; 0 � bt � 1g, and, V̂TðxT; PTÞ ¼ ðpT � �TÞxþT �
ðpT þ �TÞx�T .
The following theorem characterizes the optimal

policy for procurement and hedging in the presence
of yield uncertainty.

THEOREM 4. (OPTIMAL POLICY UNDER YIELD UNCERTAINTY).
For t = 1, . . ., T � 1, let �bt and �zt be determined by
simultaneously solving the following two equations:

2r2oð1� btÞ þ bE�E
Q
PjPt

@V̂tþ1ðxtþ1;PÞ
@bt

ðfot � ptþ1Þ
¼ 0 and ð5Þ

�ðst þ ctÞ þ bE�E
Q
PjPt

@V̂tþ1ðxtþ1;PÞ
@ẑt

¼ 0; ð6Þ

where xtþ1 ¼ ẑt þ � ðẑt � xtÞ
a � dtþ1. Then the firm’s opti-

mal processing policy is given by an expected base-stock
level �z�t , and the hedging policy is described by �b�t , such
that (i) if �bt 2 ½0; 1� then �z�t ¼ �zt and �b�t ¼ �bt and (ii) if
�bt 62 ½0; 1� then �b�t ¼ maxfminf�bt; 1g; 0g, and �z�t is
obtained by solving Equation (6).

Incorporating yield uncertainty into our analysis
results in the sub-optimality of the myopic policy as it
may violate the constraint ẑt � xt. Our approach in
defining an expected base-stock level is similar to
Sobel and Babich (2012), who define echelon-like base-
stock levels. Nevertheless, the main distinction
between our model and theirs is that we model
stochastically proportional yield (while they model
yield with a constant variance) and our model incor-
porates stochasticity in prices. In our case, any
attempt to model yield with a constant variance will
not result in the optimality of the myopic policy, as in
Sobel and Babich (2012) does, for two key reasons.
First, Assumption 2 in Sobel and Babich (2012) is not
applicable because demand in our model is price
dependent, and prices are mean reverting, such that
price shocks are not independent and identically dis-
tributed. Second, Property 1 in Sobel and Babich
(2012) cannot be applied to our model because price is
a log-normal random variable, and the futures price is
not linear in the current state. Therefore, future
expected inventory cannot be written as a linear com-
bination of past states of inventory and price. Notice
that our modeling approach for yield will be
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intractable under a higher number of echelons due to
the “curse of dimensionality.” Nevertheless, we are
able to characterize an optimal policy in a two-
echelon structure because in our model there is no
incentive to carry inventory at the upper echelon due
to marginal convenience yield, which reduces the
problem to a single echelon.
The complication in solving Equations (5) and (6) is

that the transition probabilities from state Pt to Ptþ1

are not easy to compute, particularly when the price
process is at least two-dimensional with one dimension
each for input and output commodity prices. In section
5, we discretize the price process through a binomial
lattice to calculate Equations (5) and (6) in order to
compute �z�t and �b�t . Nevertheless, as the time horizon
for decision making increases, the size of the binomial
lattice increases. Due to the curse of dimensionality it
becomes computationally challenging to numerically
calculate the dynamic program. As a result, we aspire
to obtain myopic policies as an approximation of the
optimal policy. The following theorem develops the
myopic policy for the model defined in Equation (4).

THEOREM 5. (MYOPIC POLICY UNDER YIELD UNCERTAINTY).
Let �bt and �zt be determined by simultaneously solving the
following two equations:

(a) for t = 1, 2, . . ., T � 2

CðM̂tÞ ¼ st þ abh� bf it þ ct � bctþ1

abðrþ hÞ
2r2oð1� btÞ ¼ Covðstþ1; ptþ1Þ=aþ gðẑt; btÞ;

(b) for t = T � 1

CðM̂tÞ ¼ st þ ct � abf0t þ ab�T

2ba�T

bt ¼ 1

2
þ �T

r20

Z Z M̂t

0

ðfot � ptþ1Þwtþ1ðpÞdp/ð�Þd�;

where gðẑt; btÞ ¼
Rf�r

R M̂t

0 ðfot � ptþ1Þwtþ1ðpÞdp þ h
R1
M̂t

ðfot ;�ptþ1Þwtþ1ðpÞdpg/ð�Þd�, CðM̂tÞ ¼
R ð1þ �

aÞWtþ1ðM̂tÞ
/ð�Þd�, and M̂t ¼ Atþ1 � cbtfot � c�tþ1 � ẑt � �ðẑt � xtÞ=a

cð1� btÞ . Then,

myopic procurement and hedging policies ẑ�t and b̂
�
t , respec-

tively, can be obtained, such that (i) if �bt 2 ½0; 1� then

ẑ�t ¼ �zt and b̂�t ¼ �bt and (ii) if �bt 62 ½0; 1� then

b̂�t ¼ maxfminf�bt; 1g; 0g, and ẑ�t is obtained by solving
the above equations.

Our objective is to explore the conditions under
which the myopic policy performs close to the opti-
mal policy. In this regard, we expect to experience
two effects, namely the propagation effect and the
look-ahead effect. Under the optimal policy, the firm
processes a higher quantity (compared to the myopic

policy) to carry inventory in earlier periods as a hedge
against poor yield outcomes in later periods. We call
this effect the propagation effect, and we expect it to be
amplified under a low holding cost. In the presence of
the propagation effect, we expect the myopic policy to
perform poorly. In addition, as the holding cost
increases, the cost of mismatch between the myopic
and optimal policies increases, decreasing the perfor-
mance of the myopic policy. This situation is called
the look-ahead effect because it only occurs when the
constraint ẑt � xt is violated, as myopic policies are
not forward looking. As a result, we expect myopic
policies to perform better under a moderate holding
cost. The numerical analysis6 presented in Table 1 cor-
roborates our intuition. In addition, the myopic policy
performs poorly as yield uncertainty increases.

5. Numerical Analysis

In section 5.1, we describe the stochastic price pro-
cesses used to jointly model the input and output
commodity prices, and describe the method to esti-
mate the price process parameters for corn and etha-
nol using the futures price data from the CME. Then,
in section 5.2 we discuss the discretization of the price
process and the algorithm to compute the dynamic
program. In section 5.3, we discuss the managerial
insights generated through the sensitivity analysis of
the price process parameters and firm characteristics.

5.1. Stochastic Price Process
We model the input and output commodity prices as
a mean-reverting stochastic process. In particular, we
model the logarithm of the price of a commodity as

an Ornstein–Uhlenbeck process, defined as dvit ¼
jiðai � vit � �iÞdt þ ridZi, dvot ¼ joðao � vot � �oÞdt
þ rodZo, and dZi.dZo = qdt. Superscripts i and o repre-
sent input and output commodities, respectively. v is
the log of the price, j represents the rate of mean
reversion, a is the long-run average price, k is the risk
premium per unit of mean reversion, r denotes the
volatility in the commodity price, q represents the
instantaneous correlation between the two stochastic
processes, and dZ is the increment of a Brownian

Table 1 Percentage Difference in Value Function between Myopic and
Optimal Policies

Coefficient of variation in yield

Holding cost 0.04 0.06 0.08 0.10 0.12

0.01 0.99 3.19 7.62 10.70 14.00
0.02 0.84 0.82 3.13 5.64 11.00
0.04 0.82 0.62 2.68 3.50 4.50
0.10 0.84 0.58 2.68 3.37 4.20
0.20 0.88 0.59 3.27 4.57 7.00
0.30 0.93 0.61 4.28 7.15 11.00
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Motion associated with the stochastic process. Under
the risk-neutral measure, the futures price at time t
for a contract that expires at time s is defined as

f it;s ¼ exp½vite�jiðs � tÞ þ ðai � �iÞð1 � e�jiðs�tÞÞ þ ðriÞ2
4ji

ð1 � e�2jiðs� tÞÞ� for the input commodity, and

fot;s ¼ exp½vote�joðs� tÞ þ ðao � �oÞð1 � e�joðs�tÞÞ þ ðroÞ2
4jo

ð1 � e�2joðs�tÞÞ� for the output commodity.
We estimate the parameters of the price process by

applying a Kalman filter technique on the futures
price data for corn and ethanol from the CME
between 4/1/2005 and 12/31/2011. According to the
corn futures price data, the average price for corn is
300 cents/bushel. Corn futures contracts typically
mature in the months of March, May, July, September,
and December, and there are about 15 such contracts
traded at a time for various maturities. The average
price for ethanol is 120 cents/gallon. Ethanol futures
have been trading on the CME since early 2005, and
the contracts mature every month. Table 2 illustrates
the parameters of the joint stochastic price process
for the two commodities (see Schwartz and Smith
2000 for details). We observe moderate levels of mean
reversion for both commodities. In general, the mean-
reversion factor is difficult to estimate, but we observe
from the low values of the standard deviation that the
coefficient of mean reversion is significant. The
volatility of the two commodities is around 30%, with
a strong correlation in prices. The parameters in
Table 2 are used in the numerical section to compute
the futures prices and conduct a sensitivity analysis
on the optimal procurement and hedging policies.

5.2. Optimization Algorithm
To compute the optimal procurement and hedging
policies, we discretize the price process on a binomial
lattice as a function of the input and output price vari-
ables. We then solve the dynamic program using The-
orem 4 to obtain the optimal policies. We discretize the
stochastic price process as a recombinant lattice, as in
Kamrad and Ritchken (1991). The state space of price
Pt is a function of vit and vot . We define P̂t as the lattice
nodes, such that P̂t�Pt, where P̂t � ðv̂it; v̂ot Þ. The jump
size on the lattice corresponding to the input commod-
ity is denoted by Di, and it is given by Di ¼ ri

ffiffiffiffiffi
Dt

p
,

where Dt is the time interval between successive
jumps. Similarly, the jump size on the lattice corre-
sponding to the output commodity is denoted by Do,
and it is given by Do ¼ ro

ffiffiffiffiffi
Dt

p
. The lattice starts at time

t = 0 from node P̂0 � ðv̂i0; v̂o0Þ and then transitions to

four possible nodes. From every state node P̂t�Pt, we
consider the possibility of four transitions as
P̂		

t �Ptþ1, defined as P̂		
t ¼ fv̂it 	 Di; v̂ot 	 Dog,

depending upon the up or down jump for the combi-
nation of input and output prices.
The transition probabilities of mean-reverting pro-

cesses, such as an Ornstein–Uhlenbeck process, are

known to be state dependent. We denote P		
P̂t

as the

transition probability under the risk-neutral measure

from node P̂t to P̂		
t . As an example, Pþ�

P̂t
represents

the transition probability from node P̂t�Pt to an up
node for the input commodity and a down node for
the output commodity. These four probabilities at
each node are obtained by requiring them to sum up
to 1, and equating the risk-neutral conditional expec-
tations, variance and covariance of the discretized
process to those of the original process, as described
in Kamrad and Ritchken (1991) and Hahn and Dyer
(2008). Nevertheless, as the transition probabilities are
state dependent, they may be required to censor. In
this regard, we follow the two-step approach of Hahn
and Dyer (2008) to develop the conditional transition
probabilities. The jump probabilities from the state

variable v̂it are defined as Pfv̂it þ Dig ¼ Pþ
v̂it

and

Pfv̂it � Dig ¼ P�
v̂it
. Using Bayes’ rule, Pfv̂ot þ

Dojv̂it þ Dig ¼ Pþþ
P̂t

=Pþ
v̂it
, Pfv̂ot þ Dojv̂it � Dig ¼ P�þ

P̂t
=

P�
v̂it
, Pfv̂ot � Dojv̂it þ Dig ¼ Pþ�

P̂t
=Pþ

v̂it
, and Pfv̂ot �

Dojv̂it � Dig ¼ P��
P̂t

=P�
v̂it
. The conditional transition

probabilities are given as:

Pfv̂itþDig¼ 1

2
1þjiðai��i� v̂itÞ

ri
ffiffiffiffiffi
Dt

p� �

Pfv̂it�Dig¼ 1

2
1�jiðai��i� v̂itÞ

ri
ffiffiffiffiffi
Dt

p� �

Pfv̂ot þDojv̂itþDig¼ 1

2
1þðjoðao��o� v̂ot Þ

ffiffiffiffiffi
Dt

p þqroÞri
roðriþjiðai��i� v̂itÞ

ffiffiffiffiffi
Dt

p Þ

" #

Pfv̂ot þDojv̂it�Dig¼ 1

2
1þðjoðao��o� v̂ot Þ

ffiffiffiffiffi
Dt

p �qroÞri
roðri�jiðai��i� v̂itÞ

ffiffiffiffiffi
Dt

p Þ

" #

Pfv̂ot �Dojv̂itþDig¼ 1

2
1�ðjoðao��o� v̂ot Þ

ffiffiffiffiffi
Dt

p þqroÞri
roðriþjiðai��i� v̂itÞ

ffiffiffiffiffi
Dt

p Þ

" #

Pfv̂ot �Dojv̂it�Dig¼ 1

2
1�ðj0ðao��o� v̂ot Þ

ffiffiffiffiffi
Dt

p �qroÞri
roðri�jiðai��i� v̂itÞ

ffiffiffiffiffi
Dt

p Þ

" #
:

ð7Þ
Table 2 Estimated Stochastic Price Process Parameters

Symbol ai ji ki ri ao jo ko ro q

Mean 6.505 0.170 0.579 0.323 5.532 0.142 0.552 0.275 0.772
SE 0.797 0.007 0.799 0.019 0.833 0.010 0.842 0.013 0.033
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We discretize the price process on two factors, such
that we compute t2 nodes at time t. For our numerical
analysis, we also truncate the price distribution from
the above by the monopoly price, to ensure that the
firm remains a price taker. The outline of the algo-
rithm that calculates (4) is as follows:
Step 1: Initialization

(a) Set up the lattice to discretize the price pro-
cess, and calculate the transition probabilities
from P̂t�Pt to the corresponding nodes in
P̂tþ1.

(b) Censor the transition probabilities based on
Equation (7).

(c) At each node, calculate fot;tþ1 ¼ exp½v̂ote�jo

þðao � �oÞð1 � e�joÞ þ ðroÞ2
4jo ð1 � e�2joÞ�.

Step 2: Recursive Calculation

(a) Calculate V̂TðxT; P̂TÞ for all nodes P̂T�PT. Set
t = T � 1.

(b) Calculate EQ

P̂jP̂t
V̂tþ1ðxtþ1; P̂Þ to obtain �z�t and �b�t

from Theorem 4 for all nodes P̂t�Pt. Then cal-

culate V̂tðxt; P̂tÞ.
(c) Set t = t � 1. If t > 0 then go to step 2b: other-

wise stop.

A similar algorithm can be used to compute the
optimal policies and the value function for the case
without yield uncertainty using Theorem 1. We next
develop managerial insights based on the numerical
analysis.

5.3. Managerial Insights
In this section, to gain further managerial insights, we
conduct a sensitivity analysis for the parameters, such
as the volatility of input and output commodity
prices, the correlation between the prices, and the
holding cost. We consider a planning horizon of
T = 10 weeks.7 We change one parameter at a time
while keeping the other parameters at their base-case
values, as detailed in Table 2. We first develop man-
agerial insights for the deterministic yield case, and
then examine the impact of yield uncertainty. We
compute the value function of selling through the
spot market, defined as V(spot), using Equation (1)
when bt = 0. Similarly, we compute the value of the
optimal policy, defined as V(optimal), using Equation
(1). Then we denote their percentage difference on

graphs, such that% Gains ¼ VðoptimalÞ�VðspotÞ
VðspotÞ 
 100.

Effect of output and input commodity price volatility:
Hedging creates more value as the volatility of the
output commodity price increases, as shown in Fig-
ure 1a. This result is driven by the concavity of the
revenues due to the negative correlation between the
demand and output price, which creates a bigger
incentive to hedge as the output price becomes more

volatile. On the other hand, the effect of input price
volatility is driven by a different mechanism. As the
input price becomes more volatile, the effect of self-
hedging due to correlated prices becomes more pro-
nounced. In particular, higher input price volatility
creates more opportunities to reduce the procurement
cost when the firm is not hedging due to correlation
between the prices. This situation increases the bene-
fits of underhedging leading to lower motivation to
hedge. Hence, as the volatility of the input price
increases, the value of hedging decreases, as shown in
Figure 1c. This is a unique result of this study. In
addition, this effect gets further amplified with an
increase in demand elasticity c.
Effect of price correlation and holding cost: When input

and output prices are positively correlated, selling in
the spot market provides a natural hedge, resulting in
higher profits by reducing the expected procurement
cost. In our model, if the realized output price is high,
this results in low demand and high inventory of
ethanol. Due to a positive correlation between input
and output prices, it is likely that the realization of the
input price is also high. This case implies that when
the price of the input is high, the firm needs to pro-
cure less since it has a high inventory of ethanol. Simi-
larly, if the realized price of the output commodity is
low, then it leads to high demand and low ethanol
inventory. In this case, the firm needs to procure
more, but also faces a low input price. To summarize,
the positive correlation between input and output
prices controls the procurement cost, either through a
lower input price or a lower procurement quantity.
Therefore, as the correlation increases, the firm gets
more motivated to sell in the spot market resulting in
a lower value of hedging, as shown in Figure 1b. On
the other hand, the value of hedging increases with
higher holding costs, as illustrated in Figure 1d. A
higher degree of hedging allows better operational
efficiency by eliciting advanced demand information,
resulting in less mismatch in demand and supply. An
increase in the holding cost leads to a higher cost for a
supply and demand mismatch, resulting in a higher
value from hedging. Similar results can be shown for
the penalty cost.
Effect of yield uncertainty: The value of the firm

decreases with an increase in yield uncertainty. This
result is consistent with the economics and finance lit-
erature. Nevertheless, the percentage benefit of hedg-
ing is non-monotonic in yield uncertainty, as evident
from Figure 2. In Figure 2a, the base case refers to the
base-case volatility of corn, and the other cases refer
to the 80% and 120% volatility of corn with respect to
the base case. Similarly, in Figure 2b, the base case
refers to the base-case volatility of ethanol, and the
other cases refer to the 90% and 110% volatility of
ethanol in the base case. As yield uncertainty
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increases, it increases the risk exposure of the firm,
but only market risk can be hedged through the con-
tract. Therefore, the percentage of risk that can be
hedged decreases with an increase in yield uncer-
tainty, decreasing the value of hedging. However, as
yield uncertainty becomes very high, the percentage
benefit of hedging increases as the value of firm,
which relies purely on spot procurement, decreases

sharply. As a result, the percentage benefit of hedging
is non-monotonic in yield uncertainty.

6. Concluding Remarks

We consider the operations of a commodity proces-
sor that is a price taker in the commodity markets.
In general, commodity processors operate with thin
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Figure 1 Effect of Hedging on Firm Value [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

Figure 2 Effect of Yield Uncertainty on the % Benefit of Hedging [Color figure can be viewed at wileyonlinelibrary.com]
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profit margins, making it imperative to implement
optimal procurement, processing, and hedging poli-
cies. We formulate a multi-period model where the
processor procures an input commodity in the spot
market to process and sell it to the downstream
retailer. The commodity processor may sell the
output through a spot, forward or an index-based
contract. In this study, we jointly optimize procure-
ment policies for the input commodity, and finan-
cial hedging policies for the output commodity
when demand is negatively correlated with output
price. We also assume that the input and output
commodity prices are correlated and follow a joint
stochastic process that offers no risk-free arbitrage
opportunities. In summary, we develop an inte-
grated risk management model for the commodity
processor that accounts for correlation between
demand and the output commodity price, and also
captures the correlation between input and output
prices.
Under this integrated framework, we show that in

general, neither selling exclusively in spot nor for-
ward markets is optimal, but selling through an
index price, which is a combination of spot and for-
ward prices, is optimal. This leads to an optimal
hedge ratio of less than 1, which is in contrast to the
classic economics literature that considers optimiz-
ing only the output end of the supply chain and
concludes that the optimal hedge ratio is one in the
absence of yield uncertainty (Ho 1984, Rolfo 1980).
Our research concludes that the correlation between
input and output prices provides a natural hedge,
resulting in a decrease in reliance on financial hedg-
ing. One of the key managerial insights of our
research is that hedging is most beneficial when out-
put price volatility is high and input price volatility
is low.
Financial theory explains the value of hedging

through capital market imperfections, such as bank-
ruptcy costs, taxation, agency problems, and ineffi-
cient pricing of derivatives. In our study, we consider
a form of friction, that is, logistical costs, kt, to access
the exchange market. This logistical cost is also the
driver of the downward sloping demand in the
study. In particular, there are two distinct reasons
why hedging creates value in our value-maximiza-
tion framework: (1) Logistical costs result in the non-
linearity of the profit function in the output price,
leading to the optimality of hedging. (2) Hedging elic-
its demand information from the downstream retailer
to allow efficient operational planning, eliminating
wasteful inventory due to a mismatch in demand and
supply.
We identify three conditions under which a myopic

policy is optimal: (1) absence of yield uncertainty, (2)
linearly decreasing demand in the price of the output

commodity, and (3) more expensive storage of the
output commodity than the input commodity. These
results are significant because they are contrary to the
existing literature on price-setter firms, where order-
up-to policies have been shown to be optimal. For a
given hedging policy, the optimal input commodity
procurement policy has a newsvendor-like structure
as a function of the spot and futures prices of the
input commodity. Our research also elucidates the
role of the term structure of futures prices on the opti-
mal procurement policy.
Agricultural commodity processors also deal with

yield uncertainty in pursuit of matching supply with
demand. In the presence of such uncertainty, how-
ever, a myopic policy is not optimal. We model yield
uncertainty as stochastically proportional to the pro-
cessing quantity, and show that an expected base-
stock policy is optimal. As the time horizon of deci-
sion making increases, the state space of the joint
price process on the lattice increases exponentially,
rendering it impossible to compute the optimal pol-
icy due to the curse of dimensionality. In this con-
text, we develop myopic policies and conclude that
they perform reasonably well for moderate values of
holding cost. However, their performance deterio-
rates as the yield becomes more uncertain. This is
the first paper in the operations literature that stud-
ies hedging under yield uncertainty. We find that
yield uncertainty has a U-shaped effect on the bene-
fits of hedging.
This research contributes to the growing literature

at the interface of operations and finance. Our analy-
sis concludes that the correlation coefficient between
the input and output prices is key in determining the
optimal hedging policy. In this study, we assume a
static correlation coefficient between prices. Modeling
a stochastic correlation coefficient as an additional
factor in the price process would generate additional
insights. Furthermore, we show that index-based con-
tracts create value for a firm, and it could be further
investigated how other financial contracts, such as
swaps, options, or swing options, could be used by a
firm to create value. The role of capacity constraints
on optimal hedging policies could also be explored
further. We believe that the managerial insights
developed from our analysis will be useful for pro-
curement and sales managers in a commodity supply
chain.

Appendix A. Proofs

A.1. Proof of Lemma 2

PROOF. The proof is by backward induction. For
this purpose, we first need to show that
Jtðxt; zt; bt; PtÞ is jointly concave in zt and bt for
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t = T � 1, i.e., for the last decision period. Recall
that JT�1ðxT�1; zT�1; bT�1; PT�1Þ is defined as:

JT�1ðxT�1; zT�1; bT�1;PT�1Þ ¼ bEQ
PjPT�1

~RT�1ðbT�1; pTÞ

� ðsT�1 þ cT�1Þ
a

ðzT�1 � xT�1Þ � rð�xT�1Þþ

� hðxT�1Þþ þ bEQ
PjPT�1

VTðzT�1 � dT;PÞ;

where VTðxT; PTÞ ¼ ðpT � �TÞxþT � ðpT þ �TÞx�T
and xT = zT�1 � dT.
The first-order partial derivative of JT�1ðxT�1;

zT�1; bT�1; PT�1Þ with respect to zT�1 is shown
below (for brevity, we will not index w and Ψ, and
omit the arguments of the function
JT�1ðxT�1; zT�1; bT�1; PT�1Þ).

@JT�1

@zT�1
¼ � sT�1 þ cT�1

a
þ bðfoT þ �TÞ

Z MT�1

0

wðpÞdp

þ bðfoT � �TÞ
Z 1

MT�1

wðpÞdp;

where MT�1 ¼ AT � cbT�1f
0
T�1

� c�T � zT�1

cð1� bT�1Þ . Following, the

second-order partial derivative of JT�1 with respect
to zT�1 is given by:

@2JT�1

@z2T�1

¼ 2b�T
@MT�1

@zT�1
wðMT�1Þ:

Observing @MT�1

@zT�1
¼ � 1

cð1� bT�1Þ \ 0, we conclude

that @2JT�1

@z2
T�1

¼ �2b�T
1

cð1� bT�1ÞwðMT�1Þ\ 0. Similarly,

the first-order partial derivative of JT�1 with respect
to bT�1 is shown below for 0 ≤ bT�1 ≤ 1.

@JT�1

@bT�1
¼ 2c ð1� bT�1Þr2o

þ cb
Z MT�1

0

ðfoT�1 � pTÞðpT þ �TÞwðpÞdp

þ cb
Z 1

MT�1

ðfoT�1 � pTÞðpT � �TÞwðpÞdp:

Following, the second-order partial derivative of
JT�1 with respect to bT�1 is given by:

@2JT�1

@b2T�1

¼ �2cr2o þ 2cb�T
@MT�1

@bT�1
ðfoT�1 �MT�1ÞwðMT�1Þ:

Then, substituting for

MT�1 ¼ AT � cbT�1f0T�1 � c�T � zT�1

cð1� bT�1Þ
and

@MT�1

@bT�1
¼ � cfoT�1 � AT þ c�T þ zT�1

cð1� bT�1Þ2
;

we obtain:

@2JT�1

@b2T�1

¼ �2cr2o

� 2cb�T
ðcfoT�1 � AT þ c�T þ zT�1Þ2

c2ð1� bT�1Þ3
wðMT�1Þ:

Now it is trivial to observe that @2JT�1

@b2
T�1

\ 0. Finally,

the cross-partial derivative of JT�1 with respect to

zT�1 and bT�1 is obtained as:

@2JT�1

@bT�1@zT�1
¼ �2b�T

cfoT�1 � AT þ c�T þ zT�1

cð1� bT�1Þ2
wðMT�1Þ:

Accordingly, the Hessian matrix of JT�1 is given by:

@2JT�1

@z2
T�1

@2JT�1

@bT�1@zT�1

@2JT�1

@bT�1@zT�1

@2JT�1

@b2
T�1

2
4

3
5 ¼ A B

C D

� �
;

where

A¼� 2b�T
1

cð1� bT�1Þw
AT � cbT�1f0T�1� c�T � zT�1

cð1� bT�1Þ
� �

;

B¼C¼�2b�Tw
AT � cbT�1f0T�1� c�T � zT�1

cð1� bT�1Þ
� �

cfoT�1�AT þ c�T þ zT�1

cð1� bT�1Þ2
 !

; and

D¼� 2cr2o � 2cb�T
ðcfoT�1�AT þ c�T þ zT�1Þ2

c2ð1� bT�1Þ3

w
AT � cbT�1f0T�1� c�T � zT�1

cð1� bT�1Þ
� �

:

We have already proven that the first-order prin-
cipal minors of the Hessian matrix is negative, i.e.,
@2JT�1

@z2
T�1

\ 0 and @2JT�1

@b2
T�1

\ 0. In this case, the second-

order principal minor is the determinant of the
matrix and is given by

@2JT�1

@z2T�1

@2JT�1

@b2T�1

� @2JT�1

@bT�1@zT�1

� �2

¼ 4cr2ob�T
1

cð1� bT�1ÞwðMT�1Þ;

which is positive. This concludes that the Hessian is
negative definite and JT�1 is strictly jointly concave
in zT�1 and bT�1. Then, from concavity preservation
under maximization, we conclude that the value
function VT�1 is also strictly concave in xT�1 (see,
e.g., Porteus 2002, p. 227).
Now to complete the induction argument, let’s

assume that the value function Vt+1 is strictly con-
cave in xt+1, and check whether Jt is strictly jointly
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concave in zt and bt for t < T � 1. Recall that

Jtðxt;zt;bt;PtÞ¼ bEQ
PjPt

~Rtðbt;ptþ1Þ�ðstþ ctÞ
a

ðzt�xtÞ
�

�rð�xtÞþ�hðxtÞþþbEQ
PjPt

Vtþ1ðxtþ1;PÞ
o
;

since xt+1 = zt � dt+1 is linear in zt and bt, if Vt+1 is
strictly concave in xt+1, then Vt+1 is also strictly
jointly concave in zt and bt. Hence it is sufficient to
show that the remaining terms of Jt, i.e.,

Kt ¼ bEQ
PjPt

~Rtðbt; ptþ1Þ � ðst þ ctÞ
a

ðzt � xtÞ � rð�xtÞþ
� hðxtÞþ;

are concave. Observing that @2Kt

@z2t
¼ 0, @2Kt

@b2t
¼ �2cr2o

\ 0 and @2Kt

@bt@zt
¼ 0 concludes that Kt is concave, and

hence Jt is strictly jointly concave in zt and bt (note
that Vt+1 is strictly jointly concave). This completes
the induction argument. h

A.2. Proof of Theorem 1

PROOF. The first-order condition for zt from Equa-
tion (1) is given by

@Jt
@zt

¼ � st þ ct
a

þ bEQ
PjPt

@Vtþ1ðzt � dtþ1;PÞ
@zt

þ lt

¼ 0; and ðA1Þ

@Vt

@xt
¼ st þ ct

a
� h:1fxt [ 0g þ r:1fxt\0g � lt; ðA2Þ

where lt is the Lagrange multiplier for zt ≥ xt. Com-
bining Equations (A1) and (A2) gives

@Jt
@zt

¼� st þ ct
a

þ bEQ
PjPt

�
stþ1 þ ctþ1

a

� h:1fzt [Atþ1�cðbtfot þð1�btÞptþ1þ�tþ1Þg

þ r:1fzt\Atþ1�cðbtfot þð1�btÞptþ1þ�tþ1Þg � ltþ1

�
þ lt ¼ 0:

ðA3Þ
For ease of exposition, we assume that the dis-
counted processing cost is fixed, i.e., ct = bct+1 for
t = 1, . . ., T � 2. Ignoring the constraint 0 ≤ bt ≤ 1,
the first-order condition for bt from Equation (1) is
given by

@Jt
@bt

¼bEQ
PjPt

½ðAtþ1�2cWtþ1ðbt;ptþ1ÞÞðfot �ptþ1Þ�

�bEQ
PjPt

@Vtþ1ðzt�dtþ1;PÞ
@ðzt�dtþ1Þ

@dtþ1

@bt

� �� �
¼ 0:

ðA4Þ

We know that @dtþ1

@bt
¼ �cðfot � ptþ1Þ; substituting it

in Equation (A4) results in the following myopic
condition:

@Jt
@bt

¼2cbð1�btÞr2o�cbCovðstþ1;ptþ1Þ=a�cbutðzt;btÞ¼0;

ðA5Þ

where utðzt; btÞ ¼ �r
RMt

0 ðfot � ptþ1ÞwðpÞdp þ h
R1
Mt

ðfot � ptþ1ÞwðpÞdp and Mt ¼ Atþ1 � cbtfot � c�tþ1 � zt
cð1�btÞ .

(a) If Cov(st+1, pt+1) > 0, then from Equation (A5),
it can be easily shown that b�t \ 1.
Ignoring lt and lt+1, and substituting EQ

PjPt

½stþ1� ¼ f it in Equation (A3), we obtain z�t as a solu-
tion to Equation (2) for t = 1, . . ., T � 2. Similarly,
we can show that Equation (3) follows from Equation
(A5) for t = 1, . . ., T � 2. Also, we can obtain z�T�1

and b�T�1 for period T � 1 by substituting r = pT + kT
and h = kT � pT in Equations (A3) and (A4), and
ignoring the Lagrange multipliers. If b�t \ 0, then
since the objective function is concave, the myopic
solution is obtained by setting b�t ¼ 0 and solving
Equation (2). Subsequently, we now prove the opti-
mality of this myopic policy when 0 ≤ bt ≤ 1.
We structure the proof by showing that the optimal

myopic policy never leads to the violation of con-

straint z�tþ1 [ z�t � dtþ1. Let Gt ¼ st þbha�bf it þ ct � bctþ1

bðrþ hÞa ,

then from Equation (2) and equating Mt ¼ W�1ðGtÞ,
the constraint z�tþ1 [ z�t � dtþ1 can be written as the

following (note that the problem is myopic by defini-
tion for t = T � 1):

Atþ2 � cbtþ1f
o
tþ1 � cð1� btþ1ÞW�1ðGtþ1Þ � c�tþ2

[ cð1� btÞðptþ1 �W�1ðGtÞÞ:
ðA6Þ

Now, let U + � be the highest possible output price
in the local market. At time t + 2, Atþ2

2c is the optimal
monopoly price for the firm, which is always greater
than the price realized in competitive markets. In
what follows, given that the firm is a price taker,
i.e., Atþ2

2c � U þ �, we show Equation (A6) is always
satisfied.
The worst-case scenario, which violates the con-

straint in Equation (A6), is that the RHS is large and
the LHS is small. The RHS can achieve maximum by

setting bt = 0, Ψ�1(Gt) = 0, and ptþ1 ¼ U þ �, such

that RHS = c(U + �). In addition,
@z�tþ1

@btþ1
¼ ðW�1ðGtþ1Þ

� fotþ1Þc, hence, z�tþ1 (i.e., the LHS of A6) is monotoni-

cally either increasing or decreasing in bt+1. If z
�
tþ1 is

decreasing in bt+1, then after setting bt+1=1, Equation
(A6) becomes Atþ2 � cfotþ1 þ c�tþ2 þ cðU þ �Þ. On

the other hand, if z�tþ1 is increasing in bt+1, then after

setting bt+1 = 0, Equation (A6) becomes Atþ2 � cW�1

½Gtþ1� þ c�tþ2 þ cðU þ �Þ. Finally, note that by con-

struction, U + � is greater than both fotþ1 þ �tþ2 and

Ψ�1[Gt+1] + kt+2. Now it is easy to observe that, since
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Atþ2 � 2cðU þ �Þ, Equation (A6) is satisfied in both
cases.
(b) if Cov(st+1, pt+1) < 0, then at bt = 1 we get

@Jt
@bt

[ 0 from Equation (A5). Since bt 2 ½0; 1� and the

objective function is concave, this implies that b�t ¼ 1.

Note that at b�t ¼ 1 the derivative @Jt
@zt

in Equation (A3)

does not exist due to the kinks in the objective func-
tion. Therefore, the optimality condition has to satisfy

0� @Jt
@zt

as explained in Rockafellar (1970). Observ-

ing that @Jt
@zt

¼ � st þ ct
a þ lt þ bEQ

PjPt
fstþ1 þ ctþ1

a � ltþ1gþ
b½r:1fzt \Atþ1 � cðfot þ �tþ1Þg; � h:1fzt [ Atþ1 � cðfot þ �tþ1Þg� at bt =
1, now there are two possible cases:

(i) st � bf it � bra: In this case, z�t ¼ At � cfot �
c�tþ1 is an optimal solution and myopic
indeed. Notice, at z�t ¼ At � cfot � c�tþ1 the
leftover inventory is zero; therefore,
bEQ

PjPt
½ltþ1� ¼ 0.

(ii) st � bf it [ bra: In this case, lt > 0, such that
z�t ¼ xt is an optimal solution and myopic
indeed. h

A.3. Proof of Lemma 3
PROOF. Immediately follows from the concavity of
function Rt in pt+1, and f0t ¼ bEQ

PjPt
½ptþ1�. h

A.4. Proof of Corollary 1
PROOF. From Lemma 2 we know that Equation (3)
has a unique solution. Then, if Cov(pt+1, st+1) > 0, from

Equation (A5) it implies that @Jt
@bt

\ 0 at bt = 1. This con-

cludes that b�t \ 1. If Cov(pt+1, st+1) = 0, from Equation

(A5) it implies that @Jt
@bt

¼ 0 at bt = 1. h

A.5. Proof of Theorem 2

PROOF. From Lemma 3 and Equation (1), we can
easily show that Vtðxt; PtÞ � �Vtðxt; PtÞ. From Corol-
lary 1, we know that b�t \ 1, and hence by the definition
of optimality it follows that Vtðxt; PtÞ � �Vtðxt; PtÞ
\Vtðxt; PtÞ. h

A.6. Proof of Theorem 3

PROOF. Since Jt is concave in zt for a given bt and Pt,
the base-stock policy is optimal. If h < h

0
/a, then it is

possible that st þ ha � bf it � 0. In this case, from
Equation (A3), for ct = bct+1 and bt = 1, it implies that
bEQ

PjPt
½ltþ1� [ 0. This results in the possibility of con-

straint zt+1 ≥ xt+1 to be binding such that the myopic
policy is not optimal. h

A.7. Proof of Proposition 1

PROOF. (a) When Cov(pt+1, st+1) > 0, using Equation

(A3) and Corollary 1, we obtain @2Jt
@zt@c

¼ �ðr þ hÞ
ðAtþ1 � ztÞ
c2ð1� btÞ wðMtÞ\ 0 and b�t \ 1. Note that At+1 � zt > 0.

This, in conjunction with the concavity of Jt in zt, results
in z�t decreasing in c. When Cov(pt+1, st+1) ≤ 0, from The-
orem 1, z�t is non-increasing in c.
(b) When Cov(pt+1, st+1) > 0, from Equation (A5)

and Corollary 1, we get

@2Jt
@bt@c

¼ Atþ1 � cfot � c�tþ1 � zt
1� bt

� �
Atþ1 � zt
cð1� btÞ

� �
ðrþ hÞ

and b�t\1:

Then @2Jt
@bt@c

[ 0 when zt \ zGt ¼ Atþ1 � cfot � c�tþ1,

and @2Jt
@bt@c

\ 0 when zt [ zGt . This, in conjunction with

the concavity of Jt in bt, shows that b�t increases (de-

creases) with c when zt \ zGt ðzt [ zGt Þ. When Cov
(pt+1, st+1) ≤ 0, then from Theorem 1, b�t is always one.
(c) When Cov(pt+1, st+1) > 0, from Equation (A5)

and Corollary 1, we can show @2Jt
@bt@r

¼ c
RMt

0 ðf0t � ptþ1Þ
wðpÞdp [ 0 and b�t \ 1 since by definition

RMt

0

ðf0t � ptþ1ÞwðpÞdp [ 0. Also, using Equation (A5) we

obtain @2Jt
@bt@h

¼ �c
R1
Mt
ðf0t � ptþ1ÞwðpÞdp [ 0. This, in

conjunction with the concavity of Jt in bt, proves the
desired result. When Cov(pt+1, st+1) ≤ 0, then b�t is
always one.
(d) When Cov(pt+1, st+1) > 0, we can show that

@2Jt
@zt@r

¼ bEQ
PjPt

½1fzt\Atþ1�cðbtfot þð1�btÞptþ1þ�tþ1Þg� [ 0, @2Jt
@zt@h

¼
bEQ

PjPt
½�1fzt [Atþ1�cðbtfot þð1�btÞptþ1þ�tþ1Þg�\ 0 and b�t \ 1.

This, in conjunction with the concavity of Jt in zt,
proves the desired result. When Cov(pt+1,st+1) ≤ 0, from
Theorem 1, z�t is a constraint with respect to r and h. h

A.8. Proof of Theorem 4

PROOF. We can construct a similar proof as in Lemma
1 to show that V̂tþ1ðða þ �Þyt þ xt � dtþ1; PÞ is con-
cave in yt. Similar to Lemma 2, we can establish the joint
concavity of the objective function in (4), which estab-
lishes that there exists a unique solution for the first-
order conditions (5) and (6), and that the base-stock pol-
icy is optimal. h

A.9. Proof of Theorem 5

PROOF. From Equation (4), we approximate the deriva-
tive of the value function V̂t with respect to the current
inventory xt as @V̂t

@xt
¼ st þ ct

a � h1fxt [ 0g þ r1fxt\0g.
Thereafter,

@Ĵt
@ẑt

¼� stþ ct
a

þbE�E
Q
PjPt

@V̂tþ1ðxtþ1;PÞ
@xtþ1

1þ �

a

� 	

¼�stþ ct
a

þb
f it þ ctþ1

a
�h

�

þðrþhÞ
Z Z M̂t

0

1þ �

a

� 	
wðpÞ/ð�Þdpd�

)
;

ðA7Þ

where M̂t ¼ Atþ1�cbtfot �c�tþ1�ẑt��ðẑt�xtÞ=a
cð1�btÞ .
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Equating (A7) to zero, and defining

CðM̂tÞ ¼ R ð1 þ �
aÞWðM̂tÞ/ð�Þd�, we get CðM̂tÞ ¼

st þ abh� bf it þ ct �bctþ1

abðrþ hÞ . Similarly, ignoring the constraint

0 ≤ bt ≤ 1, we obtain:

@Ĵt
@bt

¼ 2bcr2oð1� btÞ þ bcE�E
Q
PjPt

@V̂ðxtþ1;PÞ
@xtþ1

ðfot � ptþ1Þ

¼ 2bcr2oð1� btÞ þ bcEQ
PjPt

½stþ1 þ ctþ1

a
ðfot � ptþ1Þ�

� bc
Z

½�r

Z M̂t

0

ðfot � ptþ1ÞwðpÞdp

þ h

Z 1

M̂t

ðfot � ptþ1ÞwðpÞdp�/ð�Þd�

¼ 2bcr2oð1� btÞ � bcCovðstþ1; ptþ1Þ=a

� bc
Z

½�r

Z M̂t

0

ðfot � ptþ1ÞwðpÞdp

þ h

Z 1

M̂t

ðfot � ptþ1ÞwðpÞdp�/ð�Þd�

As a result, defining gtðẑt; btÞ ¼ R ½�r
R M̂t

0 ðfot �
ptþ1ÞwðpÞdp þ h

R1
M̂t
ðfot � ptþ1ÞwðpÞdp�/ð�Þd�, and set-

ting @Ĵt
@bt

¼ 0, we get 2r2oð1� btÞ ¼ Covðstþ1; ptþ1Þ=
a þ gðẑt; btÞ. Now, solving this equation together
with equation (A7) = 0 gives the unconstrained

solutions �bt and �zt. Since the objective function is
concave, the optimal policy is given by (i) if
�bt 2 ½0; 1� then ẑ�t ¼ �zt and b̂�t ¼ �bt and (ii) if
�bt 62 ½0; 1� then b̂�t ¼ maxfminf�bt; 1g; 0g, and ẑ�t is
obtained by solving Equation (A7) = 0 for

b̂�t ¼ maxfminf�bt; 1g; 0g. Solutions for t = T � 1
can be obtained analogously. h

Appendix B. Value-Neutrality of Hedging
Input Procurement
In this appendix, we provide a mathematical proof
of the value-neutrality of input hedging. In addi-
tion to the original modeling setup in the manu-
script, suppose that the firm may also buy forward
contracts for the delivery of the input commodity
to reduce its exposure to input price risk. In this
case, the timeline of events and decisions in the
original manuscript will change as follows (below
we only list the changes due to forward buying of
the input commodity as the rest of the events and
decisions are identical to the ones in the original
manuscript):

• At time t, the firm decides the volume of input
forward contracts, qt, to be purchased for
delivery at time t + 1, in addition to other
existing decision variables. Let f it;tþ1 denote the

forward price of the input commodity agreed
at time t to be delivered at time t + 1.

• At time t, the firm starts with xt = zt�1 � dt
units of output inventory and qt�1 units of
input inventory to be delivered at time t
through the input forward agreement engaged
in at time t � 1.

• The firm then decides the echelon output
inventory level zt by processing the existing
input (from the forward contract) and using
the spot market to buy additional input com-
modity if needed. In particular, ðzt � xt

a � qt�1Þþ
denotes the additional input purchased from
the spot market and ðqt�1 � zt � xt

a Þþ is the
excess input after processing. Note that one
unit of input converts to a units of output, and
hence zt � xt

a gives how much input is processed.

Before we present the revised mathematical model,
below we first show an important lemma that simpli-
fies the exposition of the model.

LEMMA B1. It is suboptimal to carry unprocessed input
commodity, i.e., it is optimal to sell unprocessed input
commodity ðqt�1 � zt � xt

a Þþ in the spot market at the end
of each period t.

PROOF. The proof follows from our no-arbitrage
assumption in commodity markets. Suppose at time
t, the firm owns one unit of input commodity. Now,
consider that the firm does not process it and carries
it to the next period (by paying a holding cost of h

0
)

with the expectation of using it in the future. Alterna-
tively, at time t, the firm may sell the commodity in
the spot market and buy a forward contract for the
delivery of one unit of input commodity next period.

The cost of this alternative strategy is bf it;tþ1 � st,

where b is the one period risk-free discount rate.
Note that both strategies provide the firm with one
unit of input commodity next period. The first one

costs h
0
and the second one costs bf it;tþ1 � st. When

we take the difference between the cost of the first

and second strategies, we obtain st þ h0 � bf it;tþ1,

which is called the marginal convenience yield (Goel
and Gutierrez 2011, Williams and Wright 1991), and
this quantity should always be non-negative; other-
wise, it implies arbitrage. In particular, when

st þ h0 � bf it;tþ1 \ 0, investors may simultaneously

long the physical commodity and short the contract
and lock in a risk-free profit. This situation is known
as cash-and-carry arbitrage in commodity markets (see,
e.g., Geman 2005, Ch. 2.5). As a result, the no-arbit-
rage assumption leads to the fact that carrying unpro-
cessed input is suboptimal. That is, it is optimal to

clear the excess input at time t, ðqt�1 � zt � xt
a Þþ in the
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spot market. If needed, the firm can buy the same
amount in the forward market and avoid paying the
marginal convenience yield. h

The no-arbitrage assumption and the resulting
Lemma B1 are important to prove the value neutrality
of input hedging. Using Lemma B1, now the revised
optimization model with forward and spot procure-
ment of the input commodity reads as follows:

Vtðxt; qt�1;PtÞ ¼ max
zt;bt;qt2AtðxtÞ

Jtðzt; bt; qt; xt; qt�1;PtÞ

ðB1Þ

Jtðzt; bt; qt; xt; qt�1;PtÞ ¼ bEQ
PjPt

~Rtðbt; ptþ1Þ � bf it;tþ1qt
n

�st
zt � xt

a
� qt�1

� 	þ
þst qt�1 � zt � xt

a

� 	þ
� ct

a
ðzt � xtÞ � rð�xtÞþ � hðxtÞþ

þbEQ
PjPt

Vtþ1ðzt � dtþ1; qt;PÞ
o

where, AtðxtÞ ¼ fzt � xt; 0 � bt � 1g, and VTðxT;
qT�1;PTÞ ¼ sTqT�1þðpT ��TÞðxTÞþ � ðpT þ�TÞð�xTÞþ.
The first term in the objective function,

bEQ
PjPt

~Rtðbt; ptþ1Þ, represents the expected revenue

from the sales of the output commodity. The second

term, f it;tþ1qt, gives the cost of forward procurement.

The third and fourth terms, stðzt � xt
a � qt�1Þþ and

stðqt�1 � zt � xt
a Þþ, are the cost of spot procurement and

the revenue from the spot sales of the input commod-
ity, respectively. The fifth term, ct

a ðzt � xtÞ, is the pro-

cessing cost. The remaining terms are identical to the
ones in the original paper, except that the state space
of the cost-to-go function now also includes the for-
ward input commodity position qt. The following
lemma describes the value neutrality of input hedging:

LEMMA B2. Forward procurement of input commodity
is value-neutral.

PROOF. For t = 1, . . ., T � 2, we can write the FOC
for qt as the following:

@Jtðxt;zt;bt;Pt;qtÞ
@qt

¼�bf it;tþ1þ
@bEQ

PjPt
Vtþ1ðzt�dtþ1;qt;PÞ

@qt
¼0;

@Jtðxt;zt;bt;Pt;qtÞ
@qt

¼�bf it;tþ1

þ
@bEQ

PjPt
f�stþ1ðztþ1�xtþ1

a �qtÞþþstþ1ðqt�ztþ1�xtþ1

a Þþg
@qt

¼0;

observing that, in this case, the order of expectation
and derivative can be interchanged and using some
algebra we obtain:

@Jtðxt;zt;bt;Pt;qtÞ
@qt

¼�bf it;tþ1þbEQ
PjPt

½stþ1Ifdtþ1�ztþaqt�ztþ1g�

þbEQ
PjPt

½stþ1Ifdtþ1�ztþaqt�ztþ1g�¼0

@Jtðxt; zt; bt;Pt; qtÞ
@qt

¼ �bf it;tþ1 þ bEQ
PjPt

½stþ1Ifp̂tþ1 � ptþ1g�

þ bEQ
PjPt

½stþ1Ifp̂tþ1 � ptþ1g� ¼ 0

where p̂tþ1 ¼ Atþ1�ðztþaqt�ztþ1Þ
cð1�btÞ � ð�tþ1þbtfot Þ

ð1�btÞ . Then,

@Jtðxt; zt; bt;Pt; qtÞ
@qt

¼ �bf it;tþ1 þ bEQ
PjPt

½stþ1ðIfp̂tþ1 � ptþ1g

þ Ifp̂tþ1 � ptþ1g� ¼ 0

@Jtðxt; zt; bt;Pt; qtÞ
@qt

¼ �bf it;tþ1 þ bEQ
PjPt

½stþ1� ¼ 0:

Finally, note that the no-arbitrage assumption also
requires that the contracts are fairly priced, i.e.,

f it;tþ1¼ EQ
PjPt

½stþ1�. Hence, it holds that @Jtð:Þ
@qt

¼ �bf it;tþ1 þ
bEQ

PjPt
½stþ1� ¼ 0 for all qt, and the level of forward

buying, qt, is irrelevant to firm value.8 This result may
also be generalized to other financial derivatives for
trading the input commodity. h

Appendix C. The Choice of Demand
Parameters
Economics literature shows that ethanol demand
presents strong price elasticity. In particular,
empirical research finds that price elasticity of etha-
nol demand ranges between �0.43 and �2.92 (Elo-
beid and Tokgoz 2008, Luchansky and Monks 2009,
Roberts and Schlenkera 2013). Following these
results in the literature, we consider a downward
sloping linear demand function for ethanol, i.e.,
dt+1 = A � cpt+1. We normalize the firm specific
market size to A = 500 units, and consider three
levels of price sensitivity: high (c = 160), medium
(c = 120) and low (c = 80). We select these levels of
c such that the resulting price elasticities are con-
sistent with the empirical observations. In particu-
lar, in our demand model, ethanol price elasticities
for the mean price ranges from �0.56 (for c = 80)
to �2.57 (c = 160). Note that our model is tested on
futures price data for corn and ethanol from the
Chicago Mercantile Exchange between 4/1/2005
and 12/31/2011. In this period, the average ethanol
price was $2.25/gallon.

Notes
1According to Van Mieghem (2003), “Mitigating risk, or
hedging, involves taking counterbalancing actions so that,
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loosely speaking, the future value varies less over the pos-
sible states of nature. If these counterbalancing actions
involve trading financial instruments, including short-sell-
ing, futures, options, and other financial derivatives, we
call this financial hedging.” In our context, we refer to
financial hedging as selling the output commodity using a
forward contract or an index-based contract.
2Perfect hedging is defined as a hedge that completely
eliminates price risk.
3A jobber procures gasoline from the refineries, then pro-
cesses it with additives in accordance with state and environ-
mental regulations to sell the gasoline to unbranded retailers.
4For models with similar assumptions on the correlation
between demand and price, see Kazaz (2004) and Seco-
mandi and Kekre (2014).
5In the economics literature, Pindyck (2004) defines mar-
ginal convenience yield as the economic cost of storage.
6In section 5, we illustrate the computational procedure.
7For the demand function, we normalize the firm specific
market size to A = 500 units, and consider three levels of
price sensitivity: high (c = 160), medium (c = 120) and low
(c = 80) (see Appendix C for more details).
8The same result may also be shown using a similar line
of reasoning for the last decision period T � 1. For brevity
it is omitted here.
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